Техническое устройство с водяным двигателем: Техническое устройство с водяным двигателем. 8 букв. Какой ответ?

Содержание

Вода льется—и мелет, толчет, пилит, кует и откачивает воду – Наука – Коммерсантъ

текст Владимир Алтунин, кандидат технических наук, доцент МАДИ-ГТУ

Валерий Волшаник, доктор технических наук, профессор, Московский государственный университет природообустройства

Сергей Пьявкин, руководитель сектора проектирования НКС «Волга»

Ольга Черных, кандидат технических наук, профессор, РГАУ-МСХА им. К.А. Тимирязева

Использование энергии речных потоков началось в России еще в глубокой древности. В весьма ранних памятниках русской письменности встречаются такие термины, как «мельник», «мельница». Водяные мельницы в России строили сначала для переработки продуктов сельского хозяйства, прежде всего для привода мукомольных поставов, а затем крупорушек и сукновален. В не столь давние времена практически весь урожай зерновых в России перерабатывался в муку исключительно на водяных и ветряных мельницах; одна мельница строилась на 15-20 сельских домов, а то и чаще.

Но уже в XVI в.

водяной двигатель в России используется не только для переработки сельскохозяйственной продукции, но и в металлургии, добыче полезных ископаемых, обработке камня. Примерный перечень технологических операций, выполнявшихся в России в XVIII веке с помощью водяных двигателей, приведен в таблице 01 .

Наибольшее распространение получили именно мельницы. Внешний вид здания мельницы существенно зависел от места ее постройки и от компоновки основного оборудования и назначения мельницы, а также от строительных конструкций сооружения. Так, для северных земель, Карелии характерна простая деревянная конструкция, без каких-либо архитектурных изысков. Мельницы европейской части России имеют отличия в архитектуре от своих северных аналогов. Здание мельницы, построенное в черте города, могло быть выполнено из кирпича или камня, что свидетельствовало о состоятельности владельца.

Принципиальная схема работы водяной мельницы с верхней подачей воды показана на рисунке 01. Вода, поступающая из лотка, падает на большое колесо [01], состоящее из двух ободов одинакового диаметра, соединенных перегородками «лопатками», образующими ковши. Вода, попавшая в верхний ковш, под действием силы тяжести толкает колесо и выливается по мере движения вниз. Отметим, что верхний способ подачи воды обеспечивает большую мощность на вале колеса, но требует строительства гидротехнических сооружений (плотина, запруда) для накопления и подъема воды на высоту колеса.

Вместе с колесом [01]на горизонтальном валу закреплено зубчатое колесо [02]меньшего диаметра, приводящее в движение шестерню [03]на вертикальном валу. На нижнем конце вертикального вала жестко крепился верхний, подвижный жернов (бегун), в то время как нижний (лежняк) оставался неподвижным. Зерно, попадая между камнями, перемалывалось в муку, а тонкость помола определялась зазором между камнями. Жерновые камни изготавливались из особых пород мелкозернистого кварцевого камня или песчаника или же из искусственной смеси.

рис. 01 Принципиальная схема работы водяной мельницы с верхней подачей воды: 01 Большое водяное колесо, 02 Малое зубчатое колесо, 03 Шестерня на вертикальном валу

На соприкасающихся поверхностях бегуна и лежняка создавались достаточно сложные по конфигурации системы бороздок, обеспечивавших перемещение зерна и муки от центра жернова к его периферии, а также вентиляцию и охлаждение жернова. Расстояние между камнями регулировалось специальным механизмом. Размеры камней и частота вращения бегуна выбирались в зависимости от требуемой производительности мельницы и вида размалываемого материала.

Работы по толчению органических и минеральных материалов на мельницах выполняются с помощью толчеи — измельчающей или шелушильной машины ударного действия. Рабочий орган толчеи — пест, совершающий прямолинейное возвратно-поступательное движение в ступе или, чаще на мельницах, системе ступ (как правило, бревен), линейно укрепленных на горизонтальном поворачивающемся валу и оканчивающихся внизу над деревянным слабо наклоненным лотком.

Устройство песта более жесткого и с большей скоростью удара позволяет создавать механизм для обработки металла ударным воздействием. Конструирование механизмов с формой движения рабочего органа, обеспечиваемой исполнительными органами водяной мельницы, — вращательной или возвратно-поступательной, позволяет обеспечить выполнение разнообразных операций.

рис. 02 Схема пилорамы на водяном приводе: 04 Механизм преобразования вращательного движения в возвратно-поступательное, 05 Механическая пила

На рисунке 02 показана простейшая схема преобразования вращательного движения в возвратно-поступательное. Такое преобразование требовалось, например, в пилорамах.

Общим для перечисленных в таблице 01 операций является наличие только механической энергии, которая и вырабатывается водяными колесами путем использования вечно возобновляющейся экологически чистой энергии водных потоков.

Использование энергии воды для совершения повторяющихся механических операций получило в России новое развитие во время промышленного подъема на Урале в начале XVIII века. Водяные двигатели на металлургических заводах, построенных по указу Петра I общим числом более двухсот, приводили в движение меха, подающие воздух в печь, и молоты. Для достижения требуемой мощности таких двигателей, существенно превосходящей мощность мельничного колеса, возникала необходимость в строительстве гидротехнических сооружений для повышения уровня воды, некоторые из которых — пруды, каналы, тоннели, каменные плотины — сохранились до сих пор и в настоящее время являются памятниками культуры, охраняемыми государством.

Вторая половина XVII века и XVIII век — золотое время водяных двигателей, в России и в мире. На Сене построили грандиозную установку для питания водой фонтанов Версаля, состоявшую из 14 колес диаметром 12 метров. От колес приводились в действие поршневые насосы, поднимавшие 3000 тонн воды в сутки на высоту около 200 метров. В Шотландии на бумагопрядильной фабрике работало колесо диаметром около 20 метров и шириной 4 метра. В России в конце XVIII века действовало несколько тысяч гидросиловых установок, главным образом на горных заводах. Самая известная из них — машина для откачки воды из шахт, построенная русским механиком Козьмой Фроловым в 1785 г. на Змеиногорском руднике на Алтае.

Поступление воды в шахты было одной из главных проблем, мешающей работе рудокопов. Без использования машин воду приходилось поднимать вручную; этим непрерывно занимались водоносы, передающие друг другу вверх полные ведра, вниз — пустые. Это была тяжелая и опасная работа, не связанная к тому же непосредственно с добычей руды. Кроме того, постоянно поступающая вода ограничивала глубину шахт. Необходимость в машине для откачки воды на Змеиногорском руднике возникла после истощения верхних слоев земли, ранее богатых золотой и серебряной рудой. Рудник был собственностью царской семьи, так что уменьшение притока в казну драгоценных металлов представляло собой государственную проблему.

Гидросиловая установка Фролова — одна из самых больших, когда-либо созданных в мире. Вода откачивалась отсасывающими насосами, каждый из которых мог поднимать воду не более чем на 10 метров — столб воды такой высоты создает давление, равное атмосферному. Соответственно, для откачки со дна шахты требовался целый каскад насосов — нижний насос откачивал воду в большое корыто, из которого верхний поднимал ее в корыто на следующем уровне. Поршни насосов приводились в движение водяными колесами, самое большое из которых достигало в диаметре 15 метров. Чтобы обеспечить необходимую мощность водяного потока для вращения колес, речку Змеевку перегородили плотиной длиной больше 100 метров и высотой около 25 метров. Образовался пруд площадью несколько квадратных километров.

С запуском машины Фролова рудник в Змеиногорске получил вторую жизнь, добыча драгоценных металлов на нем велась еще около ста лет. Энергия падающей воды использовалась не только для осушения шахт, но и для подъема руды на поверхность и ее обогащения: такую машину Фролов построил на Преображенском руднике.

В XIX веке гидросиловые установки постепенно вытесняются паровыми двигателями. Их преимущества — отсутствие привязки к рекам, возможность обеспечить высокую скорость на валу двигателя, компактность, мобильность и более высокая мощность при сравнимых массе и размерах — оказались решающими. Однако и в начале XX века энергия воды еще использовалась достаточно широко: анкета русского технического общества, проведенная в 1912 г., зарегистрировала 45449 гидросиловых установок общей установленной мощностью 686856 л.с., из них 470962 л.с. вырабатывались водяными колесами.

В конце XIX века водяные двигатели неожиданно получили шанс на возрождение. 30 сентября 1882 г. в США заработала первая в мире гидроэлектростанция. Водяное колесо приводило в движение динамо-машину. Вырабатываемая ею электроэнергия использовалась для освещения жилых домов и производственных помещений на местной фабрике. Со временем водяные колеса заменили турбинами, обладающими более высоким коэффициентом полезного действия и позволяющими использовать не только потенциальную энергию воды, падающей с некоторой высоты, но и кинетическую энергию ее движения. Примечательно, что гидротурбины начали создавать задолго до первых электростанций. В России первые турбины строил в 30-40-х годах XIX века уральский крепостной мастер Игнатий Сафонов, их использовали на заводах. В настоящее время гидротурбины, имеющие размер, сравнимый с размером водяных колес, превосходят их по мощности в сотни раз.

Сегодня новую жизнь гидросиловым установкам дает малая гидроэнергетика. Микро- и мини-ГЭС постепенно получают распространение, особенно в труднодоступных районах, где затруднено централизованное электроснабжение. Конечно, энергию падающей воды используют уже не для помола зерна, а для выработки электричества. На смену деревянным водяным колесам пришли металлические турбины, гидросиловые установки стали более компактными, надежными и менее шумными. С учетом того, что альтернативная энергетика во многих странах поддерживается на государственном уровне, малая гидроэнергетика имеет неплохие перспективы.

Примерный перечень типов технологических операций, выполнявшихся в ХVIII веке в России механическими агрегатами за счет действия водяных двигателей

таблица 01

Технологическая операцияМеханический агрегат
РазмолМельничный постав (мука, солод)
Пороховая мельница
Размолотка материалов для стекольного
производства
ТолчениеКрупноподерка
Маслобойня
Сукновальня
Толчея для пеньки
Толчея для тряпок и бумажный рол
Мусерная толчея в металлургии
Толчея для руды на похверках
Толчейный постав для стекольного
производства
Первичная обработка металлаМолот
Обработка металла дляПлющильный стан
получения готовой продукции
Железорезный стан
Проволочно-волочильный стан
Проволочно-мотальный стан
Сверлильный или расточный стан
Токарный станок для обточки валов
плющильных
и режущих дисков железорезных станов
Станки для производства монет
Первичная обработка дереваПильная мельница
резанием
Подача дутья дляВоздуховный мех
металлургических печей
Подъемно-транспортныеРудоподъемник
операции
Водоподъемник на рудниках
Водяной насос для водоснабжения
Операции в текстильномКрутильно-мотальные станы в шелковом
производствепроизводстве
Агрегаты ситценабивного производства
Прядильная машина
Мотальня
Шлифовально-точильныеТочильные круги для обработки металла
операции
Гранильные станки
Шлифовальный стан

Большое колесо маленького острова

Самое большое в мире действующее водяное колесо находится на одном из островов Ирландского моря в деревне Лакси. Его диаметр — 22 метра, а высота — 18 метров. Колесо было построено в середине XIX века для откачки грунтовых вод из рудников, где добывали свинец, цинк и другие металлы. К тому времени паровые двигатели уже потеснили водяные, однако на острове не было угля, а его доставка стоила довольно дорого. Необходимую энергию для работы насосов, откачивающих воду, могли дать многочисленные горные речки острова. Идею построить водяной двигатель осуществил местный инженер Роберт Кэйсмент. Большие размеры колеса обусловлены тем, что из шахт требовалось поднимать около тонны воды за минуту с глубины в полтора километра. Мощность, развиваемая колесом, должна была составлять порядка мегаватта, или немногим больше тысячи лошадиных сил.

Сейчас колесо для откачки воды уже не используют, его запускают время от времени только для туристов.

Водяные тепловентиляторы: характеристики, подключение, обзор

С наступлением осенних холодов вопрос выбора способа обогрева помещения становится особенно актуальным. Мощность, экономное потребление электроэнергии и безопасность – три критерия, которые играют важную роль при покупке климатической техники. Всеми этими характеристиками обладают водяные тепловентиляторы – именно о них мы расскажем в этой статье.

Среди множества систем отопления для дома, производственных цехов и торговых залов они выделяются рядом преимуществ:

  1. Безопасность эксплуатации. Вентилятор заключен в специальный короб, это гарантирует защиту от ожогов. Водные тепловентиляторы отвечают всем нормам пожаробезопасности.
  2. Мощность легко регулируется. Расположение устройства в помещении определяет эффективность его работы. Для монтажа выберите место, откуда нагретый воздух сможет беспрепятственно распространиться на максимальное расстояние.
  3. Тепло расходуется экономно. Нижние слои воздуха в помещении прогреваются в первую очередь.
  4. Универсальность. Производители предлагают модели как для бытовых, так и промышленных целей.
  5. Долговечность. Гарантийный срок в зависимости от производителя и модели составляет до пяти лет.

Принцип работы

Внутри корпуса водяного тепловентилятора находится теплообменник и сам вентилятор. Его лопасти образуют воздушный поток, нагревающийся от теплообменника, внутри которого циркулирует горячая вода. Таким образом, температура воздуха постепенно увеличивается.

Расчёт мощности

Чтобы рассчитать оптимальную мощность устройства для обогрева конкретного помещения, воспользуйтесь формулой:

S × h/30 = X кВт, где S – площадь, h – высота, X – искомое значение мощности водяного тепловентилятора.

Пример:

Необходимо обогреть торговый склад площадью 300 кв. м., его высота составляет 6 м.

Считаем: 300 × 6/30 = 60 (кВт). Значит, нам потребуется один водяной тепловентилятор получившейся мощности, либо несколько с меньшим значением.

Разумеется, это общая формула, которая не универсальна. Реальные показатели покупаемой техники зависят от требуемой температуры, количества дверей и окон, наличия усиленной изоляции. Имеет значение начальная температура воздуха на входе в устройство, высота подвеса и температура теплоносителя.

Подключение водяного тепловентилятора

Большинство современных устройств подключается к электросети 220 В или 380 В:

Произвести монтаж отопительного агрегата можно в 10 шагов:

  1. Выберите место подключения: это может быть потолок, стена или угол. Убедитесь в том, что оно выдержит нагрузку.
  2. Проверьте диаметр труб на соответствие техническим требованиям, температуру теплоносителя и скорость протока.
  3. Закупите электропровода нужной длинны для подключения устройства к сети электропитания. Подведите электропитание и цепи управления. Приобретите крепления для тепловентилятора, желательно от производителя.
  4. Сделайте разметку отверстий для крепления, пробурите их.
  5. Завинтите в них шурупы, оставьте небольшой люфт.
  6. Сделайте удобным крепление консоли.
  7. Проведите трубы для отопления к устройству.
  8. Закрепите монтажную консоль, учитывая выбранный наклон тепловентилятора.
  9. Навесьте устройство на консоль и закрепите двумя болтами. Для удаления воздуха из системы отопления предварительно можно установить аппарат Маевского. Чтобы менять поток нагретого воздуха при повороте устройства на консоли, установите металлорукава.
  10. Подсоедините гибкие подводки к трубам отопления в соответствии с инструкцией к вашей модели тепловентилятора. Запитайте устройство теплоносителем, сбросьте воздух. Готово!

Рейтинг производителей

Ведущими производителями водяных тепловентиляторов считаются:

Тепломаш. Более 25 лет производитель выпускает качественное и долговечное тепловое оборудование для России, СНГ и зарубежных стран, в числе которых США и Канада. Покупатели компании – коммерческие предприятия, крупные промышленные объекты и частные лица. В арсенал завода входит широкий спектр моделей, среди которых любой клиент найдет то, что ему нужно.

Ballu. Компания выпускает компактные водяные тепловентиляторы для дачи, дома и офисов. Устройства отличаются простотой использования, оригинальным дизайном. Обогреватели сохраняют кислород на нужном уровне. В некоторых моделях есть встроенный термостат, поддерживающий заданный режим автоматически. Бренд выделяет инновационный подход в разработке выпускаемой техники.

Tropic. Компания с 1998 специализируется на универсальной обогревательной технике и отличается инновационным подходом. Компактные устройства от Tropic-line подходят для прогрева производства, складов, автомоек и СТО. Некоторые модели оснащены терморегулятором, который отключается при достижении заданной температуры. Это очень удобно для бытового использования.

Краткий обзор основных линеек

Модель

Характеристики

Тепломаш МW КЭВ-32М3,5W2

Настенный/потолочный водяной тепловентилятор. Подходит для обогрева складов, производственных помещений и торговых объектов. Обеспечивает быстрый и равномерный нагрев воздуха до 28 градусов на дальность 8 м. Мощность электрического двигателя – 16,1 кВт. Производительность – до 1 700 м³/ч. Подключается к однофазной электросети напряжением 220 В. Угол поворота и наклона регулируется благодаря монтажному кронштейну. Пульт HL10 позволяет добиться удобного управления.

Тепломаш МW КЭВ-100М5W2

Настенный/потолочный водяной тепловентилятор. Подходит для обогрева крупных производственных помещений и складов. От предыдущей модели отличается мощностью – 50, 8 кВт – и дальностью распространения тепла, 28 м. Производительность – до 6 500 м³/ч. Имеет три режима работы.

Тепломаш TW КЭВ-180T5.6W3

Одна из мощнейших моделей линейки. Тепловая мощность составляет 120 кВт. Производительность – до 7 600 м³/ч. Подключается к трехфазной сети напряжением 380 В. Укреплен прочным стальным корпусом с защитой от перегрева. Температура регулируется. Есть патрубки подключения к системе водоснабжения.

Ballu BHP-W2-100-S

Универсальный обогреватель с тремя режимами работы. Тепловая мощность устройства составляет 95 кВт. Подключается к однофазной сети 220 В. Преимуществами модели выступает низкий уровень шума, трехрядный медно-алюминиевый теплообменник и повышенная экономичность потребления энергии. Есть функция охлаждения «Фанкойл».

Ballu BHP-W3-15-LN

Подходит для равномерного обогрева любых помещений высотой более 3 м. Корпус устройства поглощает шум двигателя. Мощность оборудования 18,3 кВт, производительность – 2 800 м³/ч. Может устанавливаться на стены или потолок под любым углом.

Tropic-line AERO 35D40

Компактный водяной тепловентилятор мощностью 41,4 кВт. Оснащен двухрядным алюминиевым теплообменником. Имеет прочный корпус из оцинкованной стали. Производительность – 4 300 м3/ч.

Tropic-line AERO 25D35

Мощность устройства составляет 29,6 кВт. Производительность – 2 400 м³/ч. Нагревается с помощью двухрядного алюминиево-медного теплообменника. Корпус выполнен из оцинкованной стали. Отличается компактностью и экономичным расходом энергии. Гарантийный срок – 3 года.

Выводы

  1. Водяной тепловентилятор – мощное, безопасное и эффективное устройство для обогрева помещений разной площади с экономичным потреблением электроэнергии.
  2. Принцип работы устройства заключается в нагревании воздуха по всей площади помещения. Происходит это посредством образования горячего воздушного потока лопастями вентилятора. Воздушный поток, в свою очередь, нагревается благодаря теплообменнику с циркулирующей горячей водой внутри.
  3. При выборе водяного тепловентилятора можно руководствоваться общей формулой – S × h/30 = X кВт. Так вы определите необходимую мощность устройства.
  4. В зависимости от рабочих характеристик тепловентиляторы подключаются к электросетям с напряжением 220 В (двухфазным) и 380 В (трехфазным).
  5. «Тепломаш», Ballu и Tropic-line – ведущие производители водяных тепловентиляторов в России.

Автор статьи: Леонид Васильев

Стоит ли изобретать вечные двигатели? — Энергетика и промышленность России — № 10 (14) октябрь 2001 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 10 (14) октябрь 2001 года

Среди большого и все возрастающего по численности племени изобретателей всегда находятся увлеченные мечтатели или максималисты, которые пытаются сотворить ни много ни мало эликсир бессмертия и вечной молодости, некий философский камень и вечные двигатели.

Кстати, последние часто называют «перпетуум-мобиле», поскольку это слово произошло от латинского perpetuum mobile, что означает вечно движущееся или вечный двигатель. Истории известны многие тысячи таких «открытий» и связанных с ними судеб их неистово увлеченных авторов, наполненных радостями творчества, восторгами полученных сопутствующих побочных результатов и горькими разочарованиями за несостоявшиеся результаты.

Да, пока еще никому не удалось сконструировать вечный двигатель и составить рецепт эликсира бессмертия. Но при этом сам собой напрашивается вопрос учебника: так стоит ли вообще тогда заниматься изобретением «вечного» двигателя? Поначалу так и хочется сказать — не стоит, не надо терять время на их поиск и создание! Но многовековая мировая и отечественная история работы над «вечным» двигателем не позволяет нам дать такой скоропалительный, а может быть, и легкомысленный ответ.

Если мы обратимся с этим вопросом к популярным книгам и сугубо научным историческим источникам, к простым безвестным инженерам или известнейшим мэтрам науки, то мы никогда не получим на него однозначного ответа. Не будем спешить с ответом и мы и поглубже вникнем в эту бессмертную творческую и философскую проблему.

Вначале была алхимия

Одними из первых, кто открыл эпоху создания «вечных двигателей», были алхимики (здесь под термином «вечный двигатель» мы подразумеваем не только техническое устройство, а любой объект творческой и изобретательской деятельности,
обладающий свойствами «абсолютности», «вечности»). «Химия — дочь алхимии» — так высоко оценил роль алхимии, одного из самых ложных учений среди многих лжеучений прошлой поры, гений русской и мировой математики Николай Лобачевский. Эта «наука» родилась еще в первых столетиях нашей эры в Египте, перекинулась на другие страны и была узаконена арабами. Они присоединили к более раннему термину «химия» (наука о превращениях веществ) артикль «ал» и тем самым ввели алхимию в круг других наук, известных на Земле к тому времени. В основу своих воззрений алхимики взяли убеждение в одушевленности металлов. Якобы металлы все время «растут» и «созревают» в лоне Земли, чем и обусловлены их превращения.

Еще с времен средневековых алхимиков, открывших в поисках «философского камня» много новых и ценных химических веществ, история хранит немало примеров, когда азартная погоня за призраком приводила к важным изобретениям, не имевшим иногда никакой видимой связи с намерениями искателей. Так, американский наборщик Хьятт, обуреваемый благим желанием искусственно создать слоновую кость для бильярдных шаров (за это была обещана огромная премия), изобрел в 1863 году первую в мире пластмассу, которая под именем целлулоида получила широчайшее применение и быстро разошлась по белу свету.

Но следует ли отсюда, что многие изобретатели просто счастливчики, которым случайно повезло? Навряд ли это так!

Вспомним, что любой творческой находке предшествует обычно довольно длительная, порой мучительная стадия поисков. Еще задолго до успеха изобретатель как бы настроился на верный результат. Такое сосредоточенное, вдохновенное состояние, по-видимому, резко обостряет способность нашего мозга находить и анализировать нужную информацию. И достаточно лишь легкого намека, мимолетного наблюдения, а порой и просто переключения внимания, чтобы возникло озарение и оригинальное решение загадки явилось вдруг из небытия как бы само собой. Обостренная избирательность и особая зоркость нередко позволяют первооткрывателю добиться цели, пользуясь доступными и широко известными сведениями.

Свою задачу алхимики усматривали в содействии с помощью некоего эликсира бессмертия, философского камня естественному взрослению металлов, которые проходят те же, что и человек, ступени судьбы. Заветная цель — вырастить из недозрелых состояний — зрелые, из неблагородных металлов — благородные (из меди — золото, из железа — серебро).

Сейчас нам очевидно, что это была чистая утопия. Но, овладев умами пионеров, алхимиия увлекла их жаждой поиска и проложила первые тропинки к большой и истинной науке. Расцвет алхимии пришелся на 15 — 17-й век, и это как раз в то время, когда она жестоко преследовалась Церковью. Многие ученые того времени, обвиненные в занятиях черной магией и распространении учения сатаны, закончили свою жизнь в тюрьмах и даже были казнены.

В то же время алхимия помогла людям открыть немало секретов природы, принесших пользу человечеству. Люди научились делать сплавы, различные красители, стекло.

Немецкий алхимик Бранд, пытаясь добыть философский камень, открыл новый химический элемент фосфор. В другое время немецкие же алхимики «варили» (в 1710 году) в одной из примитивных лабораторий золото. Естественно, что это им сделать не удалось, зато они изобрели фарфор знаменитой саксонской марки.

Perpetuum mobile какой он есть

Одно из направлений поисков творцов, энтузиастов и упорных изобретателей — это создание, разработка «абсолютного двигателя», «вечного двигателя», который, будучи однажды запущен в действие, совершал бы работу неограниченно долгое время без привлечения энергии со стороны.

Первое упоминание о вечном двигателе ученые обнаружили в древней санскритской рукописи «Сиддхантасиромани», написанной великим индийским математиком Бхаскаром примерно в 1150 году. В этой книге рассказано о колесе, которое имело специальные полости, заполненные ртутью. Утверждалось, что если такое колесо закрепить на оси и придать ему первоначальное вращение, то оно в дальнейшем будет вращаться вечно.

Аналогичное колесо было описано и в астрономическом кодексе короля Кастилии Алфонса Великого, относящемся к 1272 году.

В арабской рукописи 1200 года, написанной Фахр ад дин Ридвана бен Мухаммедом, изложено три разных конструкции вечных двигателей.

Изыскания в этой области особенно активизировались в 16-м веке, когда началось бурное развитие машинного производства.

В изданной в начале этого века книге итальянского врача, философа и алхимика Марко Антонио Зимара «Пещера медицинской магии» описана «вечная ветряная мельница». Этот изобретатель предложил поставить напротив лопастей колеса ветряной мельницы кузнечные меха (воздушные насосы), приводимые в действие самим колесом. Зимара, по-видимому, был уверен, что воздух, выходящий из мехов, способен вращать то же самое мельничное колесо, которое и приводит в движение эти меха.

В литературных источниках тех времен содержатся описания «вечных двигателей», основанных на использовании энергии воды. Основным элементом таких двигателей являлся спиральный водяной подъемник, так называемый, архимедов винт. При этом идея вечного движения казалась чрезвычайно простой: архимедов винт поднимает воду из резервуара на какую-то высоту, эта вода падает на лопасти водяного (мельничного) колеса, которое при этом вращается и, в свою очередь, приводит в движение архимедов винт.

Гипотеза создания идеально экономичной машины занимала тогда и сейчас занимает умы не только мечтателей — самоучек, но и умы многих видных ученых. Понятно, что вечный двигатель так и остался «работающим» лишь в воображении его творцов. Хотя их замыслы и были утопичны, попытки материализовать идею, споры вокруг нее принесли немало интересных теоретических и конструктивных решений, позволили выявить новые закономерности, увидеть ранее неизвестные процессы.

Приведем исторический факт, произошедший с нидерландским математиком С.Стевиным в 1857 году. Работая над вечным двигателем, он поставил такой эксперимент. Соединив 14 шаров в одну цепь, он накинул ее на трехгранную призму в надежде, что шары, скатываясь по наклонной грани, вовлекут в движение всю цепь и создадут за счет этого непрерывное ее вращение. Но, несмотря на страстное желание изобретателя, шары не захотели непрерывно вращаться, а неподвижно зависали в накинутом на призму положении. Зато эта неподвижная система навеяла ему идею равновесия. Данный результат и вошел в научную терминологию как закон равновесия сил на наклонной плоскости.

Рассмотрим исторические примеры некоторых вечных двигателей.

Мнимый самодвижущийся механизм — один из древнейших проектов вечного двигателя. В его теле имеется ряд улиткообразных камер, в каждую из которых помещен тяжелый груз-шар. Изобретатель воображал, что шары с одной стороны колеса (например, с правой) всегда находятся ближе к краю обода колеса, чем с левой, и своим весом заставят колесо бесконечное время вращаться, стоит лишь один раз подтолкнуть его в направлении движения по часовой стрелке. Ясно, что при демонстрации этого чуда произошел конфуз — колесо всякий раз после его запуска останавливалось.

Этот пример пришел в нашу литературу из Западной Европы. Однако нечто подобное имело место и в практике российских изобретателей — самоучек. Интересный эпизод неудачной демонстрации такого вечного двигателя можно найти в рассказе нашего соотечественника — писателя Н.Е.Петропавловского с символическим названием «Perpetuum mobiliе». Вот как он образно рассказывает об изобретателе — крестьянине из Пермской губернии Лаврентии Голдыреве, изображенном в этом рассказе под псевдонимом Пыхтин.

«Перед нами стояла странная машина больших размеров, с первого взгляда похожая на тот станок, в котором подковывают лошадей; виднелись плохо тесаные деревянные столбы, перекладины и целая система колес, маховых и зубчатых; все это было неуклюже, не обстругано, безобразно. В самом низу, под машиной, лежали какие-то чугунные шары; целая куча этих шаров лежала и в стороне.

— Это она и есть? — спросил управляющий.

— Она — с…

-Такое чудовище! Ты бы хоть немного обтесал ее.

— Да, она точно… не обтесана малость.

— Что же, вертится она? — спросил управляющий.

— Как же, вертится…

— Да у тебя есть лошадь, чтобы вертеть-то ее?

— Зачем же лошадь? Она сама, — отвечал Пыхтин и принялся показывать устройство чудища.

Главную роль играли те чугунные шары, которые были сложены тут же в кучу.

— Главная сила в этих вот шарах… Вот глядите: наперво шар бухнется на этот черпак… отсюда свистнет, подобно молнии, вон по этому желобу, а там его подденет тот черпак, и он перелетит, как сумасшедший, на то колесо и опять даст ему хорошего толчка, — такого то есть толчка, от которого он зажужжит даже… А пока этот шар лежит, там уже свое дело делает другой… Там уж он опять летит … бросится на тот черпак, перескочит на то колесо и опять р-раз! Так и далее. Вот она в чем штука- то … Вот я пущу ее…

Пыхтин торопливо метался по сараю, собирая разбросанные шары. Наконец, свалив их в одну кучу подле себя, он взял один из них в руку и с размаху бухнул его на ближайший черпак колеса, потом быстро другой, за ним третий… В сарае поднялось что-то невообразимое: шары лязгали о железные черпаки, дерево колес скрипело, столбы стонали. Адский свист, жужжание, скрежет наполнили полутемное место …

Как нам нетрудно догадаться, машина вращалась до тех пор, пока изобретатель продолжал подбрасывать все новые и новые шары. Сила их удара и вес были единственным источником работы мнимого вечного двигателя. И Пыхтин невольно сказал правду, что «главная сила в этих вот шарах».

Рассказывают, что позднее изобретатель глубоко разочаровался в своем детище, когда он представил его на промышленную выставку в Екатеринбург и впервые увидел настоящие действующие машины. Когда посетители выставки попросили его рассказать об изобретенной им «самодвижущейся машине», он в отчаянии произнес: — «Да ну ее к шуту! Прикажите изрубить ее на дрова …»

Безобидным представляется использование «вечных двигателей» в рекламных целях. Об одном из таких примеров их «применения» рассказал автор широко известных и увлекательных книг по физике, астрономии и математике Я.И.Перельман. В одном из крупных кафе в Лос-Анджелесе (Америка) для привлечения внимания публики на входной гигантской рекламе был установлен «вечный двигатель» в виде колеса с перекатывающимися шарами. Этот двигатель незаметно приводился в действие искусно скрытым электродвигателем, хотя всем прохожим и посетителям казалось, что колесо двигают перекатывающиеся в прорезях тяжелые шары. Рабочие — слушатели школы Я.И. Перельмана — были страшно поражены увиденным и не хотели верить доказательствам учителя о невозможности вечных двигателей. Учителя выручило только то, что в городе в выходные дни электрическая сеть полностью отключалась. Зная об этом, он посоветовал слушателям наведаться к витрине в эти дни. Последовав его совету, они увидели, что по выходным дням двигатель не работал и предусмотрительно прикрывался занавеской. И за счет этого, как шуточно пишет автор, закон сохранения энергии вновь завоевал доверие слушателей.

Важно отметить, что открытиями вечных двигателей, как правило, занимаются «бессребреники», т.е. люди, которые это делают не ради корысти, не ради денег, не ради золота, а в силу своей творческой увлеченности, своего новаторского призвания. Яркой иллюстрацией сказанного может служить ученый — алхимик Бертольд, описанный А.С.Пушкиным в его прозаическом произведении «Сцены из рыцарских времен». Бедный ученый Бертольд делает бесконечные опыты по получению золота из разных химических элементов. Его многообещающие опыты поддерживает кредитами богатый купец Мартын в надежде на успех изобретателя. В одном из диалогов между ними Мартын спрашивает: «Если твой опыт тебе удастся и у тебя будет золота и славы вдоволь, будешь ли ты наслаждаться жизнью?» В ответ ему Бертольд говорит: «… Займусь еще одним исследованием. Мне кажется, есть средство открыть перпетуум-мобиле. Если найду вечное движение, то я не вижу границ творчеству человеческому. Видишь ли, добрый мой Мартин, делать золото задача заманчивая, но найти перпетуум-мобиле… О!» Как говорится, комментарии здесь излишни. Можно лишь при этом упомянуть, что А.С.Пушкин написал это произведение под впечатлением незадолго до этого (в 1834 году) изобретенного в Санкт-Петербурге академиком Борисом Семеновичем Якоби, которого он знавал лично, первого электрического приводного двигателя. Этот двигатель, питающийся на постоянном токе от батареи Вольта, настолько поразил своей новизной и оригинальностью просвещенных современников, что они долгое время называли его «перпетуум-мобиле».

Прослеживая историю, можно заметить, что одни изобретатели и ученые горячо верили в возможность создания вечного двигателя, другие — упорно сопротивлялись этому, отыскивая все новые истины. Галилео Галилей, доказывая, что любое имеющее тяжесть тело не может подняться выше того уровня, с которого оно упало, открыл закон инерции. Таким образом, польза для науки шла как со стороны верующих, так и неверующих. Известный физик, академик Виталий Лазаревич Гинзбург считал, что по существу идея вечного двигателя была научной. Плохо ли, хорошо ли, но она готовила благодатную почву грядущим естествоиспытателям для постижения более высоких истин. Как хорошо сказал томский профессор, философ А.К.Сухотин: «…неуклонно подогревая интерес, идея вечного двигателя стала своего рода идейным двигателем вечного сгорания, подбрасывающим свежие поленья в топки ищущей мысли».

Тем временем, из-за большого числа заявок изобретателей на выдачу патентов на придуманные ими вечные двигатели, ряд национальных патентных ведомств и академий наук зарубежных стран (в частности, Парижская академия наук приняла запрет еще в 17-м веке) приняли решение вообще не принимать к рассмотрению заявки на изобретения абсолютного двигателя, поскольку это противоречит закону сохранения энергии.

Всемирно известный в области механики советский академик Борис Викторович Раушенбах считает такие решения научных организаций ошибочными и вредными для дальнейшего развития науки. Он утверждает, что наука должна глубоко исследовать, доказывать и терпеливо разъяснять, а не пресекать и, тем более, не запрещать любые изобретения («не накидывать уздечку на исследовательскую активность, куда бы она ни расходовалась»). Понятно, что принцип сохранения энергии никакими конструкциями вечных двигателей не поколебать, но возможны уточнения, выяснение сфер его применения и пересечения с другими физическими принципами. Открылось же, например, что этот закон комбинируется с законом сохранения массы, и такое проявление пошло на пользу более глубокого осмысления этих двух законов.

Авторы полностью разделяют это мнение и считают, что объектом изобретательской и творческой деятельности может быть любой объект и даже перпетуум-мобиле, «вечный двигатель». Главное, при этом не надо бояться прослыть чудаком. «Чудаки, — говорил великий русский писатель Алексей Максимович Горький,- украшают мир!».

А вдруг?..

Живет в Самаре интереснейший человек — изобретатель Александр Степанович Фабристов, которому ныне перевалило за 80 лет. Еще в молодости он увлекся идеей вечного двигателя, много сочинил его конструкций, создал много образцов, но все неудачно. И только лет 10 назад создал наконец устройство, которое он называет «вечный двигатель» и которое, как он убежден, способно вырабатывать «бесплатную» энергию только за счет сил гравитации. Его устройство не так уж хитро по конструкции и состоит из 8 металлических «стаканов», укрепленных на крестовине, из свинцовых уголков, храповиков и двух шестеренчатых дуг. «Стакан», прикрепленный к крестовине, движется по кругу, проходит через одну дугу — угольник внутри перемещается, и силовое плечо становится больше. Проходит через другую — угольник встает на прежнее место. Так что получается, что у четырех «стаканов» с одной стороны масса значительно больше, чем у стаканов с другой, из-за действия сил гравитации. К сожалению, его «вечный двигатель» не запатентован, и не апробирован, так как и наш российский институт патентной экспертизы не принимает к рассмотрению проекты таких двигателей.

Создать же опытный образец изобретателю — одиночке не под силу, а промышленным предприятиям вроде бы и неприлично заниматься разными выдумками. А ведь, по идее, это экологически чистый двигатель, не портящий ландшафт и природу, не загрязняющий атмосферу. Кстати, будет занимательно узнать, что недавно автор непризнанного изобретения сочинил стихи о вечном двигателе, а его товарищ по хору (где он поет в клубе ветеранов Пушкинского дома) положил эти стихи на музыку.

Ремонт мотопомп спб Мастерская 8991-002-29-90 Невский район , Дыбенко Кудрово

 

 

Обратившись в нашу ремонтную мастерскую в СПБ, вы делаете верный выбор, мы ценим время наших клиентов.

 

В короткие сроки проведем диагностику, выявим неполадки, проведем техническое обслуживание и ремонт мотопомпы.
У наших механиков огромный опыт работы с мотопомпами разных производителей.

 

Ремонт любой степени сложности, не проблема для наших мастеров.

 

 

 

 

 

 

 

Признаки поломки мотопомпы:

  1. Двигатель не заводится
  2. Двигатель останавливается, глохнет
  3. Не запускается, отказ включения
  4. Малая мощность работы
  5. Мотопомпа дымит
  6. Выхлопные газы голубого, сизого или черного цвета
  7. Перегрев двигателя мотопомпы
  8. Увеличился уровень масла
  9. Увеличился расход масла
  10. Посторонние звуки, стуки при работе

При подобных неполадках настоятельно рекомендуем обращаться за профессиональной диагностикой и ремонтом в сервисный центр.
Самостоятельный ремонт может еще больше навредить мотопомпе и сделать ремонт дороже.

 

 

Мотопомпа— сложное техническое устройство используется для выкачивания и
перемещения больших объемов воды, пожаротушения, осушения колодцев,
бассейнов и водоемов.

В нашем сервисной центре оказывается полный комплекс услуг по
диагностике, выявлению неисправностей, профилактике поломок, техническому
обслуживанию и ремонту любой степени сложности бензиновых и дизельных
мотопомп.


Рекомендации по использованию бензиновых и дизельных мотопомп:

  1. Всегда проводите осмотр на наличие повреждений до запуска двигателя
  2. Не заправляйте двигатель во время работы. 
  3. Не заправляйте не остывшую мотопомпу. 
  4. При заправке используйте воронку
  5. Соблюдайте сроки проведения технического обслуживания
  6. Следите за уровнем масла
  7. Используйте только чистое топливо, без примеси воды
  8. Не переполняйте топливный бак (внутри заправочной горловины не
  9. должно быть топлива)
  10. Перед запуском двигателя всегда заливайте в насос воду (наличие жидкости 
  11. необходимо для начального заполнения насоса и его смазки)
  12. Следите за тем, чтобы с систему всасывания и нагнетания воды не попадали 
  13. инородные предметы
  14. Никогда не закрывайте водяной вентиль резко (мощный удар может
  15. привести к серьезным повреждениям насоса)
  16. Используйте мотопомпу согласно инструкции 
  17. Не используйте мотопомпу для чистой воды, для перекачки воды с песком и 
  18. твердыми частицами
  19. Важно правильно установить мотопомпу
  20. Вовремя проводите техническое обслуживание мотопомпы


При соблюдении этих простых правил и так же правил в инструкции по
эксплуатации, вы надолго продлите срок службы мотопомпы.

 

Отдать мотопомпу на диагностику, обслуживание, ремонт, Вы можете, приехав
в мастерскую по адресу СПБ, Мурманское шоссе 2Б, напротив Мега Дыбенко.
Всегда в продаже масло для 2-тактных и 4-тактных двигателей.

 

На все проводимые работы дается гарантия.

 

 

 

На главную из мотопомп

Гидротурбина (ГТ) — Что такое Гидротурбина (ГТ)?

Ротационный двигатель, преобразующий механическую энергию воды

Гидротурбина (ГТ) — гидравлическая турбина, водяная турбина, ротационный двигатель, преобразующий механическую энергию воды (ее энергию положения, давления и скоростную) в энергию вращающегося вала.

По принципу действия ГТ делятся на:

  • активные,

  • реактивные.


Основным рабочим органом ГТ, в котором происходит преобразование энергии, является рабочее колесо. 

Вода подводится к рабочему колесу в активных ГТ через сопла, в реактивных — через направляющий аппарат. 

В активной ГТ вода перед рабочим колесом и за ним имеет давление, равное атмосферному. 

В реактивной ГТ давление воды перед рабочим колесом больше атмосферного, а за ним может быть как больше, так и меньше атмосферного давления.

Полный КПД гидротурбины h = hг · hm · h0 — отношение полезной мощности, отдаваемой турбинным валом, к мощности пропускаемой через ГТ воды. 

В современной ГТ полный КПД равен 0,85-0,92; у лучших образцов ГТ он достигает 0,94-0,95.

Hr — гидравлический КПД гидротурбины. 

Часть мощности, полученная колесом, расходуется на преодоление механических сопротивлений, эти потери учитываются механический КПД гидротурбин h0. 

Утечка воды в обход рабочего колеса учитывается объёмным КПД гидротурбины.

Геометрические размеры ГТ характеризуются номинальным диаметром Д, рабочего колеса.

ГТ разных размеров образуют турбинную серию, если обладают однотипными рабочими колесами и геометрическими подобными элементами проточной части.

Определив необходимые параметры одной из ГТ данной серии, можно подсчитать, пользуясь формулами подобия, те же параметры для любой гидравлической турбины этой серии.

Каждую турбинную серию характеризует коэффициент быстроходности, численно равный частоте вращения вала ГТ, развивающей при напоре 1 м мощность 0,7355 квт (1 лс).

Чем больше этот коэффициент, тем больше частота вращения вала при заданных напоре и мощности. 

ГТ и электрический генератор обходятся дешевле при увеличении частоты их вращения, поэтому стремятся строить ГТ с возможно большим коэффициентом быстроходности. 

Однако в реактивных ГТ этому препятствует явление кавитации, вызывающее вибрацию агрегата, снижение КПД и разрушение материала ГТ.

Графики, выражающие зависимости величин, характеризующих ГТ, называются турбинными характеристиками.

В реальных условиях ГТ работают при меняющемся напоре; их поведение в этом случае изображается универсальными характеристиками для модели и эксплуатационными характеристиками — для натурной ГТ. 

Универсальные характеристики строятся на основании лабораторных исследований модели, проточная часть которой геометрически подобна натурной.

На универсальных характеристиках, исходя из условий моделирования, в координатах приведенных величин расхода Q’1 л/сек и частоты вращения h’1 об/мин (характерных для ГТ данной серии диаметром рабочего колеса 1 м, работающих при напоре 1 м) наносятся изолинии равных КПД h%, коэффициент кавитации s и открытия направляющего аппарата a0. 

Эксплуатационные характеристики строятся на основании универсальных и показывают зависимость КПД натурной турбины h% от нагрузки N Мвм и напора Нм при номинальной частоте вращения турбины n = const. 

Здесь же обычно наносят линию ограничения мощности, выражающую зависимость гарантированной мощности от напора. 

На этих же характеристиках изображают линии равных допустимых высот отсасывания HS м, показывающих заглубление рабочего колеса ГТ под уровень воды в нижнем бьефе (разность отметок расположения рабочего колеса и уровня нижнего бьефа).


Проточная часть реактивных ГТ состоит из следующих основных элементов:

  • спиральной камеры гидротурбины; 

  • направляющего аппарата, регулирующего расход воды; 

  • рабочего колеса;

  • отсасывающей трубы, отводящей воду от ГТ.

Реактивные ГТ по направлению потока в рабочем колесе делятся на:

По способу регулирования мощности реактивные ГТ бывают:

  • одинарного регулирования,

  • двойного регулирования. 

К ГТ одинарного регулирования относятся ГТ, содержащие направляющий аппарат с поворотными лопатками, через который вода подводится к рабочему колесу (регулирование в этих ГТ производится изменением угла поворота лопаток направляющего аппарата), и лопастно-регулируемые ГТ, у которых лопасти рабочего колеса могут поворачиваться вокруг своих осей (регулирование в этих ГТ производится изменением угла поворота лопастей рабочего колеса). 

ГТ двойного регулирования содержат направляющий аппарат с поворотными лопатками и рабочее колесо с поворотными лопастями. 

Поворотно-лопастные ГТ, применяемые на напоры до 150 м, могут быть осевыми и диагональными гидротурбинами. 

Разновидностью осевых являются двухперовые, в которых на каждом фланце размещаются по две лопасти вместо одной. 

Радиально-осевые ГТ одиночного регулирования применяют на напоры до 500-600 м. 

Активные ГТ строят преимущественно в виде ковшовых ГТ и применяют на напоры выше 500-600 м; их делят на парциальные и непарциальные. 

В парциальных ГТ вода к рабочему колесу подводится в виде струй через одно или несколько сопел и поэтому одновременно работает одна или несколько лопастей рабочего колеса. 

В непарциальных ГТ вода подводится одной кольцевой струей и поэтому одновременно работают все лопасти рабочего колеса. 

В активных ГТ отсасывающие трубы и спиральные камеры отсутствуют, роль регулятора расхода выполняют сопловые устройства с иглами, перемещающимися внутри сопел и изменяющими площадь выходного сечения. 

Крупные ГТ снабжаются автоматическими регуляторами скорости.

По расположению вала рабочего колеса ГТ делятся на:

  • вертикальные, 

  • горизонтальные,

  • наклонные. 

Сочетание ГТ с гидрогенератором называют гидроагрегатом. 

Горизонтальные гидроагрегаты с поворотно-лопастными или пропеллерными ГТ могут выполняться в виде капсульного гидроагрегата.

Почему водяная система охлаждения мотоцикла лучше воздушной?

Но температура двигателя с воздушным охлаждением постоянно повышается и понижается в зависимости от погодных условий и мощности двигателя.

Двигатели с воздушным охлаждением сильно нагреваются на высоких уровнях мощности, но хорошо охлаждаются на холостом ходу и неторопливой езде. Чем сильнее нагревается двигатель, тем больше поступающая в него топливно-воздушная смесь расширяется и теряет плотность. Это не только уменьшает мощность в той же степени, насколько уменьшилась плотность смеси, но также уменьшается мощность, из-за того что воздух теряет плотный, а смесь становится гуще.

Это еще более сложно, если гонщик настолько увлечен (как я был зимой 1968 года), что ездит на байке круглый год. Из-за низкой зимней температуры увеличивается плотность воздуха, поэтому в сравнении с топливом воздуха больше – это и есть состояние обедненной смеси. Если карбюратор подает правильную смесь зимой, она будет эффективной и в августе.

У гонщиков не было никаких проблем с этим — они привыкли к повторной установке карбюратора(ов) несколько раз в день, чтобы максимизировать мощность и реакцию. Но гонщики обычных серийных мотоциклов просто хотят кататься, поэтому их карбюраторы оборудованы под компромисс – обедненная смесь зимой, густая летом.

Затем появились экологи и вместе с ними бесконечное давление, чтобы уменьшить количество выбросов выхлопных газов двигателя. Учитывая ограничения карбюраторных топливных систем, самый быстрый способ сделать топливно-воздушные смеси более стабильными на протяжении всего года — это обеспечить постоянную температуру двигателя с помощью жидкостного охлаждения, регулируемого термостатом. И именно так и действовала мотоциклетная промышленность в 1980-х годах — в основном.

Да, вы можете не согласиться, я понимаю. Но сегодня карбюраторы исчезли, и им на замену пришел способ контроля смеси через замкнутый круг, путем электронной подачи топлива и кислородный датчик на выхлопной трубе. Так ли хорошо эта система может справиться с колебаниями температуры двигателя? Да, DFI (электронная подача топлива) может поставлять стабильную смесь, но она не может восстановить мощность, которая теряется из-за пониженной плотности воздуха, когда двигатель с воздушным охлаждением слишком сильно нагревается.

Моторное масло, чтобы справиться с сильными колебаниями температуры двигателя с воздушным охлаждением, должно быть либо универсальным, либо иметь разную вязкость масла для лета и зимы. На многофункциональном универсальном двигателе с воздушным охлаждением плохо сказывается быстрое испарение маловязкого масла (например, 10W в масле 10W-40), когда стенки цилиндра сильно нагреваются летом, добавляя к выхлопным газам еще и несгоревшие углеводороды (UHC) или выбрасывая их из фильтра картера. Использование зимой и летом масла разной вязкости идет вразрез с современной тенденцией к минимальному техническому обслуживанию.

Еще одна проблема — температурные изменения в зазорах двигателя. Коленвал изготовлен из стали, но алюминиевый картер, на котором он держится, изготовлен из алюминия, который расширяется при нагревании в три раза больше, чем сталь. Поэтому летом, когда масло более жидкое, зазоры подшипников максимально расширяются. Двигатели F1 работают на синтетических маслах, которые настолько жидкие, что крошечные зазоры в подшипниках, которые им нужны, не позволяют стартеру включить двигатель до тех пор, пока он не будет предварительно нагрет благодаря циркуляции по нему горячей охлаждающей жидкости. Термостатическое жидкостное охлаждение означает, что зазоры остаются неизменными.

Поршни в двигателях с воздушным охлаждением нагреваются сильнее, потому что все, что им нужно для охлаждения — это контакт с умеренно теплыми стенками цилиндров. Поэтому в таких двигателях, как правило, используются поршни с более длинной юбкой и большего веса, а не легкие поршни «пепельницы», встречающиеся в конструкциях с жидкостным охлаждением (для которых обычно используется моторное масло для поршневого охлаждения). Это дополнение для поршня служит в качестве «тепловой трубы» для отвода тепла от головки поршня к широкому месту соединения со стенкой цилиндра. Более тяжелые поршни способны выдерживать повышенную вибрацию и нагрузку на подшипники, но они были нормой 40 лет назад.

Теперь попробуем сохранить небольшой и стабильный зазор поршня в более широком температурном рабочем диапазоне двигателя с воздушным охлаждением. Не все так просто, и всевозможные отрицательные эффекты проявляются, когда поршни наклоняются и стучат от нагрузки по несущей поверхности при наличии большего зазора. Движение поршневого кольца может действовать наподобие миниатюрного масляного насоса, счищая масло со стенки цилиндра только для того, чтобы оно в итоге смешалось в воздух для горения, и превратившись в несгоревшие углероды, выйти через выпускного клапана (клапанов). Не беда, мы просто скажем инженерам продолжать экспериментировать, пока зазор поршня не стабилизируется при любых условиях. Более менее.

Ремонт предпусковых подогревателей в Хабаровске

Ремонт предпусковых подогревателей двигателя особенно актуален перед сезоном, но системное обслуживание, как правило, спасает устройство от дополнительных восстановительных процедур. Поэтому регулярное техническое обслуживание подогревателя стоит гораздо дешевле его ремонта.

От себя можем добавить, что огромный процент случаев, когда требуется ремонт подогревателя, связан с ошибками установки устройства. Вторую позицию в этом черном списке занимает плохой уход и несвоевременная чистка. Третью строчку прочно удерживает некачественное топливо. Если всегда помнить про эти аспекты, то предпусковой подогреватель прослужит вам долгую теплую жизнь.

При ремонте предпускового подогревателя в первую очередь нужно квалифицировать устройство. Установлен ли у вас предпусковой подогреватель двигателя или салонный отопитель? — вот в чем вопрос. Ремонт подогревателей жидкостного типа несколько отличается от устройств воздушного типа, но наш хабаровский автосервис занимается всеми случаями. Работы выполняются на оригинальном оборудовании, а оригинальные запчасти всегда имеются в наличии.

Замена топливных и жидкостных насосов

Замена топливных и жидкостных насосов в предпусковом подогревателе двигателя, как правило, не нужна при системном обслуживании. Устройство ломается, чаще всего, по причине излишней засоренности, неграмотной очистки и некачественной охлаждающей жидкости. В некорректной работе в жидкостных насосах зачастую виновата именно помпа. Благо, что вычислить ее можно довольно просто, во-первых, по характерному звуку. Во-вторых, шкив привода водяного насоса в таких случаях обязательно обзаведется люфтом. Если вы заметили утечку охлаждающей жидкости, то прежде всего, нужно проверить всевозможные резиновые прокладки. Сквозь них жидкость может вытекать весьма сильно и быстро.

Перед тем как приступить к замене топливных и жидкостных насосов, нужно разобраться, что привело к их поломке. Достаточно часто все начинается с того, что охлаждающая жидкость просачивается в неположенные места и смывает смазку с подшипника.

В нашем хабаровском автосервисе в ходе проверочных работ обязательно проверяется конфигурация устройства и герметичность его элементов, поскольку возможность отремонтировать насос, а не менять его, есть достаточно часто.

Замена блока управления

В нашем сервисе вы всегда можете выполнить замену блока управления отопителем, но мы бы хотели дополнительно пролить свет на историю, почему блок может выйти из строя и оставить вас замерзать. Даже на максимальной мощности может дуть только холодный воздух.

Сама процедура замены блока управления не очень сложная, но требует навыков, знаний и аккуратности, особенно при снятии рамки центрального воздуховода.

Как мы уже сказали, в большинстве современных автомобилей блок управления прячется за центральной консолью автомобиля. Самостоятельно проводить данные процедуры не рекомендуется, так как в этом случае вы теряете гарантию. Поэтому правильным будет доверить эту работу квалифицированному специалисту авторизованного сервисного центра.

Замена нагнетателя воздуха

Чтобы приступить к замене нагнетателя воздуха в предпусковом подогревателе, нужно определить, какого типа устройство установлено в вашем автомобиле: можно ли его менять только отдельными элементами или только в сборе. Следующая вещь, которая делается до старта работ — считываются ошибки, чтобы узнать, какой именно недуг довел отопитель до замены нагнетателя воздуха.

К замене нагнетателя воздуха в основном приводят два фактора:

  1. В контур забора воздуха стабильно попадает мусор
  2. Нагнетатель начинает клинить из-за подшипника.

По сути, второй фактор является следствием из первого, поэтому в главные враги нагнетателя воздуха можно записать грязь, а в главные союзники — регулярную диагностику и чистку узла.

Особенность данной неисправности в том, что ремонтировать нагнетатель — процедура не очень надежная. От повторной поломки в скором времени это не убережет. Поэтому гораздо надежнее практиковать замену нагнетателя воздуха на новый оригинальный элемент.

Замена свечей

Замена свечей отопителя в предпусковом подогревателе двигателя может понадобиться из-за некачественного топлива. Особенно этот вид ремонта характерен для дизельных автомобилей, которым длительное время не проводится чистка систем.

Почему рабочая свеча выходит из строя? Скапливающийся мусор постепенно обрастает вокруг свечи, из-за чего она перестает воспламенять топливо и греть двигатель или салон, а перегревается сама.

Определить то, что в дисфункции отопителя виновата именно свеча, можно по сути только двумя способами:

  1. Разбором устройства
  2. Компьютерной диагностикой

Дело в том, что бортовой компьютер автомобиля зачастую по этой же свече определяет температуру и контролирует деятельность отопителя.

Специалисты советуют во избежание преждевременной замены свечей делать чистку отопителя хотя бы раз в год, а если у вас авто на дизеле, то лето не является исключительным периодом, поскольку в камере все равно остаются кристаллизованные продукты распада.

Замена топливопровода

Замену топливопровода предпускового подогревателя двигателя мастер, как правило, констатирует в тех случаях, когда отмечает подсос воздуха в топливной магистрали. Еще более радикальный случай — следы топлива под корпусом автомобиля.

Сам по себе топливопровод почти для любой модели авто стоит довольно дешево. Сложность данного вида ремонта в том, что для замены топливопровода придется разбирать значительную часть салона.

Наши специалисты выполнят замену топливопровода в Хабаровске для автомобилей многих моделей и марок. Наш автосервис авторизован производителем и имеет в наличии оригинальные запчасти и комплектующие, что поможет сэкономить время на поиск и ожидание поставок деталей и лишние разъезды по городу.

Замена элементов корпуса

Замена элементов корпуса предпускового подогревателя может понадобиться в результате ДТП или при изначальном нарушении способов установки.

Предпусковой подогреватель двигателя и салона состоят из трех частей:

  1. Топливопровод
  2. Нагревательный элемент
  3. Камера сгорания и испаритель.

Физическому износу подвержен по сути только топливопровод. Беда остальных элементов приходит исключительно вместе с некачественным топливом. Сор из топлива преждевременно изнашивает элементы отопителя и распространяет коррозию по узлу.

Чистка от мусора в топливопроводе — это одно дело, а борьба с коррозией — это угроза автомобилю уже на порядок выше, поэтому при проблемах с работой отопителей обращайтесь в наш хабаровский автосервис.

Звоните и записывайтесь на ремонт предпускового подогревателя двигателя в Хабаровске по номеру +7 (4212) 76 26 60

водорода может увеличить расход топлива в автомобилях; Профессор UNF настроен скептически — Бизнес — The Florida Times-Union

Когда цены на газ превысили 4 доллара за галлон впервые с 2008 года, технология двигателей внутреннего сгорания с водородом набирает обороты.

Littlefoot Integrations, управляемая Воном Полом из Брайсвилля, начинает продвигаться вперед с водородными технологиями, которые, по его словам, могут увеличить расход топлива на 30 процентов до 70 процентов.

Пол называет свое устройство «водой в качестве топлива».«Система, которую он предлагает — 599 долларов для двигателей меньшего размера и 799 долларов для двигателей объемом более 5,7 литров — представляет собой устройство для извлечения водорода, которое усиливает водородом обычный бензиновый или дизельный двигатель.

« Цель продукта — увеличить расход топлива. — сказал Пол. — Мы добавляем в бензин или дизельное топливо водород. … По сути, он создает водород из воды ».

Littlefoot продает комплекты водородной системы, которые могут быть установлены в большинстве автомобилей. Устройство, по сути, подключает водородный генератор к автомобильному аккумулятору.Генератор использует энергию батареи для отделения водорода от воды в пластиковом резервуаре. Затем водород направляется через систему трубопроводов в фильтр и закачивается во впускной клапан двигателя.

«Он использует электричество от автомобиля для разделения молекул [воды] и водорода», — сказал Пол. «Это увеличит ваш расход бензина. Это увеличит долговечность двигателя, вашей трансмиссии … Это фактически создает более горячее пламя внутри двигателя, которое позволяет сгорать 100 процентов топлива, бензина или дизельного топлива.

Джо Кэмпбелл, бывший профессор машиностроения Университета Северной Флориды, который все еще проводит исследования, сказал, что системы повышения топливной эффективности с водородом изучаются в течение многих лет. эксперимент в школьном научном классе.

«Эта технология берет дистиллированную воду, добавляет в нее какое-то химическое вещество, в данном конкретном случае гидроксид калия … и выполняет электролиз раствора», — сказал Кэмпбелл.«Вы производите водород и кислород, но мы все делали это на уроках химии, когда учились в старшей школе».

По словам Кэмпбелла, одним из основных преимуществ водородной системы является то, что она сжигает топливо чисто.

Кэмпбелл сказал, что перспектива добавления такой системы к стандартному двигателю внутреннего сгорания звучит заманчиво, но он по-прежнему «скептически» относится к практическому увеличению количества миль на галлон.

Это не останавливает Paul and Littlefoot Integrations. Пол сказал, что за последние два года компания продала физическим лицам около 40 000 единиц через Интернет, выручив около 2 долларов.5 миллионов доходов. Он сказал, что они представили устройство ряду компаний и государственных учреждений, включая офис шерифа Джексонвилля, для рассмотрения их автопарка.

Представитель шерифа Шеннон Хартли сообщила, что департамент изучает информацию, полученную от Литтлфута.

«В настоящее время у нас не было возможности изучить технологию достаточно глубоко, чтобы прокомментировать ее легитимность», — сказал Хартли в электронном письме Times-Union в этом месяце.

Местная служба коммерческого отопления и кондиционирования воздуха в Вестсайде в Джексонвилле, Certified Air Contractors, установила устройство на трех из 38 автомобилей компании.

Рональд Швенд, вице-президент по продажам Certified, сказал, что компания только начала тестирование устройства и не собрала достаточно данных, чтобы узнать, насколько хорошо оно работает. Но Швенд сказал, что он надеется, что расход бензина и дизельного топлива на грузовиках увеличится с 15 миль на галлон до 20 на транспортных средствах, которые проезжают около 1000 миль в неделю.

Швенд сказал, что он уже заметил разницу в выбросах на грузовиках, оснащенных водородными устройствами.

«Просто запах выхлопных газов — большая разница. Вы действительно можете вдохнуть его. Запах не такой неприятный», — сказал Швенд.

Джон Паннепакер, строительный подрядчик из Джексонвилля, купил блок и говорит, что пока все хорошо.

«Я очень доволен результатами, которые я видел. Я видел увеличение примерно на 6 миль на галлон», — сказал Паннепакер.Пикап Chevrolet Silverado 2007 года, на котором он ездит, обычно проезжал около 14 миль на галлон, прежде чем он добавил водородное устройство в феврале.

«Когда мне нужно разогнаться, у двигателя больше мощности», — сказал Паннепакер. «Двигатель работает намного холоднее … Вы замечаете, что выбросы также резко сократились. Вы можете сунуть лицо в выхлопную трубу, и она не задохнется».

Pannepacker сказал, что поначалу это казалось дорогим при цене 599 долларов.

Но он сказал, что это окупится примерно за шесть месяцев, потому что вместо того, чтобы заправляться примерно шесть раз в месяц, теперь ему нужно заправляться только четыре раза в месяц.

Профессор инженерного дела Кэмпбелл сказал, что он был удивлен тем, что Pannepacker сообщил о такой высокой топливной эффективности, хотя это возможно. Он сказал, что инженеры-эксперты годами играли с прототипами водородных систем, связанных с двигателями внутреннего сгорания, и было сделано несколько прорывов.

«Вам нужно будет разработать двигатель внутреннего сгорания для работы на водороде», — сказал Кэмпбелл. «Это довольно сложно.

» Мы проделали часть этой работы в лабораториях здесь, в UNF, но двигатели не работают хорошо.Они не оптимизированы для этого. «Они не предназначены для этого», — сказал Кэмпбелл. Я бы не хотел, чтобы это было у меня под капотом, — сказал Кэмпбелл. — У вас есть водород и кислород в нагретой среде, протекающей под капотом автомобиля. … То есть водород и кислород [могут] взорваться.Они производят воду очень быстро — бац ».

Пол сказал, что характеристика Кэмпбелла завышена.

« Мой ответ неточен. Мы производим такой небольшой объем водорода, что он на самом деле безопаснее бензина, — сказал Пол. — Водород производится по запросу. Следовательно, он не находится под давлением ».

[email protected], (904) 359-4098

Новый способ получения водородного топлива из морской воды

Эрин И. Гарсиа де Хесус

Исследователи из Стэнфорда разработали способ получения водородного топлива с использованием солнечной энергии, электродов и соленой воды из залива Сан-Франциско.

Хунцзе Дай и его исследовательская лаборатория в Стэнфордском университете разработали прототип, который может генерировать водородное топливо из морской воды. (Изображение предоставлено Х. Дай, Юн Куанг, Майкл Кенни)

Результаты, опубликованные 18 марта в Трудах Национальной академии наук , демонстрируют новый способ отделения газообразного водорода и кислорода от морской воды с помощью электричества. Существующие методы разделения воды основаны на использовании воды высокой степени очистки, которая является ценным ресурсом и требует больших затрат в производстве.

Теоретически, чтобы приводить в действие города и автомобили, «вам нужно столько водорода, что невозможно использовать очищенную воду», — сказал Хунцзе Дай, J.G. Джексон и Ч. «У нас едва хватает воды для наших текущих потребностей в Калифорнии».

Водород является привлекательным вариантом в качестве топлива, поскольку он не выделяет углекислый газ, сказал Дай. Сжигание водорода дает только воду и должно облегчить усугубление проблем, связанных с изменением климата.

Дай сказал, что его лаборатория продемонстрировала доказательство концепции с помощью демонстрации, но исследователи предоставят производителям возможность масштабировать и массово производить дизайн.

Борьба с коррозией

По идее, разделение воды на водород и кислород с помощью электричества — так называемый электролиз — это простая и старая идея: источник энергии подключается к двум электродам, помещенным в воду. Когда включается питание, газообразный водород выходит из отрицательного конца, называемого катодом, а кислород, пригодный для дыхания, выходит из положительного конца — анода.

Но отрицательно заряженный хлорид в морской воде может вызвать коррозию положительного конца, ограничивая срок службы системы. Дай и его команда хотели найти способ не дать компонентам морской воды разрушить затопленные аноды.

Исследователи обнаружили, что если они покрыли анод слоями, богатыми отрицательными зарядами, эти слои отталкивали хлорид и замедляли распад лежащего под ним металла.

Они нанесли слой гидроксида никеля и железа поверх сульфида никеля, который покрывает сердцевину из пены никеля.Пена никеля действует как проводник, переносящий электричество от источника питания, а гидроксид никеля и железа вызывает электролиз, разделяя воду на кислород и водород. Во время электролиза сульфид никеля превращается в отрицательно заряженный слой, который защищает анод. Так же, как отрицательные концы двух магнитов прижимаются друг к другу, отрицательно заряженный слой отталкивает хлорид и не дает ему достичь металла сердечника.

По словам Майкла Кенни, аспиранта лаборатории Dai и соавтора статьи, без отрицательно заряженного покрытия анод работает в морской воде только около 12 часов.«Весь электрод разваливается в крошку», — сказал Кенни. «Но с этим слоем он может работать более тысячи часов».

В предыдущих исследованиях по разделению морской воды для получения водородного топлива использовались небольшие количества электрического тока, поскольку коррозия происходит при более высоких токах. Но Дай, Кенни и их коллеги смогли провести в 10 раз больше электричества через свое многослойное устройство, что помогает ему быстрее вырабатывать водород из морской воды.

«Я думаю, что мы установили рекорд по разделению морской воды на течении», — сказал Дай.

Члены команды провели большую часть своих тестов в контролируемых лабораторных условиях, где они могли регулировать количество электричества, поступающего в систему. Но они также разработали демонстрационную машину на солнечной энергии, которая производила газообразный водород и кислород из морской воды, собранной в заливе Сан-Франциско.

И без риска коррозии из-за солей, устройство соответствует современным технологиям, использующим очищенную воду. «Впечатляющим в этом исследовании было то, что мы смогли работать при таких же электрических токах, как те, которые используются в промышленности сегодня», — сказал Кенни.

На удивление просто

Оглядываясь назад, Дай и Кенни видят простоту их конструкции. «Если бы у нас был хрустальный шар три года назад, это было бы сделано за месяц», — сказал Дай. Но теперь, когда разработан базовый рецепт электролиза с морской водой, новый метод откроет двери для увеличения доступности водородного топлива, работающего на солнечной или ветровой энергии.

В будущем эту технологию можно будет использовать не только для производства энергии. Поскольку этот процесс также производит пригодный для дыхания кислород, водолазы или подводные лодки могут приносить устройства в океан и генерировать кислород внизу, не поднимаясь на поверхность для доступа к воздуху.

Что касается передачи технологии, «можно было бы просто использовать эти элементы в существующих системах электролизера, и это могло бы быть довольно быстро», — сказал Дай. «Это не похоже на начало с нуля — это больше похоже на начало с 80 или 90 процентов».

Другими соавторами являются приглашенный ученый Юнь Куанг из Пекинского химико-технологического университета и Юнтао Мэн из Шаньдунского университета науки и технологий. Дополнительные авторы: Вэй-Сюань Хунг, Иджин Лю, Цзянань Эрик Хуанг, Рохит Прасанна и Майкл МакГихи.

Эта работа финансировалась Министерством энергетики США, Национальным научным фондом, Национальным научным фондом Китая и Национальным проектом ключевых исследований и разработок Китая.

Чтобы читать все истории о Стэнфордской науке, подпишитесь на еженедельный выпуск Stanford Science Digest.

HyTech Power, возможно, решил водород, одну из самых сложных проблем в чистой энергии

Это странный химический поворот в том, что в самом обычном веществе на Земле есть топливо, заключенное в воде.

Водород — символ славы h3O — оказался чем-то вроде универсального элемента, швейцарского армейского ножа для получения энергии. Его можно производить без парниковых газов. Он легко воспламеняется, поэтому может использоваться в качестве топлива для сжигания. Его можно подавать в топливный элемент для производства электричества напрямую, без сжигания, с помощью электрохимического процесса.

Может храниться и распространяться в виде газа или жидкости. Его можно комбинировать с CO2 (и / или азотом и другими газами) для создания других полезных видов топлива, таких как метан или аммиак.Его можно использовать в качестве химического сырья в различных промышленных процессах, помогая производить удобрения, пластмассы или фармацевтические препараты.

Довольно удобно.

И это самый распространенный химический элемент во Вселенной, так что можно подумать, что у нас есть все, что нам нужно. К сожалению, это не так просто.

Выделять водород из других элементов, хранить его и преобразовывать обратно в полезную энергию — это дорого как с точки зрения денег, так и энергии. Ценность, которую мы получаем от этого, никогда полностью не оправдывала того, что мы вкладываем в его производство.Это одна из тех технологий, которая, кажется, постоянно находится на грани прорыва, но никогда не достигает цели.

Уроженец Сиэтла Эван Джонсон считает, что он может это изменить. Он думает, что наконец-то понял, как разблокировать водородную экономику.

Джонсон — далеко не первый и не единственный человек, поставивший эту цель. Но после 10 лет экспериментов, испытаний и подготовки он разработал ряд технологий и практический бизнес-план, который проложил путь к реальному коммерческому масштабу использования водорода.

И хотя HyTech Power, где Джонсон является техническим директором, очевидно, стремится к финансовому успеху, Джонсон рассматривает свои продукты как нечто большее: способ использовать водород для немедленного уменьшения загрязнения при одновременном увеличении масштабов и снижении затрат, достаточных для внесения более фундаментальных изменений в энергетику. система.

Стационарный дизель-генератор с водородными форсунками HyTech. HyTech Power

HyTech нацелена на большой рынок, чтобы выйти на еще больший

HyTech Power, базирующаяся в Редмонде, штат Вашингтон, намеревается представить три продукта в течение ближайшего года или двух.

Первый будет использовать водород для очистки существующих дизельных двигателей, повышая их топливную эффективность на треть и устраняя более половины их загрязнения воздуха, со средней окупаемостью за девять месяцев, сообщает компания. Это потенциально огромный рынок с большим существующим спросом, который, как надеется HyTech, позволит капитализировать свой второй продукт — модернизацию, которая превратит любой автомобиль внутреннего сгорания в автомобиль с нулевым уровнем выбросов (ZEV), позволив ему работать на чистом водороде. В первую очередь это будет нацелено на крупные флоты.

И это станет третьим продуктом — тот, на который Джонсон положил глаз с самого начала, тот, который может революционизировать и децентрализовать энергетическую систему — стационарный продукт для хранения энергии, предназначенный для конкуренции и, в конечном итоге, вытеснения с такими большими батареями, как Powerwall Теслы.

По крайней мере, таков план.

Мир энергетики, конечно, полон громких стартапов, и путь от прототипа к рыночному успеху долог и опасен. Для успеха HyTech потребуется нечто большее, чем просто умные технологии.Потребуется хорошее исполнение.

С этой целью компания недавно привлекла поддержку нескольких опытных руководителей Boeing, в том числе Джерри Аллина, который проработал 30 лет в Boeing и в декабре вышел на пенсию, чтобы возглавить расширение HyTech в качестве главного операционного директора.

Мягкая и неторопливая, с аккуратно подстриженной бородой, Аллин занимает небольшой офис на втором этаже бежевого здания HyTech, которое в основном занято огромным гаражом / мастерской. «Я очень скептически относился к технологии, как и в целом», — говорит он, но «как только я смог увидеть ее собственными глазами и понять физику, я подумал:« О, черт возьми ».Это действительно интересно! »

Его привлекло то, что исходные продукты не требуют новых рынков или инфраструктуры. «Теперь они действительно могут изменить мир», — говорит он. Ключевым моментом является в первую очередь дизельные двигатели. Их миллионы, они грязные и дорогие, и политики стараются их очистить. Это большой спрос. Компания «ожидает совершить много ошибок», — говорит Аллайн, но потенциальный рынок почти непостижимо велик.

Работа в гараже HyTech, переоборудование больших дизельных грузовиков. HyTech Power

И ставки выше быть не могут. В последние годы стало ясно, что какое-то топливо с нулевым содержанием углерода, пригодное для хранения, горючее, если не необходимо, для полной декарбонизации энергетической системы, по крайней мере, чрезвычайно полезно.

Перед тем, как углубиться в продукты HyTech, стоит объяснить, почему доступный водород является такой заманчивой перспективой для тех, кто озабочен устойчивой энергетикой.

Проблема с водородом: его дорого собирать, хранить и преобразовывать.

Около 95 процентов мирового производства водорода осуществляется за счет парового риформинга метана (SMR), продувки природного газа высокотемпературным паром под высоким давлением.Это энергоемкий процесс, который требует использования ископаемого топлива и оставляет после себя поток углекислого газа, поэтому его использование для обезуглероживания энергетической системы ограничено.

Но также можно извлечь водород непосредственно из воды с помощью электролиза — это процесс поглощения воды (содержащей различные «электрокатализаторы») электричеством, стимулируя химическую реакцию, которая расщепляет водород и кислород. Если электролиз проводится с использованием возобновляемой электроэнергии с нулевым выбросом углерода, полученный водород является топливом с нулевым выбросом углерода.

Это решает проблему углерода, но есть и другие. Водород в воде на самом деле не хочет выпускать кислород (они «прочно связаны»), поэтому их расщепление требует довольно много энергии. Полученный водород необходимо хранить, либо сжимая его в виде газа с помощью больших насосов, либо (слабо) связывая его с чем-то еще и храня в виде жидкости. Для этого газа или жидкости потребуется распределительная инфраструктура. Наконец, водород должен быть извлечен из хранилища и преобразован обратно в энергию путем его сжигания или пропуска через топливный элемент.

К тому времени количество энергии, вложенной в процесс, значительно превышает то, что может быть возвращено обратно.

Это был барьер. Если сложить все затраты на преобразование энергии, «добыча» водорода для использования в энергетической системе с нулевым выбросом углерода, как правило, была убыточным бизнесом. Полезные услуги, предоставляемые водородом, не могут компенсировать энергию (и деньги), необходимые для ее производства и использования. По крайней мере, не на сегодняшний день.

Вот почему, хотя люди добывают и сжигают водород с 17-го века, двигатели и топливные элементы, работающие на водороде, существуют примерно с 19-го, а водород прошел через многочисленные циклы ажиотажа, вплоть до 21-го века. — разрекламированная «водородная экономика» так и не получила широкого распространения.

Таких не так уж и много. Shutterstock

Еще в конце 2000-х годов большинство экспертов в области энергетики списали водород со счетов. С тех пор изменились две вещи.

Доступный водород может устранить основные препятствия на пути к устойчивой энергетике

Главное, что изменилось, — это глобальный переход на чистую энергию. Чтобы решить проблему изменения климата, мир фактически согласился полностью декарбонизировать энергетическую систему в течение столетия.Это вызвало интенсивное исследование инструментов, необходимых для создания системы с нулевым выбросом углерода.

Мы знаем, как производить электроэнергию с нулевым выбросом углерода (возобновляемые источники, гидроэнергетика, атомная энергия), поэтому одним из ключевых шагов в декарбонизации является «электрификация всего» или, по крайней мере, как можно большего количества видов энергии.

Но широкомасштабная электрификация — непростая задача. Существует множество существующих приложений, работающих на горючем жидком топливе. Помимо практически всего транспорта, подумайте о миллионах и миллионах зданий по всему миру, отапливаемых нефтью или природным газом.

Значительная часть транспорта может быть электрифицирована, и все эти печи теоретически можно заменить электрическими альтернативами, такими как тепловые насосы, но сделать все это за оставшееся время для обезуглероживания — поистине монументальная задача.

Конечно, было бы неплохо выиграть время, если бы у нас было жидкое топливо с нулевым выбросом углерода, которое мы могли бы просто использовать в этих существующих системах, чтобы сократить выбросы от транспортных средств и приборов, которые мы уже используем. (Великобритания экспериментирует с отоплением домов водородом; Норвегия запретит любое использование мазута для отопления домов к 2020 году.)

Кроме того, если переменная возобновляемая энергия (солнце и ветер) должна обеспечивать большую часть или всю нашу энергию, нам понадобится какой-то способ хранить эту энергию, когда солнце и ветер не хватает. Нам потребуется не просто посекундное или почасовое хранение (которое вполне может обеспечить батареи), но и ежедневное, ежемесячное или ежегодное хранение (для которого батареи не подходят), чтобы гарантировать защиту от долговременных колебаний солнца и ветра. . Было бы неплохо, если бы мы могли хранить много резервной энергии в виде стабильного жидкого топлива.

Короче говоря, в наших планах по устойчивой энергетике есть дыра в форме водорода.

Второе, что изменилось, это то, что исследования, разработки и ранние рыночные испытания неуклонно снижали стоимость и повышали долговечность основных компонентов водородной технологии.

В общем, потребность в сочетании с инновациями может, наконец, означать, что под рукой есть рентабельные продукты. Вот почему «во всем мире наблюдается возрождение водородной активности», — говорит Адам Вебер, руководитель группы преобразования энергии в Национальной лаборатории Лоуренса Беркли.

Или, как недавно сказал Пьер-Этьен Франк, секретарь торговой группы Hydrogen Council, «2020-2030 годы будут для водорода такими же, как 1990-е годы для солнца и ветра».

Несмотря на все недавние инновации, Джонсон снова и снова обнаруживал, что каждый раз, когда он отказывался от стандартных компонентов и создавал свои собственные — практически каждый элемент в продуктах HyTech спроектирован и изготовлен по индивидуальному заказу, с сырьем, заказанным через Интернет, — цена пошла вниз. Не знаю почему.”

Джонсон — высокий, стройный и светловолосый, заядлый мастер и строитель, глаза которого загораются, когда он говорит о технике. После учебы в Тихоокеанском университете Сиэтла он провел первые 10 лет своей 20-летней карьеры в области сжатия видео. Но работа в Норвегии с Innovation Norway над хранением водородной энергии привела к тому, что у него возникла проблема с водородом. С тех пор он стал истинным верующим. «Ставка на водород в будущем — лучшее, что вы можете сделать», — говорит он.

«Если электролиз действительно настолько дешевле, это меняет правила игры»

Начинается с электролизера, который извлекает водород из воды.Джонсон не смог найти такой дешевый, простой и эффективный, как он хотел, поэтому он построил свой собственный.

Электролизер HyTech (в данном случае присоединенный к стационарному дизель-генератору). HyTech Power

Ничего особенного, просто трубка, наполненная дистиллированной водой. Примерно в центре подвешена небольшая титановая пластина, покрытая специальной смесью электрокатализаторов, оптимизированных для разделения водорода и кислорода.Газы поднимаются от пластины непрерывным потоком пузырьков. Он полностью закрыт металлом, в нем нет движущихся частей, поэтому он чрезвычайно прочен и не требует значительного обслуживания.

В целом, по словам Джонсона, система «очень проста и бессмысленна». (Это тема, к которой он часто возвращается — предпочтение замкнутых, простых, полностью перерабатываемых систем.) Но благодаря эффективности электрокатализаторов, добавляет он, «очень точно, сколько энергии необходимо для производства необходимый водород.”

Джонсон может похвастаться тем, что его электролизер может производить водород примерно в три или четыре раза быстрее, чем электролизеры с аналогичной площадью основания, используя примерно треть электрического тока. Это означает постепенное снижение затрат.

«Очевидно, я не могу проверить их экономику издалека, — сказал мне Джеймс Бреннер из Национального центра исследований водорода при Технологическом институте Флориды, — но если электролиз действительно намного дешевле, это меняет правила игры».

Теперь давайте посмотрим, что HyTech планирует с этим делать.

Модернизация. HyTech Power

Способ очистки дизельных двигателей для рынка, который остро нуждается в одном

Первый продукт, дебют которого запланирован на апрель, является ключом ко всему остальному.

Это называется «Система внутреннего сгорания» (ICA), модификация двигателей внутреннего сгорания, которая позволяет им значительно повысить эффективность использования топлива и уменьшить загрязнение воздуха. Это достигается путем добавления к топливу крошечных количеств газообразного водорода и кислорода непосредственно перед его сгоранием в цилиндрах двигателя.Смесь HHO придает интенсивность сгоранию, позволяя топливу сгорать более полно, генерируя больше энергии и меньше загрязнений.

Система ICA технически может работать на любом двигателе внутреннего сгорания, но для начала HyTech нацелена на самые грязные двигатели с самой быстрой окупаемостью инвестиций, а именно на дизельные двигатели — в транспортных средствах, таких как грузовики, автофургоны, автобусы и вилочные погрузчики, а также большие стационарные дизельные генераторы, которые по-прежнему обеспечивают резервное (и даже основное) питание миллионов людей во всем мире.

Все эти дизельные двигатели выделяют канцерогенный дым, содержащий твердые частицы (сажа) и оксиды азота (NOx), которые наносят вред здоровью человека. Штаты и города по всему миру борются с загрязнением воздуха дизельным топливом.

Но дизельные сажевые фильтры (DPF), которые задерживают частицы, дороги, требуют технического обслуживания и требуют частой замены. Жидкости для селективного каталитического восстановления (SCR), добавляемые в выхлопные газы для удаления NOx, сами по себе являются загрязнителями, и их необходимо часто менять.

Короче говоря, есть много дизельных двигателей, они очень грязные (ответственны за до 50 процентов загрязнения городского воздуха зимой), и многие люди тратят много денег, пытаясь их очистить. Это большой рынок.

Предложение

HyTech на этом рынке весьма примечательно: оно утверждает, что его ICA может повысить топливную экономичность дизельного двигателя на 20–30 процентов, уменьшить содержание твердых частиц на 85 процентов и сократить выбросы NOx на 50–90 процентов.Вместе с сажевым фильтром DPF и некоторым количеством SCR он может дать дизельный двигатель, который соответствует официальным калифорнийским стандартам для автомобилей со «сверхнизким уровнем выбросов».

Стоимость преобразования грязного дизельного двигателя в относительно чистый: около 10 000 долларов на установку, которые, по оценке HyTech, окупятся за девять месяцев за счет сокращения расходов на топливо и техническое обслуживание.

Устройство помощи внутреннего сгорания (ICA) HyTech, установленное на большом дизельном двигателе.(Видите маленький ряд форсунок?) HyTech Power

HyTech — не первая и не единственная компания, разработавшая систему присадок HHO, но ничто на рынке не может сравниться с такими цифрами.

ICA достигает этой эффективности благодаря компьютеризированному контроллеру времени, который определяет и анализирует вращение коленчатого и распределительного валов, чтобы определить точное время и размер впрыска HHO. Предыдущие системы HHO более или менее заполняли двигатель HHO через воздухозаборник, но HyTech использует «впрыск через порт» с отдельным инжектором на впускном клапане каждого цилиндра, управляемым таймером.Каждый инжектор (размером примерно с человеческий волос) впрыскивает крошечные, точно отмеренные струи HHO в цилиндр именно тогда, когда это необходимо.

Такой уровень точности позволяет ICA использовать гораздо меньше водорода, чем его конкуренты, гораздо более эффективно. Небольшого бортового электролизера производит более чем достаточно.

Это смелые заявления, но пока они остаются верными. ICA был включен в список EPA как кандидат на технологию сокращения выбросов; Уважаемая испытательная фирма SGS обнаружила, что ICA повысила топливную экономичность грузовика FedEx на 27.4 процента; FedEx в настоящее время проводит дорожные испытания ICA на автопарке грузовиков и обнаруживает, что экономия топлива на 20–30 процентов выше, а затраты на техническое обслуживание сажевого фильтра значительно снизились. При стороннем тестировании и при ограниченных местных продажах в районе Редмонда ICA выполнила свои обещания.

Если он сможет сделать это в масштабе HyTech — надежно повысить экономию топлива на треть и снизить загрязнение почти до нуля с окупаемостью за девять месяцев — возможностей не будет конца. По оценкам компании, рынок очистных работ, включая портовые грузовики, грузовые суда, рефрижераторы, грузовики дальнего следования, автобусы, генераторы и все другие грязные дизельные двигатели, составляет 100 миллиардов долларов.

ICA не полагается на новую инфраструктуру или субсидии. Это способ выйти на большой рынок, немедленно сократить выбросы и накопить средства для долгосрочных усилий по полной замене дизельного топлива.

HyTech также хочет очистить существующие автомобили

Позже в этом году HyTech представит свою вторую линейку продуктов: модифицированные водородом автомобили с ДВС. Проще говоря, потребуется любой двигатель, работающий на дизельном топливе, пропане или СПГ, и переключить его на 100-процентный водород.(В настоящее время компания находится в процессе сертификации своего модифицированного продукта Калифорнийским советом по воздушным ресурсам как имеющего нулевые выбросы.) Это позволит любому водителю получить автомобиль с нулевым уровнем выбросов по значительно меньшей цене, чем стоимость покупки нового электрического или электрического автомобиля. автомобиль на водородных топливных элементах.

Джонсон признает, что, если бы он проектировал автомобиль с нуля, он бы спроектировал его на основе водородного топливного элемента без сгорания, но «мы не заинтересованы в том, чтобы становиться автомобильной компанией», — говорит он.Вместо этого HyTech хочет очистить существующие автомобили.

Не каждый может позволить себе автомобиль Toyota Mirai на водородных топливных элементах (от 58 365 долларов). Shutterstock

Для такого применения с чистым водородом (в отличие от смешанного HHO) электролизер немного отличается. Водород проходит через мембрану, которая лишает его остатков кислорода или азота, оставляя чистый водород для сгорания транспортного средства.(Это делает электролизер протонообменной мембраной, или PEM, электролизером, вариант, знакомый любителям водорода.)

По своему обыкновению, Джонсон разработал свою собственную мембрану, смешав сырье, чтобы создать что-то более эффективное и дешевое, чем другие продукты PEM на рынке.

Есть еще одно отличие, которое представляет собой еще одну из основных технологических разработок Джонсона.

Потребляемая мощность двигателя транспортного средства варьируется и может быстро увеличиваться и уменьшаться, поэтому системе необходимо хранить немного водорода в качестве буфера на случай, если он потребляет больше, чем может произвести электролизер.

Обычные автомобили на водородных топливных элементах (такие как Toyota Mirai) хранят водород в виде сильно сжатого газа при давлении около 8000 фунтов на квадратный дюйм. Но со сжатым газом возникают самые разные проблемы. Для сжатия газа требуется много энергии, для этого требуется собственная специализированная инфраструктура, заправочные станции для сжатого газа чрезвычайно дороги в строительстве, а сжатый водород, ну, взрывоопасен, поэтому каждый полный его бак — потенциальная бомба.

Джонсон не хочет иметь с этим ничего общего. Итак, он пошел другим путем.Его система хранит водород, слабо связанный с металлами в виде «гидридов», в инертном жидком растворе без давления (~ 200 фунтов на квадратный дюйм).

Проблема с гидридами была двоякой: а) создание связи, достаточно слабой, чтобы ее можно было разорвать без излишней энергии, когда необходимо высвободить водород, и б) увеличение плотности энергии образующейся жидкости. (На сегодняшний день большинство гидридных жидкостей обладают меньшей энергетической плотностью, чем сжатый водород, и намного меньше ископаемого топлива. Они весят слишком много для той энергии, которую они вырабатывают.)

Джонсон думает, что решил обе проблемы. Он не раскрывает подробностей о задействованных гидридах, но у него достаточно высокое соотношение мощности к весу, чтобы побить литий-ионные батареи (которые очень тяжелые), и достаточно слабую гидридную связь, чтобы ее можно было разорвать, используя только перенаправляем отходящее тепло от двигателя (не требуется дополнительного тепла или давления).

Более того, он работает с командой над наноматериалами для гидридов и ожидает «огромного скачка» в соотношении мощности к весу в ближайшие годы; в конечном итоге, по его словам, он хочет, чтобы плотность энергии была конкурентоспособной с ископаемым топливом.

Эффективный электролиз плюс эффективное накопление гидридов означает, что в результате модернизации Hy-Tech будет создан автомобиль с нулевым уровнем выбросов (ZEV) со средней дальностью полета 300 миль, сравнимый с электромобилями высокого класса, но способный работать с любым существующим транспортным средством. Когда я посетил завод HyTech в Редмонде, Джонсон отвез меня на обед в гигантском пикапе Ford Raptor, работающем на водороде.

Ford Raptor, работающий на чистом водороде. HyTech Power

Есть два способа «заправить» автомобиль.Медленный способ — включить его на ночь, чтобы электролизер мог заполнить бак. Самый быстрый способ — заполнить его раствором гидрида, который можно получить на месте, дома или на заправочной станции, не имея ничего, кроме электролизера, немного дистиллированной воды и резервуара.

Пока не существует инфраструктуры, поддерживающей такую ​​быструю заправку, но это не похоже на сжатый водород под высоким давлением, подчеркивает Джонсон. Это не опасно; не производит токсичных побочных продуктов; он не требует множества государственных правил безопасности и правоприменения; Теоретически, на заправочных станциях «мама и папа» можно было бы довольно дешево запустить заправку.

Несколько утопическое видение Джонсона состоит в том, что в конечном итоге в каждом доме и на предприятии будет электролизер и полный бак связанного водорода, который можно будет использовать либо для выработки электроэнергии для здания (подробнее об этом в третьем этапе), либо для топлива водородных транспортных средств.

По словам Джонсона, цель — оставить двигатели внутреннего сгорания, но «это все равно, что бросить курить — каждый хочет остыть индейки». Этого просто не произойдет «. Модернизация существующих транспортных средств за небольшую часть стоимости нового транспортного средства с нулевым уровнем выбросов позволит компании быстро начать сокращение транспортных выбросов.

Святой Грааль HyTech: долгосрочное и доступное хранилище энергии

Наконец, получив финансирование и капитализацию за счет продуктов для модернизации, HyTech приступит к производству аккумуляторов энергии. Его масштабируемое хранилище энергии (SES) предназначено для конкуренции с большими батареями, такими как Powerwall от Tesla, либо в качестве локального хранилища для домов и предприятий, либо в качестве хранилища в масштабе сети, подключенного к крупным солнечным и ветряным электростанциям.

Идея хранения водородной энергии заключается в том, что когда-нибудь скоро будут регулярные периоды, когда ветер и солнце вырабатывают электроэнергию, значительно превышающую спрос.Эти излишки энергии будут стоить очень дешево — на самом деле, мы будем искать способы не тратить их зря.

Одной из набирающих популярность идеей является «преобразование энергии в газ», то есть преобразование этой избыточной энергии в водород и его хранение. «Водород — это, наверное, самое простое, что вы можете сделать при низких ценах на электроэнергию», — говорит Вебер.

Часть этого водорода можно закачать в существующие газопроводы, что снизит углеродоемкость газа. Некоторые из них могут быть объединены с диоксидом углерода для создания другого жидкого топлива.И некоторые из них можно было бы напрямую преобразовать обратно в энергию с помощью топливных элементов. «Стационарное хранилище — это прекрасная потенциальная возможность для водородных топливных элементов», — говорит Леви Томпсон, директор Лаборатории технологий водородной энергетики Мичиганского университета.

Проблема, опять же, заключалась в том, что сквозная эффективность накопления водородной энергии на основе электролиза обычно была меньше половины, чем достигается литий-ионной батареей.

Плохой рисунок, иллюстрирующий хранение водородной энергии. Shutterstock

И снова Джонсон думает, что сломал его.

Вот как работает система SES HyTech: энергия поступает (в идеале от солнечных панелей или ветряных турбин) для запуска электролизера. Произведенный водород либо попадает в топливный элемент (да, Джонсон построил свой собственный), либо связывается в виде гидридов и хранится в резервуаре. Когда требуется энергия, гидридные связи разрываются с использованием отработанного тепла системы, высвобождая больше водорода для топливного элемента.

Избегая сжатия и обнаружив, что гидридная связь достаточно слабая, чтобы ее можно было разорвать отходящим теплом, Джонсон заметно повысил эффективность.Он еще больше повысил эффективность с помощью еще одной умной техники. В большинстве хранилищ водорода используются огромные электролизеры и топливные элементы, которые не могут точно масштабировать производство энергии в соответствии с потребностями. Джонсон разбил свою систему на модули: она содержит стопки электролизеров и топливных элементов меньшего размера, которые можно запускать по одному по мере роста спроса. «Глупо просто, — говорит он с улыбкой.

Внешне SES работает как большая батарея, но есть отличия и компромиссы.

С другой стороны, несмотря на то, что он значительно увеличил сквозную эффективность по сравнению с водородными конкурентами, Джонсон все еще не совсем соответствовал эффективности батарей.Он говорит, что на данный момент эффективность SES составляет около 80 процентов. По крайней мере, когда они новые, традиционные свинцово-кислотные батареи составляют около 90 процентов, а литий-ионные батареи — около 98 процентов или выше, хотя все батареи со временем изнашиваются. (Джонсон ожидает, что эффективность SES будет продолжать расти по мере разработки новых материалов для своих электролизеров и топливных элементов — он думает, что 85 или 90 процентов находятся в пределах досягаемости.)

С другой стороны, SES прослужит намного дольше, чем батарея, пройдя более 10 000 циклов зарядки и разрядки, по сравнению с примерно 1000 для литий-ионной батареи.Это приблизит срок ее службы к сроку службы типичной солнечной панели, что позволит более удобно соединять эти две батареи.

В отличие от аккумуляторов, которые нельзя полностью зарядить или разрядить из-за опасения ухудшения характеристик, SES может перейти от 100-процентной емкости до 0 и обратно без повреждений.

И когда он действительно изнашивается, в отличие от батарей, SES полностью подлежит переработке. Металлы плавятся, перетираются и используются повторно; вода перегоняется.

Лучше всего то, что раствор гидрида может храниться неограниченное время без обслуживания или потери потенциала.Его не нужно сжимать или охлаждать, как сжатый водород. Он не разлагается, как электрохимический заряд аккумуляторов. Гидриды можно хранить столько, сколько необходимо.

Это делает SES фантастическим кандидатом на долгосрочное хранение энергии, святым Граалем по-настоящему устойчивой энергетической системы. Если бы электричество было дешевым и достаточно обильным, в принципе не было бы ограничений на количество резервной энергии, которую можно было бы накапливать.

Это также делает SES идеально подходящим для распределенной энергетической системы.Без движущихся частей, надежных компонентов, устойчивых к экстремальным температурам и погодным условиям, и 98-процентной возможности вторичной переработки, это был бы чрезвычайно простой способ для любого, у кого есть несколько солнечных панелей, получить степень энергетической независимости. Это может быть особенным благом для удаленных, автономных сообществ.

Жутко горящий электролизер. HyTech Power

Какой бы ни была судьба HyTech, потребность в водороде вызовет инновации

Распределенная безуглеродная водородная экономика — это то, о чем размышляет Джонсон, когда дает себе время подумать.Но в наши дни перед нами стоит более неотложная задача: запустить HyTech.

Ни один из экспертов по водороду, с которыми я разговаривал, не обнаружил каких-либо особых красных флажков в технических заявлениях HyTech, но все они проявили с трудом завоеванный скептицизм «шоу-не-говори». В водородном мире произошло много новых событий. История усеяна трупами многообещающих стартапов, которые не смогли воплотить свои инновации в жизнеспособные рыночные продукты.

Тем не менее, Hytech, похоже, занимает хорошие позиции, имея надежную команду руководителей, некоторое раннее финансирование, положительные результаты испытаний, партнерские отношения с такими крупными игроками, как FedEx и Caterpillar, а также целевой рынок с продемонстрированным спросом на ее продукцию.Скорее всего, через год или два мы узнаем, справились ли они с этим.

В любом случае, по мере того, как стремление к созданию устойчивой энергетической системы всерьез набирает обороты, потребность в водороде будет только возрастать. Нам нужно топливо с нулевым выбросом углерода и нам нужно долгосрочное хранение энергии. Водород подходит обоим счетам.

Когда есть большая социальная потребность и деньги, люди становятся умными. Если Джонсон сможет добиться нескольких поэтапных достижений в водородной технологии, совершая покупки в Интернете и возясь в своей лаборатории, скоро другие сделают то же самое.А по мере выхода продуктов на рынок масштабирование приведет к снижению затрат, как это произошло с ветряной и солнечной энергией.

Во многих отношениях доступный водород — это последняя часть головоломки устойчивой энергетики, энергоноситель, который может заполнить трещины в системе, работающей в основном на ветровой и солнечной энергии. За прошедшие годы его несколько раз оставляли умирать, но, поскольку мир серьезно относится к декарбонизации, водород может, наконец, выиграть свой день на солнце.


У нас есть заявка

В такие моменты, когда люди пытаются понять варианты и вакцины, а дети возвращаются в школу, многие торговые точки отключают свой платный доступ.Контент Vox всегда бесплатный, отчасти благодаря финансовой поддержке наших читателей. Мы освещаем пандемию Covid-19 более полутора лет. С самого начала нашей целью было внести ясность в хаос. Чтобы предоставить людям информацию, необходимую для обеспечения безопасности. И мы не останавливаемся.

К нашему удовольствию, вы, наши читатели, помогли нам достичь нашей цели — добавить 2500 финансовых взносов в сентябре всего за 9 дней. Итак, мы ставим новую цель: добавить 4500 взносов к концу месяца.Поддержка читателей помогает обеспечить бесплатное покрытие и является важной частью нашей ресурсоемкой работы. Поможете ли вы нам достичь нашей цели, сделав взнос в Vox всего за 3 доллара?

Испарительные двигатели

могут производить больше энергии, чем уголь, с огромной оговоркой

Технология, которая может использовать возобновляемую энергию естественного испарения воды, может обеспечить огромную часть потребностей страны в энергии — по крайней мере, теоретически (см. «Ученые захватывают энергию Испарение для работы крошечных двигателей »).

Прототип «двигателей с испарительным приводом» вырабатывает энергию за счет движения спор бактерий, которые расширяются и сжимаются при поглощении и высвобождении влаги из воздуха. Согласно исследованию, опубликованному во вторник в журнале Nature Communications , если бы это можно было сделать эффективно и по доступной цене, устройства могли бы обеспечивать более 325 гигаватт электроэнергии, опережая уголь.

Это, однако, потребует покрытия поверхности каждого озера и водохранилища больше 0.1 квадратный километр в нижних 48 штатах, за исключением Великих озер, с массивами устройств. Очевидно, это напрямую противоречило бы существующим экономическим и рекреационным видам использования и породило бы множество серьезных эстетических и экологических проблем. Примечательно, что вмешательство в процесс испарения в достаточно большом масштабе через достаточно большое озеро может даже изменить местную погоду.

Но соавтор исследования Озгур Сахин говорит, что эта статья — это скорее мысленный эксперимент, призванный подчеркнуть потенциал технологии и важность ее продвижения за пределы лабораторных масштабов, а не какое-либо буквальное предложение по развитию.

Сахин, адъюнкт-профессор биологических наук и физики Колумбийского университета, считает, что он может внести значительный вклад в достижение целей в области чистой энергии и климата, даже если он никогда не будет развернут даже близко к потенциальным масштабам, указанным в исследовании.

Он говорит, что ранние варианты использования могут включать удаленные водохранилища, уже вырабатывающие гидроэлектроэнергию, где это вряд ли будет мешать другим видам использования. Это может предложить дополнительное преимущество в виде снижения потерь воды из-за испарения, увеличения количества, доступного для производства энергии, орошения и других нужд.

Команда ученых также создала крошечный автомобиль, работающий на испарении, получивший название Ева.

Сахин и его коллеги из Колумбии работали над этой технологией в течение многих лет. В статье 2015 года команда описала механизм испарения, который основан на спорах Bacillus subtilis , прикрепленных к стопкам пленки, прикрепленной к механизмам заслонки. Когда устройство находится над водой, споры впитывают влагу от естественного испарения и расширяются, открывая заслонку и позволяя влаге выйти.Затем споры высыхают и сжимаются, снова закрывая заслонку, позволяя дополнительной влажности воздуха проникать внутрь и возобновляя процесс. Когда устройство подключено к генератору, непрерывное колебательное движение генерирует небольшое количество энергии.

Как ранее сообщал MIT Technology Review : «Водная поверхность размером восемь на восемь сантиметров может производить около двух микроватт электроэнергии (микроватт составляет одну миллионную ватта) в среднем и может взорваться. до 60 мкВт.«

Команда продолжала работать над повышением эффективности и масштабируемости технологии, исследуя дополнительные материалы и средства адгезии спор. Поскольку технология в значительной степени основана на биологических материалах, конечная стоимость может быть ниже, чем у солнечных фотоэлектрических элементов и других Сахин считает, что технологии, требующие специально изготовленных материалов.

Кроме того, эта технология в значительной степени позволяет избежать ограничений периодичности ветровой и солнечной энергии, потому что, хотя скорость испарения изменяется, она не прекращается. Кроме того, поскольку устройства уменьшают скорость испарения, они также повышают температуру поверхностных вод. Моделирование в новом исследовании показало, что, намеренно изменив скорость этого процесса, они могут создать своего рода батарею с термальной водой, которая уравновешивает производство и спрос. При дросселировании тепло в воде увеличивает испарение, увеличивая выработку электроэнергии.

«Мы могли бы соответствовать потребляемой мощности на почасовой основе около 98 процентов времени в теплых и сухих местах», — говорит Шахин. «Это означает, что вам не нужна внешняя батарея, чтобы регулировать периодичность».

Базовый обзор технологии топливных элементов


Основные сведения о топливных элементах

Через этот сайт мы ищем исторические материалы относящиеся к топливным элементам. Мы построили площадку для сбора информация от людей, уже знакомых с технологиями, таких как изобретатели, исследователи, производители, электрики и маркетологи.Этот раздел «Основы» представляет общий обзор топливных элементов для случайных посетителей.

Что такое топливный элемент?

Топливный элемент — это устройство, которое генерирует электричество путем химической реакции. Каждый топливный элемент имеет два электрода, называемых соответственно анодом и катодом. На электродах протекают реакции, производящие электричество.

Каждый топливный элемент также имеет электролит, который несет электрически заряженные частицы. от одного электрода к другому, и катализатор, который ускоряет реакции на электроды.

Основным топливом является водород, но топливным элементам также нужен кислород. Одно большое обращение топливные элементы состоит в том, что они вырабатывают электроэнергию с очень небольшим загрязнением — большая часть водород и кислород, используемые для производства электроэнергии, в конечном итоге объединяются, чтобы сформировать безвредный побочный продукт, а именно вода.

Одна деталь терминологии: один топливный элемент генерирует крошечное количество прямого ток (DC) электричество. На практике многие топливные элементы обычно собираются в куча.Ячейка или стопка, принципы одинаковы.

Верх

Как работают топливные элементы?

Назначение топливного элемента — производить электрический ток, который может быть направлен вне клетки для выполнения работы, такой как включение электродвигателя или освещение лампочка или город. Из-за того, как ведет себя электричество, этот ток возвращается к топливный элемент, замыкая электрическую цепь. (Чтобы узнать больше об электричестве и электроэнергии, посетите страницу «Throw The Switch» на сайте Смитсоновского института Powering a Генерация перемен.) Химические реакции, которые производят этот ток, являются ключевыми как работает топливный элемент.

Существует несколько видов топливных элементов, каждый из которых работает по-своему. Но в общие термины, атомы водорода попадают в топливный элемент на аноде, где происходит химическая реакция лишает их электронов. Атомы водорода теперь «ионизированы» и несут положительный электрический заряд. Отрицательно заряженные электроны обеспечивают ток через провода делать работу.Если необходим переменный ток (AC), DC выход топливного элемента должен быть направлен через устройство преобразования, называемое инвертор.


Графика Марка Маршалла, Шац Центр энергетических исследований

Кислород попадает в топливный элемент на катод, а в некоторых типах ячеек (например, показанный выше) он объединяет с электронами, возвращающимися из электрическая цепь и ионы водорода, которые прошли через электролит из анод.В других типах клеток кислород захватывает электроны, а затем проходит через них. электролит к аноду, где он соединяется с ионами водорода.

Электролит играет ключевую роль. Он должен пропускать только соответствующие ионы. между анодом и катодом. Если бы свободные электроны или другие вещества могли путешествовать через электролит они нарушили бы химическую реакцию.

Будь то соединяются на аноде или катоде, вместе водород и кислород образуют воду, которая стекает из клетки.Пока топливный элемент снабжен водородом и кислородом, он будет генерировать электричество.

Еще лучше, поскольку топливные элементы создают электричество химическим путем, а не путем сжигания, они не подчиняются термодинамическим законам, которые ограничивают обычную электростанцию (см. «Предел Карно» в глоссарии). Следовательно, топливные элементы более эффективны в извлечение энергии из топлива. Отработанное тепло некоторых клеток также можно использовать, еще больше повышая эффективность системы.

Верх

Так почему я не могу пойти и купить топливный элемент?

Возможно, несложно проиллюстрировать основные принципы работы топливного элемента. Но строительство недорогие, эффективные и надежные топливные элементы — дело гораздо более сложное.

Ученые и изобретатели разработали множество различных типов и размеров топливных элементов. в поисках большей эффективности, и технические детали каждого типа различаются. Многие из вариантов, с которыми сталкиваются разработчики топливных элементов, ограничены выбором электролит.Например, конструкция электродов и материалы, из которых изготовлены они зависят от электролита. Сегодня основными типами электролитов являются щелочные, расплавленные. карбонат, фосфорная кислота, протонообменная мембрана (PEM) и твердый оксид. Первое три — жидкие электролиты; последние два — твердые тела.

Тип топлива также зависит от электролита. Некоторым клеткам нужен чистый водород, и поэтому требуется дополнительное оборудование, такое как «риформер» для очистки топлива.Другие клетки может переносить некоторые примеси, но для эффективной работы может потребоваться более высокая температура. В некоторых ячейках циркулируют жидкие электролиты, для чего требуются насосы. Тип электролит также определяет рабочую температуру ячейки — «расплавленные» карбонатные ячейки работают горячий, как следует из названия.

Каждый тип топливных элементов имеет преимущества и недостатки по сравнению с другими, и ни один из них все же достаточно дешев и эффективен, чтобы широко заменить традиционные способы генерации электростанции, такие как угольные, гидроэлектростанции или даже атомные электростанции.

В следующем списке описаны пять основных типов топливных элементов. Более подробный информацию можно найти в этих конкретных разделах этого сайта.

Верх

Различные типы топливных элементов.


Рисунок щелочной ячейки.
Щелочные топливные элементы работают на сжатый водород и кислород. Обычно они используют раствор гидроксида калия. (химически КОН) в воде в качестве электролита.КПД составляет около 70 процентов, а рабочая температура составляет от 150 до 200 градусов C (от 300 до 400 градусов по Фаренгейту). Клетка мощность варьируется от 300 Вт (Вт) до 5 киловатт (кВт). Щелочные ячейки использовались в Космический корабль «Аполлон», обеспечивающий как электроэнергию, так и питьевую воду. Они требуют чистых однако водородное топливо и катализаторы на основе платиновых электродов дороги. А также как и любая емкость, наполненная жидкостью, они могут протекать.

Чертеж электролизера карбоната
Топливные элементы с расплавленным карбонатом (MCFC) используют высокотемпературные соединения соли (например, натрия или магния) карбонаты (химически CO 3 ) как электролит.Эффективность колеблется от 60 до 80 процентов, а рабочая температура составляет около 650 градусов C (1200 градусов F). Построены блоки мощностью до 2 мегаватт (МВт), и существуют конструкции для блоков до 100 МВт. Высокая температура ограничивает повреждение от углерода монооксидное «отравление» ячейки и отработанное тепло можно переработать для получения дополнительных электричество. Их никелевые электроды-катализаторы недороги по сравнению с платиновыми. используется в других камерах. Но высокая температура также ограничивает материалы и безопасность использования. MCFC — они, вероятно, были бы слишком горячими для домашнего использования.Кроме того, карбонат-ионы из в реакциях расходуется электролит, поэтому необходимо вводить углекислый газ. компенсировать.

Топливные элементы с фосфорной кислотой (PAFC) используют фосфорную кислоту в качестве электролита. КПД составляет от 40 до 80 процентов, а рабочая температура — от 150 до 200 градусов по Цельсию (от 300 до 400 градусов по Фаренгейту). Существующие клетки фосфорной кислоты имеют мощностью до 200 кВт, испытаны блоки мощностью 11 МВт. PAFC терпят углерод концентрация монооксида около 1.5 процентов, что расширяет выбор топлива, которое они можешь использовать. Если используется бензин, необходимо удалить серу. Платиновые электроды-катализаторы необходимы, а внутренние части должны выдерживать коррозию кислоты.


Рисунок того, как работают топливные элементы на основе фосфорной кислоты и PEM.

Протонообменная мембрана (PEM) топливные элементы работают с полимерным электролитом в виде тонкого проницаемого листа.КПД составляет от 40 до 50 процентов, а рабочая температура составляет около 80 градусов Цельсия. (около 175 градусов по Фаренгейту). Мощность ячеек обычно составляет от 50 до 250 кВт. Твердый, гибкий электролит не протекает и не трескается, и эти элементы работают при достаточно низком уровне температура, чтобы сделать их пригодными для дома и автомобилей. Но их топливо должно быть очищено, Платиновый катализатор используется с обеих сторон мембраны, что увеличивает затраты.


Чертеж твердооксидной ячейки
Твердооксидные топливные элементы (ТОТЭ) твердое керамическое соединение оксидов металлов (например, кальция или циркония) (химически, О 2 ) как электролит.КПД составляет около 60 процентов, а рабочие температуры около 1000 градусов по Цельсию (около 1800 градусов по Фаренгейту). Мощность ячеек до 100 кВт. На таком высоком температурам, установка риформинга не требуется для извлечения водорода из топлива, а отходы тепло можно использовать повторно для производства дополнительной электроэнергии. Однако высокая температура ограничивает применение блоков ТОТЭ, и они, как правило, довольно большие. Пока твердый электролиты не могут вытекать, они могут треснуть.

Более подробная информация о каждом типе топливных элементов, включая историю и текущие приложения можно найти в соответствующих разделах этого сайта.У нас также есть предоставлен глоссарий технических терминов — ссылка находится вверху каждого страница технологий.

Верх

© 2017 Смитсоновский институт
(Заявление об авторских правах)

Aquajet: космический двигатель, работающий на воде

Мы переезжаем на ukri.org. Некоторые ссылки могут привести вас туда.Если вы не можете найти то, что ищете, попробуйте ukri.org/stfc.

Используя воду в качестве топлива, Aquajet может позволить космическим кораблям будущего дозаправляться на астероидах.
(Источник: STFC)

Космическое агентство Великобритании предоставило консорциуму, в который входит организация ISIS Neutron and Muon Source (ISIS), грант в размере 560 000 фунтов стерлингов на разработку инновационной силовой установки космического корабля, работающей на идеальном «зеленом» топливе: воде. Подруливающее устройство Aquajet, в котором используется технология, заложенная в машине ISIS, открывает возможность создания недорогих космических аппаратов для длительных миссий, которые могут дозаправляться водой, обнаруженной на астероидах.

Освоение космоса — дело топлива

С тех пор, как первые ракеты Фау-2 с визгом взлетели в небеса в 1940-х годах, освоение космоса в буквальном смысле слова продвинулось далеко вперед. Мы приземлились на Луне и отправили роботов-эмиссаров на каждую планету, несколько лун и даже несколько комет и астероидов. Мы даже послали зонды на расстояние до 21 миллиарда километров (и это количество продолжает расти), но, несмотря на наши успехи, все наши послы в космосе ограничены одним непреодолимым фактором: топливом.

Вне зависимости от того, толкаются ли они вперед мощными, но быстро запускающимися химическими ракетами или плавным, непрерывным толчком ионного двигателя, все космические корабли должны использовать топливо для своих межпланетных путешествий. Им также необходимо топливо для двигателей, которые они используют для корректировки курса. Какое бы топливо ни использовалось или как оно использовалось, как только оно заканчивается и баки высыхают, миссия заканчивается. Конечно, вы по-прежнему можете снимать показания и делать наблюдения, но маневрирование и корректировка курса уходят в прошлое, и аппарат становится рабом законов движения Ньютона.

Одним из возможных решений этой проблемы могло бы стать создание серии межпланетных заправочных станций, на которых — как семейный автомобиль на выходных — космический корабль мог бы остановиться, чтобы заправить свои баки и, возможно, перекусить (возможно, марсианский батончик?) . К сожалению, помимо непомерно высокой стоимости строительства такой сети, для этого потребовалось бы, чтобы корабль израсходовал огромное количество топлива только для того, чтобы остановиться (не говоря уже о том, чтобы снова двинуться в путь), и другой вариант — заставить заправочную станцию ​​соответствовать точной траектории и скорость его «клиента» также была бы крайне непрактичной.

Другое, более практичное решение могло бы заключаться в разработке зонда, который мог бы посещать проходящий астероид или комету и извлекать химические ингредиенты, необходимые для производства собственного топлива. Вода, обнаруженная на таких телах, может быть извлечена, а затем кислород и водород, связанные в ее молекулах, могут быть расщеплены посредством электролиза, чтобы обеспечить сырье, необходимое кораблю для топлива на следующем этапе его путешествия. К сожалению, этот метод довольно сложный и очень энергоемкий.

Вода — отличный способ исследовать солнечную систему

Но что, если бы вы могли использовать воду в качестве топлива, вообще не связываясь с ней? Если бы вы могли управлять кораблем, используя только старый добрый H 2 O, вы могли бы теоретически путешествовать по космосу вечно — просто время от времени останавливаясь, чтобы набрать немного воды с проходящего астероида.Но чтобы воплотить эту мечту в реальность, вам сначала понадобится подруливающее устройство, которое может работать только на воде, и именно здесь на помощь приходят разработчики подруливающего устройства Aquajet.

Как работает Aquajet
(Источник: STFC)

Проект Aquajet управляется консорциумом, возглавляемым компанией Added Value Solutions UK Ltd (AVS) и включающей Surrey Satellite Technologies Ltd (SSTL), ISIS Neutron and Muon Source (ISIS) STFC, Космический центр Surrey, VIPER RF Ltd — и финансируется за счет гранта Национальной программы космических технологий Великобритании Космического агентства.

Aquajet — это тип электрической двигательной установки (ЭР), называемый плазменным двигателем, который сам по себе не является чем-то новым — ЭП двигатели используются в течение десятилетий и с большим успехом. Только в 2013 году в Солнечной системе работало около 200 космических аппаратов, которые использовали двигатели EP для удержания станции, корректировки орбиты или в качестве основного средства движения. Что делает Aquajet уникальным, так это то, что он может использовать воду в качестве топлива и что, благодаря его конструкции, сам двигатель не будет испытывать износа, ограничивающего срок службы других двигателей.

Электрические двигатели делятся на два лагеря: ионные двигатели и плазменные двигатели — и, хотя способ их работы отличается, в основном они достигают тяги, отправляя поток частиц в космос с высокой скоростью. По сравнению с обычной химической ракетой, количество тяги, которое они создают, крошечное — всего лишь эквивалент силы, прикладываемой куском бумаги, зажатым в ладони, — но в космическом вакууме вы этого не делаете. Чтобы двигаться, мне нужна большая тяга.Поскольку электрические двигатели используют очень мало топлива, в отличие от химических ракет (которые сжигают топливо за секунды), они могут применять эту тягу в течение нескольких месяцев и разгонять корабль до огромных скоростей.

Основные типы электрических двигателей, используемых сегодня, состоят из двух электродов (положительно заряженный анод и отрицательно заряженный катод), по которым проходит электрический ток в сотни (или тысячи) вольт. Этот ток ускоряет топливо и обеспечивает тягу, но со временем электроды разрушаются, что приводит к потере мощности двигателя малой тяги и, в конечном итоге, к отказу.

AVS, которые также работают над несколькими альтернативами обычным EP-системам, разработали Aquajet как безэлектродный двигатель малой тяги. Вместо использования электродов для ускорения пороха, Aquajet использует комбинацию магнитного и электрического полей, поэтому нет физического компонента, который нужно изнашивать. Это устраняет проблему эрозии и означает, что теоретически двигатель малой тяги никогда не потеряет мощность.

Aquajet работает путем впрыскивания газообразного топлива (воды) в камеру, где он подвергается воздействию магнитного поля от магнита и микроволновой энергии от антенны.Это нагревает газ и создает плазму высокой плотности — ионизированный газ, состоящий из отрицательно заряженных электронов и положительно заряженных молекул воды или ионов (молекул воды, потерявших электрон). Поскольку теперь они несут электрический заряд, эти ионы улавливаются электрическим полем (генерируемым электронами, движущимися вдоль магнитного поля) и ускоряются, пока не выйдут из двигателя со скоростью 20 000 метров в секунду, создавая тягу.

Консорциум испытал прототип Aquajet, достигнув «прорывных результатов» и числа «первых» для такого устройства.Помимо того, что они первыми продемонстрировали, что воду можно использовать в качестве топлива в устройстве такого типа, они продемонстрировали, что двигатель малой тяги работает с большой мощностью (более чем в три раза выше, чем у кого-либо еще) и что впервые производительность увеличивается вместе с увеличением мощности. В результате этих демонстраций космическое агентство Великобритании недавно предоставило проекту грант в размере 560 000 фунтов стерлингов. Благодаря финансированию следующего этапа разработки, команда рассчитывает добиться «значительных улучшений на всех уровнях мощности» до того, как AVS выведет двигатель на рынок, что они надеются сделать к 2021 году.

Снижение цены

Компания Aquajet впервые продемонстрировала водное топливо в безэлектродном двигателе такого типа.
(Источник: AVS)

Помимо очевидной привлекательности использования воды в качестве топлива и способности двигателя работать в течение длительного времени, его конструкция также обещает быть намного дешевле, чем существующие электрические силовые установки. Текущие конструкции должны использовать газы высокой чистоты, такие как аргон и ксенон, в качестве топлива, что, наряду с их расходами (ксенон может стоить до 6000 фунтов стерлингов за кг), требует систем хранения под высоким давлением, которые значительно увеличивают стартовый вес корабля.Aquajet позволяет избежать этого дополнительного веса и сложности, что потенциально делает запуски значительно дешевле и безопаснее. Кроме того, безэлектродная конструкция двигателя дает разработчикам космических аппаратов большую гибкость, поскольку он может использовать аргон и ксенон, а также более дешевые газы, такие как диоксид углерода, аммиак и, конечно же, вода.

Ожидается, что в течение следующих пяти-десяти лет будет запущено несколько тысяч небольших спутников, которые потенциально могут быть развернуты как созвездия из сотен космических аппаратов, — консорциум ожидает, что возникнет значительный спрос на дешевую, надежную и потенциально гибкую двигательную систему, такую ​​как Aquajet.

Хотя Aquajet, вероятно, первоначально будет использоваться на небольших спутниках и кубических спутниках (даже на меньших спутниках размером десять кубических сантиметров), возможно, что, развернув несколько двигателей в больших массивах, систему можно будет использовать для питания гораздо более крупных космических аппаратов.


Если вам это понравилось, не пропустите ни одной новости, подписавшись на нашу рассылку FASCINATION:

Подписаться на Fascination

«Испарительный двигатель» приводит в движение крошечный автомобиль с помощью водяного пара

Исследователи из Колумбийского университета создали способ получения энергии из незаметного процесса испарения воды, используя ее для питания крошечных машин.Озгур Сахин и его команда обнаружили, что, когда определенные бактериальные споры поглощают воду, они расширяются, а затем снова сжимаются по мере высыхания. «Этот процесс очень похож на движение мышц», — объяснил Шахин в видео, демонстрирующем результаты исследования. Объединенная сила миллиардов этих спор создает небольшую, но измеримую силу — и все, что нужно для их активации, — это немного влажного воздуха.

Связанные : Ученые стремятся к гению природы с помощью «биомиметических» исследований

Команда создала пару «двигателей испарения», чтобы обуздать эту силу: сначала набор жалюзи, которые поднимаются, когда «мускулы» растягиваются, а затем вытесняются. влажный воздух и сброс.Во-вторых, роторный двигатель, который вращается, потому что только одна сторона подвергается воздействию влажного воздуха, который питает работу спор. Последнее устройство действительно способно управлять колесом и перемещаться по столу (примерно на 3-х минутной отметке на видео ниже).

По теме : Подросток изобретает фонарик, работающий от тепла вашей руки

В будущем эти споровые мышцы могут работать как автономные машины, которые работают сверхэффективно в непосредственной близости от воды.Вентиляционное отверстие, которое открывается при слишком высокой влажности? Машина для удаления воды, работающая на паре, поднимающемся от того места, где он плавает? Часы или свет, работающий от влажности окружающей среды? Все это возможности, поскольку команда улучшает процесс и исследует приложения.

Статья с описанием исследования появилась во вторник в журнале Nature Communications.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *