Состав двигателя внутреннего сгорания: Устройство современного двигателя внутреннего сгорания

Содержание

Моделирование работы двигателя внутреннего сгорания на конвертерном газе

Ключевые слова: конвертерный газ, двигатель, альтернативное топливо, утилизация, мощность

Аннотация

Впервые рассмотрена возможность утилизации конвертерного газа ПАО «НЛМК» в газопоршневых агрегатах.

Представлена существующая схема работы газоотводящего тракта конверторов, и описан вариант модернизации газоотводящего тракта для сбора и очистки газа. Дан расчет работы двигателя внутреннего сгорания при работе на природном газе на номинальной нагрузке. Смоделирована работа двигателя на конвертерном газе, указаны сравнительные характеристики работы двигателя с колебаниями состава конвертерного газа.

Результаты моделирования показали, что состав газа существенно влияет на работу ДВС. Снижаются основные показатели работы, что указывает на необходимость внесения изменений в конструкцию двигателя. Моделирование колебаний состава конвертерного газа подтвердило, что на стационарном режиме работы наибольшее влияние на мощность двигателя оказывает оксид углерода, при этом увеличение доли водорода в смеси приводит к падению мощности. Сделан вывод о возможности утилизации химического потенциала конвертерного газа на газопоршневом агрегате применительно к конвертерному цеху ПАО «НЛМК».

Литература

1. Курзанов С.Ю. Повышение энергетической эффективности сталеплавильного производства на основе использования конвертерных газов: автореф. дис. …канд. техн. наук. М.: Изд-во МЭИ, 2011.
2. Лотош В.Е. Утилизация вторичных энергетических ресурсов // Ресурсосберегающие технологии. 2003.
№ 9. С. 3—18.
3. Агапитов Е.Б., Максимов А.А. Разработка схемы комбинированного производства газообразного топлива на основе конвертерного газа с целью сбережения энергетических ресурсов металлургического производства // Вопросы технических наук: новые подходы в решении актуальных проблем: Сборник науч. трудов Междунар. науч.-практ. конф. Казань, 2014.

4. Группа НЛМК — повысить мощности КЦ-2 на 19% [Электрон. ресурс] www.nlmk.com/ru/media-center/news-groups/nlmk-group-to-boost-capacity-of- steelmaking-shop-2-at-lipetsk-site-by-19-/?from=en (дата обращения 18.04.2018).
5. Расщупкин В.П., Корытов М.С. Производство стали. Методика выплавки. Омск: СибАДИ, 2007.
6. Линчевский Б.В., Соболевский А.Л., Кальменев А.А. Металлургия черных металлов. М.: Металлургия, 1986.
7. Ларионов Л.Б., Бураев М.К. Расчет процесса сгорания биогаза в газовом двигателе с искровым зажиганием, конвертированного из дизеля с наддувом // Вестник СВФУ. 2015. Т. 12. № 1. С. 52—58.
8. Карташевич А.Н., Малышкин П.Ю., Плотников С.А., Зубакин А.С. Исследования работы двигателя на альтернативных топливах // Вестник Белорусской гос. сельскохозяйственной академии. 2016. № 4. С. 115—117
9. Левтеров А.М., Левтерова Л.И., Гладкова Н.Ю. Использование альтернативных топлив в транспортных ДВС // Автомобильный транспорт. 2010. № 27. С. 61—64.
10. Европейский опыт утилизации сбросного энергопотенциала промышленных газов [Электрон. ресурс] www.cogeneration.com.ua/ru/analytics/special-gas/ hydrogen-utilization (дата обращения 21.06.2019).
11. Мысник М.И., Свистула А.Е. Анализ теплофизических свойств альтернативных топлив для двигателей внутреннего сгорания // Ползуновский вестник. 2009. № 1—2. C. 37—43.
12. Гичев Ю.А. Проектно-конструкторские решения по использованию конвертерного газа для нагрева металлолома // Современная наука: исследования, идеи, результаты, технологии. 2013. № 5. С. 54—59.
13. Куземко Р.Д., Сущенко А.В. Улучшение теплового баланса конвертерной плавки за счет регенирации теплоты отходящих газов // Вестник Приазовского гос. техн. ун-та. Серия «Технические науки». 1998. № 6. С. 62—69.
14. Гичев Ю.А., Запотоцкая А.Ю. Tехнические решения и эффективность использования конвертерного газа для обжига известняка // Международные конференции: литье, металлургия. Запорожье: Запорожская торгово-промышленная палата, 2015.
15. Максимов А.А., Агапитов Е.Б. Совершенствование энергоэффективной схемы утилизации конвертерного газа // Теплотехника и информатика в образовании, науке и производстве: Сборник докл. IV Всерос. науч.- практ. конф. студентов, аспирантов и молодых ученых с междунар. участием. Екатеринбург: Изд-во УрФУ, 2015. С. 101—105.
16. Дремов А.Н., Гридин С.В. Использование газов сталеплавильных конвертеров в качестве вторичных энергоресурсов // Металлургия XXI столетия глазами молодых: Сборник докл. Всеукр. науч.-практ. конф. студентов. Донецк: Изд-во ДонНТУ, 2013. С. 143—144.
17. Сталинский Д.В. и др. Пути повышения эффективного использования вторичных энергоресурсов (топливных газов) металлургического производства // Экология и промышленность. 2010. № 3. С. 71—75.
18. Баптизмаиский В.И., Меджибожский М.Я., Охотский В.Б. Конвертерные процессы производства стали. Теория, технология, конструкции агрегатов. Киев: Высшая школа, 1984.
19. Руководство по ремонту двигателей Caterpillar [Электрон. ресурс] www.truckmanualshub.com/caterpillar- workshop-manuals-pdf (дата обращения 21.06.2019).
20. Кулманаков С.П., Кулманаков С.С. Тепловой расчет ДВС. Барнаул: Изд-во АлтГТУ, 2014.
21. Шароглазов Б.А., Шишков В.В. Поршневые двигатели: теория, моделирование и расчет процессов. Челябинск: Издат. центр ЮУрГУ, 2011.
22. Ситтинг М. Процессы окисления углеводородного сырья. М.: Химия, 1970.
23. Калимуллин Р.Ф., Горбачев С.В., Филиппов А.А. Тепловой расчет автомобильных газовых двигателей: методические указания к курсовому проектированию. Оренбург: Изд-во ГОУ ОГУ, 2007.

Для цитирования: Губарев В.Я., Спасибин А.Ю. Моделирование работы двигателя внутреннего сгорания на конвертерном газе // Вест- ник МЭИ. 2019. № 6. С. 50—57. DOI: 10.24160/1993-6982-2019-6-50-57.
#
1. Kurzanov S.Yu. Povyshenie Energeticheskoy Effektivnosti Staleplavil’nogo Proizvodstva na Osnove Ispol’zovaniya Konverternykh Gazov: Avtoref. Dis. … Kand. Tekhn. Nauk. M.: Izd-vo MEI, 2011. (in Russian).
2. Lotosh V.E. Utilizatsiya Vtorichnykh Energeticheskikh Resursov. Resursosberegayushchie Tekhnologii. 2003;9:3—18. (in Russian).
3. Agapitov E.B., Maksimov A.A. Razrabotka Skhemy Kombinirovannogo Proizvodstva Gazoobraznogo Topliva na Osnove Konverternogo Gaza s Tsel’yu Sberezheniya Energeticheskikh Resursov Metallurgicheskogo Proizvodstva. Voprosy Tekhnicheskikh Nauk: Novye Podkhody V Reshenii Aktual’nykh Problem: Sbornik Nauch. Trudov Mezhdunar. Nauch.-prakt. Konf. Kazan’, 2014. (in Russian).
4. Gruppa NLMK — Povysit’ Moshchnosti KTS-2 na 19% [Elektron. Resurs] www.nlmk.com/ru/media-center/news-groups/nlmk-group-to-boost-capacity-of-steelmaking-shop-2-at-lipetsk-site-by-19-/?from=en (Data Obrashcheniya 18.04.2018). (in Russian).
5. Rasshchupkin V.P., Korytov M.S. Proizvodstvo Stali. Metodika Vyplavki. Omsk: SibADI, 2007. (in Russian).
6. Linchevskiy B.V., Sobolevskiy A.L., Kal’menev A.A. Metallurgiya Chernykh Metallov. M.: Metallurgiya, 1986. (in Russian).
7. Larionov L.B., Buraev M.K. Raschet Protsessa Sgoraniya Biogaza v Gazovom Dvigatele s Iskrovym Zazhiganiem, Konvertirovannogo iz Dizelya s Nadduvom. Vestnik SVFU. 2015;12;1:52—58. (in Russian).
8. Kartashevich A.N., Malyshkin P.Yu., Plotnikov S.A., Zubakin A.S. Issledovaniya Raboty Dvigatelya na Al’ternativnykh Toplivakh. Vestnik Belorusskoy Gos. Sel’skokhozyaystvennoy Akademii. 2016;4:115—117 (in Russian).
9. Levterov A.M., Levterova L.I., Gladkova N.Yu. Ispol’zovanie Al’ternativnykh Topliv v Transportnykh DVS. Avtomobil’nyy transport. 2010;27:61—64. (in Russian).
10. Evropeyskiy Opyt Utilizatsii Sbrosnogo Energopotentsiala Promyshlennykh Gazov [Elektron. Resurs] www.cogeneration.com.ua/ru/analytics/special-gas/hydrogen-utilization (Data Obrashcheniya 21.06.2019). (in Russian).
11. Mysnik M.I., Svistula A.E. Analiz Teplofizicheskikh Svoystv Al’ternativnykh Topliv Dlya Dvigateley Vnutrennego Sgoraniya. Polzunovskiy Vestnik. 2009;1—2: 37—43. (in Russian).
12. Gichev Yu.A. Proektno-konstruktorskie Resheniya po Ispol’zovaniyu Konverternogo Gaza dlya Nagreva Metalloloma. Sovremennaya Nauka: Issledovaniya, Idei, Rezul’taty, Tekhnologii. 2013;5:54—59. (in Russian).
13. Kuzemko R.D., Sushchenko A.V. Uluchshenie Teplovogo Balansa Konverternoy Plavki za Schet Regeniratsii Teploty Otkhodyashchikh Gazov. Vestnik Priazovskogo Gos. Tekhn. Un-ta. Seriya «Tekhnicheskie Nauki». 1998;6:62—69. (in Russian).
14. Gichev Yu.A., Zapototskaya A.Yu. Tekhnicheskie Resheniya i Effektivnost’ Ispol’zovaniya Konverternogo Gaza dlya Obzhiga Izvestnyaka. Mezhdunarodnye Konferentsii: Lit’e, Metallurgiya. Zaporozh’e: Zaporozhskaya Torgovo-promyshlennaya Palata, 2015. (in Russian).
15. Maksimov A.A., Agapitov E.B. Sovershenstvovanie Energoeffektivnoy Skhemy Utilizatsii Konverternogo Gaza. Teplotekhnika i Informatika v Obrazovanii, Nauke i Proizvodstve: Sbornik Dokl. IV Vseros. Nauch.- prakt. Konf. Studentov, Aspirantov i Molodykh Uchenykh s Mezhdunar. Uchastiem. Ekaterinburg: Izd-vo UrFU, 2015:101—105. (in Russian).
16. Dremov A.N., Gridin S.V. Ispol’zovanie Gazov Staleplavil’nykh Konverterov v Kachestve Vtorichnykh Energoresursov. Metallurgiya XXI Stoletiya Glazami Molodykh: Sbornik Dokl. Vseukr. Nauch.-prakt. Konf. Studentov. Donetsk: Izd-vo DonNTU, 2013:143—144. (in Russian).
17. Stalinskiy D.V. i dr. Puti Povysheniya Effektivnogo Ispol’zovaniya Vtorichnykh Energoresursov (Toplivnykh Gazov) Metallurgicheskogo Proizvodstva. Ekologiya i Promyshlennost’. 2010;3:71—75. (in Russian).
18. Baptizmaiskiy V.I., Medzhibozhskiy M.Ya., Okhotskiy V.B. Konverternye Protsessy Proizvodstva Stali. Teoriya, Tekhnologiya, Konstruktsii Agregatov. Kiev: Vysshaya Shkola, 1984. (in Russian).
19. Rukovodstvo po Remontu Dvigateley Caterpillar [Elektron. Resurs] https://truckmanualshub.com/caterpillar-workshop-manuals-pdf (Data Obrashcheniya 21.06.2019). (in Russian).
20. Kulmanakov S.P., Kulmanakov S.S. Teplovoy Raschet DVS. Barnaul: Izd-vo AltGTU, 2014. (in Russian).
21. Sharoglazov B.A., Shishkov V.V. Porshnevye Dvigateli: Teoriya, Modelirovanie i Raschet Protsessov. Chelyabinsk: Izdat. Tsentr YUUrGU, 2011. (in Russian).
22. Sitting M. Protsessy okisleniya uglevodorodnogo syr’ya. M.: Khimiya, 1970. (in Russian).
23. Kalimullin R.F., Gorbachev S.V., Filippov A.A. Teplovoy Raschet Avtomobil’nykh Gazovykh Dvigateley: Metodicheskie Ukazaniya k Kursovomu Proektirovaniyu. Orenburg: Izd-vo GOU OGU, 2007. (in Russian).

For citation: Gubarev V.Ya., Spasibin A.Yu. Simulating the Operation of an Internal Combustion Engine on Converter Waste Gas. Bulletin of MPEI. 2019;6:50—57. (in Russian). DOI: 10.24160/1993-6982-2019-6-50-57.

Двигатель внутреннего сгорания: виды, устройство, принцип работы

Автомобильные двигатели чрезвычайно разнообразны. Технология, которая применяется при разработке и запуске в производство силовых агрегатов, имеет богатую историю. Требования современности вынуждают производителей ежегодно внедрять в свои проекты доработки и модернизировать имеющиеся технологии.

Двигатель внутреннего сгорания имеет устройство и принцип работы, способный обеспечивать высокую мощность и длительный период эксплуатации — от пользователя требуется только минимально необходимое обслуживание и своевременный мелкий ремонт.

При первом взгляде сложно представить, как работает двигатель: слишком много взаимосвязанных механизмов собранно в одном небольшом пространстве. Но при детальном изучении и анализе связей в этой системе работа двигателя автомобиля оказывается предельно простой и понятной.

В состав двигателя автомобиля входит ряд узлов, имеющих важное значение и обеспечивающих выполнение рабочих функций всей системы.

Блок цилиндров иногда называют корпусом или рамой всей системы. Описание двигателя не обходится без изучения данного элемента конструкции. Именно в этой части мотора обустроена система связанных каналов, предназначеных для смазки и создания необходимой температуры двигателя внутреннего сгорания.

Верхняя часть корпуса поршня имеет каналы для колец. Сами поршневые кольца подразделяются на верхние и нижние. Исходя из выполняемых функций, данные кольца называют компрессионными. Крутящий момент двигателя определяется прочностью и работой рассмотренных элементов.

Нижние кольца поршня играют важную роль для обеспечения ресурса двигателя. Нижние кольца выполняют 2 роли: сохраняют герметичность камеры сгорания и являются уплотнителями, которые предотвращают проникновение масла внутрь камеры сгорания.

Двигатель автомобиля представляет собой систему, в которой осуществляется передача энергии между механизмами с минимальными потерями ее величины на различных этапах. Поэтому кривошипно-шатунный механизм становится одним из важнейших элементов системы. Он обеспечивает передачу возвратно-поступательной энергии от поршня на коленвал.

В целом, принцип работы двигателя достаточно прост и претерпел мало фундаментальных изменений за период существования. В этом просто нет необходимости — некоторые усовершенствования и оптимизации позволяют достигать лучших результатов в работе. Концепция же всей системы неизменна.

Крутящий момент двигателя создается за счет выделяемой при сгорании топлива энергии, которая передается от камеры сгорания к колесам по соединительным элементам. В форсунках топливо передается в камеру сгорания, где происходит его обогащение воздухом. Свеча зажигания создает искру, которая мгновенно воспламеняет образовавшуюся смесь. Так происходит небольшой взрыв, который обеспечивает работы двигателя.

В результате такого действия происходит образования большого объема газов, стимулируя к совершению поступательных движений. Так формируется крутящий момент двигателя. Энергия от поршня передается на коленвал, который передает движение на трансмиссию, а после этого, специальная система шестеренок переносит движение на колеса.

Порядок работы работающего двигателя незатейлив и при исправных связующих элементах гарантирует минимальные потери энергии. Схема работы и строение каждого механизма основаны на преобразовании созданного импульса в практически используемый объем энергии. Ресурс двигателя определяется износостойкостью каждого звена.

Принцип работы двигателя внутреннего сгорания

Двигатель легкового автомобиля выполняется в виде одного из типов систем внутреннего сгорания. Принцип действия двигателя может отличаться по некоторым показателям, что служит основой для разделения моторов на различные типы и модификации.

В качестве определяющих параметров, служащих для разделения силовых агрегатов на категории, служат:

  • рабочий объем,
  • количество цилиндров,
  • мощность системы,
  • скорость вращения узлов,
  • применяемое для работы топливо и др.

Разобраться в том, как работает двигатель, просто. Но по мере изучения всплывают новые показатели, которые вызывают вопросы. Так, часто можно встретить разделение двигателей по числу тактов. Что это такое и как влияет на работу машины?

Устройство двигателя автомобиля основано на четырехтактовой системе. Эти 4 такта равны по времени — за весь цикл поршень дважды поднимается вверх в цилиндре и дважды опускается вниз. Такт берет начало в тот момент, когда поршень находится в верхней или нижней части. Механики называют эти точки ВМТ и НМТ — верхняя и нижняя мертвые точки соответственно.

Такт № 1 — впуск. По мере движения вниз, поршень втягивает в цилиндр наполненную топливом смесь. Работа системы происходит при открытом клапане впуска. Мощность двигателя автомобиля определяется количеством, размерами и временем, которое клапан открыт.

В отдельных моделях работа педали газа увеличивает период нахождения клапана в открытом состоянии, что позволяет увеличить объем топлива, попадающего в систему. Такое устройство двигателей внутреннего сгорания обеспечивает сильное ускорение работы системы.

Такт № 2 — сжатие. На этом этапе поршень начинает свое движение вверх, что приводит к сжатию полученной в цилиндр смеси. Она сживается ровно до объемов камеры сгорания топлива. Эта камера представляет собой пространство между верхней частью поршня и верхом цилиндра в момент нахождения поршня в ВМТ. Клапаны впуска в этот момент работы прочно закрыты.

От плотности закрытия зависит качество сжатия смеси. Если сам поршень, или цилиндр, или кольца поршней потерты и не в надлежащем состоянии, то качество работы и ресурс двигателя значительно снизятся.

Такт № 3 — рабочий ход. Этот этап начинается с ВМТ. Система зажигания гарантирует воспламенение топливной смеси и обеспечивает выделение энергии. Происходит взрыв смеси, при котором высвобождается энергия. И за счет увеличения объема происходит выталкивание поршня вниз. Клапаны при этом закрыты. Технические характеристики двигателя во многом зависят от протекания третьего такта работы мотора.

Такт № 4 — выпуск. Окончание цикла работы. Движение поршня вверх обеспечивает выталкивание газов. Таким образом, осуществляется вентиляция цилиндра. Этот такт важен для обеспечения ресурса двигателя.

Двигатель имеет принцип работы, основанный на распределении энергии от взрывов газов, требует внимания к созданию всех узлов.

Работа двигателя внутреннего сгорания циклична. Вся энергия, которая создается в процессе выполнения работы на всех 4 тактах работы поршней, направляется на организацию работы автомобиля.

Варианты конструкций внутреннего двигателя

Характеристика двигателя зависит от особенностей его конструкции. Внутреннее сгорание — основной тип физического процесса, протекающего в системе мотора на современных автомобилях. За период развития машиностроения успешно реализовано несколько типов ДВС.

Устройство бензинового двигателя разделяет систему на 2 типа — инжекторные двигатели и карбюраторные модели. Также в производстве есть несколько типов карбюраторов и систем впрыска. Основа работы — сжигание бензина.

Характеристика бензинового двигателя выглядит предпочтительнее. Хотя для каждого пользователя есть свои личные приоритеты и преимущества от работы каждого двигателя. Бензиновый двигатель внутреннего сгорания является одним из самых распространенных в современном автомобилестроении. Порядок работы мотора прост и не отличается от классической интерпретации.

Дизельные двигатели основаны на применении подготовленного дизельного топлива. Оно попадает в цилиндры через форсунки. Главное преимущество дизельного двигателя заключается в отсутствии необходимости электричества для сжигания топлива. Оно требуется только для запуска двигателя.

Газовый двигатель применяет для работы сжиженные и сжатые газы, а также некоторые другие типы газов.

Узнать какой ресурс у двигателя на вашем авто лучше всего у производителя. Примерную цифру разработчики озвучивают в сопроводительных документах на транспортное средство. Здесь содержится вся актуальная и точная информация о моторе. В паспорте вы узнаете технические параметры мотора, сколько весит двигатель и всю информацию о движущем агрегате.

Срок службы двигателя зависит от качества обслуживания, интенсивности использования. Заложенный разработчиком срок эксплуатации подразумевает внимательное и бережное отношение с машиной.

Что значит двигатель? Это ключевой элемент в автомобиле, который призван обеспечить его движение. Надежность и точность работы всех узлов системы гарантирует качество движения и безопасность эксплуатации машины.

Характеристики двигателей различаются в широких пределах, несмотря на то. Что принцип внутреннего сгорания топлива остается неизменным. Так разработчикам удается удовлетворять потребности покупателей и реализовывать проекты по улучшению работы автомобилей в целом.

Средний ресурс двигателя внутреннего сгорания составляет несколько сотен тысяч километров. При таких нагрузках от всех составных частей системы требуется прочность и точная совместная работа. Поэтому известная и детально изученная концепция внутреннего сгорания постоянно подвергается доработкам и внедрениям новых подходов.

Ресурс двигателей различается в широком диапазоне. Порядок работы, при этом, общий (с небольшими отклонениями от стандарта). Несколько может различаться вес двигателя и отдельные характеристики.

Современный двигатель внутреннего сгорания имеет классическое устройство и досконально изученный принцип работы. Поэтому механикам не составляет труда решить любую проблему в кратчайшие сроки.

Ремонтные работы усложняются в том случае, если поломка не была устранена сразу. В таких ситуациях порядок работы механизмов может, нарушен окончательно и потребуется серьезная работа по восстановлению. Ресурс двигателя после грамотного ремонта не пострадает.

9. Вагоны с установками двигателей внутреннегосгорания, восстановительные и пожарные поезда 

9.1. Внутренние конструкции кузовов вагонов — насосных, штабных вагонов для отдыха должны соответствовать проекту.

9.2. Производить в вагонах перепланировку без согласования с пожарной охраной, отделывать стены и потолки горючими материалами не допускается.

9.3. Стены, потолки, пол и двери машинного отделения (отделения для установки двигателей внутреннего сгорания) должны быть защищены листовым железом по негорючему изоляционному материалу толщиной не менее 5 мм.

9.4. Выход из машинного отделения должен устраиваться непосредственно наружу или в тамбур с выходом наружу.

9.5. Двигатели внутреннего сгорания (пожарные мотопомпы) должны устанавливаться на металлическом поддоне.

9.6. Выхлопные трубы от двигателей по всей длине следует заключать в металлический кожух с отверстиями для обмена воздуха или изолировать негорючим материалом. В местах пропуска выхлопной трубы наружу через пол, стену или потолок устраиваются типовые разделки с изоляцией деревянных конструкций кровельной сталью по негорючему изоляционному материалу.

9.7. Переоборудование типовой схемы отопления вагонов на комбинированное допускается только по специально разработанному проекту при согласовании с органами пожарного надзора и энергонадзора.

9.8. Установка газовой плиты на кухне допускается при наличии согласованного с пожарной охраной проекта. При этом газовый баллон должен быть установлен в наружном тамбуре, а трубопровод для подачи газа проходить под вагоном.

9.9. Электроплитки на кухне должны иметь закрепляющие устройства.

9.10. Стена, примыкающая к газовой плите (электроплите), должна быть защищена несгораемым экраном.

9.11. Запас горючего в металлической герметически закрытой таре в вагоне — насосной (и других вагонах с двигателями внутреннего сгорания) может храниться только в типовых металлических ящиках под вагоном, имеющих дверцы с притворами, не вызывающими искр при резком закрытии. Бочки или канистры с горючим должны быть надежно закреплены в ящиках. Не допускается хранение в ящиках каких-либо других предметов и материалов.

9.12. Непосредственно в отделении двигателей внутреннего сгорания вагона — электростанции хранение горючего допускается в пределах емкости типового топливного бака двигателя.

9.13. Все топливомаслопроводы должны иметь надежные соединения, исключающие подтекание топлива и масла.

9.14. Заправка двигателей горючим производится только при дневном свете и при остановленном холодном двигателе.

9.15. Пролитое топливо или масло должно немедленно убираться. Обтирочный материал допускается хранить только в пределах сменной потребности.

9.16. Для курения в вагонах должны быть определены специально оборудованные места.

9.17. Для поездов, в состав которых входят вагоны с двигателями внутреннего сгорания, должны составляться местные инструкции по мерам пожарной безопасности.

9.18. В вагонах с установками двигателей внутреннего сгорания запрещается:

а) курить (кроме специально выделенных помещений) и пользоваться открытым огнем;

б) хранить промасленные обтирочные материалы, а также оборудование, предметы и материалы, не предусмотренные технологией проведения работ;

в) допускать подтекание масла из гидросистем подъемных устройств;

г) хранить запас топлива, кроме заполненных расходных баков;

д) оставлять работающий двигатель без надзора;

е) работать на неисправных двигателях, с течью топлива или смазки;

ж) заполнять переносные емкости из бочек с запасом бензина путем перелива (для этой цели должен быть специальный ручной насос).

Открыть полный текст документа

Двигатель внутреннего сгорания: устройство, принцип работы

Современный двигатель внутреннего сгорания далеко ушел от своих прародителей. Он стал крупнее, мощнее, экологичнее, но при этом принцип работы, устройство двигателя автомобиля, а также основные его элементы остались неизменными.

Двигатели внутреннего сгорания, массово применяемые на автомобилях, относятся к типу поршневых. Название свое этот тип ДВС получил благодаря принципу работы. Внутри двигателя находится рабочая камера, называемая цилиндром. В ней сгорает рабочая смесь. При сгорании смеси топлива и воздуха в камере увеличивается давление, которое воспринимает поршень. Перемещаясь, поршень преобразует полученную энергию в механическую работу.

Как устроен ДВС

Первые поршневые моторы имели лишь один цилиндр небольшого диаметра. В процессе развития для увеличения мощности сначала увеличивали диаметр цилиндра, а потом и их количество. Постепенно двигатели внутреннего сгорания приняли привычный нам вид. Мотор современного автомобиля может иметь до 12 цилиндров.

Современный ДВС состоит из нескольких механизмов и вспомогательных систем, которые для удобства восприятия группируют следующим образом:

  1. КШМ — кривошипно-шатунный механизм.
  2. ГРМ   — механизм регулировки фаз газораспределения.
  3. Система смазки.
  4. Система охлаждения.
  5. Система подачи топлива.
  6. Выхлопная система.

Также к системам ДВС относятся электрические системы пуска и управления двигателем.

КШМ — кривошипно-шатунный механизм

КШМ — основной механизм поршневого мотора. Он выполняет главную работу — преобразует тепловую энергию в механическую. Состоит механизм из следующих частей:

  • Блок цилиндров.
  • Головка блока цилиндров.
  • Поршни с пальцами, кольцами и шатунами.
  • Коленчатый вал с маховиком.

ГРМ — газораспределительный механизм

Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:

  • Распределительный вал.
  • Впускные и выпускные клапаны с пружинами и направляющими втулками.
  • Детали привода клапанов.
  • Элементы привода ГРМ.

ГРМ приводится от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их

В зависимости от конструкции и количества клапанов на двигатель может быть установлен один или два распределительных вала на каждый ряд цилиндров. При двухвальной системе каждый вал отвечает за работу своего ряда клапанов — впускных или выпускных. Одновальная конструкция имеет английское название SOHC (Single OverHead Camshaft). Систему с двумя валами называют DOHC (Double Overhead Camshaft).

Система охлаждения двигателя

Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:

  • Рубашка охлаждения двигателя
  • Насос (помпа)
  • Термостат
  • Радиатор
  • Вентилятор
  • Расширительный бачок

Рубашку охлаждения двигателей внутреннего сгорания образуют полости внутри БЦ и ГБЦ, по которым циркулирует охлаждающая жидкость. Она отбирает избыточное тепло у деталей двигателя и относит его к радиатору. Циркуляцию обеспечивает насос, привод которого осуществляется с помощью ремня от коленчатого вала.

Термостат обеспечивает необходимый температурный режим двигателя автомобиля, перенаправляя поток жидкости в радиатор либо в обход него. Радиатор, в свою очередь, призван охлаждать нагретую жидкость. Вентилятор усиливает набегающий поток воздуха, тем самым увеличивая эффективность охлаждения. Расширительный бачок необходим современным моторам, так как применяемые охлаждающие жидкости сильно расширяются при нагреве и требуют дополнительного объема.

Система смазки ДВС

В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:

  • Масляный картер (поддон).
  • Насос подачи масла.
  • Масляный фильтр с редукционным клапаном.
  • Маслопроводы.
  • Масляный щуп (индикатор уровня масла).
  • Указатель давления в системе.
  • Маслоналивная горловина.

Насос забирает масло из масляного картера и подает его в маслопроводы и каналы, расположенные в БЦ и ГБЦ. По ним масло поступает в места соприкосновения трущихся поверхностей.

Система питания

Система подачи для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:

  • Топливный бак.
  • Датчик уровня топлива.
  • Фильтры очистки топлива — грубой и тонкой.
  • Топливные трубопроводы.
  • Впускной коллектор.
  • Воздушные патрубки.
  • Воздушный фильтр.

В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, но в силу различных физических свойств бензина и дизельного топлива конструкция их имеет существенные различия. Сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом. Детали, обеспечивающие очистку воздуха и поступление его цилиндры — воздушный фильтр и патрубки — тоже относятся к топливной системе.

Система выпуска

Система выпуска предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:

  • Выпускной коллектор.
  • Приемная труба глушителя.
  • Резонатор.
  • Глушитель.
  • Выхлопная труба.

В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.

В заключение необходимо упомянуть системы пуска и управления двигателем автомобиля. Они являются важной частью двигателя, но их необходимо рассматривать вместе с электрической системой автомобиля, что выходит за рамки этой статьи, рассматривающей внутреннее устройство двигателя.

Устройство ДВС и принцип работы простыми словами

Устройство двигателя внутреннего сгорания

В этой статье поговорим об устройстве двигателя внутреннего сгорания узнаем принцип его работы. Рассмотрим его в разрезе. Несмотря на то, что двигатель внутреннего сгорания был изобретён уже очень давно, но он до сих пор пользуется огромной популярностью. Правда за большое количество времени конструкция двигателя внутреннего сгорания претерпела различные изменения.

Усилия инженеров постоянно направлены на облегчения веса двигателя, улучшения экономичности, увеличение мощности, а также уменьшения выброса вредных веществ.

Двигатели бывают бензиновые и дизельные. Также встречаются роторные и газотурбинные двигатели которые используются намного реже. О них мы поговорим в других статьях.

По расположению цилиндров двс бывают рядные,V- образные и опозитные. По количеству цилиндров 2,4,6,8,10,12,16. Встречаются и 5 цилиндровые двигатели внутреннего сгорания.

У каждой компоновки есть свои преимущества например рядный 6-ти цилиндровый двигатель это хорошо сбалансированный , но склонен к перегреву мотор. У V- образных двигателей другое преимущество они занимают меньше место под капотом, но при этом затрудняют обслуживание из-за ограниченного доступа. Раньше встречались и рядные 8 цилиндровые двигатели вероятней всего их не стало из-за сильной склонности к перегреву и они занимали много места под капотом.

. По типу работы двс бывают двух типов: двух тактные и четырех тактные. Двух тактные двигатели внутреннего сгорания в основном применяются на мотоциклах. В автомобилях практически всегда использовались 4 тактные двигатели.

Устройство двс

Рассмотрим двигатель в разрезе

Двигатель внутреннего сгорания состоит из следующих компонентов и вспомогательных систем.

1) Блок цилиндров. Блок цилиндров и является главным телом двигателя в котором и происходит работа поршней. Обычно состоит из чугуна и обладает охладительной рубашкой для охлаждения.

2) Механизм ГРМ. Газораспределительный механизм регулирует подачу топливно-воздушной смеси и отвод выхлопных газов. С помощью кулачков распредвала которые воздействуют на пружины клапанов. Клапана открываются либо, закрываются в зависимости от такта двигателя. При открытии впускных клапанов цилиндры наполняются топливно-воздушной смесью. При открытии выпускных клапанов происходит отвод выхлопных газов.

3) Поршневая группа. Благодаря энергии взрыва топливно-воздушной смеси поршень опускается вниз. Через шатун он передает энергию на коленвал. Поршневая группа состоит из: поршня, поршневых колец, поршневого пальца ( который прочно соединяется с шатуном). Благодаря поршневым кольцам. Поршень плотно прилегает к стенкам цилиндров. Более подробно про устройство поршня можно узнать здесь.

4) КШМ- Кривошипно-шатунный механизм. Благодаря передаче энергии шатуна на коленвал совершается полезная работа.

5) Масляный поддон. В масляном поддоне находится моторное масло которое и используется системой смазки для смазывания подшипников и компонентов двс.

6) Система охлаждения. Благодаря системе охлаждения двигатель внутреннего сгорания поддерживает оптимальную температуру. Система охлаждения состоит из: помпы, радиатора, термостата, патрубков охлаждения , а также охладительной рубашки.

7) Система смазки. Система смазки служит для защиты компонентов двигателя от прежде временного износа. Кроме того благодаря моторному маслу в двигателе внутреннего сгорания происходит охлаждение и защита от коррозии. Система смазки состоит из: масляного насоса, масляного фильтра, масляных магистралей и масляного поддона.

8) Система питания. Система питания обеспечивает своевременную подачу топлива. Различается на 3 вида карбюратор, моновпрыск и инжектор.

Узнать более подробно о том, что лучше карбюратор или инжектор можно перейдя по ссылке.

В карбюраторе топливно-воздушная смесь готовиться в карбюраторе для последующей подачи. Карбюратор обладает механическим топливным насосом.

Моновпрыск это по сути переход от карбюратора к инжектору или промежуточное звено. Благодаря блоку управления на одну единственную форсунку подаётся команда о необходимом количестве топлива.

Инжектор. Инжекторные системы топлива обладают. ЭБУ- электронный блок управления, форсунки, топливная рампа. Благодаря командам ЭБУ на форсунки подаётся сигнал о том какое количество топлива необходимо в данный момент. Про ЭБУ более подробно можно узнать здесь.

На сегодняшний момент это самые распространенные топливные системы. Так как обладают рядом преимуществ. Экономичность, экологичность и лучшая отдача по сравнению с моновпрыском и карбюратором.

Также существует прямой впрыск топлива. Где форсунки впрыскивают топливо непосредственно в камеру сгорания , не используется часто по причине более сложной конструкции и меньшей надёжности по сравнению с распределительным впрыском. Преимущество такой конструкции в лучшей экономичности и экологичности.

9) Система зажигания. Система зажигания служит для воспламенения топливно-воздушной смеси. Состоит из высоковольтных проводов, катушек зажигания, свеч зажигания. Стартер запускает двигатель внутреннего сгорания. Более подробно о стартере можно узнать перейдя по ссылке.

10) Маховик. Главной задачей маховика является запуск двс с помощью стартера через коленвал.

Принцип работы

Двигатель внутреннего сгорания совершает 4 цикла или такта.

1) Впуск. На этой стадии происходит впуск топливно-воздушной смеси.

2) Сжатие. При сжатии происходит сжатие поршнем топливно-воздушной смеси.

3) Рабочий ход. Поршень под давлением газов отправляется в НМТ( нижнюю мертвую точку). Поршень передает энергию на шатун, затем через шатун передается энергия на коленвал. Таким образом происходит обмен энергии газов на полезную механическую работу.

4) Выпуск. Поршень отправляется вверх. Выпускные клапана открываются, чтобы выпустить продукты распада.

Инновации двигателя внутреннего сгорания

1) Использование в двс лазеров для воспламенения топлива. По сравнению со свечами зажигания у лазеров будет проще настройка угла зажигания и будет большая мощность. Обычные свечи при сильной искре быстро выходят из строя.

2) Технология FreeValve эта технология подразумевает двигатель без распредвалов. Вместо распредвалов клапанами управляют индивидуальные приводы на каждый клапан. Экологичность и экономичность таких двс выше. Технология разработана дочерней компанией Koniesseg и имеет схожее название FreeValve. Технология пока сырая, но уже продемонстрировала ряд преимуществ. Что будет дальше время покажет.

3) Разделение двигателей на холодную и горячую части. Суть технологии в том, что двигатель делится на две части. В холодной будет происходить впуск и сжатие так как эти стадии более эффективно будут происходить в холодной части. Благодаря этой технологии инженеры обещают улучшение производительности на 30-40%. В горячей части будут происходить воспламенение и выхлоп.

А о каких будущих технологиях двигателя внутреннего сгорания Вы слышали обязательно поделитесь этим в комментариях.

как приготовить пирог на сковороделобановский харьков

Устройство двигателя внутреннего сгорания

Автор admin На чтение 6 мин. Просмотров 174

Двигатель внутреннего сгорания – универсальный силовой агрегат, используемый практически во всех видах современного транспорта. Три луча заключенные в окружность, слова «На земле, на воде и в небе» — товарный знак и девиз компании Мерседес Бенц, одного из ведущих производителей дизельных и бензиновых двигателей. Устройство двигателя, история его создания, основные виды и перспективы развития – вот краткое содержание данного материала.

Немного истории

Принцип превращения возвратно-поступательного движения во вращательное, посредством использования кривошипно-шатунного механизма известен с 1769 года, когда француз Николя Жозеф Кюньо показал миру первый паровой автомобиль. В качестве рабочего тела двигатель использовал водяной пар, был маломощным и извергал клубы черного, дурнопахнущего дыма. Подобные агрегаты использовались в качестве силовых установок на заводах, фабриках, пароходах и поездах, компактные же модели существовали в виде технического курьеза.


Все изменилось в тот момент, когда в поисках новых источников энергии человечество обратило свой взор на органическую жидкость — нефть. В стремлении повысить энергетические характеристики данного продукта, ученные и исследователи, проводя опыты по перегонке и дистилляции, получили неизвестное доселе вещество – бензин. Эта прозрачная жидкость с желтоватым оттенком сгорала без образования копоти и сажи, выделяя намного большее, чем сырая нефть, количество тепловой энергии.

Примерно в то же время Этьен Ленуар сконструировал первый газовый двигатель внутреннего сгорания, работавший по двухтактной схеме, и запатентовал его в 1880 году.

В 1885 году немецкий инженер Готтлиб Даймлер, в сотрудничестве с предпринимателем Вильгельмом Майбахом, разработал компактный бензиновый двигатель, уже через год нашедший свое применение в первых моделях автомобилей. Рудольф Дизель, работая в направлении повышения эффективности ДВС (двигателя внутреннего сгорания), в 1897 году предложил принципиально новую схему воспламенения топлива. Воспламенение в двигателе, названном в честь великого конструктора и изобретателя, происходит за счет нагревания рабочего тела при сжатии.

А в 1903 году братья Райт подняли в воздух свой первый самолет, оснащенный бензиновым двигателем Райт-Тейлор, с примитивной инжекторной схемой подачи топлива.

Как это работает

Общее устройство двигателя и основные принципы его работы станут понятны при изучении одноцилиндровой двухтактной модели.


Такой ДВС состоит из:
  • камеры сгорания;
  • поршня, соединенного с коленвалом посредством кривошипно-шатунного механизма;
  • системы подачи и воспламенения топливно-воздушной смеси;
  • клапана для удаления продуктов горения (выхлопных газов).

При пуске двигателя поршень начинает путь от верхней мертвой точки (ВМТ) к нижней (НМТ), за счет поворота коленвала. Достигнув нижней точки, он меняет направление движения к ВМТ, одновременно с чем проводится подача топливно-воздушной смеси в камеру сгорания. Движущийся поршень сжимает ТВС, при достижении верхней мертвой точки система электронного зажигания воспламеняет смесь. Стремительно расширяясь, горящие пары бензина отбрасывают поршень в нижнюю мертвую точку. Пройдя определенную часть пути, он открывает выхлопной клапан, через который раскаленные газы покидают камеру сгорания. Пройдя нижнюю точку, поршень меняет направление движения к ВМТ. За это время коленвал совершил один оборот.

Данные пояснения станут более понятными при просмотре видео о работе двигателя внутреннего сгорания.

Два такта

Основным недостатком двухтактной схемы, в которой роль газораспределительного элемента играет поршень, является потеря рабочего вещества в момент удаления выхлопных газов. А система принудительной продувки и повышенные требования к термостойкости выхлопного клапана приводят к увеличению цены двигателя. В противном случае добиться высокой мощности и долговечности силового агрегата не представляется возможным. Основная сфера применения подобных двигателей – мопеды и недорогие мотоциклы, лодочные моторы и бензокосилки.

Четыре такта

Описанных недостатков лишены четырехтактные ДВС, используемые в более «серьезной» технике. Каждая фаза работы такого двигателя (впуск смеси, ее сжатие, рабочий ход и выпуск отработанных газов), осуществляется при помощи газораспределительного механизма.

Разделение фаз работы ДВС очень условно. Инерционность отработавших газов, возникновение локальных вихрей и обратных потоков в зоне выхлопного клапана приводит к взаимному перекрыванию во времени процессов впрыска топливной смеси и удаления продуктов горения. Как результат, рабочее тело в камере сгорания загрязняется отработанными газами, вследствие чего меняются параметры горения ТВС, уменьшается теплоотдача, падает мощность.

Проблема была успешно решена путем механической синхронизации работы впускных и выпускных клапанов с оборотами коленвала. Проще говоря, впрыск топливно-воздушной смеси в камеру сгорания произойдет только после полного удаления отработанных газов и закрытия выхлопного клапана.

Но данная система управления газораспределением так же имеет свои недостатки. Оптимальный режим работы двигателя (минимальный расход топлива и максимальная мощность), может быть достигнут в достаточно узком диапазоне оборотов коленвала.

Развитие вычислительной техники и внедрение электронных блоков управления дало возможность успешно разрешить и эту задачу. Система электромагнитного управления работой клапанов ДВС позволяет на лету, в зависимости от режима работы, выбирать оптимальный режим газораспределения. Анимированные схемы и специализированные видео облегчат понимание этого процесса.


На основании видео не сложно сделать вывод, что современный автомобиль это огромное количество всевозможных датчиков.

Виды ДВС

Общее устройство двигателя остается неизменным достаточно долгое время. Основные различия касаются видов используемого топлива, систем приготовления топливно-воздушной смеси и схем ее воспламенения.
Рассмотрим три основных типа:

  1. бензиновые карбюраторные;
  2. бензиновые инжекторные;
  3. дизельные.

Бензиновые карбюраторные ДВС

Приготовление гомогенной (однородной по своему составу), топливно-воздушной смеси происходит путем распыления жидкого топлива в воздушном потоке, интенсивность которого регулируется степенью поворота дроссельной заслонки. Все операции по приготовлению смеси проводятся за пределами камеры сгорания двигателя. Преимуществами карбюраторного двигателя является возможность регулировки состава топливной смеси «на коленке», простота обслуживания и ремонта, относительная дешевизна конструкции. Основной недостаток – повышенный расход топлива.


Историческая справка. Первый двигатель данного типа сконструировал и запатентовал в 1888 году российский изобретатель Огнеслав Костович. Оппозитная система горизонтально расположенных и двигающихся навстречу друг другу поршней, до сих пор успешно используется при создании двигателей внутреннего сгорания. Самым известным автомобилем, в котором использовался ДВС данной конструкции, является Фольксваген Жук.

Бензиновые инжекторные ДВС

Приготовление ТВС осуществляется в камере сгорания двигателя, путем распыления топлива инжекторными форсунками. Управление впрыском осуществляется электронным блоком или бортовым компьютером автомобиля. Мгновенная реакция управляющей системы на изменение режима работы двигателя обеспечивает стабильность работы и оптимальный расход топлива. Недостатком считается сложность конструкции, профилактика и наладка возможны только на специализированных станциях технического обслуживания.

Дизельные ДВС

Приготовление топливно-воздушной смеси происходит непосредственно в камере сгорания двигателя. По окончании цикла сжатия воздуха, находящегося в цилиндре, форсунка проводит впрыск топлива. Воспламенение происходит за счет контакта с перегретым в процессе сжатия атмосферным воздухом. Всего лишь 20 лет назад низкооборотистые дизеля использовались в качестве силовых агрегатов специальной техники. Появление технологии турбонагнетания открыло им дорогу в мир легковых автомобилей.

Пути дальнейшего развития ДВС

Конструкторская мысль никогда не стоит на месте. Основные направления дальнейшего развития и усовершенствования двигателей внутреннего сгорания – повышение экономичности и минимизация вредных для экологии веществ в составе выхлопных газов. Применение слоистых топливных смесей, конструирование комбинированных и гибридных ДВС – лишь первые этапы долгого пути.

Мне нравится1Не нравится
Что еще стоит почитать

Двигатель внутреннего сгорания: устройство и принцип работы

Автор автомеханик А.Зарядин На чтение 14 мин. Просмотров 1.9k. Опубликовано

Первым двигателем внутреннего сгорания (ДВС) считается изобретение французского механика Ленуара в 1860 году. Поршневой агрегат работал за счёт сжигания в цилиндре светильного газа. Более удачную конструкцию предложил немец Отто в 1866 году. Его двигатель работал по 4-тактному циклу, сжимая в цилиндрах смесь газа и воздуха перед воспламенением запальной свечи. Следующим этапом развития стал переход на жидкое нефтяное топливо и внесение технических новшеств в конструкцию ДВС.

Что такое ДВС

Двигатель преобразует топливную, электрическую и другие виды энергии в механическую для передачи её исполнительным органам машины или установки: трансмиссии, насосу, ротору и т.д. Автомобильные двигатели различаются по виду первичной энергии и процессу её преобразования:

  • поршневой двигатель внутреннего сгорания;
  • газовая турбина;
  • паровой двигатель;
  • роторно-поршневой мотор;
  • двигатель внешнего сгорания;
  • электромотор;
  • маховичный двигатель и др.

Наиболее распространён поршневой двигатель внутреннего сгорания. Источником энергии ДВС служит жидкое нефтяное топливо или горючий газ. Популярность этого типа мотора обусловлена возможностью компактного хранения топлива и его малого расхода при большом пробеге автомобиля.

Рассмотрим подробнее, что такое двигатель внутреннего сгорания, его устройство, принцип работы, плюсы и минусы.

Устройство двигателя внутреннего сгорания

В устройство двигателя внутреннего сгорания входят различные механизмы и системы. Так, поршневой 4-тактный агрегат состоит из кривошипно-шатунного (КШМ) и газораспределительного (ГРМ) механизмов:

  • КШМ включает в себя подвижные и неподвижные детали. Основу составляет блок цилиндров, установленный на картере. Сверху блок закрыт головкой, в которой находятся впускные и выпускные клапаны, свечи зажигания, форсунки. Внутри цилиндров перемещаются поршни, соединённые через поршневой палец с верхней головкой шатуна. Нижняя часть шатуна охватывает шейку коленвала. На конце вала закреплён маховик;
  • в состав ГРМ входит распределительный вал, клапаны и привод ГРМ. Подробнее о механизме поговорим ниже.

 

В 2-тактном поршневом ДВС клапана отсутствуют. Вместо них в конструкции предусмотрены продувочные окна.

Достойной заменой поршневому агрегату можно рассмотреть только роторно-поршневой мотор или двигатель Ванкеля. Он работает по 4-тактому циклу, а поршень имеет форму треугольника Рёло. Газораспределение в роторном агрегате происходит через впускные и выпускные окна, поэтому необходимость в сложном клапанном механизме отпадает. Двигатели Ванкеля встречаются в машинах Mazda и советских ВАЗах.

Системы двигателя

Надёжная и долговременная работа двигателя внутреннего сгорания невозможна без питания, смазки, охлаждения. Кроме того, нужно обеспечить первый запуск коленвала и каждый раз воспламенять рабочую смесь в цилиндрах. Для этих целей разработаны следующие системы двигателя:

  • смазки;
  • охлаждения;
  • питания;
  • запуска;
  • зажигания;
  • впрыска;
  • управления.

Если раньше системы были механические, сейчас в них появляется больше электроники. Электронное управление делает работу мотора высокоэффективной, экономичной и надёжной. Системы становятся компактными, но требуют качественного и регулярного обслуживания.

ГРМ — газораспределительный механизм

Устройство двигателя внутреннего сгорания включает в себя ГРМ. Его функция — вовремя подать в определённые цилиндры рабочую смесь, а также выпустить из этих цилиндров продукты горения. Работу механизма определяют последовательность работы цилиндров и фазы газораспределения.

Для функционирования ГРМ необходимы минимум 1 впускной и 1 выпускной клапан на каждый цилиндр. Диаметр тарелки впускного клапана обычно больше, чем у выпускного, что позволяет улучшить наполняемость цилиндра и увеличить рабочие показатели ДВС. Открытие и закрытие клапанов регулирует кулачковый распределительный вал. Сам вал приводится цепью или ремнём от коленвала.

Конструктивно привод клапанов делится на 4 вида:

  • OHV — распредвал расположен в блоке цилиндров, а управление клапанами происходит через дополнительные толкатели и штанги;
  • ОНС — распредвал размещён в головке блока, привод клапанов осуществляется за счёт рычажных толкателей;
  • DОНС — схема расположения с двумя распредвалами в головке блока. В этом случае один вал используется для впускных, а другой для выпускных клапанов.

Фазы газораспределения — это моменты открытия и закрытия клапанов, выраженные в углах поворота коленвала. Правильно подобранные фазы обеспечивают лучшее наполнение и очистку цилиндров. Если в устройство двигателя включить механизм управления фазами VVT, это позволит получить максимальную мощность при высокой частоте вращения коленвала и экономить ресурсы на малых оборотах.

Система смазки

Смазка двигателя автомобиля защищает детали от трения, коррозии, охлаждает конструкцию и смывает грязь. В ДВС часто используются комбинированные системы, в которых моторное масло подаётся под давлением и разбрызгиванием.

В типичной смазочной системе масло заливают через маслозаливную горловину в поддон картера до определённого уровня. При работе двигателя маслонасос высасывает из поддона смазку через маслозаборник. Затем масло фильтруется от примесей и переходит в главную магистраль.

Магистраль представляет собой ответвления каналов, по которым масло поступает к коренным подшипникам коленвала, опорам распредвала, поршневой группе и другим деталям. Из зазоров подшипников смазка вытекает и разбрызгивается движущимися элементами в виде капель и масляного тумана. Под действием силы тяжести масло стекает в поддон, смазывая при этом привод ГРМ.

В высокофорсированных ДВС спорткаров, в тракторах и спецавтомобилях применяется система смазки с сухим картером. Масло постоянно выкачивается дополнительным маслонасосом в масляный бак, из которого подаётся под давлением в систему смазки двигателя. Такое решение помогает предотвратить перемещение масла при резких манёврах, когда маслозаборник окажется выше уровня масла.

Система смазки выполняет функцию вентиляции картера от газов, которые прорываются из цилиндра через поршневые кольца. Соединяясь с парами воды, газы образуют агрессивные кислоты и могут вызвать коррозию. Самым простым способом вентиляции картерных газов является выведение их в атмосферу. Однако, высокие нормы экологии привели к появлению закрытых принудительных систем вентиляции, в которых газы направляются в камеры сгорания через впускной тракт.

Система охлаждения

Температура в камере сгорания в момент воспламенения доходит до 2500℃. Перегрев цилиндров, поршней, головки блока и других деталей приводит к потере мощности, тепловому расширению, выгоранию масла, обгоранию клапанов и заклиниванию двигателя. Для охлаждения конструкции разработана система, которая принудительно отводит тепло потоком воздуха или жидкости.

Воздушная система охлаждения ДВС применяется на мопедах, мотоциклах и газонокосилках. Жидкостная система более сложная и шумная, но обеспечивает равномерный и эффективный отвод тепла. В качестве теплоносителя используются антифризы — жидкости с низкой температурой замерзания.

Для отвода тепла от блока цилиндров и головки предусмотрена рубашка охлаждения — канал для прохождения жидкости. Рубашка соединяется патрубками с радиатором, который забирает тепло от жидкости и выбрасывает его в воздух. За радиатором располагают вентилятор, который увеличивает скорость прохождения воздуха. Вентилятор приводится от ременной передачи коленвала или электропривода. Часто вентилятор оснащают вязкостной или гидравлической муфтой.

Во время работы двигателя охлаждающая жидкость циркулирует от насоса, который приводится от коленвала или электродвигателя. Чтобы система обеспечивала оптимальный температурный режим, в контур охлаждения встраивают термостат с управляемым теплочувствительным элементом. Термостат может быть соединён с электронным блоком управления.

Система подачи топлива

Система подачи топлива в двигателях внутреннего сгорания может быть карбюраторной или инжекторной. Наиболее распространённой является инжекторная система питания с распределённым впрыском. Она состоит из следующих подсистем:

  • подачи и очистки топлива;
  • подачи и очистки воздуха;
  • улавливания и сжигания паров бензина;
  • выпуска и дожигания отработанных газов;
  • электронной части с набором датчиков.

Во время включения ДВС запускается электробензонасос, который закачивает топливо из бака. Бензин проходит через топливный фильтр к рампе с форсунками. На корпусе форсунки находятся электрические контакты, которые регулируют количество топлива, впрыскиваемого в цилиндр.

За количеств воздуха, поступающего в цилиндры ДВС, отвечает дроссельная заслонка. Она работает от механического троска или электропривода.  Регулировку оборотов на холостом ходу осуществляет шаговый электродвигатель или непосредственно компьютер. Для корректной работы системы впрыска электронный блок получает информацию с датчиков массового расхода воздуха, температуры охлаждающей жидкости, положения и частоты вращения коленвала и др.

Помимо распределённого впрыска существуют системы непосредственного впрыска. Однако, они более сложные и дорогие. Специалистам компании Mitsubishi удалось разработать сбалансированную систему, которая улучшила топливную экономичность и повысила мощность мотора. Это объясняется возможностью двигателя работать на обеднённых смесях и повышением степени сжатия до с 10 до 12,5.

Впервые система непосредственного впрыска появилась в моторах 1,8 GDI на Mitsubishi Galant в 1996 году. Сейчас подобные двигатели внутреннего сгорания встречаются в машинах Peugeot-Citroen, Renault, Toyota.

Системы питания дизельных ДВС отличаются от бензиновых. Существуют две схемы подачи дизельного топлива: с разделённой камерой сгорания и непосредственный впрыск. Первый вариант работает мягче и тише, но распространение получил второй вариант с лучшей топливной экономичностью в 20 %.

Дизельное топливо поступает из бака в нагнетательный трубопровод, затем через подкачивающий насос в топливный фильтр. После очистки дизель попадает в топливный насос высокого давления ТНВД, который распределяет топливо по форсункам.

Альтернативой системе с ТНВД является система питания Common Rail от Bosch. Особенность системы — установка аккумуляторного узла со штуцерами для подсоединения форсунок. Топливо в узле находится постоянно под высоким давлением, что позволяет подавать в цилиндр небольшие и точно отмеренные порции.

Выхлопная система

Выхлопная система влияет на мощность ДВС, расход топлива и количество выбросов в атмосферу. Для уменьшения содержания вредных веществ в отработанных газах применяется каталитический нейтрализатор.  Он состоит из восстановительного и двух окислительных катализаторов, которые превращают углеводороды в водяной пар, а окиси углерода — в углекислый газ. Нейтрализатор устанавливают максимально близко к выпускному коллектору.

Нейтрализатор работает эффективнее, если двигатель внутреннего сгорания работает на смеси из воздуха и топлива в соотношении 14,7:1. Количество воздуха в отработанных газах отслеживает датчик лямбда-зонд. Уровень вредных окисей азота снижают с помощью системы рециркуляции путём забора части газов из выпускной системы для подачи его во впуск.

Классификация двигателей

Конструкция ДВС бывает различной. Каждый разработчик мотора пытается внести свои улучшения, повысить мощность и экономичность, снизить выбросы вредных веществ и стоимость агрегата. Давайте посмотрим, по каким критериям классифицируют двигатели внутреннего сгорания.

По рабочему циклу

Рабочий цикл ДВС — это последовательность процессов внутри каждого цилиндра, в результате которой энергия топлива превращается в механическую энергию. Цикл может быть двухтактным или четырехтактным:

  • четырёхтактный мотор работает по «циклу Отто» или Аткинсона и включает в себя такты: впуск, сжатие, рабочий ход и выпуск;
  • в двухтактном ДВС впуск и сжатие происходят одновременно за один такт, а рабочий ход переходит в выпуск на втором такте.

Если сравнивать двигатели внутреннего сгорания одной мощности по рабочему циклу, 2-тактный окажется проще и компактнее. А вот по топливной экономичности и экологическим показателям в выигрыше окажется 4-тактный мотор.

По типу конструкции

По конструкции ДВС делятся на:

  • поршневые, в которых расширяющиеся при сгорании газы приводят в движение поршень, который в свою очередь толкает коленвал;
  • роторные.Растущее давление газов воздействует на ротор, соединённый с корпусом через зубчатую передачу. Роторный мотор не имеет ГРМ. Его функции выполняют впускные и выпускные окна в боковых стенках корпуса;
  • газовые турбины. В этих двигателях внутреннего сгорания газы с высокой скоростью попадают на лопатки силовой турбины, которая соединяется через редуктор с трансмиссией. Для нагнетания воздуха в мотор установлен турбинный компрессор.

Моторы могут быть без наддува, с турбокомпрессором или нагнетателем. Конструкция подбирается под назначение двигателя: будь то стационарная установка или транспорт.

По количеству цилиндров

Одно цилиндровые двигатели работают неравномерно, что не критично для лодочных моторов, мопедов и мотоциклов. Двигатель автомобиля устроен сложнее, поскольку нужна высокая мощность, а значит и большой объём цилиндра. Так, в транспорте малого класса применяются 4-цилиндровые моторы. В грузовые автомобили ставят 6- и 8-цилиндровые ДВС.

В моделях премиум класса встречаются 12-цилиндровые агрегаты. Например, в Audi A8 установлен мотор W12 с 4 клапанами на каждый цилиндр и мощностью 420 л.с.

По принципу создания рабочей смеси

Принцип работы двигателя внутреннего сгорания различается способами смесеобразования:

  • внешнее: в карбюраторных моторах и в агрегатах с впрыском топлива во впускной коллектор;
  • внутреннее: в дизельных двигателях и бензиновых с непосредственным впрыском в камеру сгорания.

По расположению цилиндров

Поршневые двигатели автомобиля различаются компоновочной схемой блока цилиндров и могут представлять собой конструкцию:

  • рядную;
  • V-образную;
  • оппозитную с углом развала между поршнями 180°;
  • VR-образную;
  • W -образную.

В зависимости от компоновки моторы устанавливаются в подкапотное пространство вертикально, горизонтально или под углом к вертикальной плоскости для уменьшения высоты конструкции.

По типу топлива

Работа двигателя внутреннего сгорания происходит за счёт сжигания смеси воздуха с бензином, газа или дизеля. В качестве газового топлива ДВС применяются углеводород, сжиженный газ, смесь пропана и бутана, метан, водород.

По принципу работы ГРМ

Выше мы рассматривали, что ГРМ может быть устроен по схеме OHV, ОНС или DОНС. Выбор компоновки влияет на принцип работы двигателя. Также приводы клапанов различаются способами регулировки тепловых зазоров, которые увеличиваются в результате нагрева конструкции. Настройку зазоров проводят вручную, меняя специальные винты в коромыслах, или устанавливают гидрокомпенсаторы для автоматической регулировки.

Принцип работы двигателя

Изучив устройство, перейдём к рассмотрению принципа работы ДВС. Как работает двигатель внутреннего сгорания разберём на примере одноцилиндрового бензинового мотора.

Принцип работы четырехтактного двигателя

Внутри цилиндра возвратно-поступательно перемещается поршень, соединённый с коленчатым валом через шатун. Положение, в котором остаётся поршень после перемещения вверх, называется верхней мёртвой точкой ВМТ. А положение после перемещения вниз — нижней мёртвой точкой НМТ. Ход поршня между двумя крайними точками называется тактом. Рабочий цикл включает 4 последовательных такта: впуск, сжатие, рабочий ход и выпуск.

Посмотрим поэтапно, как работает 4-тактный двигатель внутреннего сгорания:

  1. В начале такта впуска открывается впускной клапан, а поршень перемещается от ВМТ. В это время в цилиндр всасывается горючая смесь.
  2. После прохода НМТ поршень поднимается вверх, сжимая рабочую смесь и остаточные газы. Все клапана закрыты. Растёт давление и температура сжатых газов. В это время свеча зажигания даёт искру для воспламенения смеси.
  3. Рабочая смесь горит, толкая поршень от ВМТ вниз. Клапана ещё закрыты.
  4. На такте выпуска открывается выпускной клапан, и поршень поднимается вверх, выталкивая отработавшие газы из цилиндра.

В многоцилиндровом блоке одинаковые такты в цилиндрах проходят в разном порядке. Например, если в устройство двигателя входит 4-цилиндровый блок, то очередность работы может выглядеть, как 1-3-2-4. Это означает, что такт впуска пройдёт сначала в 1, потом в 3, затем во 2, а после в 4 цилиндре.

Принцип работы двухтактного двигателя

Кривошипно-шатунный и газораспределительный механизмы двигателя с двумя рабочими тактами отличаются от 4-тактного. Здесь вместо клапанов в определённых местах цилиндра предусмотрены отверстия — продувочные окна. Свечи зажигания установлены в головке цилиндра.

Во время первого такта поршень двигается от НМТ к ВМТ. Через впускное окно под давлением насоса поступает рабочая смесь, заполняя цилиндр. Выпускное окно открыто и выпускает остатки отработавших газов. Перемещаясь, поршень перекрывает окна. Горючая смесь сжимается. Вблизи ВМТ подаётся искра зажигания, после чего начинается второй такт.

Поршень перемещается вниз под действием давления газов. Открываются окна. Сначала выпускное, через которое выходят отработанные газы, а затем впускное, через которое снова подаётся смесь.

Схема двухтактного двигателя имеет большой КПД: поршень за весь рабочий цикл совершает 2 хода, а коленчатый вал делает один полный оборот. Однако, часть топливно-воздушной смеси теряется вместе с отработанными газами, что даёт низкую топливную экономичность. Кроме того, поршневые кольца, постоянно пересекая кромки продувочных окон, быстро изнашиваются.

Преимущества и недостатки ДВС

ДВС — основной силовой агрегат, который устанавливают в автомобили. Несмотря на популярность, устройство двигателя внутреннего сгорания далеко от идеала.

Плюсы ДВС

Минусы ДВС

Автономная работаЗависимость мощности и крутящего момента от частоты вращения коленвала
Топливная экономичностьТоксичные выбросы
Высокая мощностьТрудный запуск при минусовых температурах
Доступная ценаВибрация и шум
Сложная конструкция с большим количеством расходников
Необходимость использования коробки передач
Малый ресурс
Затраты на обслуживание

Заключение

Устройство двигателя внутреннего сгорания постоянно усложняется, в попытках угодить запросам потребителей. Растёт количество модификаций, применяются новые электронные системы и перспективные виды топлива. Но эпоха доминирования ДВС постепенно заканчивается, на смену приходят более экологические чистые, эффективные и бесшумные конструкции. Например, гибридная машина, в которой ДВС работает в паре с электродвигателем. 

Двигатель внутреннего сгорания — Конструкция двигателя внутреннего сгорания — цилиндр, топливо, коленчатый вал и поршень

В двигателях внутреннего сгорания

обычно используется возвратно-поступательное движение, хотя газовая турбина , ракетные и роторные двигатели являются примерами других типов двигателей внутреннего сгорания. Однако поршневые двигатели внутреннего сгорания являются наиболее распространенными и используются в большинстве автомобилей, грузовиков, мотоциклов и других машин с приводом от двигателя.

Самыми основными компонентами двигателя внутреннего сгорания являются цилиндр, поршень и коленчатый вал.К ним прикреплены другие компоненты, которые увеличивают эффективность возвратно-поступательного движения и преобразуют это движение во вращательное движение коленчатого вала. Топливо должно поступать в цилиндр, а выхлоп, образованный взрывом топлива, должен обеспечивать выход из цилиндра. Также необходимо произвести зажигание или зажигание топлива. В поршневом двигателе внутреннего сгорания это делается одним из двух способов.

Дизельные двигатели также называют двигателями сжатия, поскольку они используют сжатие для самовоспламенения топлива.Воздух сжимается, то есть выталкивается в небольшое пространство цилиндра. Сжатие вызывает нагревание воздуха; когда топливо попадает в горячий сжатый воздух, топливо взрывается. Давление , создаваемое сжатием, требует, чтобы дизельные двигатели были более прочными и, следовательно, тяжелее, чем бензиновые двигатели, но они более мощные и требуют менее дорогостоящего топлива. Дизельные двигатели обычно используются в больших транспортных средствах, таких как грузовики и тяжелая строительная техника, или в стационарных машинах.

Бензиновые двигатели также называют двигателями с искровым зажиганием, потому что они зависят от искры электричества, которая вызывает взрыв топлива в цилиндре. Этот газовый двигатель легче дизельного двигателя и требует более очищенного топлива.

В двигателе цилиндр размещен внутри блока цилиндров, достаточно прочного, чтобы сдерживать взрывы топлива. Внутри цилиндра находится поршень, который точно соответствует цилиндру. Поршни обычно имеют куполообразную форму вверху и полую внизу.Поршень прикреплен через шатун, установленный в полой нижней части, к коленчатому валу, который преобразует движение поршня вверх и вниз в круговое движение. Это возможно, потому что коленчатый вал не прямой, а имеет изогнутую часть (по одной на каждый цилиндр), называемую кривошипом.

Аналогичная конструкция приводит в движение велосипед. При езде на велосипеде верхняя часть ноги человека похожа на поршень. От колена до ступни нога действует как шатун, который прикрепляется к коленчатому валу с помощью кривошипа или педального узла велосипеда.Когда сила прикладывается к верхней части ноги, эти части начинают двигаться. Возвратно-поступательное движение голени преобразуется во вращательное или вращательное движение коленчатого вала.

Обратите внимание, что при езде на велосипеде нога делает два движения, одно вниз и одно вверх, чтобы завершить цикл вращения педалей. Это так называемые удары. Поскольку двигатель также должен всасывать топливо и снова выпускать топливо, большинство двигателей используют четыре хода для каждого цикла, который совершает поршень. Первый ход начинается, когда поршень оказывается в верхней части цилиндра, называемой головкой цилиндра.По мере его опускания в цилиндре создается вакуум . Это связано с тем, что поршень и цилиндр образуют герметичное пространство. Когда поршень опускается, пространство между ним и головкой блока цилиндров увеличивается, а количество воздуха остается прежним. Этот вакуум помогает подавать топливо в цилиндр, подобно действию легких. Поэтому этот ход называется тактом впуска.

Следующий ход, называемый тактом сжатия, происходит, когда поршень снова подталкивается вверх внутри цилиндра, сжимая или сжимая топливо в более тесное и тесное пространство.Сжатие топлива в верхней части цилиндра вызывает нагревание воздуха, что также нагревает топливо. Сжатие топлива также облегчает воспламенение и делает взрыв более мощным. У расширяющихся газов взрыва меньше места, а это означает, что они будут сильнее давить на поршень, чтобы уйти.

В верхней части такта сжатия топливо воспламеняется, вызывая взрыв, толкающий поршень вниз. Этот ход называется рабочим ходом, и это ход, при котором вращается коленчатый вал.Последний ход, такт выпуска, снова поднимает поршень вверх, который вытесняет выхлопные газы, образовавшиеся в результате взрыва, из цилиндра через выпускной клапан. Эти четыре удара также обычно называют «сосание, сжатие, удар и удар». Двухтактные двигатели исключают такты впуска и выпуска, комбинируя их с тактами сжатия и увеличения мощности. Это позволяет создать более легкий и мощный двигатель — по сравнению с размером двигателя — требующий менее сложной конструкции. Но двухтактный цикл — менее эффективный метод сжигания топлива.Остаток несгоревшего топлива остается внутри цилиндра, что препятствует сгоранию. Двухтактный двигатель также воспламеняет топливо в два раза чаще, чем четырехтактный двигатель, что увеличивает износ деталей двигателя. Поэтому двухтактные двигатели используются в основном там, где требуется двигатель меньшего размера, например, на некоторых мотоциклах, и с небольшими инструментами.

Для горения требуется присутствие кислорода, поэтому для воспламенения топливо необходимо смешать с воздухом. В дизельных двигателях топливо подается непосредственно для реакции с горячим воздухом внутри цилиндра.Однако двигатели с искровым зажиганием сначала смешивают топливо с воздухом вне цилиндра. Это делается либо через карбюратор, либо через систему впрыска топлива. Оба устройства испаряют бензин и смешивают его с воздухом в соотношении , составляющем примерно 14 частей воздуха на каждую часть бензина. Дроссельная заслонка в карбюраторе регулирует количество воздуха, смешиваемого с топливом; на другом конце дроссельная заслонка контролирует, сколько топливной смеси будет отправлено в цилиндр.

Вакуум, создаваемый при движении поршня вниз по цилиндру, втягивает топливо в цилиндр.Поршень должен точно входить в цилиндр, чтобы создать этот вакуум. Резиновые компрессионные кольца, вставленные в канавки поршня, обеспечивают герметичность посадки. Бензин поступает в цилиндр через впускной клапан. Затем бензин сжимается в цилиндр следующим движением поршня в ожидании воспламенения.

Двигатель внутреннего сгорания может иметь от одного до двенадцати или более цилиндров, которые действуют вместе в точно синхронизированной последовательности для приведения в движение коленчатого вала.Велосипедиста на велосипеде можно описать как двухцилиндровый двигатель, в котором каждая нога помогает другой создавать мощность для управления велосипедом и подтягивать друг друга в цикле движений. Автомобили обычно имеют четырех-, шести- или восьмицилиндровые двигатели, хотя также доступны двух- и двенадцатицилиндровые двигатели. Количество цилиндров влияет на рабочий объем двигателя, то есть на общий объем топлива, прошедшего через цилиндры. Больший рабочий объем позволяет сжигать больше топлива, создавая больше энергии для привода коленчатого вала.

Искра попадает через свечу зажигания, расположенную в головке блока цилиндров. Искра вызывает взрыв бензина. Свечи зажигания содержат два металлических конца , называемых электродами, которые проходят вниз в цилиндр. У каждого цилиндра своя свеча зажигания. Когда через свечу зажигания проходит электрический ток , ток перескакивает с одного электрода на другой, создавая искру.

Этот электрический ток исходит от батареи . Однако ток батареи недостаточно силен, чтобы вызвать искру, необходимую для воспламенения топлива.Поэтому он пропускается через трансформатор , который значительно увеличивает его напряжение или силу. Затем ток можно направить на свечу зажигания.

Однако в случае двигателя с двумя или более цилиндрами искра должна направляться в каждый цилиндр по очереди. Последовательность срабатывания цилиндров должна быть рассчитана так, чтобы, пока один поршень находился в рабочем такте, другой поршень находился в такте сжатия. Таким образом, сила, действующая на коленчатый вал, может поддерживаться постоянной, что позволяет двигателю работать плавно.Количество цилиндров влияет на плавность работы двигателя; чем больше цилиндров, тем постояннее усилие на коленчатом валу и тем плавнее будет работать двигатель.

Время срабатывания цилиндров регулируется распределителем. Когда ток поступает в распределитель, он направляется к свечам зажигания через провода, по одному на каждую свечу зажигания. Механические распределители — это, по сути, вращающиеся роторы, которые по очереди подают ток в каждый провод. Электронные системы зажигания используют компьютерные компоненты для выполнения этой задачи.

В самых маленьких двигателях используется аккумулятор, который при разряде просто заменяется. Однако в большинстве двигателей предусмотрена возможность перезарядки батареи, используя движение вращающегося коленчатого вала для выработки тока обратно в батарею.

Поршень или поршни давят на коленчатый вал и тянут вверх, вызывая его вращение. Это преобразование возвратно-поступательного движения поршня во вращательное движение коленчатого вала возможно, потому что для каждого поршня коленчатый вал имеет кривошип, то есть секцию, установленную под углом к движению вверх и вниз положения .На коленчатом валу с двумя или более цилиндрами эти кривошипы также установлены под углом друг к другу, что позволяет им работать согласованно. Когда один поршень толкает кривошип вниз, второй кривошип толкает его поршень вверх.

Большое металлическое колесо, похожее на маховик, прикреплено к одному концу коленчатого вала. Он поддерживает постоянное движение коленчатого вала. Это необходимо для четырехтактного двигателя, поскольку поршни совершают рабочий ход только один раз на каждые четыре хода.Маховик обеспечивает импульса для переноса коленчатого вала во время его движения до тех пор, пока он не получит следующий рабочий ход. Он делает это с помощью инерции, то есть принципа, согласно которому движущийся объект будет стремиться оставаться в движении. Как только маховик приводится в движение поворотом коленчатого вала, он продолжает двигаться и вращать коленчатый вал. Однако чем больше цилиндров в двигателе, тем меньше ему нужно будет полагаться на движение маховика, потому что большее количество поршней будет поддерживать вращение коленчатого вала.

После того, как коленчатый вал вращается, его движение можно адаптировать для самых разных целей путем присоединения шестерен , ремней или других устройств. Колеса можно заставить вращаться, пропеллеры можно заставить вращаться, или двигатель можно использовать просто для выработки электроэнергии. К коленчатому валу также прикреплен дополнительный вал, называемый распределительным валом, который открывает и закрывает впускные и выпускные клапаны каждого цилиндра в последовательности с четырехтактным циклом поршней. Кулачок — это колесо, имеющее более или менее форму яйца, с длинным и коротким концом.К распределительному валу крепятся несколько кулачков в зависимости от количества цилиндров двигателя. Сверху кулачков установлены толкатели, по два на каждый цилиндр, которые открывают и закрывают клапаны. Когда распределительный вал вращается, короткие концы позволяют толкателям отводить назад от клапана, заставляя клапан открываться; длинные концы кулачков толкают стержни назад к клапану, снова закрывая его. В некоторых двигателях, называемых двигателями с верхним расположением кулачка, распределительный вал опирается непосредственно на клапаны, что устраняет необходимость в узле толкателя.Двухтактные двигатели, поскольку впуск и выпуск достигаются за счет движения поршня над портами или отверстиями в стенке цилиндра, не требуют распределительного вала.

Коленчатый вал может приводить в действие еще два компонента: системы охлаждения и смазки. Взрыв топлива создает сильное тепло, которое быстро приведет к перегреву двигателя и даже к расплавлению, если он не будет должным образом рассеян или отведен. Охлаждение достигается двумя способами: через систему охлаждения и, в меньшей степени, через систему смазки.

Есть два типа систем охлаждения. В системе жидкостного охлаждения используется воды , которую часто смешивают с антифризом для предотвращения замерзания. Антифриз снижает температуру замерзания, а также повышает точку кипения на воды. Вода, которая очень хорошо собирает тепло, перекачивается вокруг двигателя через ряд каналов, содержащихся в рубашке. Затем вода циркулирует в радиаторе, который содержит множество трубок и тонких металлических пластин, увеличивающих площадь поверхности воды.Вентилятор, прикрепленный к радиатору, пропускает воздух по трубке, дополнительно снижая температуру воды на . И насос, и вентилятор приводятся в действие движением коленчатого вала.

В системах с воздушным охлаждением для отвода тепла от двигателя используется воздух, а не вода. В большинстве мотоциклов, многих небольших самолетов и других машин, движение которых производит большое количество ветра , используются системы воздушного охлаждения. В них металлические ребра прикреплены к внешней стороне цилиндров, создавая большую площадь поверхности; когда воздух проходит через ребра, тепло, передаваемое к металлическим ребрам от цилиндра, уносится воздухом.

Смазка двигателя жизненно важна для его работы. Движение частей друг относительно друга вызывает сильное трение , которое нагревает и вызывает износ деталей. Смазочные материалы, например масло, образуют тонкий слой между движущимися частями. Прохождение масла через двигатель также помогает отводить часть выделяемого тепла.

Коленчатый вал в нижней части двигателя упирается в картер. Он может быть заполнен маслом, или отдельный масляный поддон под картером служит резервуаром для масла.Насос подает масло по каналам и отверстиям к различным частям двигателя. Поршень также оснащен резиновыми маслосъемными кольцами в дополнение к компрессионным кольцам для перемещения масла вверх и вниз по внутренней части цилиндра. Двухтактные двигатели используют масло как часть своей топливной смеси, обеспечивая смазку двигателя и устраняя необходимость в отдельной системе.


Детали двигателя внутреннего сгорания

Читать и знать, как работает двигатель внутреннего сгорания — это нормально, но незнание его компонентов делает его бесполезным.Комбинированный компонент двигателя транспортного средства заставляет магию работать под капотом, что ж, некоторым людям это кажется волшебством.

Автомобильный двигатель состоит из различных компонентов разного размера, выполняющих различные функции. Данная статья ориентирована на распространенный тип автомобильного двигателя « двигатель внутреннего сгорания ».

Современная версия двигателя сочетает в себе как механические, так и электрические компоненты. Прочтите важные статьи о двигателях внутреннего сгорания…

Подробнее: Типы автомобильных двигателей

Автомобильные двигатели заключены в герметичный упругий металлический цилиндр.Он содержит до шестнадцати цилиндров, но большинство современных автомобилей имеют от четырех до восьми цилиндров. Читая мои предыдущие статьи, вы поймете, что функция цилиндра — открываться и закрываться в определенное время, позволяя топливу и воздуху попадать в камеру сгорания и выпускать выхлопные газы. ну, это уже объясненное содержание. Проверьте это по ссылке выше!

В этой статье я распространил список основных частей двигателя внутреннего сгорания, их схемы и их функции.

Подробнее: Понимание работы автомобильного мозга

Компоненты двигателя внутреннего сгорания:

Ниже приведены общие детали двигателя внутреннего сгорания:

1. Цилиндр :

Эти детали автомобильного двигателя расположены в блоке двигателя, также известном как блок цилиндров. Он содержит подкладку или рукава вокруг него. Этот лайнер изнашивается во время работы и может быть легко заменен. В цилиндрах есть часть или пространство для поршня, чтобы двигаться вверх и вниз, заставляя происходить сгорание.

Цилиндры

отличаются диаметром и ходом. Отверстие — это внутренний диаметр, а ход — это эффективная длина поршня, совершающего возвратно-поступательное движение, то есть движение поршня от ВМТ к НМТ, они являются самой верхней и самой нижней точками хода.

В блоке цилиндров также есть пустоты вокруг и между отдельными цилиндрами, эти полые части известны как рубашки. Он позволяет охлаждающей жидкости поступать и циркулировать, обеспечивая эффективное рассеивание тепла в двигателях с жидкостным охлаждением.

2. Поршень :

Поршень представляет собой цилиндрическую часть, которая движется вверх и вниз в цилиндре, обеспечивая полный цикл сгорания (впуск, сжатие, сгорание, выпуск). Посмотрите, как этот процесс работает, ниже.

Диаметр поршня немного меньше диаметра цилиндра, чтобы избежать быстрого износа поверхности поршня. В круглые выемки на поверхностях поршня вставлены три кольца, известные как поршневые кольца. Эти кольца изготовлены из алюминия и имеют прямой контакт с гильзой цилиндра, что предотвращает износ поршня.

Два первых кольца представляют собой компрессионные кольца, у него скошена внешняя часть, что способствует возникновению эффекта продувки (предотвращение попадания отработанных газов внутри камеры сгорания в картер). Третье кольцо известно как масляное кольцо, оно предотвращает попадание масла в камеру сгорания и обеспечивает правильное распределение масла по стенкам цилиндров.

3. Коленчатый вал :

Эти детали двигателя помогают преобразовывать скользящее движение поршня во вращательное движение через шатун.Он расположен под блоком цилиндров внутри кожуха, называемого картером. Коленчатый вал имеет выступы, загнутые и смещенные относительно оси вала. В многоцилиндровом двигателе каждый цилиндр снабжен собственной шатунной шейкой, предназначенной для крепления поршня с помощью шатуна.

Часть коленчатого вала, называемая опорным подшипником кривошипа, известна как шатун, имеющий подшипник скольжения. Другая его часть называлась противовесами. Он предназначен для противодействия колебаниям растяжения, испытываемым коленчатым валом из-за возвратно-поступательного дисбаланса движущегося поршня во время процесса сгорания.Баланс кривошипа либо прикреплен болтами к корпусу кривошипа, либо является неотъемлемой частью.

Коленчатые валы производятся как по частям, так и в сборе. Цельная конструкция более предпочтительна, поскольку она не оставляет места для вибрации и обеспечивает лучший поток волокна и хорошую способность выдерживать нагрузки.

Наконец, коленчатые валы обычно изготавливают из стали путем ковки вальцом или из пластичной стали путем литья. цельные коленчатые валы изготавливаются из жаропрочных углеродистых сталей.Некоторые другие стали, такие как микролегированные стали с ванадием, также используются из-за более высокой прочности, которую они могут обеспечить без термической обработки.

4. Шатун :

Эти детали двигателя предназначены для соединения поршня с коленчатым валом. Как упоминалось ранее, он преобразует поступательное движение поршня во вращательное движение кривошипа. Одна из его концевых частей прикреплена к поршню через поршневой палец, также известный как поршневой палец и палец для запястья. Другой конец прикреплен к шейке шатунной шейки с помощью болтов для удержания верхней и нижней крышек подшипников, называемых шатуном.

Подшипник выполнен в виде двух полукорпусов, помещенных в шейку кривошипа шатуном шатуна. Оба конца не закреплены жестко, чтобы поворачиваться на угол. Следовательно, оба конца находятся в непрерывном движении и испытывают огромную нагрузку от давления поршня.

Шатун обычно изготавливается из кованой стали, а иногда и из алюминиевого сплава, когда приоритетным является легкий вес и способность поглощать сильные удары. Шатун изготовлен с высокой точностью, поскольку это чувствительная деталь, подверженная поломке.

5. Головка блока цилиндров :

Эти детали двигателя служат крышкой для блока цилиндров, клапана, коромысел и элемента зажигания. Он прикручен к блоку цилиндров с прокладкой головки блока цилиндров между ними.

Головка блока цилиндров изготовлена ​​из чугуна, а иногда и из алюминиевого сплава, когда требуется легкая деталь и поскольку она проводит тепло быстрее, чем чугун.

В двигателе с верхним распределительным валом распределительный вал размещен в головке при отсутствии толкателя для клапанного механизма.Некоторые другие части, такие как впускные, выпускные отверстия и камера сгорания, также имеют пространство под цилиндром, что делает их одним целым компонентом двигателя.

6. Распределительный вал :

Этот компонент двигателя внутреннего сгорания представляет собой вал, на котором установлен кулачок. его функции — управлять клапанами непосредственно, сидя над ними или через коромысло и толкатель. Время газораспределения определяется размером распредвала. То есть открытие и закрытие клапанов регулируется распределительным валом, который установлен на коленчатом валу либо непосредственно через редуктор, либо косвенно через шкив и ремень привода ГРМ.

Распределительный вал, соединенный с кривошипом шестерней, требовал толкателя и толкателя вместе с коромыслами. Распределительный вал обычно изготавливается из отливок из закаленного чугуна и заготовок из стали, используемой для изготовления высококачественных. Охлажденный чугун обеспечивает большую износостойкость и твердость поверхности.

7. Клапаны :

Клапаны, известные как тарельчатые клапаны в двигателях внутреннего сгорания. Он состоит из длинного тонкого круглого стержня, называемого штоком клапана, и плоского круглого диска, называемого головкой клапана, который сужается вдоль тонкого стержня.Функция клапана состоит в том, чтобы включить клапан для свежего всасывания топлива и воздуха и выпуска отработанных газов (выхлопа). Открытие и закрытие клапана вызываются скользящим движением распределительного вала и связанных с ним рычагов.

Клапаны двигателя изготовлены из стальных сплавов, наполненных натрием для увеличения теплоотдачи. Наконец, клапаны двухсекционные; впускной / впускной клапан, который позволяет свежему заряду поступать в камеру при открытии, а выпускной / выпускной клапан позволяет выходить выхлопным газам.

8. Коромысло :

Эта деталь двигателя внутреннего сгорания играет важную роль, поскольку она передает вращательное движение кулачка или коленчатого вала через толкатель / фиксатор и преобразует его в линейное движение штока клапана, помогая прижать головку клапана

Головка коромысла изготовлена ​​из стальных штамповок для двигателей легкой и средней мощности, тогда как головка коромысла тяжелого дизельного двигателя изготовлена ​​из чугуна и кованой углеродистой стали, так как она обеспечивает большую прочность и жесткость.Коромысла колеблются вокруг неподвижного стержня шарнира в головке блока цилиндров.

9. Картер двигателя :

Эти компоненты двигателя внутреннего сгорания расположены под блоком цилиндров, содержащим подшипники, вращающие кривошип. Этот основной подшипник представляет собой подшипник скольжения с достаточной подачей масла. Четырехцилиндровые рядные бензиновые двигатели содержат три подшипника в картере, по одному на каждом конце и один посередине, в то время как дизельные двигатели имеют пять основных подшипников, по одному на каждом конце и по одному между каждым цилиндром.

Картер сделан из чугуна и алюминия, из того же материала, что и блок цилиндров. Картер двигателя служит многим целям двигателя, поскольку помогает защитить его внутренний механизм от пыли, грязи и некоторых других материалов. Он также служит корпусом, в котором заключены коленчатый вал и шатун, удерживая масло и воздух.

10. Масляный насос и поддон :

Масляный насос перекачивает масло в различные части двигателя для надлежащей смазки, очистки и охлаждения.Масляный насос в двигателе приводится в действие шестерней коленчатого вала. Масло находится под давлением к различным частям компонентов двигателя, что помогает смазывать и охлаждать систему.

Масляный поддон служит резервуаром, в котором хранится масло. Масло поднимается масляным насосом из поддона через сетку из проволочной сетки, которая предотвращает попадание мусора и грязи в двигатель. Масляный фильтр и маслоохладитель пропускают масло перед его распределением по деталям двигателя. После выполнения своей работы масло возвращается в масляный поддон.

Прочие компоненты автомобильного двигателя — электрические, о которых пойдет речь в другой статье. В электрическую часть двигателя входят:

Мы надеемся, что вам понравился этот пост «Компоненты двигателя внутреннего сгорания», и вы получили удовольствие от чтения. Если да, то поделитесь этим постом со своими друзьями и учениками в социальных сетях. Спасибо!

Двигатели внутреннего сгорания — обзор

ВВЕДЕНИЕ

Теплопередача в двигателях внутреннего сгорания влияет на объемный, механический и тепловой КПД, выбросы выхлопных газов, выбор материалов, определение размеров компонентов двигателя и затраты на техническое обслуживание.Это основной параметр при моделировании термодинамических процессов. На методы конечных элементов, помогающие при проектировании компонентов двигателя, также влияет теплопередача из-за тепловой нагрузки компонентов. Примерно 20% доступной энергии теряется при передаче тепла во время различных термодинамических процессов. Местная теплопередача в цилиндре влияет на механическую прочность поршня или колец, а также на вязкость смазочного масла и возможность ненормального сгорания.Образование очага пламени, работа свечи зажигания или выпускного клапана зависят от теплопередачи. При проектировании головки блока цилиндров и поршня или в целом камеры сгорания прогнозируется влияние материала, размеров, формы и конфигурации на теплопередачу. Производительность, долговечность и стабильность производимого продукта тесно связаны с успехом прогнозов.

Есть два аспекта теплопередачи; общая средняя теплопередача влияет на общую производительность двигателя, в то время как мгновенная локальная теплопередача влияет на проблемные области в конструкции.Таким образом, экспериментальная и теоретическая работа в равной степени сосредоточена на средней и локальной мгновенной теплопередаче.

Теплообмен между газами и стенками цилиндров двигателей внутреннего сгорания осуществляется за счет принудительной конвекции и излучения. В двигателях с искровым зажиганием радиационной теплопередачей можно пренебречь. Однако на него может приходиться от 20 до 40 процентов общей теплопередачи в двигателях с воспламенением от сжатия. Это связано с наличием частиц сажи при сгорании двигателя с воспламенением от сжатия.

Прогнозирование общей теплопередачи в двигателях внутреннего сгорания обычно основывается на предположении, что процесс теплопередачи является квазистационарным. Были сформулированы различные эмпирические соотношения для прогнозирования мгновенного теплопереноса, усредненного по пространству. Аннанд [1] предложил рассчитывать квазистационарную теплопередачу в двигателях с искровым зажиганием за счет конвективной теплопередачи;

(1) qcA = hc. (Tg-Tw)

После применения размерного анализа он предложил безразмерную зависимость;

(2) Nu = а.Reb

(3) hc.Dk = a. (Ρ.vpm.Dμ) b

диаметр отверстия цилиндра был взят как характерный размер, а средняя скорость поршня использовалась для представления движения газа. Арманд также предложил эмпирическое соотношение для радиационной теплопередачи;

(4) qrA = c.ε. (Tg4-Tw4)

и в сочетании с уравнением. (1) и уравнение. (3);

(5) qA = kD.a. (Ρ.vpm.Dμ) b. (Tg − Tw) + c.ε. (Tg4 − Tw4)

, где a = от 0,35 до 0,8b = 0,7c = 0 искры двигатели с воспламенением c = 0,57 двигатели с воспламенением от сжатия

Woschni [2] предложил аналогичную связь с формулой.(2) с a = 0,035 и b = 0,8. Чтобы лучше соответствовать своим экспериментальным данным, Хоэнбург [3] дополнительно изменил член эффективной скорости газа и использовал мгновенный объем цилиндра для определения характерной длины. Пытаясь предсказать локальные тепловые потоки и учесть локальный эффект завихрения в двигателях с воспламенением от сжатия, Дент и Сулейман [4] предложили следующее соотношение;

(6) qA = 0,023 крон (ρ.ω.r2μ) .0,8 (Tg − Tw)

для числа Прандтля Pr = 0.73, T g и T w — локальные температуры на равных радиусах от точки впрыска.

В двигателях с искровым зажиганием для описания процесса сгорания используются двухзонные или многозонные модели. Мгновенные прогнозы среднего по площади теплового потока Аннанда и Вошни используются с усредненными по массе зональными средними температурами.

Точность прогнозов мгновенной скорости теплопередачи в основном зависит от точности измерений температуры поверхности стенки.Новаторская работа Эйхельберга [5] была основана на результатах, полученных с помощью термопарных спаев тонких проводов, расположенных ниже поверхности головки блока цилиндров. Измерения температуры поверхности улучшились за счет осаждения металлов в вакууме.

Термопара Бендерского [6], показанная на рис. 1, представляла собой автономный зонд, который можно было вставить в головку блока цилиндров. Он страдает от контактного сопротивления на резьбе и от прямого столкновения никелевой проволоки в центре горячего спая термопары с однородностью корпуса зонда.Изоляция никелевого провода также представляла проблему, которую удалось решить с помощью метода емкостного разряда. Однако основная идея была разработана различными исследователями. Ма [7] использовал композитную ленту в качестве вывода от спая термопары. Байка [8] использовал аналогичную технику для изготовления поверхностных термопар (рис. 2). Техника вакуумного напыления также использовалась для изготовления зондов для измерения теплового потока. Дао и др. [9] нанесены термисторы на обе поверхности тонких дисков из пирекса. Alkidas [10] также использовал датчики теплового потока.В двигателях с искровым зажиганием измерение температуры поверхности на различных расстояниях от свечи зажигания показало более высокий тепловой поток в зоне раннего появления пламени. Это соответствовало прогнозам температуры газа в многозонной модели, предложенной Байкой [11].

Рисунок 1. Поверхностная термопара Бендерского

Рисунок 2. Поверхностная термопара Байка

Самым слабым аспектом прогнозов конвективной теплопередачи является включение движения газа в число Рейнольдса в уравнении.(2).

Температуру газа можно визуализировать как имеющую крутой градиент около стенок цилиндра в пределах теплового пограничного слоя и почти нулевой градиент вдали от стенок цилиндра. Байка [12] применил эту модель отдельно к сгоревшему и несгоревшему газу с фронтом пламени, разделяющим две зоны, для процесса горения в одноходовой машине быстрого сжатия. Та же формулировка может быть применена и к многозонной модели. Прогнозирование толщины теплового пограничного слоя и оценка эффективной теплопроводности теплового пограничного слоя можно использовать для прогнозирования теплового потока.Borgnakke et.al. [13] предложила модель для прогнозирования тепловых потоков через тепловую границу и турбулентность в цилиндре. Тепловой поток через тепловой пограничный слой может быть выражен как:

(7) qA = keδ. (Tg-Tw)

Толщина теплового пограничного слоя будет изменяться во время процессов газообмена, сжатия, сгорания и расширения. На него будут влиять частота вращения двигателя, нагрузка, соотношение воздух / топливо, завихрение, вызванное индукцией или сжатием, температура газа на входе, объемный КПД, степень сжатия, время искры или впрыска, а также состояние охлаждающей жидкости.Конструкция камеры сгорания, толщина стенок и материалы головки блока цилиндров, гильзы и поршня также влияют на тепловой пограничный слой. Лайфорд-Пайк и Хейвуд [14] провели измерения толщины теплового пограничного слоя в двигателе с искровым зажиганием с помощью фотографии Шлирена.

Целью данного исследования было изготовление автономного зонда и системы сбора данных для сбора экспериментальных данных о тепловом пограничном слое газов над поверхностью, а также о локальной температуре поверхности головки цилиндров поршневого двигателя внутреннего сгорания. двигатель.На этом этапе исследования основное внимание уделялось успешной эксплуатации зонда и системы сбора данных. В настоящее время проводится дальнейшее исследование, в котором разрабатывается одномерная модель, разработанная Байкой [12], и исследуются дополнительные параметры, такие как частота вращения двигателя и завихрение газа.

Бензиновый двигатель — обзор

6.5 Проблемы, связанные со смазкой бензиновых двигателей

Достижения в технологии бензиновых двигателей являются движущими силами в разработке масел для бензиновых двигателей. Ключевая технология, представленная в последние годы, — это непосредственный впрыск бензина (GDI), который часто сочетается с турбонаддувом (TGDI) для создания компактного, экономичного, но мощного двигателя.Основное внимание в этом разделе уделяется проблемам, создаваемым этими типами двигателей.

На рис. 6.7 показано сравнение удельной мощности между типичным впрыском топлива в порт (PFI) и опциями TGDI, доступными на моделях автомобилей одного производителя. Как видно, удельная мощность последнего намного выше, часто более 100 л.с. (Pferdestarke — метрическая мощность) на литр, и эти цифры увеличиваются с каждой новой линейкой двигателей. Эти изменения создают более суровую среду для смазочного материала.Более высокая удельная мощность означает увеличение давления и температуры в цилиндрах, а также увеличение сил, действующих на более мелкие подшипники. Температура турбин в небольших двигателях с турбонаддувом может достигать более 1000 ° C, а использование жидкостного охлаждения турбонагнетателя требует затрат и конструктивных требований.

6.7. Сравнение удельной мощности, PFI и TGDI.

Цикл движения, очевидно, влияет на срок службы турбокомпрессора. Режим работы, который оказался особенно суровым, включает в себя движение по высокоскоростной автомагистрали / автобану с периодическими остановками.На высоких оборотах и ​​мощности турбокомпрессор тяжело работает и сильно нагревается. Температура выхлопной турбины может превышать 1000 ° C. Когда автомобиль останавливается, воздействие тепла на турбонагнетатель обеспечивает экстремальное испытание смазочного материала в нем. Окисление смазки в таких условиях может привести к образованию значительных отложений на валу турбокомпрессора и в зоне подшипника, что в конечном итоге приведет к заклиниванию подшипника. На рис. 6.8 показаны два примера, демонстрирующие улучшение, которое возможно при использовании более качественной смазки.

6.8. Отложения на валу / подшипниках турбокомпрессора, двигатель TGDI.

Если отложения турбонагнетателя не причинят значительного вреда самому турбонагнетателю, они все равно могут вызвать повреждение в другом месте двигателя. На фотографиях на рис. 6.9 показаны отложения, извлеченные из маслозаборной трубы бензинового двигателя с турбонаддувом. Мелкие твердые частицы характерны для более жесткой окислительной среды в зоне подшипников турбонагнетателя. Было замечено, что они блокируют масляный фильтр и вызывают отложения шлама.Как видно из «осадка», обнаруженного в всасывающей трубе, они могут серьезно ограничить подачу масла к масляному насосу двигателя. Также часто наблюдается увеличение отложений шлама в «традиционных» областях, таких как поддон и дека головки блока цилиндров.

6.9. Отложения маслосборника до и после промывки растворителем.

Дополнительную иллюстрацию относительной жесткости двигателей TGDI можно увидеть, когда вязкость масла отслеживается в ходе испытания на динамометрическом стенде двигателя, как показано на рис.6.10. Испытания проводились с использованием того же топлива и масла для двигателей PFI и TGDI. Форма кривой вязкости характерна. Сначала происходит некоторое сдвиговое усилие, а затем масло имеет период относительно стабильной вязкости. В период между 160 и 220 часами вязкость масла в двигателе PFI начинает снижаться, поскольку окисление действительно начинает удерживаться. В конце испытания при разборке двигателя обнаруживается шлам и более твердые отложения в критических областях двигателя. Двигатель TGDI был запущен в немного другом испытательном цикле, более подходящем для этого типа двигателя.Однако степень тяжести цикла считается аналогичной таковой для двигателя PFI. Очевидно, что окисление происходит гораздо более агрессивно, и снижение вязкости происходит намного раньше. Эквивалентное расстояние по дороге может иметь катастрофические последствия для состояния масла и, следовательно, двигателя. Ситуацию можно значительно улучшить, используя улучшенные составы, включая более устойчивые к окислению базовые компоненты и более надежные пакеты присадок.

6.10.Динамометрические испытания двигателей PFI и TGDI.

Когда топливо впрыскивается во впускной канал, оно успевает полностью испариться и не приводит к значительному разбавлению топлива. Однако GDI означает, что в цилиндр под высоким давлением впрыскивается тонкая струя топлива. Достигнуты точный контроль и тонкое распыление, но неизбежно повышенная тенденция распыления топлива на прямой контакт со стенками цилиндра, увеличивая количество топлива, попадающего в картер, чтобы разбавить масло.Отложения на форсунках могут повлиять на точность формы распыления, еще больше увеличивая тенденцию попадания топлива в масло. Очевидным эффектом такого разбавления топлива является разжижение масла, что является серьезной проблемой, учитывая более высокую нагрузку на подшипник из-за более высокого крутящего момента и более узких шейек. По этой причине производители оригинального оборудования часто неохотно снижают вязкость моторного масла, а стремление улучшить экономию топлива ставится под угрозу, чтобы сохранить долговечность двигателя.Состав топлива в сочетании с типом работы в значительной степени влияет на то, сколько его остается в масле и какое влияние оно оказывает на смазочный материал.

Проблемы, создаваемые этими двигателями, были хорошо описаны Дэниелом Каппом, директором Ford по исследованиям силовых агрегатов (Kapp, 2010). В мае 2010 года он обратился к Североамериканскому обществу трибологов и инженеров по смазочным материалам и подчеркнул проблемы, которые эти двигатели (названные Ford EcoBoost ™) создают для смазочного материала.«Смазочные материалы могут по-прежнему играть очень важную роль, но, возможно, некоторые проблемы будут немного другими», — заметил он. Если мы просто посмотрим на EcoBoosting, мы определенно увидим более высокие рабочие температуры и гораздо более высокие удельные нагрузки. Итак, представьте теперь очень маленькие двигатели, работающие при очень высоких температурах сгорания ». Далее он упомянул такие проблемы, как высокое разбавление топлива и высокие удельные нагрузки. В январе 2012 года компания Ford of Europe представила двигатель EcoBoost ™ объемом 1 литр, который заменяет двигатели PFI до 1.6 литров. Это типичная тенденция в этой сфере. Максимальная температура выхлопных газов составляет 1050 ° C, а выходная мощность превышает 120 л.с. В статье журнала Automotive Engineer за январь 2012 г. (2012 г.) приводятся дополнительные сведения. Другие производители оригинального оборудования следуют очень похожей стратегии, стремясь снизить расход топлива и CO 2 . Понятно, что им потребуется масло лучшего качества, чем их предшественники.

Различные части 4-тактного двигателя

4-тактный двигатель — это тип небольшого двигателя внутреннего сгорания, в котором для завершения одного рабочего цикла используются четыре различных хода поршня.Во время этого цикла коленчатый вал дважды поворачивается, а поршень дважды поднимается и опускается, чтобы запустить свечу зажигания.

Что такое 4-тактный двигатель?

Как упоминалось выше, 4-тактный двигатель использует четыре отдельных поршневых цикла — завершенные циклы подъема и опускания — для достижения одного цикла мощности. Они имеют немного более сложную конструкцию, чем двухтактные двигатели, в которых есть отсек для масла, а это значит, что вам не нужно предварительно смешивать топливо. Эта особенность способствует более чистым выбросам, делая 4-тактные двигатели более экологически чистым вариантом.

Благодаря более крупной конструкции 4-тактные дизельные и бензиновые двигатели, как правило, больше 2-тактных двигателей и весят больше. У 4-тактного двигателя также больше деталей, но все эти дополнительные функции имеют отличные преимущества. Они помогают 4-тактным двигателям работать с гораздо более низким уровнем шума, обеспечивают лучшую топливную экономичность и продлевают срок службы. Они также обеспечивают более высокий крутящий момент при более низких оборотах.

Список деталей 4-тактного двигателя

Части 4-тактного двигателя малого объема включают:

  • Поршень
  • Коленчатый вал
  • Распредвал
  • Свеча зажигания
  • Цилиндр
  • Клапаны
  • Карбюратор
  • Маховик
  • Шатун
  • Форсунки топливные

Каковы ходы 4-тактного двигателя?

Вот детали и функции 4-х тактного дизельного двигателя.

1. Ход всасывания

Малые двигатели получают топливо и воздух через карбюратор. Затем карбюратор объединяет топливо и воздух для сгорания. Во время такта впуска впускной клапан между камерой сгорания и карбюратором открывается, что позволяет атмосферному давлению выталкивать топливно-воздушную смесь в цилиндр, когда поршень движется вниз.

2. Ход сжатия

Впускной и выпускной клапаны закрыты в такте сжатия. По мере того, как поршень движется вверх, он сжимает топливно-воздушную смесь.Сжатие облегчает воспламенение свечой зажигания топливно-воздушной смеси в рабочем такте.

3. Рабочий ход

Когда поршень достигает вершины, это оптимальная точка для воспламенения топлива. Свеча зажигания создает высокое напряжение, необходимое для зажигания. Тепло, создаваемое искрой, воспламеняет газ, который затем заставляет поршень вернуться в цилиндр.

4. Ход выпуска

Когда поршень достигает дна, выпускной клапан открывается.Когда поршень движется обратно вверх, он вытесняет выхлопные газы из цилиндра. Как только поршень достигает вершины, выпускной клапан снова закрывается. Впускной клапан снова открывается, и 4-тактный процесс повторяется.

Общие приложения для 4-тактных двигателей

Четырехтактные двигатели являются наиболее распространенными двигателями внутреннего сгорания. Они используются в широком спектре различных приложений в различных отраслях промышленности, наиболее распространенными из которых являются:

  • Гидроцикл
  • Мотоциклы
  • Легковые и грузовые
  • Газонокосилки верховые и толкающие
  • Внедорожники и мотоциклы-внедорожники

Двух- и четырехтактные двигатели не взаимозаменяемы.Всегда обязательно используйте компоненты 4-тактного двигателя и жидкости для обслуживания при выполнении обслуживания и ремонта.

Свяжитесь с Prime Source Parts and Equipment сегодня

В Prime Source Parts and Equipment мы предлагаем решения по поддержке продукции и стремимся помочь нашим клиентам найти именно те детали, которые нужны. Благодаря нашей обширной сети поставщиков у нас есть беспрецедентный доступ к лучшим запасным частям.

Если вам нужны запчасти или услуги для 4-тактных малогабаритных двигателей, свяжитесь с нами сегодня.Наши опытные сотрудники и технические специалисты помогут вам точно определить, какие решения лучше всего подходят для ваших нужд.

% PDF-1.4 % 1 0 объект > эндобдж 2 0 obj > / Содержание [5 0 R] >> эндобдж 3 0 obj > эндобдж 4 0 obj > эндобдж 5 0 obj > транслировать конечный поток эндобдж 6 0 obj > транслировать application / pdf

  • 2020-04-30T22: 33: 41 + 05: 30PDF Разделение и слияние (http://www.pdfarea.com) 2020-04-30T22: 33: 41 + 05: 30PDF Разделение и слияние (http: // www.pdfarea.com) конечный поток эндобдж 7 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] >> / Содержание [33 0 R 34 0 R] / Группа> / Вкладки / S / StructParents 0 >> эндобдж 8 0 объект > транслировать конечный поток эндобдж 9 0 объект > / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] >> / Содержание 38 0 руб. / Группа> / Вкладки / S / StructParents 4 >> эндобдж 10 0 obj > транслировать конечный поток эндобдж 11 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] >> / Содержание 40 0 ​​руб. / Группа> / Вкладки / S / StructParents 1 >> эндобдж 12 0 объект > транслировать конечный поток эндобдж 13 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] >> / Содержание 43 0 руб. / Группа> / Вкладки / S / StructParents 2 >> эндобдж 14 0 объект > транслировать конечный поток эндобдж 15 0 объект > / XObject> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] >> / Содержание 46 0 руб. / Группа> / Вкладки / S / StructParents 3 >> эндобдж 16 0 объект > транслировать конечный поток эндобдж 17 0 объект > эндобдж 18 0 объект > транслировать

    Journ_Env_Eng_manag_2006_1.p65

    % PDF-1.4 % 1 0 объект > эндобдж 5 0 obj > эндобдж 2 0 obj > эндобдж 3 0 obj > эндобдж 4 0 obj > транслировать

  • Journ_Env_Eng_manag_2006_1.p65
  • vilija
  • конечный поток эндобдж 6 0 obj > эндобдж 7 0 объект > эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > транслировать HWr8G - (g;) S` cW’ow $ us-SDӍ7 ׳ ś> b6 // ޼ 5 \? L ~ 80W ~ / \ Ё ~ e;> ^ J ׋ i f73vM ٜ] _ػ Og7; n> 7Iw! {P9ӻ 뛻}] ۛ} ~ g / ӯp:} # ~ ư3m! [> # QU \ | GjUFU; d> ϼ \ _>?

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *