Такты работы двигателя: Принцип работы ДВС. Рабочие циклы двигателя

Содержание

Как работает двигатель?

Важно ли понимать устройство двигателя для обычного пользователя автомобиля? Это как минимум необходимо для правильной эксплуатации мотора. Например, знаете ли вы про 9-цилиндровый мотор БМВ или что такое объем двигателя? За пять минут расскажем просто обо всем важном.

Виды моторов

Двигатель внутреннего сгорания представляет собой достаточно сложную конструкцию. Существуют двух- и четырехтактные двигатели. Наиболее распространены 4-тактные моторы в автомобилях и мотоциклах. Двухтактники также могут применяться в транспорте, но чаще их используют для некоторых видов водных и даже воздушных судов. Двухтактные моторы устанавливают в мотокосах, бензопилах и прочем строительном бензоинструменте.

Конструкторы успели придумать такое множество агрегатов, попадающих под определение ДВС. Мы будем рассматривать наиболее привычные варианты. Рассмотрим 4-тактный мотор. Чтобы понять порядок и принципы его работы, разберемся, из чего он состоит:

  • цилиндры, в которых располагаются поршни;
  • коленчатый вал;
  • газораспределительный механизм.

К этому добавим системы зажигания, подачи топлива и отвода отработанных газов, а также смазки и охлаждения двигателя.

Основные подходы к классификации силовых установок:

  1. По количеству цилиндров.
  2. По расположению цилиндров.
  3. По виду топлива.

1. Цилиндров чаще всего бывает от одного до шести. Более мощные автомобили могут использовать, например, 8, 12 или 16 цилиндров.

2. В рядном двигателе цилиндры на коленчатом валу располагаются один за другим в ряд. Увеличить мощность двигателя без существенного изменения размеров можно путем удвоения количества цилиндров. При этом один ряд поршней располагается относительно второго ряда под углом 90 градусов. Такой тип двигателя называется V-образным. Существует еще и оппозитный тип мотора, когда два ряда поршней располагаются под углом 180 градусов.

Такие двигатели, например, применяются в автомобилях Subaru. За счет особенностей расположения цилиндров автомобиль получает более низкий центр тяжести и вибрацию при работе, а также минимальную высоту капота.

3. ДВС может работать на бензине и дизтопливе. Отличие заключается в том, что в бензиновом моторе топливо подается смешанное с воздухом и зажигается с помощью искры от свечи. У дизельного мотора топливо и воздух подаются раздельно, воспламенение происходит от высокой температуры сжатого газа. Вместо бензина в двигателе со смешанным топливом может использоваться газ, например, метан.

В одной модели автомобиля часто используется целая линейка двигателей с разными характеристиками на выбор покупателя. Например, в популярной BMW 5-й серии (Е60) может использоваться рядный 4-цилиндровый дизельный двигатель (M47), рядный 6-цилиндровый турбодизель (М57) или мощный 10-цилиндровый бензиновый V-образник (S85).

А вот 9-цилиндровый двигатель БМВ ставили на самолеты, и располагались цилиндры относительно друг друга в виде звезды.

Порядок работы двигателя

Вернемся к двух- и четырехтактным двигателям. Конструкции двухтактных моторов могут сильно различаться и быть как проще, так и намного сложнее четырехтактных собратьев. За счет меньшего количества оборотов мощность двухтактников выше, но экономичность хуже. Маленькие по размерам и мощности моторы не требуют сложной системы охлаждения, масло для смазки добавляется непосредственно с топливом в камеру сгорания.

Один такт – это движение поршня внутри цилиндра вверх или вниз. Работа 4-тактного мотора состоит из:

  • впуска;
  • сжатия;
  • рабочего хода;
  • выпуска.

У двухтактной силовой установки впуск происходит во время сжатия (первый такт), а рабочий ход совмещен с выпуском отработанных газов (второй такт).

Теперь подробнее о четырехтактном процессе.

В цилиндре находится поршень, который с помощью шатуна крепится к коленвалу. Сверху цилиндра находятся впускные и выпускные клапаны, а также свеча. Внутренний объем всех цилиндров составляет так называемый объем двигателя.

Поршень может находиться в верхней точке цилиндра (верхняя мертвая точка), нижней (нижняя мертвая точка) или перемещаться между ними.

В первом такте открывается впускной клапан и поршень опускается. Таким образом, цилиндр наполняется либо смесью топлива и воздуха, либо только воздухом (для дизельного мотора).

Во втором такте поршень идет вверх, сжимая содержимое и параллельно увеличивая его давление и температуру. В конце такта свеча зажигания создает искру, в результате чего происходит детонация топливной смеси в бензиновом двигателе. В дизельном же свеча не используется, а топливо подается в последний момент такта, которое возгорается за счет высокого давления и температуры воздуха.

В третьем и основном такте работы мотора высвобождаемая от взрыва энергия двигает поршень вниз. Именно в этот момент создается сила, которая заставляет коленчатый вал вращаться, а от него вращается и маховик двигателя.

На четвертом такте поршень поднимается к верхней мертвой точке при открытом выпускном клапане. При этом удаляются отработанные газы. Далее цикл из четырех тактов повторяется.

Если в двигателе используется несколько цилиндров, движение их поршней управляется газораспределительным механизмом таким образом, чтобы цилиндры одновременно находились на разных тактах. Систем управления газораспределением существует несколько − от механических распредвалов до электронных процессоров.

Все движимые детали обязательно должны охлаждаться и смазываться. Температура в момент детонации достигает нескольких тысяч градусов. Охлаждение, как правило, производится с помощью жидкости, которая отбирает тепло у деталей двигателя. Далее жидкость сама должна охладиться и снова вернуться в мотор. Превышение допустимых температур может привести к практически моментальному разрушению силовой установки.

В легковых автомобилях количество оборотов коленвала может достигать восьми тысяч в минуту. Для минимизации механического износа система смазки должна работать идеально. Поэтому важно следить за уровнем моторного масла и работоспособностью масляного насоса. Системы смазки и охлаждения могут страдать из-за загрязнения, что ведет к сужению или перекрытию каналов движения жидкостей.

Рабочий цикл четырехтактного дизельного двигателя

Рабочий цикл авто с дизельным двигателем отличается тем, что при такте впуска в цилиндр двигателя поступает очищенный  воздух, а не горючая смесь, как в карбюраторном двигателе.

Первый такт — впуск.

Поршень перемещается от ВМТ к НМТ, через открытый впускной клапан в цилиндр поступает очищенный воздух (из-за разрежения, создаваемого поршнем). Воздух перемешивается с небольшим количеством оставшихся от предыдущего цикла отработавших газов, температура повышается и в конце такта впуска достигает 300—320 К, а давление  0.08—0.09 МПа. Коэффициент наполнения цилиндра 0,9 и выше, т. е. больше, чем у карбюраторного двигателя.

Работа четырехтактного одноцилиндрового дизельного  двигателя:

а — впуск воздуха; б — сжатие; в — рабочий ход; г — выпуск отработавших газов; 1— цилиндр; 2 — топливный насос, 3 — поршень: 4 — форсунка, 5 — впускной клапан, 6 — выпускной клапан

Второй такт — сжатие.

Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты. Давление и температура воздуха увеличиваются и в конце такта составляют соответственно 3—5 МПа и 800—900 К. Степень сжатия регламентируется исправностью деталей КШМ и равна 17—21.

Третий такт — рабочий ход.

В конце такта сжатия (20—30 градусов угла поворота коленчатого вала ло прихода поршня в ВМТ) с помощью насоса через форсунку в цилиндр под высоким давлением (15—20 МПа) в мелкораспыленном виде впрыскивается порция топлива. Топливо от соприкосновения с нагретым воздухом испаряется, его пары перемешиваются с нагретым воздухом и воспламеняются. При сгорании топлива, вследствие подвода большого количества теплоты, резко увеличиваются лишение и температура образовавшихся газов. В начале такта расширения давление газов составляет 7—8 МПа. а температура 2100—2300 К. Под действием давления поршень перемешается от ВМТ к НМТ, совершая полезную работу. Объем цилиндра увеличивается, давление и температура газов снижаются и при подходе поршня к НМТ составляют 0,2-0,4 МПа .

Четвертый такт — выпуск.

Поршень перемещается от НМТ к ВМТ. Через открытый выпускной клапан отработавшие газы выталкиваются через выпускной трубопровод в окружающую среду. В конце такта выпуска давление газов равно 0,11 -0,12 МПа, температура 850—1200.  После этого рабочий цикл дизеля повторяется.

В двухтактных двигателях время, отводимое на рабочий цикл, используется более полно, так как процессы выпуска и впуска совмещены по времени с процессами сжатия и рабочего хода. Рабочий цикл происходит за 360 градусов (один оборот коленчатого вала).

При движении поршня от ВМТ к НМТ одновременно происходят процессы расширения и выпуска с продувкой цилиндра, а при обратном движении от НМТ к ВМ1 впуск и сжатие. Изменения параметров цикла (давление и температура) соответствуют изменениям параметров четырехтактного двигателя.
Сравнение рабочих циклов четырех- , двухтактных двигателей показывает, что при одинаковых размерах цилиндра и частоте вращения коленчатого вала мощность двухтактных двигателей выше в 1.5—1,7 раза. Он проще по конструкции и компактнее.
К недостаткам двухтактного двигателя следует отнести ограниченное время газообмена, что ухудшает очистку цилиндра от отработавших газов, увеличивает потери части свежею заряда, снижает экономичность.

Работа дизельного двигателя, подробнее

ТАКТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ — это… Что такое ТАКТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ?

ТАКТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
ТАКТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

— отдельные процессы, протекающие в цилиндре за один ход поршня и составляющие полный рабочий цикл двигателя внутреннего сгорания. Например, в четырехтактном двигателе рабочие процессы (всасывание, сжатие, рабочий ход и выхлоп), составляющие рабочий цикл, совершаются за 4 хода поршня, а в двухтактных двигателях за 2 хода. См. также Двигатели внутреннего сгорания.

Самойлов К. И. Морской словарь. — М.-Л.: Государственное Военно-морское Издательство НКВМФ Союза ССР, 1941

.

  • ТАКЕЛЬГАРН
  • ТАКСИМЕТР

Смотреть что такое «ТАКТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ» в других словарях:

  • Поршневой двигатель внутреннего сгорания — 4 тактный цикл двигателя внутреннего сгорания Такты: 1. Всасывание горючей смеси. 2. Сжатие. 3. Рабочий ход. 4. Выхлоп. Двухтактный цикл. Такты: 1. При движении поршня вверх  сжатие топливной смеси в …   Википедия

  • Бензиновый двигатель внутреннего сгорания — Бензиновый двигатель W16 Bugatti Veyron Бензиновые двигатели  это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической и …   Википедия

  • Двигатель внутреннего сгорания — Схема: Двухтактный двигатель внутреннего сгорания с глушителем …   Википедия

  • Объём двигателя — 4 тактный цикл двигателя внутреннего сгорания Такты: 1.Всасывание горючей смеси. 2.Сжатие. 3.Рабочий ход. 4.Выхлоп. Двухтактный цикл. Такты: 1. При движении поршня вверх  сжатие топливной смеси в текущем цикле и всасывание смеси для следующего… …   Википедия

  • Поршневой авиационный двигатель — 4 тактный цикл двигателя внутреннего сгорания Такты: 1.Всасывание горючей смеси. 2.Сжатие. 3.Рабочий ход. 4.Выхлоп. Двухтактный цикл. Такты: 1. При движении поршня вверх  сжатие топливной смеси в текущем цикле и всасывание смеси для следующего… …   Википедия

  • Четырёхтактный двигатель — Работа четырёхтактного двигателя в разрезе. Цифрами обозначены такты Четырёхтактный двигатель  поршневой двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за два оборота коленчатого вала, то есть за… …   Википедия

  • Пятитактный роторный двигатель —   роторный двигатель с простым и равномерным вращательным движением главного рабочего элемента и с использованием такого же простого вращательного движения уплотнительных элементов. История Впервые такая схема расширительной машины в виде… …   Википедия

  • Четырехтактный двигатель — Бензиновые двигатели это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило,… …   Википедия

  • Четырёхтактный мотор — Бензиновые двигатели это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило,… …   Википедия

  • Дизельный двигатель — Дизельный двигатель  поршневой двигатель внутреннего сгорания, работающий по принципу самовоспламенения распылённого топлива от воздействия разогретого при сжатии воздуха.[1] Спектр топлива для дизелей весьма широк, сюда включаются все… …   Википедия

Устройство и принцип работы двигателя внутреннего сгорания

 

 

Для того, чтобы понять принцип работы ГРМ, нужно иметь некоторые представления о самом двигателе и его строении. Давайте разберемся со всем более подробно:

 

 

 

В устройстве двигателя поршень является ключевым элементом рабочего процесса. Поршень выполнен в виде металлического пустотелого стакана, расположенного сферическим дном (головка поршня) вверх. Направляющая часть поршня, иначе называемая юбкой, имеет неглубокие канавки, предназначенные для фиксации в них поршневых колец. Назначение поршневых колец – обеспечивать, во-первых, герметичность надпоршневого пространства, где при работе двигателя происходит мгновенное сгорание бензиново-воздушной смеси и образующийся расширяющийся газ не мог, обогнув юбку, устремиться под поршень. Во-вторых, кольца предотвращают попадание масла, находящегося под поршнем, в надпоршневое пространство. Таким образом, кольца в поршне выполняют функцию уплотнителей. Нижнее (нижние) поршневое кольцо называется маслосъемным, а верхнее (верхние) – компрессионным, то есть обеспечивающим высокую степень сжатия смеси.

Когда из карбюратора или инжектора внутрь цилиндра попадает топливно-воздушная или топливная смесь, она сжимается поршнем при его движении вверх и поджигается электрическим разрядом от свечи системы зажигания (в дизеле происходит самовоспламенение смеси за счет резкого сжатия). Образующиеся газы сгорания имеют значительно больший объем, чем исходная топливная смесь, и, расширяясь, резко толкают поршень вниз. Таким образом тепловая энергия топлива преобразуется в возвратно-поступательное (вверх-вниз) движение поршня в цилиндре.

Далее необходимо преобразовать это движение во вращение вала. Происходит это следующим образом: внутри юбки поршня расположен палец, на котором закрепляется верхняя часть шатуна, последний шарнирно зафиксирован на кривошипе коленчатого вала. Коленвал свободно вращается на опорных подшипниках, что расположены в картере двигателя внутреннего сгорания. При движении поршня шатун начинает вращать коленвал, с которого крутящий момент передается на трансмиссию и – далее через систему шестерен – на ведущие колеса.

Технические характеристики двигателя.Характеристики двигателя При движении вверх-вниз у поршня есть два положения, которые называются мертвыми точками. Верхняя мертвая точка (ВМТ) – это момент максимального подъема головки и всего поршня вверх, после чего он начинает движение вниз; нижняя мертвая точка (НМТ) – самое нижнее положение поршня, после которого вектор направления меняется и поршень устремляется вверх. Расстояние между ВМТ и НМТ названо ходом поршня, объем верхней части цилиндра при положении поршня в ВМТ образует камеру сгорания, а максимальный объем цилиндра при положении поршня в НМТ принято называть полным объемом цилиндра. Разница между полным объемом и объемом камеры сгорания получила наименование рабочего объема цилиндра.


Суммарный рабочий объем всех цилиндров двигателя внутреннего сгорания указывается в технических характеристиках двигателя, выражается в литрах, поэтому в обиходе именуется литражом двигателя. Второй важнейшей характеристикой любого ДВС является степень сжатия (СС), определяемая как частное от деления полного объема на объем камеры сгорания. У карбюраторных двигателей СС варьирует в интервале от 6 до 14, у дизелей – от 16 до 30. Именно этот показатель, наряду с объемом двигателя, определяет его мощность, экономичность и полноту сгорания топливо-воздушной смеси, что влияет на токсичность выбросов при работе ДВС.
Мощность двигателя имеет бинарное обозначение – в лошадиных силах (л.с.) и в киловаттах (кВт). Для перевода единиц одна в другую применяется коэффициент 0,735, то есть 1 л.с. = 0,735 кВт.
Рабочий цикл четырехтактного ДВС определяется двумя оборотами коленчатого вала – по пол-оборота на такт, соответствующий одному ходу поршня. Если двигатель одноцилиндровый, то в его работе наблюдается неравномерность: резкое ускорение хода поршня при взрывном сгорании смеси и замедление его по мере приближения к НМТ и далее. Для того, чтобы эту неравномерность купировать, на валу за пределами корпуса мотора устанавливается массивный диск-маховик с большой инерционностью, благодаря чему момент вращения вала во времени становится более стабильным.

Принцип работы двигателя внутреннего сгорания


Современный автомобиль, чаше всего, приводится в движение двигателем внутреннего сгорания. Таких двигателей существует огромное множество. Различаются они объемом, количеством цилиндров, мощностью, скоростью вращения, используемым топливом (дизельные, бензиновые и газовые ДВС). Но, принципиально, устройство двигателя внутреннего сгорания, похоже.
Как работает двигатель и почему называется четырехтактным двигателем внутреннего сгорания? Про внутреннее сгорание понятно. Внутри двигателя сгорает топливо. А почему 4 такта двигателя, что это такое? Действительно, бывают и двухтактные двигатели. Но на автомобилях они используются крайне редко.
Четырехтактным двигатель называется из-за того, что его работу можно разделить на четыре, равные по времени, части. Поршень четыре раза пройдет по цилиндру – два раза вверх и два раза вниз. Такт начинается при нахождении поршня в крайней нижней или верхней точке. У автомобилистов-механиков это называется верхняя мертвая точка (ВМТ) и нижняя мертвая точка (НМТ).

Первый такт — такт впуска

 

Первый такт, он же впускной, начинается с ВМТ (верхней мертвой точки). Двигаясь вниз, поршень, всасывает в цилиндр топливовоздушную смесь. Работа этого такта происходит при открытом клапане впуска. Кстати, существует много двигателей с несколькими впускными клапанами. Их количество, размер, время нахождения в открытом состоянии может существенно повлиять на мощность двигателя. Есть двигатели, в которых, в зависимости от нажатия на педаль газа, происходит принудительное увеличение времени нахождения впускных клапанов в открытом состоянии. Это сделано для увеличения количества всасываемого топлива, которое, после возгорания, увеличивает мощность двигателя. Автомобиль, в этом случае, может гораздо быстрее ускориться.

Второй такт — такт сжатия

 

Следующий такт работы двигателя – такт сжатия. После того как поршень достиг нижней точки, он начинает подниматься вверх, тем самым, сжимая смесь, которая попала в цилиндр в такт впуска. Топливная смесь сжимается до объемов камеры сгорания. Что это за такая камера? Свободное пространство между верхней частью поршня и верхней частью цилиндра при нахождении поршня в верхней мертвой точке называется камерой сгорания. Клапаны, в этот такт работы двигателя закрыты полностью. Чем плотнее они закрыты, тем сжатие происходит качественнее. Большое значение имеет, в данном случае, состояние поршня, цилиндра, поршневых колец. Если имеются большие зазоры, то хорошего сжатия не получится, а соответственно, мощность такого двигателя будет гораздо ниже. Компрессию можно проверить специальным прибором. По величине компрессии можно сделать вывод о степени износа двигателя.

Третий такт — рабочий ход

 

Третий такт – рабочий, начинается с ВМТ. Рабочим он называется неслучайно. Ведь именно в этом такте происходит действие, заставляющее автомобиль двигаться. В этом такте в работу вступает система зажигания. Почему эта система так называется? Да потому, что она отвечает за поджигание топливной смеси, сжатой в цилиндре, в камере сгорания. Работает это очень просто – свеча системы дает искру. Справедливости ради, стоит заметить, что искра выдается на свече зажигания за несколько градусов до достижения поршнем верхней точки. Эти градусы, в современном двигателе, регулируются автоматически «мозгами» автомобиля.
После того как топливо загорится, происходит взрыв – оно резко увеличивается в объеме, заставляя поршень двигаться вниз. Клапаны в этом такте работы двигателя, как и в предыдущем, находятся в закрытом состоянии.

Четвертый такт — такт выпуска

 

Четвертый такт работы двигателя, последний – выпускной. Достигнув нижней точки, после рабочего такта, в двигателе начинает открываться выпускной клапан. Таких клапанов, как и впускных, может быть несколько. Двигаясь вверх, поршень через этот клапан удаляет отработавшие газы из цилиндра – вентилирует его. От четкой работы клапанов зависит степень сжатия в цилиндрах, полное удаление отработанных газов и необходимое количество всасываемой топливно-воздушной смеси.

После четвертого такта наступает черед первого. Процесс повторяется циклически. А за счет чего происходит вращение – работа двигателя внутреннего сгорания все 4 такта, что заставляет поршень подниматься и опускаться в тактах сжатия, выпуска и впуска? Дело в том, что не вся энергия, получаемая в рабочем такте, направляется на движение автомобиля. Часть энергии идет на раскручивание маховика. А он, под действием инерции, крутит коленчатый вал двигателя, перемещая поршень в период «нерабочих» тактов.
 

Газораспределительный механизм

 

Газораспределительный механизм (ГРМ) предназначен для впрыска топлива и выпуска отработанных газов в двигателях внутреннего сгорания. Сам механизм газораспределения делится на нижнеклапанный, когда распределительный вал находится в блоке цилиндров, и верхнеклапанный. Верхнеклапанный механизм подразумевает нахождение распредвала в головке блока цилиндров (ГБЦ). Существуют и альтернативные механизмы газораспределения, такие как гильзовая система ГРМ, десмодромная система и механизм с изменяемыми фазами.
Для двухтактных двигателей механизм газораспределения осуществляется при помощи впускных и выпускных окон в цилиндре. Для четырехтактных двигателей самая распространенная система верхнеклапанная, о ней и пойдет речь ниже.

Устройство ГРМ
В верхней части блока цилиндров находится ГБЦ (головка блока цилиндров) с расположенными на ней распределительным валом, клапанами, толкателями или коромыслами. Шкив привода распредвала вынесен за пределы головки блока цилиндров. Для исключения протекания моторного масла из-под клапанной крышки, на шейку распредвала устанавливается сальник. Сама клапанная крышка устанавливается на масло- бензо- стойкую прокладку. Ремень ГРМ или цепь одевается на шкив распредвала и приводится в действие шестерней коленчатого вала. Для натяжения ремня используются натяжные ролики, для цепи натяжные «башмаки». Обычно ремнем ГРМ приводится в действие помпа водяной системы охлаждения, промежуточный вал для системы зажигания и привод насоса высокого давления ТНВД (для дизельных вариантов).
С противоположной стороны распределительного вала посредством прямой передачи или при помощи ремня, могут приводиться в действие вакуумный усилитель, гидроусилитель руля или автомобильный генератор.

Распредвал представляет собой ось с проточенными на ней кулачками. Кулачки расположены по валу так, что в процессе вращения, соприкасаясь с толкателями клапанов, нажимают на них точно в соответствии с рабочими тактами двигателя.


Существуют двигатели и с двумя распредвалами (DOHC) и большим числом клапанов. Как и в первом случае, шкивы приводятся в действие одним ремнем ГРМ и цепью. Каждый распредвал закрывает один тип клапанов впускных или выпускных.
Клапан нажимается коромыслом (ранние версии двигателей) или толкателем. Различают два вида толкателей. Первый – толкатели, где зазор регулируется калибровочными шайбами, второй – гидротолкатели. Гидротолкатель смягчает удар по клапану благодаря маслу, которое находится в нем. Регулировка зазора между кулачком и верхней частью толкателя не требуется.


Принцип работы ГРМ

Весь процесс газораспределения сводится к синхронному вращению коленчатого вала и распределительного вала. А так же открыванию впускных и выпускных клапанов в определенном месте положения поршней.
Для точного расположения распредвала относительно коленвала используются установочные метки. Перед одеванием ремня газораспределительного механизма совмещаются и фиксируются метки. Затем одевается ремень, «освобождаются» шкивы, после чего ремень натягивается натяжным(и) роликами.
При открывании клапана коромыслом происходит следующее: распредвал кулачком «наезжает» на коромысло, которое нажимает на клапан, после прохождения кулачка, клапан под действием пружины закрывается. Клапаны в этом случае располагаются v-образно.
Если в двигателе применены толкатели, то распредвал находится непосредственно над толкателями, при вращении, нажимая своими кулачками на них. Преимущество такого ГРМ малые шумы, небольшая цена, ремонтопригодность.
В цепном двигателе весь процесс газораспределения тот же, только при сборке механизма, цепь одевается на вал совместно со шкивом.
 

Кривошипно-шатунный механизм

Кривошипно-шатунный механизм (далее сокращенно – КШМ) – механизм двигателя. Основным назначением КШМ является преобразование возвратно-поступательных движений поршня цилиндрической формы во вращательные движения коленчатого вала в двигателе внутреннего сгорания и, наоборот.

Устройство КШМ


Поршень

Поршень имеет вид цилиндра, изготовленного из сплавов алюминия. Основная функция этой детали заключается в превращении в механическую работу изменение давления газа, или наоборот, – нагнетание давления за счет возвратно-поступательного движения.
Поршень представляет собой сложенные воедино днище, головку и юбку, которые выполняют совершенно разные функции. Днище поршня плоской, вогнутой или выпуклой формы содержит в себе камеру сгорания. Головка имеет нарезанные канавки, где размещаются поршневые кольца (компрессионные и маслосъемные). Компрессионные кольца исключают прорыв газов в картер двигателя, а поршневые маслосъемные кольца способствуют удалению излишков масла на внутренних стенках цилиндра. В юбке расположены две бобышки, обеспечивающие размещение соединяющего поршень с шатуном поршневого пальца.

Шатун

Изготовленный штамповкой или кованый стальной (реже – титановый) шатун имеет шарнирные соединения. Основная роль шатуна состоит в передаче поршневого усилия к коленчатому валу. Конструкция шатуна предполагает наличие верхней и нижней головки, а также стержня с двутавровым сечением. В верхней головке и бобышках находится вращающийся («плавающий») поршневой палец, а нижняя головка – разборная, позволяя, тем самым, обеспечить тесное соединение с шейкой вала. Современная технология контролируемого раскалывания нижней головки позволяет обеспечить высокую точность соединения ее частей.

Коленчатый вал

Изготовленный из стали или чугуна высокой прочности коленчатый вал состоит из шатунных и коренных шеек, соединенных щеками и вращающихся в подшипниках скольжения. Щеки создают противовес шатунным шейкам. Основная функция коленчатого вала состоит в восприятии усилия от шатуна для преобразования его в крутящий момент. Внутри щек и шеек вала предусмотрены отверстия для подачи под давлением масла системой смазки двигателя.

Маховик

Маховик устанавливается на конце коленчатого вала. На сегодняшний день находят широкое применение двухмассовые маховики, имеющие вид двух, упруго соединенных между собой, дисков. Зубчатый венец маховика принимает непосредственное участие в запуске двигателя через стартер.

Блок и головка цилиндров

Блок цилиндров и головка блока цилиндров отливаются из чугуна (реже – сплавов алюминия). В блоке цилиндров предусмотрены рубашки охлаждения, постели для подшипников коленчатого и распределительного валов, а также точки крепления приборов и узлов. Сам цилиндр выполняет функцию направляющей для поршней. Головка блока цилиндра располагает в себе камеру сгорания, впускные-выпускные каналы, специальные резьбовые отверстия для свечей системы зажигания, втулки и запрессованные седла. Герметичность соединения блока цилиндров с головкой обеспечены прокладкой. Кроме того, головка цилиндра закрыта штампованной крышкой, а между ними, как правило, устанавливается прокладка из маслостойкой резины.

В целом, поршень, гильза цилиндров и шатун формируют цилиндр или цилиндропоршневую группу кривошипно-шатунного механизма. Современные двигатели могут иметь до 16 и более цилиндров.

Принцип работы ДВС. Рабочие такты двигателя

Все транспортные средства снабжены двигателями внутреннего сгорания, их название означает, что топливовоздушная смесь поджигается внутри специальных емкостей (цилиндров), а основной движущей силой являются газы (продукты горения), которые при нагреве расширяются.

Рабочий цикл четырехтактного двигателя

Рабочий цикл — это совокупность событий, следующих друг за другом, происходящих во всех цилиндрах и периодически возобновляющихся. Результатом этих действий является превращение энергии газов в движение коленвала. Если полный оборот коленвала выполняется, пока поршень совершает два движения, то этот двигатель именуют двухтактным.

Все силовые установки, которыми оснащаются современные автомобили, работают в четырехтактном режиме, рабочий цикл занимает два полных оборота коленвала или четыре прохода поршня. Он разделяется на следующие такты: впуск, сжатие топлива, образование и расширение газов горения (полезный ход), выпуск. Позиции поршня, когда он оказывается на максимальном удалении от коленвала и на минимальном, получили названия верхней и нижней мертвой точки (ВМТ и НМТ).

Впуск

Пока коленвал совершает первый из четырех полуоборотов, поршень смещается от верхней точки к нижней. Впускающий клапан открывается, и благодаря возникающему над поршнем низкому давлению в полезный объем втягивается новая порция топлива, в состав ее входят пары горючего и воздух.

Сжатие

На следующем полуобороте коленвала поршень смещается вверх от НМТ к ВМТ, оба клапана при этом закрыты. Рабочий объем цилиндра уменьшается, результатом этого становится повышение давления и температуры.

Рабочий ход

Когда процесс сжатия подходит к концу, на свече зажигания образуется электрическая искра, от которой возгорается и быстро вспыхивает топливная смесь. Получившиеся газы создают огромное давление на поршень и вынуждают его опускаться вниз, к НМТ.

Шатун, связывающий поршень с коленвалом, оказывает воздействие на последний, заставляя его вращаться. Это полезное действие образовавшихся газов, из—за него третий такт и получил название рабочего. В завершение полезного хода, когда поршень уже приближается к НМТ, начинает работать выпускающий клапан. Сделавшие свое дело газы покидают цилиндр, освобождая место для новой порции топливовоздушного состава, давление и температура в камере сгорания снижаются.

Выпуск

На последнем полуобороте коленвала поршень вновь идет от НМТ к ВМТ при разблокированном выпускающем клапане, и остывшие газы выдавливаются поршнем из камеры сгорания в выхлопную систему.

Дизельные двигатели

Дизельные и бензиновые двигатели во многом сходны, каждый из четырех тактов в их работе происходит почти одинаково, но есть и небольшая разница. Она состоит в том, что на такте «впуск» в камеру сгорания подается только воздух, который при такте «сжатие» нагревается до 700 °C, и только после этого в камеру подается распыленное дизтопливо, сразу же самовозгорающееся от горячего воздуха.

Многоцилиндровые двигатели

Автомобильные двигатели оснащены всегда больше, чем одним цилиндром, и для синхронной работы такого агрегата такты каждого из цилиндров должны следовать друг за другом через одинаковые отрезки времени. Это достигается расположением цилиндров через равные углы проворота коленвала.

4 тактный двигатель: принцип работы

4 тактный двигатель является поршневым мотором внутреннего сгорания. В этих агрегатах рабочий процесс всех цилиндров занимает два кругооборота коленчатого вала. Два кругооборота коленчатого вала также можно охарактеризовать как четыре поршневых такта, от чего и произошло название четырехтактный двигатель.

Начиная с середины двадцатого века четырехтактный двигатель является самым распространенным видом поршневых моторов внутреннего сгорания.

Основные характеристики 4 тактного двигателя

  1. Обмен газов происходит за счет движения рабочего поршня;
  2. 4 тактный двигатель обладает газораспределительным механизмом, который позволяет переключить цилиндровую полость на впуск и выпуск;
  3. Обмен газов происходит в момент отдельного полуоборота коленвала;
  4. Цепная, ременная передача и шестеренчатые редукторы позволяют изменить моменты зажигания, впрыскивания бензина и привода газораспределительного механизма относительно частоты верчения коленвала.

История

Примерно 1854-1857 годов итальянцы Евгенио Барсанти и Феличче Матоци создали устройство, которое, согласно существующим сведениям, походило на 4 тактный мотор. Несмотря на это, 4 тактный мотор был запатентован только в 1861 Алфоном де Роше, поскольку изобретение итальянцев было потеряно.

В первый раз пригодный к работе 4 тактный мотор был создан немецким инженером Николаусом Отто, в честь которого четырехтактный цикл назвали циклом Отто, а применяющий свечи зажигания 4 тактный мотор – двигателем Отто.

 

 

 

4 тактный двигатель принцип работы

В двухтактном моторе смазывание коленвала, цилиндровых и поршневых пальцев, подшипника коленвала, поршня и компрессионных колец происходит путем заливки масла в бензин. 4 тактный мотор отличается тем, что в нем коленчатый вал расположен в масляной ванне. За счет этой особенности необходимость в добавлении масла или смешивании топлива попросту отсутствует. Все, что нужно сделать владельцу транспортного средства – это наполнить топливный бак бензином, после чего можно продолжать пользоваться транспортом.

Таким образом, автовладельцу становится незачем приобретать специальное масло, которое нужно для функционирования двухтактных моторов. Помимо этого, 4 тактный мотор отличается уменьшенным количеством нагара на стенах глушителя и поршневом зеркале. Еще одним важным отличием является то, что при двухтактном моторе совершается выплеск горючей смеси в выхлопную трубу – это обусловлено его устройством.

Стоит признать, что четырехтактные двигатели также обладают небольшими недостатками. К примеру, у таких двигателей повышенная длительность старта скутера с места. Также не особо качественными являются работы по регулированию клапанного теплового зазора. При этом следует отметить, что проблему с повышенной длительностью старта скутера можно решить оптимизацией опций центробежного сцепления и передачи.

 

 

 

Конструкция агрегата

Устройство 4 тактного двигателя выглядит таким образом: распредвал размещен в крышке цилиндра и приводится в действие с помощью ведущего колеса, вмонтированного на коленчатом вале. В устройстве 4 тактного двигателя распределительный вал способен открывать и закрывать впускной и выпускной клапан, но лишь один из них, а какой конкретно – зависит от расположения поршня. Помимо этого, на распределительном вале расположены кулачки, с помощью которых приводятся в действие коромысла клапанов.

После своего срабатывания коромысла начинают воздействовать на один из двух клапанов, что приводит к его открытию. Стоит отметить, что между клапаном и регулировочным винтом должен быть узкий промежуток (его еще называют тепловым зазором) – во время нагрева происходит расширение металла, поэтому в случае неимения или слишком маленького размера зазора клапаны не смогут полностью закрыть каналы впуска и выпуска. Зазор при клапане выпуска должен быть большего размера, чем у клапана впуска, поскольку газы выхлопа более горячие, нежели горючая смесь, и, соответственно, это приводит к тому, что клапан выпуска нагревается больше клапана впуска.

Вот и все описание устройства 4 тактного двигателя.

Работа 4 тактного двигателя

Как уже было сказано, работа 4 тактного двигателя состоит из двух оборотов коленвала или, еще можно сказать, четырех тактов поршня.

Работа 4 тактного двигателя происходит таким образом:

  1. (впуск). Поршень продвигается в нижнюю сторону, что приводит к открытию клапана впуска. В итоге горючая смесь оказывается в цилиндре, куда она попадает из карбюратора. По достижению поршнем нижнего положения совершается закрытие клапана впуска.
  2. (сжатие). Поршень передвигается в верхнюю сторону, что провоцирует сжимание горючей смеси. После того, как поршень приближается к верхней мертвой точке, совершается возгорание сжатого поршнем бензина.
  3. (расширение). Происходит возгорание бензина, в результате которого он сгорает – это приводит к растяжению горючих газов и, соответственно, к движению поршня вниз (два клапана оказываются закрытыми).
  4. (выпуск). По инерции коленчатый вал продолжает кругооборот вокруг своей оси, а поршень – продвигаться вверх. Вместе с этим происходит открытие клапана выпуска, откуда выхлопные газы попадают в трубу. Когда поршень доходит до верхней мертвой точки, совершается закрытие клапана впуска.

По окончанию работы 4 тактного двигателя четыре такта проходят заново.

Функционирование двухтактного агрегата

Хоть и статья не об этом, однако стоит коротко описать функционирование двухтактного двигателя с целью сравнить их. Как становится понятно из наименования, функционирование такого мотора проходит только через два такта.

 

 

  1. Поршень продвигается наверх, что приводит к сжатию горючей смеси, после которого (без достижения верхней мертвой точки) она воспламеняется. По достижению поршнем верхней мертвой точки открываются окна впуска в стене цилиндра, из-за чего горючая смесь перетекает в кривошипную камеру.
  2. Под действием растягивающихся газов поршень продвигается в нижнюю сторону. Пребывая в нижнем положении, поршень открывает окна впуска и выпуска. Газы попадают в трубу выхлопа, а на их месте оказывается горючая смесь.

Что называется тактом в работе двигателя?

Устройство двухтактного двигателя и принцип его работы

Поршневые двигатели внутреннего сгорания (ДВС) широко используются в разных сферах человеческой жизни. Однако не все они работают одинаково. Между ними есть одно принципиальное отличие. В зависимости от конструкции рабочий цикл двигателя может состоять из двух или четырёх тактов. Поэтому и называется он соответственно двухтактным двигателем или четырехтактным. Это справедливо как для бензинового мотора, так и для дизеля.

Основные термины и определения

Принцип работы всех поршневых двигателей заключается в превращении энергии сгорания топлива в механическую энергию. Передаточным звеном является кривошипно-шатунный механизм. Для описания их работы используются следующие понятия:

  • Рабочий цикл — это определённая последовательность взаимосвязанных событий, вследствие которых происходит преобразование энергии теплового расширения сгорающего топлива в механическую энергию перемещения поршня и поворота коленчатого вала.
  • Такт — последовательность изменения состояния узлов и механизмов, происходящая в течение одного хода поршня.
  • Ход поршня — это расстояние, которое проходит поршень внутри цилиндра между его крайними точками.
  • Верхняя мёртвая точка (ВМТ) — это наивысшее положение поршня в цилиндре, при этом объем камера сгорания имеет минимальный объем.
  • Нижняя мёртвая точка (НМТ) — максимально удалённое от ВМТ положение поршня.
  • Впуск — заполнение цилиндра топливовоздушной смесью.
  • Сжатие — уменьшение объёма смеси и сжатие её под давлением поршня.
  • Рабочий ход — перемещение поршня под давлением газов сгорающего топлива.
  • Выпуск — выталкивание из цилиндра продуктов горения топлива.

Принцип работы четырехтактного двигателя

Четырехтактным называется такой поршневой двигатель, в котором один рабочий цикл состоит из четырёх тактов. Они имеют следующие названия:

За один цикл поршень два раза двигается от ВМТ к НМТ и обратно, а коленчатый вал проворачивается на два полных оборота. События, которые происходят за это время в двигателе, имеют чётко определённую последовательность.

Впуск. Поршень перемещается вниз, к НМТ. Под ним образуется разрежение, благодаря которому через открытую тарелку впускного клапана из впускного коллектора в цилиндр затягивается топливо, смешанное с воздухом. Поршень проходит нижнюю мёртвую точку, после чего впускной клапан закрывает впускной коллектор.

Такт сжатия. Продолжающий двигаться вверх поршень сжимает воздушную смесь.

В верхней мёртвой точке над поршнем происходит поджог горючей смеси. Сгорая, оно вызывает значительное увеличение давления на поршень. Начинается такт рабочего хода. Под действием давления сгорающих газов поршень снова движется к НМТ, выполняя при этом полезную работу.

После прохождения поршнем НМТ открывается тарелка выпускной клапан. Поршень, двигаясь к ВМТ, выталкивает выхлопные газы в выпускной коллектор. Это такт выпуска.

Затем снова начинается такт впуска и так бесконечно.

Рабочий цикл из двух тактов

Одноцилиндровый двухтактный двигатель работает по-другому. Здесь все четыре действия происходят за один полный оборот коленвала. При этом поршень делает только два такта (расширения и сжатия), двигаясь от ВМТ к НМТ и обратно. А впуск и выпуск являются частью этих двух тактов. Подробней принцип работы двухтактного двигателя внутреннего сгорания можно описать следующим образом.

Газы от сгорания топливной смеси толкают поршень вниз от ВМТ. Примерно на середине хода поршня в гильзе цилиндра открывается выпускное отверстие, через которое часть газов выбрасывается в патрубок глушителя. Продолжая двигаться вниз, поршень создаёт давление, благодаря которому в цилиндр поступает новая порция топлива, одновременно продувая его от остатков сгоревших газов. Подходя к ВМТ, поршень сжимает смесь и система зажигания воспламеняет её. Снова начинается такт расширения.

В авиамоделестроении широко используется двухтактный дизельный двигатель, его принцип работы тот же, что и у бензинового. Разница в том, что смесь топлива с воздухом самостоятельно воспламеняется в конце цикла сжатия. Горючим для таких моторов служит смесь эфира с авиационным керосином. Воспламенение этого горючего происходит при гораздо меньшей степени сжатия, чем у двигателей на традиционном дизельном топливе.

Конструктивные особенности и различия

Двухтактный двигатель отличается от четырехтактного не только тем, за сколько тактов работы происходит газообмен.

Четырехтактный требует наличия системы газораспределения (впускные и выпускные клапаны, распределительный вал с кулачковым механизмом и т. д. ). В двухтактном такой системы нет, благодаря этому он гораздо проще.

Двигатель с четырьмя тактами работы требует полноценной системы смазки из-за большого количества движущихся и трущихся частей. Для смазки двигателя с двумя тактами работы можно использовать масло просто разводя его вместе с топливом.

Эксплуатационные показатели в сравнении

Сопоставляя двухтактный двигатель и четырехтактный двигатель, разницу между ними можно заметить не только в устройстве, но и в эксплуатационных характеристиках. Сравнивать их можно по следующим показателям:

  • литровая мощность;
  • удельная мощность;
  • экономичность;
  • экологичность;
  • шумность;
  • ресурс работы;
  • простота обслуживания;
  • вес;
  • цена.

Литровой называется мощность, снимаемая с литра объёма цилиндра. Теоретически она должна быть в два раза больше у двухтактного. Однако на деле этот показатель составляет 1,5−1,8. Сказывается неполное использование рабочего хода газов, затраты энергии на продувку, неполное сгорание и потери топлива.

Удельная мощность представляет собой величину отношения мощности мотора к его весу. Она также выше у двухтактных. Для них нужен менее тяжёлый маховик и не нужны дополнительные системы (газораспределения и смазки), утяжеляющие конструкцию. КПД у них также выше.

Экономичность (расход топлива на единицу мощности) выше у четырехтактных. Двигатели с двумя тактами часть топлива теряют впустую при продувке цилиндра.

Экологичность двухтактных ниже, опять-таки из-за потери несгоревшего топлива и масла. Убедиться в этом можно на примере двухтактного лодочного мотора. Он всегда оставляет на воде тонкую плёнку из несгоревшего топлива.

Шумность выше у двухтактных. Это связано с тем, что выхлопные газы из цилиндра вырываются с большой скоростью.

Ресурс работы выше у четырехтактных. Отдельная система смазки и меньшая оборотистость двигателя положительно сказываются на сроке его службы.

Проще обслуживать, безусловно, двухтактные моторы из-за меньшего количества вспомогательных систем. Масса больше у четырехтактных. Двухтактные дешевле.

В некоторых механизмах применение двухтактных двигателей является однозначным. Это, например, бензопилы. Высокая удельная мощность, маленький вес и простота делают его здесь безусловным фаворитом.

Двухтактные двигатели используются также в мототехнике, лодочных моторах, газонокосилках, скутерах, авиамоделировании. В большинстве самодельных машин и механизмов умельцы также используют двухтактный мотор.

Однотактные и трехтактные силовые агрегаты

Существуют также одно- и трехтактные двигатели. Однотактные двигатели делают с внешней камерой сгорания. Такая схема реализует все четыре такта за один ход поршня. Трехтактный двигатель Ванкеля является роторно-поршневым. Из-за сложности конструкции и чрезвычайной требовательности к качеству обработки поверхностей такие моторы не получили широкого распространения.

Четырехтактный двигатель

Четырехтактный двигатель состоит из цилиндров, установленных на картере и закрытых сверху головкой. Снизу к картеру крепится поддон. В головке цилиндров установлены клапаны — впускные и выпускные — и свечи зажигания (в бензиновых) или форсунки для впрыска топлива (в дизелях). Внутри цилиндра возвратно-поступательно перемещается поршень, который через поршневой палец соединен с верхней головкой шатуна. Нижняя головка шатуна охватывает шатунную шейку коленчатого вала, коренные шейки которого установлены на подшипниках в картере двигателя. Поршень уплотняется в цилиндре посредством поршневых колец. На конце коленчатого вала закреплен маховик. Положение, которое занимает поршень в конце его хода вверх, называется верхней мертвой точкой (ВМТ), а положение в конце хода вниз — нижней мертвой точкой (НМТ). Перемещение поршня от одной мертвой точки до другой при работе двигателя называется тактом. Объем, который образуется над поршнем при нахождении его в ВМТ, называется объемом камеры сгорания. Объем, который освобождает поршень при его движении от ВМТ к НМТ, называется рабочим объемом или литражом двигателя. Сумма объема камеры сгорания и рабочего объема называется полным объемом цилиндра.
Очень важным параметром поршневого двигателя является степень сжатия, которая определяется как отношение полного объема цилиндра к объему камеры сгорания. Степень сжатия современных автомобильных двигателей с искровым зажиганием равна примерно 10. Автомобильные четырехтактные дизели имеют более высокую степень сжатия, не менее 20.

1 — подводящая труба насоса охлаждающей жидкости;
2 — блок цилиндров;
3 — термостат;
4 — датчик температуры охлаждающей жидкости системы управления двигателем;
5 — выпускной патрубок охлаждающей жидкости;
6 — заглушка головки блока цилиндров;
7 — крышка головки блока цилиндров;
8 — регулятор давления топлива;
9 — крышка маслозаливной горловины;
10 — трос привода дроссельной заслонки;
11 — дроссельный узел;
12 — регулятор холостого хода;
13 — датчик положения дроссельной заслонки;
14 — ресивер;
15 — задняя крышка привода распределительного вала;
16 — передняя крышка привода распределительного вала;
17 — форсунка;
18 — пробка штуцера топливной рампы;
19 — топливная рампа;
20 — впускной коллектор;
21 — правый опорный кронштейн впускного коллектора;
22 — шкив привода генератора;
23 — масляный фильтр;
24 — датчик положения коленчатого вала;
25 — поддон картера;
26 — выпускной коллектор;
27 — шатун;
28 — коленчатый вал;
29 — левый опорный крон штейн выпускного коллектора;
30 — маховик

Поперечный разрез двигателя ВАЗ-2111:

1 — пробка сливного отверстия поддона картера;
2 — поддон картера;
3 — масляный фильтр;
4 — насос охлаждающей жидкости;
5 — выпускной коллектор;
6 — впускной коллектор;
7 — форсунка;
8 — топливная рампа;
9 — ресивер;
10 — крышка головки блока цилиндров;
11 — крышка подшипников распределительного вала;
12 — распределительный вал;
13 — шланг вентиляции картера;
14 — регулировочная шайба клапана;
15 — сухари клапана;
16 — толкатель;
17 — пружины клапана;
18 — маслосъемный колпачок;
19 — направляющая втулка клапана;
20 — клапан;
21 — свеча зажигания;
22 — головка блока цилин дров;
23 — поршень;
24 — компрессионные кольца;
25 — маслосъемное кольцо;
26 — поршневой палец;
27 — блок цилиндров;
28 — шатун;
29 — коленчатый вал;
30 — крышка шатуна;
31 — указатель уровня масла;
32 — приемник масляного насоса

Четырехтактный цикл последовательно включает в себя следующие такты: впуск, сжатие, рабочий ход и выпуск:

Четырехтактный цикл:
а — впуск;
б — сжатие;
в — рабочий ход;
г — выпуск

При работе бензинового двигателя в начале такта впуска открывается впускной клапан, а поршень перемещается от ВМТ. По мере перемещения поршня по направлению к НМТ в цилиндре образуется разрежение и в него поступает смесь паров бензина и воздуха, которую принято называть топливно-воздушной смесью или горючей смесью. После прохода поршнем НМТ он за счет вращения коленчатого вала начнет подниматься к ВМТ, что является началом такта сжатия. В начале такта сжатия закрывается впускной клапан и оба клапана остаются закрытыми в течение всего такта. При перемещении поршня к ВМТ горючая смесь, находящаяся в цилиндре, сжимается, ее давление и температура возрастают. Максимальное значение давления сжатия возникает, когда поршень достигает ВМТ. Но поскольку процесс сгорания топлива занимает определенное время, горючую смесь необходимо поджечь заранее, до того, как поршень дойдет до ВМТ в такте сжатия. Смесь воспламеняется с помощью электрической искры, проскакивающей между электродами свечи зажигания. Угол поворота коленчатого вала от момента появления искры до ВМТ называется углом опережения зажигания. При сгорании топлива выделяется большое количество энергоемких газов, которые давят на поршень, заставляя его в следующем такте совершать рабочий ход, который происходит при закрытых клапанах, когда поршень движется по направлению от ВМТ к НМТ. После рабочего хода начинается такт выпуска. При этом открывается выпускной клапан, а поршень движется по направлению к ВМТ, вытесняя отработавшие газы в атмосферу. Затем цикл повторяется в той же последовательности.

Устройство автомобилей

Рабочие циклы двигателей

Рабочий цикл четырехтактного карбюраторного двигателя

Работа двигателя внутреннего сгорания может быть представлена в виде систематически повторяющихся процессов, которые принято называть рабочими циклами. Рабочим циклом двигателя называется ряд последовательных, периодических повторяющихся процессов в цилиндрах, в результате которых тепловая энергия топлива преобразуется в механическую работу. При этом каждый полный рабочий цикл может быть разделен на одинаковые (повторяющиеся) части – такты.

Часть рабочего цикла, совершаемого за время движения поршня от одной мертвой точки до другой, т. е. за один ход поршня, называется тактом . Двигатели, рабочий цикл которых совершается за четыре хода поршня (два оборота коленчатого вала), называются четырехтактными.
В головке блока цилиндров, над камерой сгорания (рис. 1) карбюраторного двигателя устанавливаются впускной 4 и выпускной 6 клапаны, управляемые газораспределительным механизмом, а также свеча зажигания 5.

Рабочий цикл карбюраторного четырехтактного двигателя состоит из последовательных тактов впуска, сжатия, расширения и выпуска.

Такт впуска

В результате вращения коленчатого вала при пуске двигателя (вручную или с помощью специального устройства — например, заводной рукоятки или электродвигателя — стартера) поршень совершает движение от верхней мертвой точки (ВМТ) к нижней мертвой точке (НМТ). При этом впускной клапан 4 открыт, а выпускной клапан 6 закрыт.
Так как объем цилиндра при движении поршня вниз (к НМТ) быстро увеличивается, давление над поршнем уменьшается до 0,07. 0,09 МПа, т. е. внутри цилиндра создается вакуум – избыточное разрежение.
Впускной клапан 3 сообщается со специальным устройством – карбюратором, который приготавливает горючую смесь из топлива и воздуха. Вследствие разности давлений в карбюраторе и цилиндре горючая смесь всасывается через открытый впускной клапан в цилиндр двигателя.

Если двигатель уже работает, то горючая смесь, попадая в цилиндр из карбюратора, смешивается с остаточными продуктами сгорания от предыдущего цикла, и образует рабочую смесь. Смешиваясь с остаточными продуктами сгорания и соприкасаясь с нагретыми деталями цилиндра, рабочая смесь нагревается до температуры 75. 125 ˚С.

Такт сжатия

При подходе поршня к НМТ впускной клапан закрывается. Далее поршень начинает перемещаться вверх (к ВМТ), сжимая смесь воздуха, топлива и остаточных продуктов сгорания, которые не были удалены из цилиндра при выпуске. При движении поршня от НМТ к ВМТ вследствие сокращения объема цилиндра при закрытых клапанах повышаются давление, при этом возрастает температура рабочей смеси (в соответствии с законом Гей-Люссака).
В конце такта сжатия давление внутри цилиндра повышается до 0,9…1,5 МПа, а температура смеси достигает 270-480 ˚С.
В этот момент к электродам свечи зажигания 5 подводится высокое напряжение, которые вызывает между ними искровой разряд, результате чего рабочая смесь воспламеняется и сгорает.
В процессе сгорания топлива выделяется большое количество теплоты, из-за чего температура газов (продуктов сгорания) повышается до 2200-2500 ˚С, и давление внутри цилиндра достигает 3,0…4,5 МПа. Газы начинают расширяться, перемещая поршень вниз, к НМТ.

Такт расширения (рабочий ход)

Под давлением расширяющихся газов поршень движется от ВМТ к НМТ (при этом оба клапана закрыты). В этот промежуток времени (такт) происходит преобразование тепловой энергии в полезную работу, поэтому ход поршня в такте расширения называют рабочим ходом.
При движении поршня к НМТ объем цилиндра увеличивается, вследствие чего давление уменьшается до 0,3…0,4 МПа, а температура газов снижается до 900…1200 ˚С.

Такт выпуска

При подходе поршня к НМТ открывается выпускной клапан 6, в результате чего продукты сгорания рабочей смеси вырываются наружу из цилиндра.
При дальнейшем вращении коленчатого вала поршень начинает перемещаться от НМТ к ВМТ. Выталкивая отработавшие газы через открытый выпускной клапан, выпускной канал 7 и выпускную трубу в окружающую среду. К концу такта выпуска давление в цилиндре составляет 0,11…0,12 МПа, а температура – 600…900 ˚С.

При подходе поршня к ВМТ выпускной клапан закрывается, впускной открывается и начинается такт впуска, дающий начало новому рабочему циклу.

Рабочий цикл четырехтактного дизеля

Рабочий цикл дизельного двигателя принципиально отличается от цикла карбюраторного двигателя тем, что рабочая смесь (смесь топлива, воздуха и остаточных продуктов сгорания) приготовляется внутри цилиндра, поскольку воздух подается в цилиндр отдельно, а топливо отдельно – через форсунку. В дизельном двигателе нет специального устройства для поджигания рабочей смеси – она самовозгорается в результате высокой степени сжатия.
Т. е. в дизеле, в отличие от карбюраторного двигателя, через впускной клапан подается не горючая смесь, а атмосферный воздух, а топливо впрыскивается через форсунку в конце такта сжатия. В цилиндре, как и в случае с карбюраторным двигателем, остаются продукты сгорания рабочей смеси, которые не удалось удалить продувкой.
Смесеобразование (перемешивание воздуха, топлива и остаточных продуктов сгорания) в дизеле протекает внутри цилиндра, что и обуславливает основные отличия череды тактов, составляющих рабочий цикл.

Высокая степень сжатия приводит к тому, что поступивший в цилиндр через впускной клапан воздух, смешивается с остаточными газами и раскаляется (в буквальном смысле этого слова) до высоких температур. И в это время в цилиндр впрыскивается топливо, которое вспыхивает и начинает гореть.

Рабочие процессы в дизельном двигателе протекают в следующей последовательности (рис. 2) :

Такт впуска

В период такта впуска поршень 2 движется от НМТ к ВМТ. При этом впускной клапан 5 открыт, выпускной клапан 6 закрыт. В цилиндре 7 из-за разности давлений в окружающей среде и в цилиндре в конце такта впуска возникает разрежение 0,08. 0,09 МПа, при этом температура внутри цилиндра не превышает 40…70 ˚С.

Такт сжатия

В процессе такта сжатия оба клапана закрыты. Поршень 2 движется от НМТ к ВМТ, сжимая смесь воздуха и отработавших газов. Давление в конце такта сжатия достигает 3…6 МПа, а температура – 450…650 ˚С (превышает температуру самовоспламенения топлива).

При подходе поршня к ВМТ, в цилиндр через форсунку 3 впрыскивается распыленное жидкое топливо. Топливо подается к форсунке (через трубку высокого давления) топливным насосом 1 высокого давления (ТНВД). Форсунка обеспечивает тонкое распыление топлива в сжатом воздухе. Распыленное топливо самовоспламеняется и сгорает. В результате сгорания температура в цилиндре достигает 1600…1900 ˚С, давление – 6…9 МПа.

Такт расширения (рабочий ход)
Такт выпуска

При подходе к нижней мертвой точке (НМТ) выпускной клапан 6 открывается и большая часть отработавших газов под воздействием высокого давления вырывается из цилиндра в атмосферу. Поршень начинает перемещение от НМТ к ВМТ и через открытый выпускной клапан выталкивает оставшиеся в цилиндре отработавшие газы в окружающую среду. К концу такта давление газов в цилиндре составляет 0,11…0,12 МПа, а температура – 600. 700 ˚С.
Далее рабочий цикл повторяется.

Таким образом, в четырехтактном двигателе только один такт – рабочий ход является полезным с точки зрения совершения полезной работы, остальные три вспомогательные, они осуществляются за счет кинетической энергии маховика, закрепленного на конце коленчатого вала.

Рабочий цикл двухтактного двигателя

В двухтактных ДВС рабочий цикл осуществляется за один оборот коленчатого вала.
Схема двухтактного дизеля представлена на рис. 3 .
Воздух насосом 3 нагнетается через впускное (продувочное) окно 4 в цилиндр. В нижней части цилиндра напротив впускного окна имеется выпускное окно 7. В головке 5 блока цилиндра установлены форсунки 6.

Первый такт (рис. 3, а) совершается при движении поршня от НМТ к ВМТ за счет кинетической энергии маховика двигателя. Оба окна открыты. Нагнетаемый через впускное окно 4 воздух вытесняет из цилиндра оставшиеся в нем отработавшие газы, которые выходят через выпускное окно 7. Таким образом происходит очистка цилиндра от отработавших газов (продувка) и заполнение его свежим зарядом.

Движущийся вверх поршень 8 сначала закрывает впускное окно, а затем выпускное окно. С этого момента начинается процесс сжатия, в конце которого через форсунку 6 впрыскивается топливо.
Таким образом, за первую половину оборота коленчатого вала совершаются процессы наполнения и сжатия, и начинается сгорание топлива.

Второй такт (рис. 3. б) происходит при движении поршня ВМТ к НМТ. В результате выделения теплоты при сгорании топлива повышается температура и давление внутри цилиндра. Поршень перемещается вниз, совершая полезную работу.
Как только поршень открывает выпускное окно, отработавшие газы под давлением начинают выходить в окружающую среду. К моменту открытия впускного окна давление внутри цилиндра снижается на столько, что возможна очистка цилиндра путем вытеснения отработавших газов свежим зарядом воздуха, подаваемым в цилиндр насосом 3.
Этот процесс называется продувкой цилиндра. При этом одновременно с вытеснением отработавших газов происходит наполнение цилиндра свежим зарядом. Далее все процессы повторяются в той же последовательности.

Рабочий цикл двухтактного карбюраторного двигателя аналогичен рабочему циклу двухтактного дизеля. Отличие состоит в том, что в цилиндр поступает не чистый воздух, а горючая смесь, и в конце процесса сжатия в цилиндре посредством свечи зажигания подается искра, в результате чего происходит воспламенение горючей смеси.

Одним из преимуществ двухтактного двигателя по сравнению с четырехтактным является то, что каждый рабочий ход здесь протекает в период одного оборота коленчатого вала, а не двух. Очевидно, что снижение количества тактов должно привести к повышению КПД из-за уменьшения паразитических процессов . А поскольку в четырехтактном двигателе за два оборота коленчатого вала протекают четыре такта, из которых полезным является лишь такт рабочего хода (т. е. остальные три такта являются паразитическими), то естественно предположить, что КПД четырехтактного двигателя должен быть ниже, чем КПД четырехтактного двигателя.

Существенными недостатками двухтактных двигателей является их низкая топливная экономичность и меньший срок службы по сравнению с четырёхтактными двигателями. Объясняется этот недостаток тем, что при продувке цилиндра (или цилиндров) свежая горючая смесь частично удаляется вместе с отработавшими газами, поскольку, в отличие от четырехтактного двигателя, выпуск и впуск газов протекает одновременно.
Этими недостатками, а также большей токсичностью отработавших газов объясняется ограниченное применение двухтактных двигателей на автомобилях.

Что такое рабочий цикл двигателя автомобиля

Существует несколько различных типов двигателей, при этом на колесном, гусеничном, водном и даже иногда воздушном транспорте (грузовые и легковые авто, спецтехника, моторные лодки, самолеты и т.п.), нередко можно встретить двигатель внутреннего сгорания (ДВС).

Так или иначе, широкое распространение силовой агрегат данного типа получил благодаря своей автономности, универсальности, а также целому ряду других преимуществ. При этом агрегаты имеют много различных параметров и характеристик, среди которых стоит отдельно выделить рабочий цикл. Далее мы поговорим о том, что означает рабочий цикл автомобильного двигателя внутреннего сгорания.

Читайте в этой статье

Рабочий цикл ДВС: что нужно знать

Если рассматривать принцип работы двигателя внутреннего сгорания, топливо в таких агрегатах сгорает в закрытой камере (камера сгорания), куда подается готовая топливно-воздушная смесь или воздух и топливо по отдельности (дизельные агрегаты и моторы с прямым впрыском).

Работа такого мотора основана на том, что во время сгорания топлива происходит расширение газов. Указанные газы становятся причиной роста давления в цилиндре, благодаря чему поршень получает «толчок». Затем энергия, переданная на поршень, преобразуется в механическую работу. Давайте рассмотрим принцип работы двигателя, а также рабочие циклы более подробно.

Двигатели, которые устанавливаются на автомобили, обычно работают по четырехтактному циклу (четырехтактный двигатель). Это значит, рабочий цикл совершается за два оборота коленвала и четыре хода поршня. Работу такого ДВС можно разделить на такты: такт впуска, такт сжатия, такт рабочего хода, такт выпуска.

Как работает четырехтактный бензиновый двигатель

Чтобы было понятнее, начнем с того, что когда поршень в цилиндре во время работы ДВС начинает занимать крайние положения (максимально приближен или удален по отношению к оси коленчатого вала), эти положения принято называть ВМТ и НМТ. ВМТ означает верхняя мертвая точка, тогда как НМТ значит нижняя мертвая точка. Теперь вернемся к тактам.

  • На такте впуска коленчатый вал двигателя делает первую половину оборота, при этом поршень из ВМТ движется в НМТ. В этот момент открыт впускной клапан, а выпускной клапан закрыт. При движении поршня вниз в цилиндре образуется разрежение, в результате чего в цилиндр «засасывается» топливно-воздушная смесь через открытый впускной клапан. Рабочая смесь состоит из воздуха и распыленного топлива (в некоторых двигателях на такте впуска поступает только воздух).
  • Следующим тактом является сжатие. После того, как произойдет наполнение цилиндра топливно-воздушной смесью, коленвал начинает совершать вторую половину оборота. В этот момент поршень начинает подниматься из НМТ в ВМТ. При этом впускной клапан уже закрыт. Далее поршень сжимает смесь в герметично закрытом цилиндре. Чем больше уменьшается объем цилиндра, тем сильнее сжимается смесь. Результатом такого сжатия является повышение температуры смеси.
  • К тому времени, когда поршень подойдет к концу такта сжатия (практически дойдет до ВМТ), смесь в бензиновых двигателях воспламеняется от внешнего источника (электрическая искра на свече зажигания). Затем топливный заряд сгорает, в результате в цилиндре резко повышается температура и давление. В этот момент поршень уже перемещается обратно из ВМТ в нижнюю мертвую точку, принимая на себя энергию расширяющихся газов.
  • После того, как поршень почти дойдет до НМТ в конце рабочего хода, происходит открытие выпускного клапана. После этого давление в цилиндре снижается, несколько падает и температура. Затем начинается такт выпуска. В это время коленчатый вал совершает последний полуоборот, при этом поршень снова поднимается из НМТ в ВМТ, буквально «выталкивая» отработавшие газы из цилиндра через открытый выпускной клапан в выпускной коллектор.

Работа четырехтактного дизельного ДВС

Хотя дизель конструктивно похож на бензиновый мотор, в дизельных двигателях изначально сжимается только воздух, после чего прямо в камеру сгорания впрыскивается дизтопливо. При этом воспламенение такой смеси происходит самостоятельно (под большим давлением, а также в результате контакта с нагретым от сильного сжатия воздухом).

Простыми словами, воздух сначала сжимается и нагревается, в среднем, до 650 градусов по Цельсию. В самом конце такта сжатия в камеру сгорания топливная форсунка впрыскивает солярку, затем смесь дизтоплива и воздуха самовоспламеняется.

С учетом данной особенности на такте впуска (поршень движется из ВМТ в НМТ), за счет разряжения в цилиндр подается воздух через открытый впускной клапан. Давление и температура воздуха в этот момент имеют низкие показатели.

Затем начинается сжатие, поршень поднимается из НМТ в верхнюю мертвую точку. Как и в случае с бензиновым мотором, впускной и выпускной клапаны полностью закрыты, что позволяет поршню сильно сжать воздух.

Если учесть, что давление воздуха в цилиндре высокое (необходимо для его нагрева), дизельное топливо в момент впрыска должно также подаваться под очень высоким давлением. Фактически, форсунке нужно «продавить» солярку в камеру сгорания, в которой уже находится сильно сжатый поршнем и горячий воздух.

Для решения этой задачи многие системы питания дизельного двигателя имеют ТНВД (топливный насос высокого давления). Также в схеме могут быть использованы насос-форсунки (форсунка и насос объединены в одно устройство). Еще существуют варианты, когда питание двигателя реализовано при помощи так называемого «аккумулятора» высокого давления. Речь идет о системах Common Rail.

После воспламенения заряда происходит расширение газов и начинается рабочий ход поршня. Температура в результате горения смеси повышается, происходит увеличение давления. Указанное давление газов «толкает» поршень, происходит рабочий ход. Завершающим этапом становится выпуск, когда поршень после совершения рабочего хода снова поднимается из НМТ в ВМТ. Затем весь описанный выше процесс (рабочий цикл двигателя) повторяется.

Синхронная работа нескольких цилиндров

Выше были описан принцип работы ДВС, при этом рассматривались процессы в одном цилиндре. Однако, как известно, большинство двигателей являются многоцилиндровыми. Для того чтобы добиться ровной и синхронной работы всех цилиндров, рабочий ход поршня в каждом отдельном цилиндре должен происходить через равный промежуток времени (одинаковые углы поворота коленвала).

В зависимости от компоновки двигателя и его конструктивных особенностей последовательность (порядок работы) может быть разной. Дело в том, что двигатели бывают не только рядными, но и V-образными.

Во втором случае такая компоновка позволяет разместить цилиндры под углом, при этом становится возможным увеличить общее количество цилиндров без увеличения самой длины блока цилиндра двигателя. Такое решение позволяет разместить мощный многоцилиндровый ДВС под капотом не только большого внедорожника или грузовика, но и легкового авто.

Обороты и мотресурс двигателя. Недостатки езды на низких и высоких оборотах. На каком количестве оборотов мотора ездить лучше всего. Советы и рекомендации.

Зависимость мощности и крутящего момента двигателя от числа оборотов коленвала. Крутящий момент бензинового и дизельного ДВС, полка момента, эластичность.

Что означает понятие объем двигателя. Определение рабочего объема мотора. Классы авто в зависимости от объема ДВС, плюсы и минусы большого объема двигателя.

Почему дизельный мотор имеет больший коэффициент полезного действия по сравнению с двигателями на бензине. Крутящий момент и обороты, энергия дизтоплива.

Виды двигателей внутреннего сгорания, отличия различных типов ДВС. Особенности компоновки, объем двигателя, мощность, крутящий момент и другие параметры.

Что нужно знать об электромобилях. Устройство машин с электродвигателем, основные характеристики. Эксплуатация и обслуживание в теории и на практике.

2-тактный / 4-тактный — мотоцикл

В чем разница между 2-тактными и 4-тактными двигателями?

Топливо для двухтактного двигателя содержит небольшое количество масла. Это называется «2-тактным», потому что всего одно движение поршня вверх и вниз — 2 хода — выполняет полный цикл впуска, сжатия, сгорания и выпуска. Впускные или выпускные клапаны не используются, а вместо этого используются небольшие отверстия, называемые продувочными портами в стенке цилиндра, для втягивания воздуха и удаления выхлопных газов.Поскольку сгорание происходит при каждом обороте коленчатого вала в 2-тактном двигателе, этот формат обеспечивает большую мощность, чем 4-тактный двигатель, и мощность имеет более мгновенную подачу. Это некоторые причины, по которым двухтактные двигатели давно используются на многих различных типах мотоциклов.
Однако озабоченность по поводу более экологичных характеристик возросла, и теперь 4-тактные двигатели стали нормой, потому что они по своей природе имеют лучшую экономию топлива и меньше дыма выхлопных газов. По состоянию на 2019 год только двухтактные мотоциклы Yamaha выпускаются для соревнований по закрытому маршруту, а некоторые модели предназначены для экспорта.Тем не менее, двухтактные продукты Yamaha имеют простую, легкую конструкцию и сравнительно легкие в обслуживании, а их высокая надежность делает их популярными во многих регионах. Сегодня двухтактные снегоходы Yamaha используются для передвижения по ледяной и холодной окружающей среде России, а наши двухтактные подвесные моторы широко используются в Африке для рыбной ловли. И многие энтузиасты мотоциклов продолжают любить двухтактные двигатели за их резкое, захватывающее чувство ускорения.
Что касается 4-тактных двигателей, они работают на бензине без подмешивания масла, а поршень поднимается и опускается два раза за каждый цикл сгорания, поэтому он называется «4-тактный».Однако для 4-тактных двигателей требуются клапаны для впуска и выпуска, которые должны работать с высокой точностью, что делает этот тип двигателя более сложным, тяжелым и имеет другие недостатки. Но они обеспечивают стабильную подачу мощности, хорошую топливную эффективность, более чистые выбросы и многое другое. Вот почему почти все двухколесные автомобили, от больших мотоциклов до маленьких скутеров, используют четырехтактные двигатели.

Анимированные двигатели — четырехтактный

Четырехтактный двигатель

Четырехтактный двигатель был впервые продемонстрирован Николаусом Отто в 1876 ​​ 1 , поэтому он также известен как Otto цикл .Технически правильным термином на самом деле является четырехтактный цикл . Четырехтактный двигатель, вероятно, является наиболее распространенным типом двигателей в настоящее время. На нем установлены почти все легковые и грузовые автомобили.

Четыре такта цикла — это впуск, сжатие, мощность и выхлоп. Каждый соответствует одному полному ходу поршня; следовательно, полный цикл требует двух оборотов коленчатого вала для полный.

Впуск

Во время такта впуска поршень движется вниз, вытягивая свежий заряд испаренной топливно-воздушной смеси.Изображенный двигатель имеет тарельчатый впускной клапан , который открывается под действием вакуума, создаваемого впускной ход. Некоторые ранние двигатели работали таким образом; однако самые современные двигатели включают дополнительный кулачок / подъемник, как показано на выхлопной клапан. Выпускной клапан удерживается закрытым пружиной (не показано здесь).

Сжатие

Когда поршень поднимается, тарельчатый клапан принудительно закрывается из-за повышенного давления. давление в баллоне. Импульс маховика движет поршень вверх, сжатие топливно-воздушной смеси.

Мощность

В верхней части такта сжатия свеча зажигания загорается, воспламеняя сжатое топливо. Когда топливо сгорает, оно расширяется, приводя в движение поршень. вниз.

Выхлоп

В нижней части рабочего хода выпускной клапан открывается механизмом кулачка / подъемника. Восходящий ход поршень вытесняет отработанное топливо из цилиндра.


Система зажигания

На этой анимации также показана простая система зажигания с выключателем. точки, катушка, конденсатор и аккумулятор.

Ряд посетителей написали, чтобы указать на проблему с точки прерывания на моей иллюстрации. В этой схеме зажигания свеча зажигания загорится, как только откроются точки прерывателя . Иллюстрация похоже, это наоборот.

На самом деле, иллюстрация верна; он просто движется так быстро, что это трудно увидеть! Вот кадры в точке, где розетки:

Моим первоначальным намерением было точно показать, что точки должны оставаться закрывается всего на долю секунды, называется задержкой . Автор иллюстрируя это, я непреднамеренно скрыл общую работу схема. Возможно, когда-нибудь я подготовлю более подробную иллюстрацию только система зажигания.

Более крупные четырехтактные двигатели обычно включают более одного цилиндра, имеют различные приспособления для распределительного вала (сдвоенные, верхние и т. д.), иногда с системой впрыска топлива, турбокомпрессорами, несколькими клапанами и т. д. эти усовершенствования изменяют базовую работу двигателя.

Механическая работа двигателя — ход выхлопа

В течение сорока лет после первый полет братьев Райт использовались самолеты двигатель внутреннего сгорания повернуть пропеллеры чтобы генерировать толкать.Сегодня большинство самолетов гражданской авиации или частных самолетов все еще находятся в эксплуатации. с пропеллерами и двигателями внутреннего сгорания, как и ваш автомобильный двигатель. На этой странице мы обсудим основы двигатель внутреннего сгорания с использованием Двигатель братьев Райт 1903 года, показанный на рисунке в качестве примера.

Дизайн братьев очень прост по сегодняшним меркам, так что это хороший двигатель для студентов, чтобы изучить основы работа двигателя. Этот тип двигатель внутреннего сгорания называется четырехтактный двигатель, потому что есть четыре движения (штрихи) поршня перед повторением всей последовательности запуска двигателя.На рисунке мы раскрасили система впуска топлива / воздуха красный, электрическая система зеленый, а вытяжная система синий. Мы также представляем топливно-воздушную смесь и выхлопные газы небольшими цветные шарики, чтобы показать, как эти газы проходят через двигатель. Поскольку мы будем иметь в виду движение различных частей двигателя, вот рисунок, показывающий названия частей:

Механическое управление

В конце теплоотдача процесса, поршень находится в крайнем левом положении, и выхлопные газы были охлаждены почти к атмосферным условиям.Затем открывается выпускной клапан. для начала хода выпуска . Такт выпуска предназначен для того, чтобы очистите цилиндр от отработанного выхлопа, готовясь к следующему зажигание цикл. Такт выпуска начинается в 6 этап как поршень толкнул в сторону камеры сгорания (справа на рисунке). Впускной клапан закрыт, электрический контакт разомкнут, и выпускной клапан открывается кулачком, нажимающим на коромысло. Выхлопной газ проходит через клапан и выходит из двигателя.В конце такта выпуска 1 этап , поршень расположен крайним справа и готов начать другой впускной ход после закрытия выпускного клапана и открытия впускного клапана.

Термодинамика

Такт выпуска происходит при почти постоянном атмосферном давлении. потому что выпускной клапан открыт в атмосферу во всем инсульт. Нет (теоретически) нет работай сделано на выхлопе во время этого процесса.Беспорядочное движение газа приводит к выходу из камеры сгорания и цилиндр, так как объем уменьшается за счет движения поршня. Оба отношения давления и температуры равны 1,0 во время такта выпуска.



Действия:

Экскурсии

Навигация ..


Руководство для начинающих Домашняя страница

Четырехтактный цикл | Инжиниринг | Fandom

Четырехтактный цикл (или цикл Отто ) двигателя внутреннего сгорания — это цикл, наиболее часто используемый сегодня для автомобильных и промышленных целей (легковые и грузовые автомобили, генераторы и т. Д.).Он был разработан французским инженером Альфонсом Бо де Роша в 1862 году и независимо от него немецким инженером Николаусом Отто в 1876 году. Четырехтактный цикл является более экономичным и экологически чистым, чем двухтактный цикл, но требует значительно большего. движущиеся части и производственный опыт. Более того, его легче производить в многоцилиндровых конфигурациях, чем в двухтактных, что делает его особенно полезным в высокопроизводительных приложениях, таких как автомобили. Позднее изобретенный двигатель Ванкеля имеет четыре аналогичные фазы, но представляет собой роторный двигатель внутреннего сгорания, а не гораздо более обычный поршневой двигатель четырехтактного цикла.

Четырехтактный цикл (или цикл Отто)


Цикл Отто характеризуется четырьмя ходами или прямыми движениями поочередно вперед и назад поршня внутри цилиндра:

  1. ход впуска (впуска)
  2. ход сжатия
  3. мощность (сгорание) ход
  4. такт выпуска

Цикл начинается в верхней мертвой точке , когда поршень находится в своей самой верхней точке.При первом ходе вниз ( впуск ) поршня смесь топлива и воздуха втягивается в цилиндр через впускное (впускное) отверстие. Впускной (впускной) клапан (или клапаны) затем закрывается (ы), и следующий ход вверх ( сжатие ) сжимает топливно-воздушную смесь.

Затем воздушно-топливная смесь воспламеняется, обычно от свечи зажигания для бензинового двигателя или двигателя с циклом Отто, или за счет тепла и давления сжатия для дизельного двигателя с воспламенением от сжатия примерно в верхней части такта сжатия.Результирующее расширение горящих газов затем вынуждает поршень опускаться для третьего хода (, мощность ), а четвертый и последний ход вверх (, выхлоп, ) откачивает отработавшие выхлопные газы из цилиндра мимо открытого в то время выпускного клапана или клапанов. через выхлопное отверстие.

Время работы клапана

[править | править источник]

В своей первоначальной конфигурации четырехтактный двигатель полностью полагается на движение поршня для всасывания топлива и воздуха и вытеснения выхлопных газов.Когда поршень опускается на такте впуска (впуска), в цилиндре создается частичный вакуум, который втягивает топливно-воздушную смесь. Затем впускной клапан закрывается, поршень поднимается, смесь сжимается и воспламеняется, в результате чего поршень снова опускается. Когда выпускной клапан открывается, поршень снова поднимается вверх и вытесняет выхлопные газы. Этот метод использовался в первых четырехтактных двигателях. Однако вскоре было обнаружено, что при скоростях вращения, приближающихся к 100 оборотам в минуту (об / мин) или выше, выхлопные газы не могут менять направление достаточно быстро, чтобы выйти за выпускной клапан одним движением поршня.

При высоких скоростях вращения постоянный поток через впускное и выпускное отверстия поддерживается за счет одновременного открытия впускного и выпускного клапанов в верхней мертвой точке (известной как перекрытие клапанов ). Импульс выхлопного газа поддерживает выходящий поток и создает эффект всасывания в цилиндре, известный как продувка , помогая втягивать всасываемый заряд в цилиндр. Однако, чтобы сохранить эффективность, выпускной клапан должен быть закрыт достаточно быстро, чтобы слишком много топливно-воздушной смеси из впускного отверстия не попало в выхлоп двигателя, тратя впустую топливо.В ситуации с высокой мощностью, например, в гонках, где часто встречаются высокие обороты двигателя и принудительная индукция, этот расход топлива может служить для охлаждения выпускного клапана и предотвращения детонации. ВНИМАНИЕ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

После воспламенения топливно-воздушного заряда по мере приближения поршня к нижней мертвой точке сгорание замедляется. Непосредственно перед тем, как заряд закончится сгорать, выпускной клапан открывается примерно при 20 градусах поворота коленчатого вала перед тем, как будет ниже мертвой точки . Это позволяет все еще расширяющимся газам внутри цилиндра выталкиваться через выхлопное отверстие, запуская поток выхлопных газов и придавая импульс потоку выхлопных газов.Хотя небольшое количество силы теряется через выпускное отверстие, которое может приводить в движение поршень, сила, которую поршень должен оказывать на газы, чтобы вывести их из цилиндра, уменьшается, что приводит к повышению эффективности.

Выхлопные системы во многих ситуациях представляют собой компромисс между стоимостью производства, оптимальным расходом, низкими выбросами и низким уровнем шума. Ограничения в выхлопной системе, включая выхлопное оборудование, глушители и простые выхлопные трубы, могут ограничивать надлежащий поток выхлопных газов.В многоцилиндровых приложениях, в которых многие цилиндры имеют общую выхлопную трубу, волны давления, создаваемые выхлопными газами цилиндров, могут препятствовать потоку выхлопных газов из других цилиндров. Поскольку это предотвращает выход выхлопного газа из цилиндра, перекрытие впускного клапана приводит к изменению на , когда выхлопной газ входит во впускное отверстие. Проблемы с внутренним давлением из-за того, что многоцилиндровый двигатель имеет общую впускную камеру, можно преодолеть, используя карбюратор или инжектор для каждого цилиндра.

Достижение максимального объемного КПД для данного двигателя не является шаблонным процессом. Такие переменные, как расход, перекрытие, подъем клапана , и расположение событий клапана, создают большой набор переменных. Различное впускное и выпускное оборудование испытывается при разных скоростях и нагрузках, и конечным результатом обычно является компромисс между мощностью, выбросами и стоимостью, за исключением ситуаций, когда требуется максимальная мощность независимо от стоимости или выбросов (например, в гонках).

Клапаны обычно приводятся в действие распределительным валом, который представляет собой шток с рядом выступающих кулачков (лепестков), каждый с тщательно рассчитанным профилем, предназначенным для того, чтобы толкать клапан на необходимую степень в нужный момент и удерживать его. открывать по мере необходимости при вращении распредвала.Между штоком клапана и кулачком находится толкатель, толкатель кулачка, который учитывает изменения линии контакта кулачка. В более старых конструкциях двигателей распределительный вал находился в картере, и его движение передавалось толкателем и коромыслом (вся цепочка деталей известна как клапанный механизм). Клапан удерживается в закрытом состоянии сильной пружиной, против силы которой кулачок толкает, чтобы открыть его. Каждый клапан необходимо открывать только один раз в течение четырехтактного цикла. Следовательно, распределительный вал совершает один оборот на каждые два оборота коленчатого вала.

Предполагая, что двигатель имеет достаточно прочную конструкцию, чтобы не ломаться, скорость и, следовательно, выходная мощность двигателя обычно ограничиваются способностью поддерживать большой объемный поток каждой из топливовоздушной смеси и выхлопного газа через соответствующие отверстия клапана. . Поэтому на проектирование этой части двигателя уходит много работы. Общие стратегии заключаются в том, чтобы увеличить клапаны, чтобы они занимали как можно больший диаметр цилиндра, облегчить клапанный механизм за счет исключения деталей, открыть клапаны как можно глубже в цилиндр или использовать несколько клапанов меньшего размера с большей общей площадью .Каждый из этих методов имеет свои недостатки, из-за которых в последнее время были разработаны двигатели с управляемой компьютером работой клапана, позволяющие оптимизировать работу двигателя при любой скорости и нагрузке. На иллюстрациях показан двигатель с двойными верхними распредвалами, который на протяжении многих лет был стандартной стратегией увеличения скоростных характеристик двигателя.

Десмодромные фазы газораспределения [править | править источник]

В подавляющем большинстве четырехтактных двигателей клапаны закрываются просто возвратной пружиной.По мере увеличения частоты вращения двигателя время, необходимое пружине для закрытия клапана, может стать значительным. При этом толкатель кулачка не может следовать замыкающему профилю кулачка, что отрицательно влияет на синхронизацию и, следовательно, на характеристики двигателя. Чтобы уменьшить это, используются более легкие клапаны и более прочные пружины, но есть практический предел того, насколько низкая инерционная масса клапана может быть уменьшена, а увеличение прочности возвратной пружины клапана значительно увеличивает и без того значительный износ распределительного вала и седла клапана.

Одним из решений этой проблемы является десмодромная система газораспределения . Это исключает возвратную пружину клапана и использует механическое устройство для прямого открытия и прямого принудительного закрытия клапана. Тогда можно получить гораздо более высокие обороты двигателя. В некоторых конструкциях используется дополнительный кулачок и коромысло, в других — кулачок, в котором на его вертикальной поверхности врезан канал, в который входит толкатель (в отличие от следования только по внешнему профилю), в других — кривошипно, подобное коленчатому валу.Недостатком системы является ее повышенная сложность и, как следствие, стоимость. Одним из производителей, использующих эту систему, является Ducati [1] для некоторых двигателей мотоциклов.

Пневматические пружины клапана

[редактировать | править источник]

Последние двигатели Формулы 1 [2] прибегают к использованию пружин эвматических клапанов для преодоления ограничений металлических пружин на высоких оборотах при одновременном использовании обычных распределительных валов. «Пружина» клапана на самом деле представляет собой поршень, заполненный азотом с высоким давлением. Когда клапан приводится в действие кулачком, азот сжимается, и когда кулачок продолжает вращаться, повышенное давление в поршне возвращает клапан в закрытое положение.Благодаря этой системе ранее немыслимые обороты двигателя стали обычным явлением.

Величина выходной мощности, создаваемой 4-тактным двигателем, в конечном итоге ограничивается скоростью поршня из-за прочности материала. Поскольку поршни и шатуны ускоряются и замедляются очень быстро, материал физически достаточно прочен, чтобы выдерживать ограниченные скорости. Может произойти как физическая поломка, так и флаттер поршневого кольца, что приведет к потере мощности или даже к разрушению двигателя. Дрожание поршня возникает, когда поршневые кольца меняют направление так быстро, что их можно оттолкнуть от стенок цилиндра, что приводит к потере уплотнения цилиндра и потери мощности.

Одним из важных факторов в конструкции двигателя является передаточное число r OD / ход . Соотношение шток / ход — это отношение длины шатуна к длине хода коленчатого вала. Увеличение соотношения шток / ход (более длинный шток, более короткий ход или и то, и другое) приводит к снижению скорости поршня. Однако, опять же, из-за проблем с прочностью и размером, существует ограничение на длину стержня по отношению к ходу. Более длинный шток (и, следовательно, более высокое соотношение шток / ход) потенциально может создавать большую мощность из-за того, что с более длинным шатуном большее усилие от поршня передается по касательной к вращению коленчатого вала, обеспечивая больший крутящий момент.Более короткое соотношение шток / ход обеспечивает более высокую скорость поршня, но это может быть полезно в зависимости от других характеристик двигателя. Повышенная скорость поршня может создать в цилиндре завихрение или завихрение и уменьшить детонацию. Повышенная скорость поршня также может быстрее втягивать топливно-воздушную смесь в цилиндр через больший впускной канал, способствуя хорошему наполнению цилиндра.

Двигатель, у которого размер отверстия больше, чем ход поршня, обычно называют двигателем с квадратным сечением, и такие двигатели могут достигать более высоких оборотов.И наоборот, двигатель с диаметром цилиндра меньше его хода является двигателем под квадратным сечением. Соответственно, он не может достичь такого количества оборотов в минуту, но может создавать больший крутящий момент на более низких оборотах. Кроме того, двигатель с одинаковыми диаметром цилиндра и ходом называется квадратным двигателем.

  • Харденберг, Хорст О., Средние века двигателей внутреннего сгорания , Общество автомобильных инженеров (SAE), 1999

[3]

Четырехтактный бензиновый или дизельный двигатель: как это работает, анимация

Главная> Уход за автомобилем> Четырехтактный двигатель: как это работает, анимация

Обновлено: 16 марта 2020 г.

Современные автомобили имеют четырехтактный двигатель.Ход — это движение поршня в цилиндре вверх или вниз между верхним и нижним положениями. Один оборот коленчатого вала равен двум ходам. В четырехтактном двигателе каждый цилиндр «срабатывает» при каждом втором обороте коленчатого вала. Полный цикл сгорания состоит из двух оборотов коленчатого вала и четырех тактов:
1. Такт впуска
2. Такт сжатия
3. Рабочий ход
4. Такт выпуска.

Для иллюстрации мы создали эти две анимации четырехтактного бензинового и дизельного двигателей с прямым впрыском.Мы выбрали двигатель с прямым впрыском, потому что более половины новых автомобилей с бензиновым двигателем имеют непосредственный впрыск. См. Анимацию четырехтактного дизельного двигателя ниже.

Прямой впрыск бензина отличается от обычного впрыска топлива расположением форсунки: при обычном впрыске топлива форсунка устанавливается во впускном отверстии над впускным клапаном. В бензиновом двигателе с прямым впрыском сопло форсунки выступает в камеру сгорания. Топливо распыляется под очень высоким давлением прямо в камеру сгорания.

1. Ход всасывания

Впускной ход. Коленчатый вал двигателя продолжает вращаться по инерции от предыдущего рабочего такта. Такт впуска всегда считается первым в последовательности. Во время такта впуска поршень движется вниз, создавая над ним вакуум. Распределительный вал открывает впускной (ые) клапан (ы), вытягивая воздух из впускного коллектора. Впускной клапан начинает открываться в конце такта выпуска предыдущего цикла. Когда поршень движется вниз, воздух заполняет цилиндр. Вскоре после того, как поршень достигает нижнего положения, впускной клапан закрывается.Выпускной клапан закрыт во время такта впуска.

2. Ход сжатия

Инсульт сжатия. Во время такта сжатия впускной и выпускной клапаны закрыты. Когда поршень движется вверх, он сжимает воздух, захваченный в цилиндре. Форсунка прямого впрыска впрыскивает бензин под очень высоким давлением в цилиндр во время такта сжатия, когда поршень находится ближе к верху. Непосредственно перед тем, как поршень достигнет верхнего положения, искра между электродами свечи зажигания воспламеняет топливно-воздушную смесь.Самое верхнее положение поршня называется верхней мертвой точкой или ВМТ. Сгорание происходит в камере сгорания, которая представляет собой пространство между верхней частью поршня и головкой блока цилиндров.

3. Рабочий ход.

Рабочий ход. В рабочем такте давление горячих газов, создаваемое во время сгорания, толкает поршень вниз с большой силой. Рабочий ход обеспечивает энергию для поворота колес автомобиля. После рабочего хода коленчатый вал продолжает вращаться из-за инерции тяжелых компонентов, прикрепленных к коленчатому валу.В автомобилях с механической коробкой передач это маховик. В автомобилях с автоматической коробкой передач это гидротрансформатор. Во время рабочего такта впускные и выпускные клапаны по-прежнему закрыты. Когда поршень приближается к нижнему положению рабочего такта, выпускной клапан начинает открываться, позволяя выходить горячим выхлопным газам. В некоторой литературе рабочий ход называется тактом расширения или тактом сгорания.

4. Ход выпуска.

Ход выпуска. Во время такта выпуска выпускной клапан открыт, а впускной клапан закрыт.Поршень движется вверх, выталкивая оставшиеся выхлопные газы из цилиндра в выпускной коллектор. Такт выпуска — это последний ход цикла. Когда поршень приближается к верхнему положению (ВМТ), впускной клапан начинает открываться для такта впуска следующего цикла сгорания. Выпускной клапан закрывается сразу после достижения поршнем ВМТ.

Как работает четырехтактный дизельный двигатель:

Анимация четырехтактного дизельного двигателя. Дизельный четырехтактный двигатель работает так же, но в дизельном двигателе нет свечи зажигания.Дизельное топливо воспламеняется из-за высокой температуры сжатого воздуха. По этой причине у дизельного двигателя более высокая степень сжатия достигается за счет уменьшения размера камеры сгорания. Форсунка дизельного топлива впрыскивает топливо под очень высоким давлением в конце такта сжатия. Когда двигатель холодный, электрическая свеча накаливания нагревается, помогая воспламенить дизельное топливо. В дизельном двигателе поршень и другие компоненты сделаны более мощными, чтобы выдерживать более высокую степень сжатия.

Изучите автомобильную инженерию у инженеров-автомобилестроителей

Принцип 4-тактного двигателя

В 4-тактном двигателе ход поршня (движение от нижней мертвой точки к верхней мертвой точке или наоборот) необходимы для завершения рабочего цикла.

Такт впуска (от ВМТ до НМТ): свежая смесь в двигателе SI (искровое зажигание) или свежий воздух в дизельном двигателе всасывается в цилиндр через впускные клапаны, которые могут открываться с небольшим опережением перед ВМТ и могут закрываться с определенной задержкой после BDC, чтобы максимизировать введенную массу.

Такт сжатия (от НМТ до ВМТ): свежая смесь в двигателе SI или свежий воздух в дизельном двигателе сжимается при закрытых всех клапанах. Ближе к концу такта сжатия сгорание инициируется посредством искрового зажигания (двигатель с искровым зажиганием) или впрыска топлива (дизельный двигатель).

Рабочий ход (от ВМТ до НМТ): горячие сгоревшие газы расширяются, толкая поршень вниз и прикладывая к нему работу, которая в пять (или более) раз превышает работу, прилагаемую поршнем во время такта сжатия. Ближе к концу рабочего такта выпускные клапаны могут начать открываться, и часть сгоревших газов выбрасывается из цилиндра благодаря перепаду давления.

Такт выпуска (от НМТ до ВМТ): поршень удаляет оставшиеся сгоревшие газы.Ближе к концу такта выпуска впускные клапаны могут открываться, а вскоре после ВМТ выпускной клапан может закрываться, это называется перекрытием. После этого можно начинать новый цикл.

Хотя цикл завершается 4 ходами за 2 оборота кривошипа, можно выделить 6 рабочих фаз, поскольку во время одного хода могут происходить разные фазы:

  • Впуск
  • Сжатие
  • Сгорание
  • Расширение
  • Выхлоп (продувка)
  • Выхлоп (вытеснение)

Следует отметить, что требуется 2 рабочих фазы для замены сгоревших газов свежей смесью.

Принцип 2-тактного двигателя

В 2-тактном двигателе полный рабочий цикл требует всего лишь двух ходов поршня (т.е. 1 оборот коленчатого вала).

Чтобы получить более высокую выходную мощность, два хода, используемые для газообмена, подавляются и заменяются процессом продувки. Процесс продувки определяется вытеснением сгоревших газов, когда поршень приближается к концу рабочего такта, посредством свежего заряда, находящегося под давлением.

В простейшей конструкции давление свежего заряда создается за счет самого картера, объем которого изменяется в зависимости от объема цилиндра, так что минимальный объем картера (а затем и максимальное давление) достигается, когда поршень находится на НМТ в главном цилиндре.

Возможна более компактная конструкция по сравнению с 4-тактным двигателем, поскольку впускные и выпускные клапаны могут быть заменены портами (отверстиями) в гильзе цилиндра, открытием и закрытием которых можно непосредственно управлять движением поршня.

Два хода следующие:

Ход сжатия : после закрытия впускного и выпускного отверстий поршень сжимает заряд цилиндра (тем временем объем в картере увеличивается, втягивая свежий заряд в картер за счет нажатия ).Ближе к концу такта сжатия сгорание инициируется искровым зажиганием (двигатель SI) или впрыском топлива (дизельный двигатель).

Рабочий ход : горячие сгоревшие газы расширяются, толкая поршень вниз. Ближе к концу этого хода выпускное отверстие открывается, и часть отработавших газов удаляется из цилиндра благодаря разнице давлений. После этого отверстия продувки открываются, и свежий заряд под давлением выводит сгоревшие газы, так что новый цикл может начаться снова после того, как поршень достигнет НМТ.

Опять же, что касается 4-тактного двигателя, в течение двух тактов происходит 6 различных фаз:

  • Продувка
  • Впуск
  • Сжатие
  • Горение
  • Расширение
  • Продувка

Однако для достижения такого цикла , необходим клапан с регулируемым давлением на продувочном отверстии. Если используются простые отверстия в стенках цилиндра, край впускного отверстия должен находиться ниже, чем выпускной канал, чтобы обеспечить фазу продувки.Это могло бы вызвать короткое замыкание части индуцированного свежего заряда в начале такта сжатия, поскольку выпускное отверстие остается открытым в течение некоторого времени после закрытия впускного отверстия.

Процесс продувки представляет собой ахилловую пяту двухтактного двигателя, поскольку в его простейшей схеме с простыми отверстиями в стенках цилиндров часть свежего заряда будет течь непосредственно в выпускное отверстие, вызывая высокий расход топлива и выбросы углеводородов в SI двигатель.

По этим причинам, использование 2-тактных двигателей SI было ограничено двигателями малой мощности (такими как газонокосилки, пильные цепи, подвесные двигатели для силовых установок лодок…), где недостатки считались приемлемыми из-за высокой простоте, невысокой стоимости и высокой удельной мощности этих двигателей.

2-тактные двигатели также используются для больших дизелей для морских и стационарных применений (внутренний диаметр около 1 м), где они обычно предпочтительнее 4-тактных двигателей из-за чрезмерно высоких термомеханических нагрузок, которые должны выдерживать клапаны (напряжение увеличивается с клапаном диаметр, который пропорционален диаметру цилиндра).

В настоящее время нет примеров применения двухтактных двигателей в автомобильной сфере.

Romain Nicolas мнение:

Базовые 2-тактные и 4-тактные двигатели имеют почти противоположные характеристики.Тем не менее, некоторые исследования продолжаются, чтобы использовать преимущества одного типа и применить его к другому типу двигателя, например, с прямым впрыском для двухтактного двигателя. Как вы думаете, 2-тактный двигатель появится в автомобилестроении для нестандартных нужд, например, для применения в качестве расширителя диапазона для серийных гибридов? Как вы думаете, будут ли устранены недостатки двухтактных двигателей, чтобы они заняли место в сегодняшнем двигателе внутреннего сгорания?

Отношение рабочего диаметра к цилиндру: ключ к эффективности двигателя

Хотя существует множество факторов, влияющих на эффективность двигателя, основным фактором, который необходимо учитывать, является сама геометрия двигателя.Имеет значение не только общий размер двигателя, но и соотношение сторон цилиндров двигателя, определяемое отношением длины хода к диаметру цилиндра. Чтобы объяснить причину, необходимо учитывать три фактора: теплопередачу в цилиндре, продувку цилиндра и трение.

Простые геометрические соотношения показывают, что цилиндр двигателя с большим отношением хода к диаметру цилиндра будет иметь меньшую площадь поверхности, подверженную воздействию газов камеры сгорания, по сравнению с цилиндром с меньшим отношением хода к диаметру. Меньшая площадь напрямую ведет к уменьшению теплопередачи в цилиндре, увеличению передачи энергии к коленчатому валу и, следовательно, более высокому КПД.

На продувку цилиндра — явление двухтактного двигателя, при котором продукты выхлопа в цилиндре заменяются свежим воздухом — также сильно влияет соотношение рабочего диаметра цилиндра в двухтактном двигателе с оппозитными поршнями и однопоточной продувкой. . По мере увеличения отношения длины хода к диаметру цилиндра увеличивается и расстояние, которое свежий воздух должен пройти между впускными отверстиями на одном конце цилиндра и выпускными отверстиями на другом конце. Это увеличенное расстояние приводит к более высокой эффективности продувки и, как следствие, к меньшей работе насоса, поскольку меньше свежего воздуха теряется из-за короткого замыкания заряда.

На трение в двигателе влияет соотношение длины и диаметра цилиндра из-за двух конкурирующих эффектов: трения в подшипниках коленчатого вала и трения силового цилиндра. По мере уменьшения отношения хода к диаметру отверстия в подшипнике увеличивается трение, поскольку большая площадь поршня передает большие силы на подшипники коленчатого вала. Однако соответствующий более короткий ход приводит к уменьшению трения силового цилиндра, возникающего на границе раздела кольцо / цилиндр.

В Achates Power мы провели обширный анализ во всех трех областях, чтобы правильно определить оптимальную геометрию двигателя, которая дает наилучшие возможности для создания высокоэффективного двигателя внутреннего сгорания.Моделирование цилиндров показало, что теплопередача быстро увеличивается ниже отношения хода поршня к диаметру около 2, моделирование систем двигателя показало, что работа насоса быстро увеличивается ниже отношения хода поршня к диаметру около 2,2 (из-за связанное с этим снижение эффективности продувки), а модели трения двигателя показали, что значения трения подшипников коленчатого вала и силового цилиндра по большей части компенсируют друг друга для нашего двухтактного двигателя с оппозитными поршнями.

Здесь следует отметить, что в двигателе с оппозитными поршнями, где два поршня на цилиндр работают в противоположном возвратно-поступательном движении, «ход» возникает в результате комбинированных движений двух поршней и примерно вдвое превышает расстояние одного поршня. поршней перемещается за пол-оборота.Этот факт позволяет двигателю с оппозитными поршнями иметь гораздо большее отношение рабочего диаметра к цилиндру, чем двигатель с одним поршнем на цилиндр, без чрезмерно высоких средних скоростей поршней, которые отрицательно сказываются на инерционной нагрузке и трении.

Для контекста ниже приведен график зависимости удельной мощности от отношения рабочего диаметра некоторых современных четырехтактных двигателей, предназначенных для широкого спектра применений. Обратите внимание, что все двигатели в таблице имеют головки цилиндров, поэтому ход описывает фактический ход поршня.Данные на графике показывают тенденцию, при которой двигатели, которым требуется высокая удельная мощность — например, в гоночных автомобилях — имеют малое отношение длины хода к диаметру цилиндра, а двигатели, требующие высокой топливной эффективности, — например, в тяжелых грузовиках и морских судах. грузовые суда — имеют большое отношение длины хода к диаметру ствола.


Ограничивающим фактором в этом соотношении являются силы инерции, возникающие в результате движения поршня. Для достижения высокой удельной мощности двигатель должен работать на высоких оборотах (до 18 000 об / мин для двигателя Формулы 1), что приводит к высоким инерционным силам, которые необходимо ограничивать с помощью небольшого отношения хода поршня к диаметру цилиндра.Для применений, требующих высокого КПД, необходимо большое отношение длины хода к диаметру отверстия и, опять же из-за инерционных сил поршня, требуется более низкая частота вращения двигателя и меньшая удельная мощность. Для морского применения с ходом 2,5 м частота вращения двигателя ограничена 102 об / мин.

Для сравнения: двухтактный двигатель Achates Power с оппозитными поршнями разрабатывается с соотношением рабочего диаметра от 2,2 до 2,6.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *