Турбина в двигателе: Что такое турбонаддув — ДРАЙВ

Содержание

Что такое турбонаддув — ДРАЙВ

Несомненно, каждый из нас хоть раз в жизни замечал на обычном с виду автомобиле шильдик «turbo». Производители, как нарочно, делают эти шильдики небольшого размера и размещают в неприметных местах так, что непосвящённый прохожий не заметит и пройдёт мимо. А понимающий человек непременно остановится и заинтересуется автомобилем. Ниже приводится рассказ о причинах такого поведения.

Автомобильные конструкторы (с момента появления на свете этой профессии) постоянно озабочены проблемой повышения мощности моторов. Законы физики гласят, что мощность двигателя напрямую зависит от количества сжигаемого топлива за один рабочий цикл. Чем больше топлива мы сжигаем, тем больше мощность. И, скажем, захотелось нам увеличить «поголовье лошадей» под капотом — как это сделать? Тут-то нас и поджидают проблемы.

Турбокомпрессор состоит из двух «улиток» — через одну проходят отработавшие газы, а вторая «качает» воздух в цилиндры.

Дело в том, что для горения топлива необходим кислород. Так что в цилиндрах сгорает не топливо, а топливно-воздушная смесь. Мешать топливо с воздухом нужно не на глазок, а в определённом соотношении. К примеру, для бензиновых двигателей на одну часть топлива полагается 14–15 частей воздуха — в зависимости от режима работы, состава горючего и прочих факторов.

Как мы видим, воздуха требуется весьма много. Если мы увеличим подачу топлива (это не проблема), нам также придётся значительно увеличить и подачу воздуха. Обычные двигатели засасывают его самостоятельно из-за разницы давлений в цилиндре и в атмосфере. Зависимость получается прямая — чем больше объём цилиндра, тем больше кислорода в него попадёт на каждом цикле. Так и поступали американцы, выпуская огромные двигатели с умопомрачительным расходом горючего. А есть ли способ загнать в тот же объём больше воздуха?

Выхлопные газы из двигателя вращают ротор турбины, тот, в свою очередь, приводит в движение компрессор, который нагнетает сжатый воздух в цилиндры. Перед тем как это произойдёт, воздух проходит через интеркулер и охлаждается — так можно повысить его плотность.

Есть, и впервые придумал его господин Готтлиб Вильгельм Даймлер (Gottlieb Wilhelm Daimler). Знакомая фамилия? Ещё бы, именно она используется в названии DaimlerChrysler. Так вот, этот немец весьма неплохо соображал в моторах и ещё в 1885 году придумал, как загнать в них больше воздуха. Он догадался закачивать воздух в цилиндры с помощью нагнетателя, представлявшего собой вентилятор (компрессор), который получал вращение непосредственно от вала двигателя и загонял в цилиндры сжатый воздух.

Швейцарский инженер-изобретатель Альфред Бюхи (Alfred J. Büchi) пошёл ещё дальше. Он заведовал разработкой дизельных двигателей в компании Sulzer Brothers, и ему категорически не нравилось, что моторы были большими и тяжёлыми, а мощности развивали мало. Отнимать энергию у «движка», чтобы вращать приводной компрессор, ему также не хотелось. Поэтому в 1905 году господин Бюхи запатентовал первое в мире устройство нагнетания, которое использовало в качестве движителя энергию выхлопных газов.

Проще говоря, он придумал турбонаддув.

Идея умного швейцарца проста, как всё гениальное. Как ветра вращают крылья мельницы, также и отработавшие газы крутят колесо с лопатками. Разница только в том, что колесо это очень маленькое, а лопаток очень много. Колесо с лопатками называется ротором турбины и посажено на один вал с колесом компрессора. Так что условно турбонагнетатель можно разделить на две части — ротор и компрессор. Ротор получает вращение от выхлопных газов, а соединённый с ним компрессор, работая в качестве «вентилятора», нагнетает дополнительный воздух в цилиндры. Вся эта мудрёная конструкция и называется турбокомпрессор (от латинских слов turbo — вихрь и compressio — сжатие) или турбонагнетатель.

Аналог турбонаддува — приводной нагнетатель — жёстко связан с двигателем и тратит на свою работу часть его мощности.

В турбомоторе воздух, который попадает в цилиндры, часто приходится дополнительно охлаждать — тогда его давление можно будет сделать выше, загнав в цилиндр больше кислорода.

Ведь сжать холодный воздух (уже в цилиндре ДВС) легче, чем горячий.

Воздух, проходящий через турбину, нагревается от сжатия, а также от деталей турбонаддува, разогретого выхлопными газами. Подаваемый в двигатель воздух охлаждают при помощи так называемого интеркулера (промежуточный охладитель). Это радиатор, установленный на пути воздуха от компрессора к цилиндрам мотора. Проходя через него, он отдаёт своё тепло атмосфере. А холодный воздух более плотный — значит, его можно загнать в цилиндр ещё больше.

А вот так выглядит интеркулер.

Чем больше выхлопных газов попадает в турбину, тем быстрее она вращается и тем больше дополнительного воздуха поступает в цилиндры, тем выше мощность. Эффективность этого решения по сравнению, например, с приводным нагнетателем в том, что на «самообслуживание» наддува тратится совсем немного энергии двигателя — всего 1,5%. Дело в том, что ротор турбины получает энергию от выхлопных газов не за счёт их замедления, а за счёт их охлаждения — после турбины выхлопные газы идут по-прежнему быстро, но более холодные.

Кроме того, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя. Да и возможность снять с меньшего рабочего объёма большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Всё это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными собратьями равной мощности. Казалось бы, вот оно, счастье. Ан нет, не всё так просто. Проблемы только начались.

У Mitsubishi Lancer Evolution интеркулер располагается в переднем бампере перед радиатором. А у Subaru Impreza WRX STI — над двигателем.

Во-первых, скорость вращения турбины может достигать 200 тысяч оборотов в минуту, во-вторых, температура раскалённых газов достигает, только попробуйте представить, 1000°C! Что всё это означает? То, что сделать турбонаддув, который сможет выдержать такие неслабые нагрузки длительное время, весьма дорого и непросто.

Выхлопные газы разогревают и выпускную систему, и турбонаддув до очень высоких температур.

По этим причинам турбонаддув получил широкое распространение только во время Второй мировой войны, да и то только в авиации. В 50-х годах американская компания Caterpillar сумела приспособить его к своим тракторам, а умельцы из Cummins сконструировали первые турбодизели для своих грузовиков. На серийных легковых машинах турбомоторы появились и того позже. Случилось это в 1962 году, когда почти одновременно увидели свет Oldsmobile Jetfire и Chevrolet Corvair Monza.

Но сложность и дороговизна конструкции — не единственные недостатки. Дело в том, что эффективность работы турбины сильно зависит от оборотов двигателя. На малых оборотах выхлопных газов немного, ротор раскрутился слабо, и компрессор почти не задувает в цилиндры дополнительный воздух. Поэтому бывает, что до трёх тысяч оборотов в минуту мотор совсем не тянет, и только потом, тысяч после четырёх-пяти, «выстреливает». Эта ложка дёгтя называется турбоямой. Причём чем больше турбина, тем она дольше будет раскручиваться. Поэтому моторы с очень высокой удельной мощностью и турбинами высокого давления, как правило, страдают турбоямой в первую очередь. А вот у турбин, создающих низкое давление, никаких провалов тяги почти нет, но и мощность они поднимают не очень сильно.

Почти избавиться от турбоямы помогает схема с последовательным наддувом, когда на малых оборотах двигателя работает небольшой малоинерционный турбокомпрессор, увеличивая тягу на «низах», а второй, побольше, включается на высоких оборотах с ростом давления на выпуске. В прошлом веке последовательный наддув использовался на суперкаре Porsche 959, а сегодня по такой схеме устроены, например, турбодизели фирм BMW и Land Rover. В бензиновых двигателях Volkswagen роль маленького «заводилы» играет приводной нагнетатель.

На рядных двигателях зачастую используется одиночный турбокомпрессор twin-scroll (пара «улиток») с двойным рабочим аппаратом. Каждая из «улиток» наполняется выхлопными газами от разных групп цилиндров. Но при этом обе подают газы на одну турбину, эффективно раскручивая её и на малых, и на больших оборотах

Но чаще по-прежнему встречается пара одинаковых турбокомпрессоров, параллельно обслуживающих отдельные группы цилиндров.

Типичная схема для V-образных турбомоторов, где у каждого блока свой нагнетатель. Хотя двигатель V8 фирмы M GmbH, дебютировавший на автомобилях BMW X5 M и X6 M, оснащён перекрёстным выпускным коллектором, который позволяет компрессору twin-scroll получать выхлопные газы из цилиндров разных блоков, работающих в противофазе.

Турбина twin-scroll имеет двойную «улитку» турбины — одна эффективно работает на высоких оборотах двигателя, вторая — на низких

Заставить турбокомпрессор работать эффективнее во всём диапазоне оборотов, можно ещё изменяя геометрию рабочей части. В зависимости от оборотов внутри «улитки» поворачиваются специальные лопатки и варьируется форма сопла. В результате получается «супертурбина», хорошо работающая во всём диапазоне оборотов. Идеи эти витали в воздухе не один десяток лет, но реализовать их удалось относительно недавно. Причём сначала турбины с изменяемой геометрией появились на дизельных двигателях, благо, температура газов там значительно меньше.

А из бензиновых автомобилей первый примерил такую турбину Porsche 911 Turbo.

Турбина с изменяемой геометрией.

Конструкцию турбомоторов довели до ума уже давно, а в последнее время их популярность резко возросла. Причём турбокомпрессоры оказалось перспективным не только в смысле форсирования моторов, но и с точки зрения повышения экономичности и чистоты выхлопа. Особенно актуально это для дизельных двигателей. Редкий дизель сегодня не несёт приставки «турбо». Ну а установка турбины на бензиновые моторы позволяет превратить обычный с виду автомобиль в настоящую «зажигалку». Ту самую, с маленьким, едва заметным шильдиком «turbo».

Принцип работы турбины – как она работает


Турбокомпрессор или попросту турбина – это дополнительное устройство двигателя, которое для своей работы использует энергию отработавших газов. Что позволяет увеличить мощность двигателя на величину от 25% до 100%. Прежде чем понять, как работает турбокомпрессор, стоит рассмотреть функционирование двигателя внутреннего сгорания.

Принцип работы ДВС

Любой двигатель внутреннего сгорания, дизельный или бензиновый, работает на принципе получения энергии, образующейся от воспламенения топливовоздушной смеси в камерах сгорания. Через впускные клапаны в цилиндр подается отфильтрованный внешний воздух и впрыскивается топливо, причем при пассивной подаче воздуха, в цилиндр подается дозированное количество топлива. Именно эта смесь сгорает в цилиндре и заставляет двигаться поршень, который передает свою кинетическую энергию на ходовую систему автомобиля. Чем больше такой смеси подается и сгорает в цилиндрах, тем больше выходной крутящий момент и соответственно выше общая мощность мотора.

Принцип работы турбины

Для увеличения подачи воздуха в цилиндр, без изменения объема самого цилиндра, используют турбокомпрессор. При работе турбины используются продукты сгорания топливной смеси, которые приводят в действие роторный механизм турбокомпрессора, с помощью которого атмосферный воздух принудительно нагнетается в цилиндры (турбонаддув).

И, благодаря этому, в цилиндр подается и большая дозировка топлива. Во время нагнетания, воздух может нагреваться, из-за чего уменьшается его плотность и масса в цилиндрах. Для подачи большего количества воздуха, его необходимо охладить. Для лучшего охлаждения используется радиаторное устройство, называемое интеркулером, который устанавливается на выходе из холодной части турбокомпрессора и через который проходит воздух перед попаданием в цилиндры. На следующем этапе поршень всасывает этот охлажденный воздух через впускные клапаны и одновременно в камеру сгорания подается топливо, образуется топливовоздушная смесь. Возгорание топливной смеси происходит от искры (бензиновые двигатели), либо от сжатия (дизельные двигатели). После того, как произошло сгорание порции смеси, продукты горения выбрасываются через выпускной клапан и попадают снова в турбину, на ее ротор. Таким образом, она работает без участия движущих частей двигателя, используя энергию потока выхлопных газов.

Для каждого двигателя турбокомпрессор подбирается индивидуально, исходя из его собственной мощности и объема. Причем величина наддува зависит от геометрических параметров (размеров) улиток, компрессорного колеса, ротора турбины. Некоторые конструкции двигателей оборудуют не одной турбиной, а двумя: одинакового размера – би-турбо, разного размера – твин-турбо. В последнее время широкое распространение получили турбокомпрессоры с механизмом изменяемой геометрии. Стоит отметить, что сложность, а соответственно и стоимость ремонта турбины зависит от ее конструктивных особенностей и модификации.

Механизм изменяемой геометрии

Такой механизм позволяет дозировать подачу отработавших газов на колесо в турбине (ротор). Тем самым, позволяет оптимизировать работу турбокомпрессора на различных оборотах.

Это достигается за счет движения специальных лопаток, смонтированных на кольце геометрии. Они синхронно передвигаются, получая движение от вакуумного актуатора или электронного сервопривода в определенный момент, и контролируют наддув. Как правило, устанавливаются они на дизельных ДВС, потому как температура выхлопных газов у бензиновых моторов выше, чем у дизеля, соответственно лопатки геометрии могут деформироваться. Такие турбины позволяют оптимизировать процесс турбонаддува, что приводит к уменьшению расхода топлива и вредных выбросов при одновременном повышении мощности и крутящего момента.

Многие автомобилисты ошибочно полагают, что турбокомпрессор начинает включаться в работу с оборотов мотора от 1500-2000 об/мин. На самом деле, он запускается сразу после заводки автомобиля и работает на холостом ходу. А оптимальных оборотов достигает в диапазоне свыше 1500 об/мин.

Турбокомпрессор достаточно надежный агрегат, однако если Вы столкнулись с его поломкой, решить проблему Вам помогут специалисты ТурбоМикрон. Мы производим замену турбины на автомобиле, а также ремонт снятых с авто турбокомпрессоров.

Принцип работы турбины на дизельном двигателе – Турбобаланс

Дизельный двигатель, относящийся к категории двигателей внутреннего сгорания, был изобретён в феврале месяце 1893года в Германии инженером Рудольфом Дизелем.

С момента изобретения двигатель постоянно усовершенствовался, менялись виды топлива, способы его подачи, баланс топливной смеси и т.д.

Собранные по классической схеме двигатели, используют принцип превышения атмосферного давления над давлением, создающимся в цилиндре в момент движения поршня к нижней мёртвой точке. Однако за счёт незначительного времени затраченного на выполнения этого действия и небольшого перечного сечения воздухоподводящего канала поступающего воздуха недостаточно для полного сгорания топливной смеси.

Позже на родине Рудольфа Дизеля нашли способ решения данной проблемы. Воздух в цилиндры должен подаваться под избыточным давлением! Это основной принцип работы турбины на дизельном двигателе

Для этой цели было разработано специальное устройство, совмещающее в себе свойства вентилятора и компрессора. Это устройство приводилось в движение непосредственно от коленчатого вала двигателя, что снижало коэффициент полезного действия всей конструкции в целом.

Следующим усовершенствованием системы подачи воздуха стала установка в качестве привода для компрессораспециальной турбины, которая приводилась во вращение за счёт использования энергии потока использованных отработанных газов.

Однако при работе двигателя на малых оборотах, воздуха подаваемого в цилиндры компрессором было недостаточно для полноценной работы дизеля. Вскоре и этот вопрос был решён путём установки двух турбин различного диаметра и приводимых во вращение выхлопными газами, забираемыми из разных частей выпускного тракта. Турбина меньшего диаметра разгонялась быстрее и обеспечивала работу двигателя на малых оборотах, а большая турбина работала при больших оборотах двигателя, что качественно изменило принципы работы турбины на дизельном двигателе. Так же для уменьшения турбоямы использовались механизмы изменяемой геометрии.

Работает турбокомпрессор следующим образом:

— Выхлопные газы, отводимые от выпускного коллектора дизеля, направляются в приемный патрубок турбокомпрессора.

— Проходят по каналу корпуса турбины, который постепенно уменьшается в сечении, а газы увеличивают скорость и воздействуя на ротор заставляют вращаться турбину. Число оборотов турбины зависит от многих факторов: конфигурации канала, его формы, сечения и т.д. Турбина вращается со скоростью около150000 об/сек, её размеры подбираются в зависимости от типа двигателя.

— Наружный воздух, проходя через фильтрующий элемент, очищается от пыли и других посторонних примесей и в сжатом состоянии попадает во впускной коллектор дизеля. После этого происходит закрытие впускного канала, дополнительное сжатие топливной смеси и её воспламенение. В завершении рабочего цикла открывается выпускной коллектор.

Поскольку уходящие выхлопные газы имеют температуру около 800° — 900° С, турбокомпрессор имеет систему охлаждения, радиатором которой является корпус подшипника. При работе турбокомпрессора, за счёт сжатия и увеличения внутренней силы трения воздух, нагнетаемый в цилиндры дизеля подогревается до температуры около 170°С. Во время охлаждения воздух «сгущается», то есть увеличивается, его плотность и соответственно взрастает, объём подаваемого воздуха. Подача в двигатель охлаждённого воздуха положительно влияет на повышение мощности дизеля, что в свою очередь снижает потребление топлива, уменьшает отрицательное воздействие на окружающую среду.

Турбокомпрессорные двигатели имеют перед обычными двигателями определённые преимущества:

  • При одних и тех же энергозатратах расход топлива меньше, поскольку часть энергии выхлопных газов, раскручивая турбокомпрессор, подавая большее количество воздуха в цилиндры двигателя, увеличивает его мощность.
  • Двигатели с турбокомпрессорами имеют меньший наружный объём и соответственно меньшие потери нагрева.
  • За счёт относительно небольшого веса на 1Л.С. мощности снижается расход металла на сам двигатель и конструкцию, на которой он установлен.
  • Также меньше объём отсека, в который может быть установлен турбодвигатель.
  • За счёт малого числа оборотов при номинальной мощности турбодвигатели обладают лучшими нагрузочными характеристиками.
  • В условиях разряженного воздуха, за счёт высокого давления развиваемого турбокомпрессором и низкого внешнего давления турбодвигатель имеет огромные преимущества в сравнении с обычным двигателем, поскольку мощность его практически не теряется.
  • турбодвигатель за счёт малых размеров имеет меньшую звукоизлучающую поверхность, а турбокомпрессор работает как дополнительный глушитель.

Имеет турбонаддув и свои недостатки – это заметная задержка набора мощности при резком нажатии на педаль акселератора. Такое случается в связи с тем, что отсутствует механическая связь коленчатого вала и турбины Мощность начинает расти, когда турбина раскрутится выхлопными газами. Хотя подобное явление в той или иной степени наблюдается у любого двигателя.

Основное применение дизельные двигатели с турбонаддувом нашли на автомобилях большой грузоподъёмности, работающих с полной нагрузкой.

Принцип работы турбины, как работает турбина на дизельном двигателе

Если вам интересно, каков принцип работы турбины на дизельном двигателе, значит вы попали по адресу. О том, что такое дизельный турбокомпрессор и как он работает, вы узнаете в данной статье.

Как работает турбина на дизеле? Как работает турбина в дизельном двигателе?

Итак, турбокомпрессор - это небольшой воздушный насос, которых осуществляет работу всех элементов турбины. Как известно, турбина вращается с помощью особого тока, получаемого от собранных в процессе езды автомобиля газов. Учитывая тот факт, что скорость лопаток турбины разгоняются почти до скорости света, маневренность во время езды на автомобиле с турбиной значительно выше, чем в автомобилях без неё. Во время “зажигания”, турбина соединяется с жесткой осью и подает его в коллектор двигателя. Чем больше воздуха - тем выше мощность двигателя. Такие воздушные подушки позволяют сделать каждую поезду максимально комфортной, эффектной и маневренной. Именно эти причины вынуждают автолюбителей со всего мира покупать турбины высокого класса за доступную цену. Качество работы турбины на дизеле определяется уровнем всасываемого воздуха, уровнем сжатие этого воздуха, соотношении входа и выхода отработанных газов, мощность компрессора и турбины.

Как проверить работает ли турбина на дизеле? Как проверить справность турбины?

Турбина - штука непростая, но стоит всего лишь из корпуса и ротора. Газы, о которых мы говорили выше, попадают в специальных патрубок, проходят по небольшому каналу, ускоряются и приводят в движения лопатки турбокомпрессора. Как видите, принцип работы дизельного двигателя с турбиной заключается в скорости вращения турбины, благодаря переработанному воздуху. Что логично, скорость вращения лопаток напрямую зависит от размеров “улитки” турбины. К примеру, устройство грузовика может в несколько раз превышать размеры устройства легкового автомобиля, так как для полноценной работы турбины в большом агрегате, её корпус должен быть разделен на два отельных канала, которые поочередно перерабатывают воздух. Чтобы максимально облегчить давление воздушного потока, специалисты советуют устанавливать на турбине специальное кольцо. Компрессор, в свою очередь, производится из ротора и корпуса. Лопатки ротора, как правило, изготавливают из надежного алюминия, а форму имеют особую - улиточную. Это необходимо для того, чтобы воздух направлялся строго в центр ротора. Обычный режим работы турбокомпрессора включает в себя большое давление, которое регулярно сжимается. Важно знать, что все динамические прибора работают по принципу разности давлений.

СТО “Центр Турбин” предлагает вашему вниманию услуги по установке, реставрации и ремонту автомобильных турбин. Все наши специалисты имеют колоссальные знания и стаж работы с автомобильными турбинами. Именно поэтому качество наших услуг находится на высоком уровне. Если вы не знаете, какая турбина подходит именно вам, обратите внимание на мобильный номер, указанный на нашем сайте. Наши консультанты с радостью помогут вам выбрать модель турбины, удовлетворяющую все ваши запросы.

Надо ли охлаждать турбину после поездки — Российская газета

Нужно ли дать остыть турбомотору на минимальных оборотах перед тем, как его заглушить? Есть рекомендации автопроизводителей, а есть мнения экспертов, и зачастую они диаметрально противоположны.

Почему может перегреться двигатель с наддувом? Источник энергии турбокомпрессора - выхлопные газы: чем выше их температура - тем быстрее крутится ротор. Соответственно максимальный его нагрев происходит при работе двигателя на пиковых нагрузках. Поэтому опасным для мотора может стать поворот с трассы на заправку: слишком быстрый перепад происходит от больших мощностей к полной остановке.

Еще одну вероятность перегрева турбомотора провоцирует езда по бездорожью. Здесь нет максимальных оборотов, но зато отсутствует встречный воздушный поток, работающий на охлаждение. Тот же самый риск возникает при езде в горах с множеством перепадов, а также при движении с прицепом.

Однако проблемы ждут двигатель не во время подобных нагрузок, а потом. После остановки мотора системы жидкостного охлаждения турбокомпрессора также перестают работать. Отсюда возникла рекомендация не глушить мотор сразу, а дать турбине немного остыть.

Рынок предложил новый девайс - турботаймеры. Они дают двигателю после поворота ключа зажигания поработать еще пару минут на низких оборотах, чтобы дать турбине остыть. Затем в электронику некоторых моделей добавили отдельные блоки, работающие по принципу турботаймера.

Есть и другие решения автопроизводителей. К примеру, на модели с турбомотором ставят циркуляционные насосы, которые при необходимости подают к компрессору охлаждающую жидкость даже после остановки двигателя. На современных авто есть также электровентиляторы системы охлаждения.

Впрочем, принципиально от этого ничего не изменилось: турбина лучше реагировать на перегрев не стала. Рекомендации экспертов "За рулем" однозначны: даже современным моделям с турбомоторами стоит дать поработать пару минут на минимальных оборотах перед тем, как заглушить совсем. Да, автопроизводители уверяют, что в обязательном охлаждении турбины многие модели вовсе не нуждаются. Однако принципиальных разработок, продлевающих режим работы турбокомпрессора, не появилось.

Этот агрегат недешевый, поэтому проверять, насколько эффективны охлаждающие "примочки", на своем автомобиле не стоит. Если у вас есть электрический насос, качающий жидкость для охлаждения после остановки двигателя, то тогда этой рекомендацией можно пренебречь. Однако лучше убедиться в его наличии заранее. И опять же никто не мешает перестраховаться даже в этом случае. Пара-тройка минут, как правило, в запасе есть.

Информация

Почему ломаются турбины

Презумпция невиновности

Когда в двигателе с принудительным наддувом выходит из строя турбокомпрессор, не стоит сразу обвинять в этом саму «турбину». Разумнее исходить из принципа презумпции ее невиновности. Практикой установлено, что в большинстве случаев отказ турбокомпрессора вызывается «внешними» причинами.

Специалисты в области систем турбонаддува в один голос утверждают, что современный турбокомпрессор – надежное изделие, ресурс которого сравним с ресурсом двигателя. На практике получается, что в течение срока службы двигателя турбину приходится менять. Иногда дорогостоящую замену приходится делать настолько часто, что это сводит на нет преимущества эксплуатации турбированного мотора, вызывает раздражение автовладельцев и авторемонтников и нарекания с их стороны на надежность конструкции и качество изготовления этого моторного агрегата. В чем причина такой противоречивой ситуации?

Слово «ответчику»

По мнению разработчиков турбокомпрессоров, обвинения в недостаточной конструктивной надежности и качестве их продукции необоснованны. К настоящему времени все физические процессы, протекающие в агрегатах турбонаддува, детально изучены, закономерности выявлены и буквально «разложены по полочкам». За последние 15-20 лет, благодаря техническому прогрессу их конструкция достигла высокой степени совершенства. Разработка новых моделей ведется методами компьютерного проектирования с применением пространственного моделирования. При изготовлении деталей ТК используются особые материалы с тщательно выверенными рецептурами и самые передовые технологические процессы (высокоточное литье, электронно-лучевая сварка, сварка трением и т.д.). Прежде чем «выйти в серию», каждая деталь, узел и изделие в целом проходят многостадийный цикл испытаний. Турбокомпрессор вначале тестируется на испытательном стенде, затем – в составе двигателя. В ходе испытаний проверяется прочность корпусных деталей и точность работы системы регулирования, измеряются величины предельных нагрузок, динамических колебаний ротора и резонансных вибраций лопаток турбины, моделируются неблагоприятные условия работы уплотнений ротора, исследуется работоспособность ТК в режиме «старт-стоп» и при многочасовых циклических нагрузках.

Качество изготовления турбокомпрессоров также вне подозрений. Система менеджмента качества на предприятиях известных мировых производителей ТК, в какой бы части света они ни находились, соответствует единым, жестким стандартам. Вероятность заводского брака, конечно, не исключена полностью, но она мизерна и не превышает нескольких процентов. Высокий технический уровень изделий является непреодолимым препятствием для появления на рынке суррогатной продукции неизвестного происхождения. В деле производства турбокомпрессоров «бодяжничество» нерентабельно. И, тем не менее, зачастую ТК не отрабатывает положенный ресурс.

Дело в том, что турбина – наиболее высоконагруженный агрегат двигателя. Условия, в которых работает турбокомпрессор, характеризуются огромным перепадом температур. В то время как его турбинная часть подвергается воздействию отработавших газов с температурой порядка 10000С, со стороны компрессора температура конструкции почти на порядок ниже. Температурный фактор усугубляется высокими динамическими нагрузками, возникающими вследствие огромной частоты вращения ротора, которая может достигать величины 300 000 мин-1. Номинальные режимы работы турбокомпрессора, определяющиеся требованиями разработчиков двигателей и зависящие от заявленных параметров мотора, близки к предельным. Поэтому любые отклонения характеристик двигателя, даже на первый взгляд незначительные, оказывают губительное влияние на работоспособность ТК и могут привести к его отказу. С этой точки зрения турбину можно рассматривать как своего рода индикатор состояния двигателя. Ситуация усугубляется тем, что турбокомпрессору по определению суждено работать «на перекрестке» многих систем двигателя: системы впуска и выпуска отработавших газов, системы смазки и охлаждения, вакуумной системы и системы вентиляции, а также системы управления двигателем. Неисправность каждой из них оборачивается нарушением нормального (расчетного) режима работы ТК. Так что надежность турбокомпрессора зависит от многочисленных внешних факторов.

Эти соображения, подкрепленные многолетними исследованиями причин отказов ТК, позволили сформулировать правило, которым следует руководствоваться при анализе неисправности системы турбонаддува.

Если вышел из строя турбокомпрессор, возможно, что причина неисправности кроется в нем самом. Если на одном двигателе отказали два турбокомпрессора, виноваты скорее всего не они. Если вышло из строя более двух турбокомпрессоров, то они здесь гарантированно не причем.

Из этого правила, справедливость которого подтверждается опытом российских специалистов, занимающихся сервисом систем турбонаддува, следует логичный вывод. Прежде чем ставить новый турбокомпрессор вместо вышедшего из строя нужно обязательно выявить и устранить причину его отказа. Если этого не сделать, то с большой долей вероятности и новая турбина вскоре будет повреждена. Чтобы отсрочить замену турбокомпрессора или вовсе исключить ее, нужно иметь четкое представление о причинах, провоцирующих отказ турбокомпрессора, и принимать превентивные меры по их устранению.

Турбоужасы…

Среди огромного числа возможных причин поломки турбокомпрессора производители ТК выделяют несколько основных факторов, которые вызывают до 90% всех отказов. На первом месте в «черном списке» значатся нарушения в работе системы смазки ротора ТК. Для этой теплонагруженной детали, вращающейся с частотой, трудно поддающейся осмыслению, смазка играет важнейшую роль. Так вот, выражаясь образно, можно сказать, что турбокомпрессор, в отличие от каши, можно запросто испортить маслом. Причем, на работоспособность турбины оказывает влияние и качество масла, и его количество.

Распространенная причина выхода из строя турбокомпрессора – присутствие в масле загрязнений. Чаще это бывают твердые частицы различного размера, к сожалению, обладающие абразивными свойствами. Попадая в зазоры между трущимися поверхностями, они вызывают их механический износ. Результат «работы» мелких, невидимых глазом частиц, выглядит как полирование контактных поверхностей вала и подшипников, сопровождающееся «зализыванием» их внешних кромок. Крупные частицы оказывают более радикальное абразивное воздействие, интенсивно шлифуют поверхности трения с образованием глубоких рисок и задиров. Подшипники, изготовленные из более мягкого материала, повреждаются сильнее. И при мягкой, и при грубой механической обработке пар трения твердыми частицами конечный результат один – унос материала и увеличение зазоров, что в конечном счете приводит к резкому снижению прочности масляной пленки и ее разрушению. В первом случае агония турбокомпрессора длится дольше, во втором развязка наступает очень быстро. Причины загрязнения масла твердыми частицами хорошо известны: несвоевременная замена масла, применение некачественного масляного фильтра, плохое общее состояние системы смазки.

Качество моторного масла, а вместе с ним и турбина могут пострадать от наличия в нем химических загрязнений. Наиболее распространенный случай – попадание в масло топлива вследствие нарушения рабочего процесса в двигателе или некомпетентного выполнения работ по его обслуживанию и ремонту, например, некорректного измерения компрессии. Еще один вариант химического загрязнения масла – чрезмерная «люксация» масла различными добавками и присадками. Негативное воздействие химических загрязнений сводится к тому, что они снижают прочность масляной пленки. При высоких динамических нагрузках она разрушается и наступает губительное «сухое» трение. Характерным признаком отказа ТК в результате химического отравления масла является сильный износ трущихся поверхностей со следами перегрева в виде интенсивных цветов побежалости.

В завершение темы о качестве моторного масла хочется напомнить о том, что для двигателей с турбонаддувом применяются специальные сорта масел. Их рецептура и характеристики отличаются от обычных с учетом более напряженных условий работы по температуре и нагрузкам. Поэтому срок службы турбины можно ненамеренно сократить использованием качественного, но не предназначенного для таких целей масла. К примеру, производители ТК негативно относятся к использованию в турбодвигателях так называемых энергосберегающих масел классов вязкости 0W-… Отличающиеся хорошей «прокачиваемостью» при отрицательных температурах, эти продукты были неоднократно уличены в недостаточно эффективной работе при смазке турбины. Говоря проще, применять их настоятельно не рекомендуется.

Примерно такую же картину, как и при химическом загрязнении масла, можно наблюдать, разобрав турбокомпрессор, испытывавший дефицит или полностью лишенный смазки. Если в зону трения масла поступает меньше, чем положено, это грозит серьезным нарушением работоспособности ТК. Недостаток масла в турбине может быть результатом неисправности системы смазки двигателя (износ масляного насоса, отказ редукционного клапана, засорение масляного фильтра и т.п.). Стоит отметить и более любопытную ситуацию, когда падение производительности системы смазки вызывается большим количеством отложений в поддоне двигателя. В этом случае при умеренных оборотах двигателя система развивает требуемое давление. С повышением оборотов давление не только не возрастает, а напротив, падает практически до нуля. Увеличение потока масла, отбираемого из картера, приводит к тому, что поднимающийся со дна поддона мусор полностью блокирует сетку маслоприемной трубки. В результате и двигатель, и турбина лишаются смазки именно тогда, когда они нуждаются в ней больше всего.

Иногда дефицит и даже полное отсутствие смазки ТК случается по более банальным причинам, например, из-за снижения пропускной способности трубки, по которой масло подается к турбокомпрессору. Она может быть засорена или повреждена механически. Такого рода неисправности могут носить чисто эксплуатационный характер или быть результатом неграмотного ремонта. Пример первого – хорошо известный массовый турбодвигатель семейства VW 1,8T (модели AEB, AWT). В нем масло подается к турбине по длинной (порядка метра) металлической трубке небольшого сечения, проложенной в горячей зоне, непосредственно над выпускным коллектором. То есть конструктивно предусмотрено все, чтобы масло, остающееся в трубке после останова двигателя, коксовалось. И оно коксуется, причем так, что иногда перекрывает сечение маслопровода полностью с соответствующими последствиями для турбокомпрессора.

Нередко непоправимый вред турбине наносят мотористы в ходе ремонтных работ. При подсоединении к турбине трубок для подачи смазки и охлаждения и слива масла они «улучшают» надежность их соединения с корпусом с помощью герметика. Кстати, производители ТК делать это категорически запрещают. Выдавливаясь при уплотнении, герметик частично или полностью перекрывает отверстия для прохода масла и антифриза. После такого «ремонта» турбина мучается недолго, что является единственным утешением для автовладельца.

К числу распространенных причин отказа турбокомпрессора относится попадание в него посторонних предметов. Как правило, это заканчивается необратимыми повреждениями компрессорного или турбинного колес. Причем, вне зависимости от тяжести дефекта он в итоге всегда приводит к гибели турбины. Даже самое незначительное повреждение, прежде всего, нарушает балансировку ротора, а уже дисбаланс окончательно добивает весь агрегат. Впрочем, для этого случая незначительные последствия являются исключением, а не правилом. Обычно дело оборачивается серьезным искажением формы лопаток, их разрушением или того хуже – отрывом колеса.

Колесо компрессора часто подвергается абразивному воздействию пыли и песка, попадающих во впуск через поврежденный воздушный фильтр. Результат напоминает качественную пескоструйную обработку, аккуратно удаляющую впускную часть крыльчатки. Немалую лепту в дело истребления компрессорной части ТК вносят автовладельцы и работники сервисов. Достаточно при замене воздушного фильтра по неосмотрительности уронить во впускной патрубок маленькую шайбу, кусочек ветоши или даже бумаги, и можно начинать копить деньги на аварийную замену турбины.

Для турбинного колеса ТК источниками серьезных неприятностей являются двигатель и система выпуска отработавших газов. Двигатель иногда «выстреливает» в турбину твердыми кусочками нагара, осколками поршня или клапана, а из выпускной системы в нее могут залетать (на некоторых режимах работы) частицы разрушившегося катализатора. Учитывая предельную динамику турбины, и то, и другое губительно.

Перечень основных причин отказов ТК завершается превышением допустимых режимов его работы. Прежде всего речь идет о превышении предельной частоты вращения ротора, что сопровождается ростом передаваемой турбокомпрессором мощности и «перенаддувом» двигателя. Распространенный источник «перекручивания» турбины – резкое повышение температуры отработавших газов, обычно, вследствие неисправности системы топливоподачи. Типичные повреждения: перегретые опорные шейки вала ротора, множественные наслоения закоксованного масла, часто – искривление тыльной плоскости турбинного колеса и образование на ней структуры, по виду напоминающей апельсиновую корку. Превышение допустимой частоты вращения также может вызывать выкрашивание периферийной части лопаток турбины и даже их взрывное разрушение.

Помимо нарушения состава топливной смеси перенаддув может быть следствием неправильной работы элементов системы регулирования турбокомпрессора – байпасного пневмоклапана (waste gate) или управляющего им сервоклапана. Казалось бы, это чисто «внутренние» причины, касающиеся надежности самой системы турбонаддува, но и они могут провоцироваться внешними неисправностями. К примеру, ложными сигналами датчиков системы управления двигателем, таких как расходомер воздуха или датчик абсолютного давления во впускном коллекторе.

Зачастую к такому же результату приводит некомпетентное вмешательство в работу системы регулирования турбины. В большинстве случаев в конструкцию элементов, контролирующих давление наддува, заложена возможность его регулировки. Она служит главным образом для заводской настройки характеристик системы. Если крутить регулировочные винты, имея смутные представления о тонкостях работы системы наддува, можно накрутить так, что «мало не покажется». И практика ремонта ТК свидетельствует о том, что крутят…. Оказывать воздействие на работу системы регулирования можно и другими способами. К примеру, за рубежом существует индустрия производства специальных «клапанов-бустеров». Установив такой клапан, можно прямо из салона автомобиля вмешиваться в работу системы регулирования с целью увеличения давления наддува. Когда эта новинка станет широко доступна российским любителям быстрой езды, работы у мотористов и специалистов по турботехнике несомненно прибавится.

Турбопамятка

Продолжительный рассказ о «турбоужасах» хочется завершить оптимистической нотой и дать простые рекомендации, следование которым позволяет их избежать. Рекомендации наверняка будут полезны как владельцам автомобилей с турбированными моторами, так и тем, кто их обслуживает.

Чтобы система турбонаддува работала долго и эффективно, соблюдайте следующие правила.

1. Регулярно проводите техническое обслуживание двигателя, сокращая межсервисный интервал в тяжелых условиях эксплуатации.
2. При выполнении ТО:

  • применяйте качественное моторное масло, предназначенное для форсированных моторов с турбонаддувом, и одобренное заводом-изготовителем;
  • избегайте использования моторных масел классов вязкости «0W-»;
  • уделяйте внимание качеству и своевременной замене воздушного фильтра;
  • не забывайте контролировать состояние и проводить профилактику систем смазки двигателя, вентиляции картера, дозирования топлива и выпуска отработавших газов в соответствии с рекомендациями завода-изготовителя.

3. При эксплуатации автомобиля:

  • заправляйтесь качественным топливом на проверенных АЗС известных нефтеперерабатывающих компаний;
  • для заправки искровых турбомоторов используйте только высокооктановые бензины;
  • не применяйте присадки к моторному маслу и добавки в топливо;
  • не останавливайте двигатель сразу после продолжительного движения в режиме с высокой нагрузкой – дайте ему поработать несколько минут в щадящем режиме;
  • не нагружайте двигатель немедленно после «холодного» пуска, особенно в зимний период.

Если же, несмотря на все старания, вам не удалось избежать проблем с системой наддува, не спешите винить в случившемся турбину. Право слово, разумнее исходить из принципа презумпции ее невиновности…

Как по маслу

Ротор турбокомпрессора вращается в подшипниках скольжения. Радиальные нагрузки воспринимаются опорными подшипниками. Они могут быть выполнены в виде двух отдельных втулок, или единого подшипникового узла, так называемого патрона. Втулки при работе ТК вращаются (частота их вращения примерно вдвое меньше частоты вращения вала), в то время как патрон фиксируется от проворачивания. В любом случае подшипники устанавливаются по «плавающей» схеме, то есть с зазором относительно центрального корпуса ТК и вала ротора. Каждый зазор составляет величину в несколько сотых долей миллиметра. Четыре зазора (по два «на сторону») в сумме дают «слабину» уже в несколько «десяток». Поэтому если пальцами покачать ротор «сухого» турбокомпрессора в радиальном направлении, можно почувствовать заметные перемещения. У людей, имеющих смутное представление о внутреннем устройстве ТК, «биение» ротора вызывает недоумение и сомнения в исправности изделия. Сомнения, надо сказать, абсолютно необоснованные. Наличие зазоров строго определенной величины – залог работоспособности конструкции.

При работе турбокомпрессора к опорным подшипникам под давлением поступает моторное масло от системы смазки двигателя. За счет гидродинамических явлений в зазорах образуется прочная масляная пленка. Вращающийся ротор как бы «всплывает» на масляной пленке и ею же центрируется. Так что при любых режимах работы контакт между металлическими вращающимися поверхностями исключается. В зазоре между подшипником и валом масляная пленка выполняет функцию смазки и восприятия радиальных нагрузок, между подшипником и корпусом – смазки и демпфирования подшипников и ротора в целом. Еще одна важная функция смазки – охлаждение вала, подшипников и центрального корпуса (прежде всего, со стороны турбины).

Газы, протекающие через турбокомпрессор, воздействуют на крыльчатки компрессора и турбины с разным давлением. В результате ротор испытывает не только радиальные, но и осевые нагрузки. Для их компенсации в конструкции предусмотрен упорный подшипник. Упорный подшипник представляет собой массивную шайбу с плоскими контактными поверхностями, которая крепится в корпусе со стороны компрессорного колеса. Зазор между упорным подшипником и ответными поверхностями вала ротора также составляет несколько «соток», а потому «пальцами» практически не ощущается. Масло поступает в зазор по проточкам и каналам, выполненным в теле подшипника, и также образует пленку, удерживающую ротор от осевых перемещений.

Как говорилось выше, масло подается в центральный корпус ТК под давлением. Пройдя через зоны смазки, масло резко меняет физические свойства. Во-первых, избыточное давление падает до нуля и слив масла обратно в масляный картер двигателя происходит «самотеком», под действием гравитационных сил. Чтобы процесс слива протекал нормально, турбокомпрессор должен быть ориентирован строго определенным образом, а именно – сливной трубкой вертикально вниз. При этом отклонение продольной оси ТК от горизонтали допускается не более чем на 10-15°. Во-вторых, бешено вращающийся вал воздействует на масло как миксер и превращает однородную жидкость во вспененную субстанцию. Чтобы своевременно удалять ее из корпуса, используется сливная трубка большого сечения. Она должна выходить в масляный картер выше уровня масла. В противном случае, так же как и при любых других препятствиях для слива масла, в системе смазки ТК возникает противодавление, приводящее к просачиванию масла из центрального корпуса в корпус турбины или компрессора. В-третьих, повышается температура масла. На отдельных режимах работы ТК прирост его температуры может достигать величины порядка 80°С. Соответственно, температура масла в поддоне турбодвигателя может быть намного выше, чем у атмосферного мотора.

Как работает турбокомпрессор

Как работает турбокомпрессор
 
Содержание статьи
 
  1. Введение
  2. Турбокомпрессоры и двигатели
  3. Устройство турбокомпрессора
  4. Детали турбокомпрессора
  5. Использование двух турбокомпрессоров и других турбо деталей
  6. Узнать больше
  7. Читайте также » Все статьи про работу двигателя
 
 
В этой статье мы узнаем, каким образом турбокомпрессор увеличивает мощность двигателя в жестких условиях эксплуатации. Мы также узнаем о том, как регуляторы давления наддува, керамические лопатки турбины и шариковые подшипники улучшают работу турбокомпрессора. Турбокомпрессоры являются своего рода системой наддува. Они сжимают воздух, поступающий в двигатель (читайте статью "Как работает автомобильный двигатель" для описания движения воздуха в обычном двигателе). Преимущество сжатия воздуха состоит в том, что при этом можно впустить больше воздуха в цилиндр, и, соответственно, больше топлива. Таким образом, при каждом взрыве в цилиндрах высвобождается больше энергии. Двигатель с турбонаддувом является более мощным по сравнению с обычным двигателем. Благодаря этому существенно увеличивается удельная мощность двигателя (для получения более подробной информации, рекомендуем прочитать статью "Как работает лошадиная сила").
 
Для увеличения мощности двигателя, турбокомпрессор использует выхлопные газы для вращения турбины, которая, в свою очередь, вращает нагнетатель воздуха. Турбина турбокомпрессора вращается со скоростью до 150.000 оборотов в минуту (об/мин) - это примерно в 30 раз быстрее, чем скорость вращения большинства автомобильных двигателей. В связи с тем, что выхлоп идет на турбокомпрессор, температура в турбине очень высокая.
 
Далее мы расскажем о том, как узнать, насколько увеличится мощность двигателя, если установить турбокомпрессор.

 
 
 

Система турбонаддува автомобиля Mitsubishi Lancer Evolution IX.
 
Турбокомпрессоры и двигатели
 
Одним из самых эффективных способов увеличения мощности двигателя является увеличение количества сгораемого воздуха и топлива. Для этого можно установить дополнительные цилиндры или увеличить их объем. В некоторых случаях невозможно осуществить эти модификации, поэтому установка турбокомпрессора может стать более простым и компактным способом увеличения мощности, особенно для подержанных автомобилей.
 
Турбокомпрессоры позволяют двигателю сжигать больше топлива и воздуха благодаря увеличению подачи смеси в цилиндры. Стандартное давление сжатия воздуха турбокомпрессором составляет 6-8 фунт/дюйм2 (0,4 - 0,55 бар). Учитывая, что нормальное атмосферное давление составляет 14,7 фунт/дюйм2 (1 бар), при помощи турбокомпрессора в двигатель поступает на 50% больше воздуха. Следовательно, можно рассчитывать на увеличение мощности двигателя на 50%. Однако, эта технология не идеальна, поэтому мощность увеличивается на 30 - 40%.
 
Одна причина недостаточной эффективности состоит в том, что энергия, которая вращает турбину, не является свободной. Турбина, установленная в потоке выхлопных газов, создает препятствие для выхода газов. Это означает, что во время такта выпуска двигатель должен преодолеть высокое противодавление. В связи с этим происходит расход энергии работающих цилиндров.
 

 
Расположение турбокомпрессора в автомобиле

 
Устройство турбокомпрессора
 
Турбокомпрессор крепится к выпускному коллектору двигателя при помощи болтового соединения. Выхлопы из цилиндра вращают турбину, которая работает как газотурбинный двигатель. Турбина при помощи вала соединяется с компрессором, который установлен между воздушным фильтром и впускным коллектором. Компрессор сжимает воздух, поступающий в цилиндры.
 
Отработанные газы от цилиндра проходят через лопатки турбины, вызывая ее вращение. Чем больше выхлопных газов проходит через лопатки, тем быстрее происходит вращение.
 
С другой стороны вала, который установлен на турбине, компрессор вводит воздух в цилиндры. Компрессор представляет собой своего рода центробежный насос -- он втягивает воздух в центр лопаток и выпускает его под давлением во время вращения.
 
Для того, чтобы выдержать скорость вращения до 150.000 об/мин, вал турбины должен иметь надежную опору. Большинство подшипников не выдержит такую скорость и взорвется гидростатические подшипники. Такой тип подшипников поддерживает вал на тонком слое масла, которое непрерывно подается. Это обусловлено двумя причинами: Масло охлаждает вал и некоторые другие детали турбокомпрессора и позволяет валу вращаться, снижая трения.
 
Существует много различных решений, связанных с конструкцией турбокомпрессоров для автомобильных двигателей. На следующей странице мы расскажем о некоторых оптимальных вариантах и рассмотрим, как они влияют на работу двигателя.
 

Слишком сильное сжатие?

 

Когда воздух под давлением запускается в цилиндры при помощи турбокомпрессора и затем сжимается поршнями (читайте статью "Как работает автомобильный двигатель" для наглядного описания), существует риск самовозгорания смеси. Возгорание может произойти при сжатии воздуха, т.к. при этом возрастает температура. При высокой температуре может произойти возгорание еще до срабатывания свечи зажигания. Для предотвращения раннего сгорания топлива, автомобили с турбокомпрессором рекомендуется заправлять высокооктановым бензином. Если давление наддува слишком высокое, возможно придется уменьшить степень сжатия двигателя для того, чтобы избежать раннего сгорания топлива.

 

 

Как устанавливается турбокомпрессор
 
 
 

 

Как турбокомпрессор выглядит изнутри
 

 

 
Детали турбокомпрессора
 
Одна из основных проблем турбокомпрессоров состоит в том, что они не обеспечивают мгновенный форсированный наддув по нажатию на педаль газа. Турбине требуется несколько секунд для того, чтобы набрать скорость вращения, необходимую для наддува. В результате возникает задержка между временем нажатия на педаль газа и временем начала ускорения автомобиля при срабатывании турбины.
 
Одним из способов устранения задержки является снижение инерции вращающихся деталей, благодаря снижению их массы. Это способствует более быстрому набору скорости вращения турбины и компрессора и раннему началу наддува. Одним из наиболее надежных способов снижения инерции турбины и компрессора является уменьшение их размеров. Небольшой турбокомпрессор быстрее начнет наддув при низкой скорости работы двигателя, однако он не сможет обеспечить достаточный наддув при больших скоростях двигателя, когда в цилиндры поступает значительные объемы воздуха. Также существует риск слишком быстрого вращения на высоких скоростях двигателя, т.к. при этом через турбину проходит значительный объем выхлопа.
 
Большой турбокомпрессор может обеспечить сильный наддув при высокой скорости вращения двигателя, однако при этом может наблюдаться сильная задержка наддува, т.к. необходимо определенное время на разгон тяжелой турбины и компрессора. К счастью, существует ряд решений данных проблем.
 
В большинстве автомобильных турбокомпрессоров используется регулятор давления наддува, который позволяет уменьшить время задержки наддува небольших турбокомпрессоров, предотвращая слишком быстрое вращение при высокой скорости вращения двигателя. Регулятор давления наддува представляет собой клапан, который обеспечивает выпуск выхлопа в обход лопаток турбины. Регулятор давления наддува измеряет давление наддува. Если давление слишком высокое, это означает, что турбина вращается слишком быстро, поэтому регулятор давления наддува выпускает определенное количество выхлопа в обход лопаток для снижения скорости вращения турбины.
 
В некоторых турбокомпрессорах используются шариковые подшипники вместо гидростатических подшипников для поддержки вала. Но это не обычные шариковые подшипники – это особые подшипники, изготовленные из специального материала, которые могут выдержать скорости и температуры турбокомпрессора. Они снижают трение вала турбины при вращении, как и гидростатические подшипники. Они также позволяют использовать меньший и облегченный вал. Благодаря этому происходит быстрый набор скорости турбокомпрессором, что, в свою очередь, снижает задержку.
 
Керамические лопатки турбины легче стальных лопаток, которые используются в большинстве турбокомпрессоров. Благодаря этому опять же происходит быстрый набор скорости турбокомпрессором, что снижает задержку.
 

 

Турбокомпрессор обеспечивает наддув при большой скорости вращения двигателя.
 

 
Использование двух турбокомпрессоров и других турбо деталей
 
На некоторые двигатели устанавливается два турбокомпрессора разного размера. Малый турбокомпрессор быстрее набирает обороты, снижая тем самым задержку ускорения, а большой обеспечивает больший наддув при высокой скорости вращения двигателя.
 
Когда воздух сжимается, он нагревается, а при нагревании воздух расширяется. Поэтому повышение давления от турбокомпрессора происходит в результате нагревания воздуха до его впуска в двигатель. Для того, чтобы увеличить мощность двигателя, необходимо впустить в цилиндр как можно больше молекул воздуха, при этом не обязательно сжимать воздух сильнее.
 
Охладитель воздуха или охладитель наддувочного воздуха является дополнительным устройством, которое выглядит как радиатор, только воздух проходит как внутри, так и снаружи охладителя. При впуске воздух проходит через герметичный канал в охладитель, при этом более холодный воздух подается снаружи по ребрам при помощи вентиляторов охлаждения двигателя.
 
Охладитель увеличивает мощность двигателя, охлаждая сжатый воздух от компрессора перед его подачей в двигатель. Это значит, что если турбокомпрессор сжимает воздух под давлением 7 фунт/дюйм2 (0,5 бар), охладитель осуществит подачу охлажденного воздуха под давлением 7 фунт/дюйм2 (0,5 бар), который является более плотним и содержит больше молекул, чет теплый воздух.
 
Турбокомпрессоры также обладают преимуществом на большой высоте, где плотность воздуха ниже. Обычные двигатели будут работать слабее на большой высоте над уровнем моря, т.к. на каждый ход поршня подаваемая масса воздуха будет меньше. Мощность двигателя с турбокомпрессором также снизится, но менее заметно, т.к. разреженный воздух легче сжимать.
 
В старых автомобилях с карбюраторами автоматически увеличивается подачу топлива в соответствии с увеличением подачи воздуха. В современных автомобилях происходит то же самое. Система впрыска топлива ориентируется на данные датчика кислорода в выхлопе для определения необходимого соотношения топлива и воздуха, так что система автоматически увеличивает подачу топлива при установленном турбокомпрессоре.
 
При установке мощного турбокомпрессора на двигатель с впрыском топлива, система может не обеспечить необходимое количество топлива - либо программное обеспечение контроллера не допустит, либо инжекторы и насос не смогут осуществить необходимую подачу. В этом случае необходимо осуществлять уже другие модификации для максимального использования преимуществ турбокомпрессора.
 
Для получения большей информации по турбокомпрессорам, рекомендуем ознакомиться со ссылками на следующей странице.
 

 

Mazda RX-8 купе-кабриолет с установленной системой турбонаддува
 
Источник:  https://auto.howstuffworks.com/

В чем разница между турбинными двигателями?

Турбореактивный двигатель GEnx в настоящее время используется в самолетах Boeing 747-8 и Boeing 787 Dreamliner. В этом двигателе, который на 15% более экономичен по сравнению с двигателем GE CF6, используются лопасти вентилятора из углеродного волокна и корпус вентилятора для снижения веса. (Предоставлено GE Aviation)

Газовая турбина - одна из наиболее широко используемых форм силовых установок для современных авиационных двигателей. Сердцевина двигателя - компрессор, горелка и турбина - также известна как газогенератор, поскольку на выходе получается горячий выхлопной газ.Компрессор и турбина определяются как турбомашины, в которых энергия добавляется или извлекается из непрерывного потока за счет динамического и аэродинамического действия вращающихся лопастей.

Общие детали турбинного двигателя

Впуск

Впускное отверстие двигателя нагнетает в двигатель «свободный поток воздуха». Воздухозаборник предназначен для замедления поступающего воздуха и преобразования его кинетической энергии в статическое давление.

На этом разрезе типичного реактивного двигателя показаны сечения, разделенные на две части: холодную и горячую. Горячая секция - это когда горение происходит за счет добавления топлива в воздушный поток, поступающий от впуска холодной секции.

Дозвуковые воздухозаборники: Дозвуковые самолеты не превышают скорость звука. Повышение давления можно максимизировать, используя либо более длинный диффузор, либо больший угол расхождения диффузора (соотношение площадей диффузора).

Схема потока для дозвукового входа разделена на внешний (внешний / входной) и внутренний сегменты. Внешнее ускорение происходит при работе на низкой скорости с высокой тягой (т.е.е., условия взлета), что увеличивает скорость на входе и снижает давление на входе. Следовательно, зона входа спроектирована таким образом, чтобы минимизировать внешнее ускорение во время взлета, так что внешнее замедление происходит в крейсерских условиях. На типичном дозвуковом входе поверхность входа представляет собой непрерывную гладкую кривую, имеющую некоторую толщину изнутри наружу. Впускная губа или выступ, самая верхняя часть впускного отверстия, относительно толстая.

Сверхзвуковые воздухозаборники: Сверхзвуковые самолеты по-прежнему должны замедлять поток до дозвуковых скоростей до того, как воздух достигнет компрессора.Когда воздушный поток достигает торца двигателя, имеет число Маха от 0,4 до 0,7. Диффузия потока от сверхзвукового к дозвуковому потоку, также известная как возврат плунжера, включает удары. Обычный воздухозаборник - это простейший сверхзвуковой диффузор. Амортизаторы с узкой входной кромкой используются для одиночного нормального скачка (90 ° перпендикулярно потоку) при значениях Маха менее 1,6.

Наклонные впускные патрубки амортизаторов обеспечивают более высокий общий возврат давления. Сверхзвуковое замедление потока достигается серией косых скачков (под определенным углом к ​​потоку), за которыми следует слабый нормальный скачок.При косом скачке уплотнения сверхзвуковой поток превращается в себя; по мере увеличения количества косых скачков уплотнения ударные потери уменьшаются, особенно при высоких числах Маха.

Осесимметричный вход внешнего сжатия представляет собой диффузор конической формы, создающий конический удар. Из-за того, что поток через конус является трехмерным по своей природе, поле потока между скачком уплотнения и конусом больше не является однородным. Эффект приводит к более слабой ударной волне, чем для клина того же угла.

Компрессор

Компрессоры используются для повышения давления воздуха перед его поступлением в камеру сгорания.

Центробежные компрессоры: Эти компрессоры были реализованы в первых реактивных двигателях и до сих пор используются в турбореактивных и турбовальных двигателях. Они поворачивают воздушный поток перпендикулярно оси вращения. Вращающаяся крыльчатка перемещает воздух, который собирается в улитке или улитке. Между рабочим колесом и улиткой может быть диффузор.

Осевые компрессоры: Вместо перпендикулярного потока в осевых компрессорах воздух проходит параллельно оси вращения. Компрессор состоит из нескольких рядов роторов и статоров; которые представляют собой серию воздушных фольг. Роторы соединены с центральным валом и вращаются с высокой скоростью, сообщая жидкости угловой момент. Статоры закреплены, которые соединяются с внешним кожухом, увеличивают давление, не позволяя потоку закручиваться по спирали вокруг оси, возвращая его к параллельной оси (действуя как диффузоры). Длина лопатки и площадь кольцевого зазора уменьшаются по всей длине компрессора, уменьшая проходное сечение.Это компенсирует увеличение плотности жидкости при ее сжатии.

Горелка

Горелка или камера сгорания расположена между компрессором и турбиной, как кольцевое пространство. Здесь топливо смешивается с воздухом под высоким давлением и сжигается, чтобы создать высокотемпературный выхлопной газ, который вращает силовую турбину и создает тягу. Некоторые из желаемых свойств горелок заключаются в достижении полного сгорания с минимальными выбросами выхлопных газов, низкой общей потере давления, низкой потере тепла через стены и эффективном охлаждении. Однако многие из этих свойств конкурируют друг с другом; следовательно, оптимальная конструкция горелки - это один из компромиссов.

• Канально-кольцевые камеры сгорания: Состоящие из ряда цилиндрических горелок, расположенных вокруг общего кольцевого пространства, камеры сгорания с кольцевым каналом работают независимо друг от друга. На входе в каждую камеру установлен диффузор, который может снизить скорость от типичного выхода компрессора (100-150 м / с) до средней скорости объемного потока (20-30 м / с) в зоне горения.Он доставляет воздух в зону горения в виде стабильного и однородного поля потока. Это более старый метод конструкции горелки.

• Кольцевые камеры сгорания: Более современная конструкция - кольцевые камеры сгорания. Это одинарная горелка с кольцевым поперечным сечением, которая подает газ на турбину. Сама зона горения занимает кольцевое пространство. Улучшенная зона горения обеспечивает однородность, простоту конструкции, уменьшенную линейную площадь поверхности и меньшую длину системы.

Турбина

Турбина похожа на компрессор тем, что состоит из нескольких рядов роторов и статоров.Ступень турбины начинается с ряда неподвижных лопаток, называемых направляющей лопаткой сопла, за которым следует ряд вращающихся лопаток. Турбина преобразует тепловую энергию в кинетическую энергию за счет расширения через сопла, а затем в механическую энергию вращения во вращающемся роторе.

В потоке турбины преобладают благоприятные градиенты давления. Изменения давления могут быть довольно значительными, и пограничные слои в турбине менее подвержены срыву по сравнению с компрессором. Охлаждение турбин - серьезная проблема; таким образом, они предназначены для работы в условиях высоких температур и агрессивных сред.

Сопло

Функция сопла заключается в преобразовании тепловой энергии в кинетическую энергию для получения высокой скорости выхлопа. Тяга сопла, или полная тяга, складывается из импульса и давления. Максимальная общая тяга - это когда форсунка полностью расширена или давление окружающей среды равно давлению выхлопных газов.

Дозвуковое сопло: Для ускорения дозвукового потока поперечное сечение воздуховода должно уменьшаться в направлении потока.Когда канал заканчивается с наименьшим поперечным сечением, в результате получается сужающееся сопло. Давление на выходе из сопла ниже атмосферного. В результате поток ускоряется или расширяется до атмосферного или местного давления на выходе. Чем выше летит самолет, тем больше увеличивается скорость в соответствии с более низким атмосферным давлением. Предел достигается, когда струя выбрасывается со звуковой скоростью и сопло считается закупоренным. Как только состояние засорения реализуется, массовый расход через сопло достигает максимума, и условия остаются неизменными независимо от снижения давления окружающей среды.Следовательно, сужающееся сопло никогда не может создать сверхзвуковой поток.

Сверхзвуковое сопло: Для высоких скоростей выхлопа, необходимых для сверхзвукового полета, используется сходящееся-расширяющееся (CD) сопло для создания сверхзвуковой скорости истечения. Конструкция сопла CD состоит из сужающегося канала, за которым следует расходящийся канал. Увеличение площади поперечного сечения сопла ЦД ускоряет сверхзвуковой поток. Сверхзвуковое сопло или сопло CD требует большой разницы давлений для ускорения газа до сверхзвуковой скорости в горловине и дальнейшего создания сверхзвукового потока в расширяющейся части CD.Значительный перепад давления может быть создан за счет снижения противодавления или давления на выходе из окружающей среды ниже по потоку.

Регулируемые сопла позволяют сверхзвуковому летательному аппарату адаптироваться к изменяющимся условиям окружающего давления и настройкам мощности двигателя для сверхзвукового полета. Форсунки с адаптацией к высоте могут изменять форму угла кромки сопла для достижения оптимальной производительности.

Проблема возникает, когда сопло слишком или недостаточно расширено. В условиях недостаточного расширения давление падает на волнах расширения, и выхлопной шлейф расширяется за выходное отверстие сопла, снижая эффективность на больших высотах. Для чрезмерно расширенных сопел давление возрастает через наклонные ударные волны и смесь суб / сверхзвукового потока. Выхлопной шлейф зажимается высоким давлением окружающего воздуха, что снижает его эффективность на малых высотах. Чрезмерное расширение может привести к появлению в шлейфе областей со сложной волновой структурой, которые создают бело-желтое люминесцентное свечение, поскольку низкое давление выхлопных газов пытается соответствовать высокому окружающему давлению.

Турбореактивный двигатель

Турбореактивный двигатель - самый простой тип газовой турбины.Большое количество окружающего воздуха втягивается во впускное отверстие двигателя за счет компрессора. В задней части воздухозаборника воздух поступает в компрессор. Давление увеличивается, когда воздух проходит через ряды лопастей. На выходе из компрессорной секции давление воздуха выше, чем в набегающем потоке. В секции горелки топливо смешивается с воздухом и воспламеняется. Горячий выхлоп происходит в основном из окружающего воздуха и проходит через турбину, когда выходит из горелки. Турбина извлекает энергию из горячего воздушного потока, заставляя лопасти вращаться в потоке.В реактивном двигателе энергия, извлекаемая турбиной, вращает компрессор, связывая его и турбину с центральным валом. Остальная часть горячего выхлопа используется для создания тяги за счет увеличения его скорости через сопло. Поскольку скорость выхода больше, чем скорость набегающего потока, создается тяга. В поток добавляется очень мало топлива, поэтому массовый расход на выходе почти равен массовому расходу набегающего потока.

Турбовинтовой двигатель

В турбовинтовом двигателе горячий выхлоп используется для вращения гребного винта, а не для создания тяги на выходе из двигателя.

Две основные части турбовинтовой силовой установки - это основной двигатель и воздушный винт. Основной двигатель очень похож на турбореактивный, за исключением того, как он обрабатывает энергию выхлопных газов. Вместо того, чтобы расширять горячий выхлоп через сопло для создания тяги, турбовинтовой двигатель использует большую часть энергии выхлопа для вращения турбины. Дополнительная ступень турбины может быть соединена с приводным валом, который, в свою очередь, соединен с коробкой передач. Пропеллер соединяется с коробкой передач, которая производит большую часть тяги.

Тяга, создаваемая скоростью выхлопа, мала, потому что большая часть энергии выхлопа сердечника используется для вращения приводного вала. Турбовинтовые (и турбовентиляторные) двигатели обычно имеют двухконтактный двигатель, в котором отдельная турбина и вал приводят в действие вентилятор и коробку передач соответственно. Турбовинтовые самолеты используются только для низкоскоростных самолетов, таких как грузовые. По мере увеличения скорости воздушного судна пропеллеры становятся менее эффективными.

Турбореактивный двухконтурный двигатель

Пратт

Современные авиакомпании используют турбовентиляторные двигатели для движения своих самолетов по воздуху.Это связано с их высокой тягой и топливной экономичностью. Турбореактивный двухконтурный двигатель - это самая современная разновидность базовой газовой турбины. В турбовентиляторном двигателе два вентилятора окружают основной двигатель. Один вентилятор находится в передней части основного двигателя, а другой - в задней части. Вентилятор и турбина вентилятора соединены с дополнительным валом вентилятора. Вал вентилятора проходит через стержневой вал в двухзолотном двигателе. Для повышения эффективности некоторые двигатели имеют дополнительные золотники.

Турбореактивный двухконтурный вентилятор работает за счет захвата входящего воздуха на входе.Часть воздуха проходит через вентилятор в основной компрессор, а затем в горелку. Отвод тепла проходит через сердечник, турбины вентилятора и выходит из сопла. Этот процесс похож на турбореактивный. Остальной поступающий воздух после прохождения вентилятора направляется вокруг двигателя. Воздух, проходящий через вентилятор, имеет немного более высокую скорость, чем набегающий поток.

Отношение воздуха, перенаправляемого вокруг двигателя, к воздуху, проходящему через сердечник, известно как коэффициент перепуска. Турбореактивные двигатели с малой степенью двухконтурности более экономичны, чем базовый турбореактивный двигатель. Турбореактивный двухконтурный двигатель создает большую тягу для почти равного количества топлива, используемого активной зоной, поскольку расход топлива немного изменяется при добавлении вентилятора. В результате турбовентилятор отличается высокой топливной экономичностью.

Воздух, проходящий через сердечник, а также воздух, проходящий вокруг двигателя, составляют тягу. Из-за того, что входное отверстие закрывает передний вентилятор и имеет множество лопастей, он может эффективно работать на более высоких скоростях, чем простой пропеллер.

Турбореактивный двигатель дожигания

Это изображение показывает Пратт Форсажные камеры

используются в сверхзвуковых самолетах, таких как Concorde, и выключаются после достижения крейсерской скорости. Многие современные истребители используют турбовентиляторные двигатели с малой степенью двухконтурности, оснащенные форсажными камерами для эффективных крейсерских условий и создания высокой тяги для воздушных боев, а на турбореактивных самолетах - для полета на сверхзвуковых скоростях, преодолевая резкое увеличение лобового сопротивления, близкое к скорости звука. Форсажная камера впрыскивает топливо непосредственно в горячий выхлоп.Сопло базового турбореактивного двигателя удлиняется, а после сопла устанавливается кольцо пламегасителей. Дополнительное топливо впрыскивается через обручи в поток горячего выхлопа. Горящее топливо создает дополнительную тягу, но с неэффективной скоростью.

Горящее топливо предлагает простой механический способ увеличения тяги, но с неэффективной скоростью. Расчет тяги такой же, как у обычного турбореактивного двигателя, за исключением того, что значение тяги на выходе - это тяга на выходе из форсажной камеры.

Уравнения тяги:

F Turbojet или форсажный турбореактивный = á¹ e â € ™ V e - á¹ FS ∠™ V FS 9014 Турбовинтовой = á¹ FS ™ ( V Pe - V FS ) + á¹ e ∠™ ( V e - V Pe )
F Турбореактивный двухконтурный двигатель = á e e â € ™ V e - á FS ∠™ V FS + bpr â € ™ á¹ c ∠™ V f

где:
á¹ FS = массовый расход набегающего потока воздуха
á¹ e = массовый расход воздуха на выходе из активной зоны
á¹ c = масса расход горячего выхлопа, проходящего через сердечник
á¹ f = массовый расход вентилятора или байпаса
V f = скорость воздуха на выходе из вентилятора
V e = скорость воздуха на выходе из сердечника
V Pe = скорость воздуха на выходе из гребного винта
V FS = скорость набегающего потока воздуха
Ve = скорость воздуха на выходе из активной зоны
барр. = коэффициент байпаса, равный á f / á¹ c

Ищете запчасти? Зайдите в SourceESB.

Инженеры находят новые применения для газовых турбин

Возраст относительный. Смартфон пятилетней давности может оказаться устаревшим, а бутылка вина десятилетней давности готова к употреблению. Эту дихотомию можно увидеть и в военной авиации. В то время как военные нескольких стран принимают на себя поставки истребителя F-35 Joint Strike Fighter - возможно, самого высокотехнологичного и самого противоречивого самолета в мире, - стратеги утверждают, что этот самолет уже устарел, и планируют выпустить следующее поколение . самолет истребитель.Между тем, ВВС США сохраняют свой парк B-52H в воздухе до 2050-х годов, примерно через 90 лет после того, как первые Stratofortress поступили на действительную службу.

Этот план основан на замене коммерческих реактивных двигателей на существующие двигатели TF-33 тягой 17 000 фунтов стерлингов, которые были разработаны в конце 1950-х годов. Таким образом, планеры были бы древними по авиационным стандартам, настолько, что три поколения летчиков могли служить на одном и том же бомбардировщике, но двигатели были бы самыми современными. Это делает самолеты старыми или новыми?

Эти TF-33 были разработаны всего через 20 лет после разработки первой газовой турбины в 1939 году.Газовые турбины в качестве первопроходцев являются практически новыми по сравнению, скажем, с ветряными и водяными турбинами, которые существуют уже тысячелетия. Но они также достигли значительного уровня зрелости. Газовые турбины сейчас доминируют как в мировых двигателях самолетов, так и в производстве значительной части электроэнергии.

Однако состояние отрасли неоднородно. Рынок коммерческих реактивных двигателей устойчив и растет; рынок военных реактивных двигателей, электроэнергии и других рынков был относительно стабильным или снижался.Но это те области, где есть возможности. Они не новые, но у них есть потенциал для обновления.

Преобладает авиация

Пожалуй, лучший обзор мирового рынка газовых турбин основан на данных Forecast International, исследовательской фирмы из Ньютауна, штат Коннектикут. Аналитик Стюарт Слэйд использовал компьютерные модели FI и обширную базу данных для расчета стоимости производства газовых турбин производства с 2009 по 2018 год, и прогнозирует эти значения до 2033 года. (FI считает, что стоимость производства более точна, чем объявленные цифры продаж.)

Slade сообщает, что стоимость производства всех газовых турбин в мире в 2018 году составила 86,5 миллиарда долларов, что немного ниже, чем 87,6 миллиарда долларов в 2017 году. Как и в прошлые годы, большая часть стоимости производства приходится на авиационный рынок - 74,5 миллиарда долларов. Рынок не только вырос на 3 процента по сравнению с уровнем 2017 года, но и, по прогнозам, к 2033 году стоимость производства вырастет до 92,2 миллиарда долларов.

Так же, как авиация доминирует на рынке, производство коммерческих реактивных двигателей доминирует в авиации с 66 долларами.Стоимость производства в 2018 году составила 1 миллиард долларов. Производство реактивных двигателей следует за состояниями его основных клиентов, а недавний бум коммерческой авиации был настолько заметен, что за последние три года авиационная отрасль принесла больше прибыли, чем предыдущие. 30 лет вместе взятых.

Вам также могут понравиться: Running in Place

Авиакомпании требовали самолетов с новыми экономичными двигателями, что привело к популярности двухмоторных Boeing 737 MAX и Airbus A320neo.Чтобы удовлетворить этот спрос, CFM International, совместное предприятие GE Aviation и Safran Aircraft Engines, в прошлом году произвела около 1100 турбовентиляторных двигателей LEAP для таких авиалайнеров, а Pratt & Whitney произвела 750 турбовентиляторных двигателей серии PW 1000G. Поскольку заказано более 10 000 этих двух авиалайнеров, оба производителя двигателей будут производить эти двигатели еще долгие годы.

У третьего крупного производителя реактивных двигателей, Rolls-Royce, в 2018 г. были некоторые производственные проблемы с их двигателем Trent 7000, который весит 70 000 фунтов, установленным на Airbus A330neo, а также проблемы с долговечностью Trent 1000 на Boeing 787.В результате Rolls не будет участвовать в торгах на двигатель для нового среднеразмерного самолета Boeing, NMA, оставив предложение GE и Pratt & Whitney.

Узкофюзеляжные узкофюзеляжные реактивные самолеты являются наиболее прибыльными коммерческими самолетами, но рынок широкофюзеляжных и узкофюзеляжных авиалайнеров по-прежнему остается престижным. Эти большие самолеты предназначены для пересечения океанов и нуждаются в двигателях гораздо большей мощности, чем LEAP с тягой 20 000–30 000 фунтов и PW 1000G. Чтобы дать представление о том, что требуется самым большим самолетам, General Electric проведет летные испытания своего 100 000-фунтового турбовентиляторного двигателя GE9X с диаметром входного вентилятора 134 дюйма - чуть более 11 футов и почти такой же ширины, как фюзеляж A320.GE9X предназначен для установки на новый 777X Boeing, двухмоторный самолет, рассчитанный на перевозку более 400 пассажиров.

В отличие от бума коммерческих реактивных двигателей, в другом сегменте авиационного рынка - реактивных двигателях для военных самолетов - в 2018 году произошло небольшое снижение стоимости производства до 8,4 млрд долларов. Как отмечалось выше, некоторые военные планеры могут начать переоснащение стандартными коммерческими самолетами. Но спецификации для военных самолетов настолько требовательны, что технологические достижения, необходимые для удовлетворения этих требований, распространяются как на коммерческие реактивные самолеты, так и на неавиационные газовые турбины.Часто революционным в этих приложениях является старая шляпа для военных двигателей.

Самые эффективные тепловые двигатели

Неавиационный рынок не только значительно меньше авиационного, но и более фрагментирован. Forecast International разрабатывает газовые турбины с механическим приводом, которые широко используются вдоль трубопроводов природного газа к компрессорным электростанциям, судовые энергетические газовые турбины, предназначенные для судов, и микротурбины, используемые в системах комбинированного производства тепла и электроэнергии.Стоимость производства для этих трех сегментов составила 2,5 млрд долларов США по сравнению с 9,5 млрд долларов США для четвертого промышленного сегмента - газовых турбин, используемых в производстве электроэнергии.

В электроэнергетическом сегменте были и лучшие времена. В 2009 году общая стоимость производства составила более 20 миллиардов долларов, а в 2017 году она все еще превышает 13 миллиардов долларов. Даже если смотреть на 2033 год, Forecast International считает, что стоимость производства восстановится лишь частично, достигнув 12,3 миллиарда долларов.

Первая газовая турбина для использования в производстве электроэнергии была впервые испытана 80 лет назад на заводе в Бадене швейцарской компании Brown Boveri.Позже он был установлен в Невшателе, городе к западу от Бадена. Работая на мазуте, он имел тепловой КПД 18 процентов и использовался для питания электрического генератора мощностью до 4 МВт.

Подробнее о Уникальный газотурбинный двигатель для более тихих дронов

Сегодня газовые турбины простого цикла могут достигать КПД выше 40 процентов в агрегатах, генерирующих до 500 МВт. В сочетании с системами, которые используют выхлоп высокотемпературной газовой турбины для выработки пара для работы турбины цикла Ренкина, газовые турбины с комбинированным циклом могут достигать теплового КПД до 60 процентов, что вдвое больше, чем у большинства существующих угольных электростанций, и выходная мощность более 1000 МВт. (Как инженер-механик, я не могу не повторять, что газовые турбины являются частью наиболее эффективных тепловых двигателей, доведенных до совершенства человечеством!)

Эти газотурбинные установки с комбинированным циклом (GTCC) также имеют низкие капитальные затраты, в диапазоне от 700 до 1000 долларов за кВт, по сравнению с 3000 долларов за кВт для угля или 6000 долларов за кВт для атомных станций.

Ожидалось, что заводы GTCC с рекордной эффективностью и низкими затратами будут пользоваться большим спросом. Но в 2018 году GE и Siemens, основные производители газовых турбин, значительно сократили свой штат.Оказалось, что по мере установки более крупных и эффективных газотурбинных установок потребность в большем количестве газовых турбин уменьшалась. По разным рыночным причинам некоторые газотурбинные установки, которые были приобретены в предыдущие годы, были законсервированы, что привело к изгибу резервной мощности, ограничив немедленный спрос.

Еще одним фактором, приведшим к недавнему спаду, является неопределенность рынка, вызванная внедрением все более дешевой энергии от ветряных турбин и фотоэлектрических солнечных элементов. Хотя эти так называемые возобновляемые источники снизили спрос на новые газотурбинные электростанции, в долгосрочной перспективе непостоянный характер этих объектов может увеличить потребность в газотурбинных установках с быстрым запуском для поддержки возобновляемых источников энергии, когда солнце не светит. и ветер дрогнет.

Ускоренный курс

Стремясь обезуглерожить производство электроэнергии, страны и крупные регионы добавили большое количество энергии ветра, солнца, геотермальной энергии и энергии биомассы. На эти источники приходится более 35 процентов производства электроэнергии в Германии и более 25 процентов в Калифорнии.Некоторые сторонники надеются достичь полного использования возобновляемых источников энергии к концу следующего десятилетия.

В недавней книге A Bright Future ученый-международник Массачусетского университета Джошуа Голдштейн и Стаффан Квист, шведский инженер-ядерщик, утверждают, что возобновляемые источники энергии не могут быть достаточно быстро расширены для быстрой декарбонизации, особенно с учетом перемежаемости этих источников. Гольдштейн и Квист утверждают, что нынешние темпы внедрения возобновляемых источников энергии означают, что вместо полной замены ископаемого топлива к 2030 или 2040 году для полной декарбонизации может потребоваться более века.

В качестве альтернативы они указывают на Швецию: во время строительных работ в конце 1970-х - начале 1980-х годов страна построила парк ядерных реакторов, которые (вместе с некоторыми крупными плотинами гидроэлектростанций) производят львиную долю электроэнергии страны. Несмотря на то, что шведская электросеть потребляет на душу населения примерно на треть больше электроэнергии, чем в Германии, она практически безуглеродная.

Только аварийная программа строительства атомной станции может предотвратить катастрофу, говорят Гольдштейн и Квист.Однако экономическая выгода от замены 256 ГВт угольных мощностей в Соединенных Штатах (не говоря уже о других местах) новыми атомными электростанциями всего за 10 лет пугает, особенно по цене 6000 долларов за кВт. И вопросы о том, как расширить цепочку ядерных поставок или как подготовить достаточное количество ядерных инженеров в такие короткие сроки, остаются без ответа.

К счастью, за последнее десятилетие в электрической системе США произошла декарбонизация без увеличения чистой ядерной мощности.

В недавнем обзоре Управление энергетической информации США сообщило, что годовые выбросы углекислого газа в США в результате энергопотребления в электроэнергетическом секторе упали до 1743 миллионов метрических тонн (Мт) в 2017 году, что на 32 процента ниже уровня 2005 года. Это сокращение на 673 млн тонн произошло в течение 13-летнего периода, когда общая годовая выработка электроэнергии была близка к уровню (3902 млрд кВтч в 2005 году и 3878 млрд кВтч в 2017 году). Это годовое сокращение CO 2 является значительным - почти равным общим выбросам CO 2 в Германии (763.8 млн т) в 2017 году!

Каким образом произошло это очень значительное сокращение выбросов CO 2 в США? В период с 2005 по 2017 год использование угля было заменено увеличением на 19 процентов использования возобновляемых источников энергии (в основном ветра) и увеличения использования природного газа на 31 процент.

Простая замена топлива с угля на метан снизит выбросы углекислого газа вдвое, учитывая более высокое содержание энергии в природном газе на единицу углерода. А замена угольных электростанций с циклом Ренкина на современные газотурбинные парогазовые установки почти вдвое увеличивает тепловой КПД электростанции.Эти два эффекта - снижение плотности углерода и повышение теплового КПД - объединяются таким образом, что переход с угольной паровой турбины на газотурбинную парогазовую установку сокращает выбросы углерода на единицу электроэнергии на целых 75 процентов.

Поскольку новое использование природного газа в США означает добавление газотурбинных электростанций, я считаю, что рекордное сокращение выбросов CO 2 произошло в основном за счет использования диспетчерских газовых турбин , работающих на природном газе.Поскольку все больше электростанций с комбинированным циклом заменяют старые угольные, мы можем ожидать дополнительных значительных сокращений выбросов CO 2 в США и других странах, если другие последуют нашему примеру.

Менее одной шестой стоимости ядерной!

Путь к нулевым выбросам

В настоящее время на уголь приходится 30 процентов производства электроэнергии в США и 40 процентов во всем мире. Замена этой угольной энергии на газотурбинные парогазовые установки снизит выбросы CO 2 на 75 процентов, но конечная цель - ноль.

Газовые турбины также могут сыграть свою роль в достижении нуля за счет сочетания старых и новых технологий.

Когда дует ветер и светит солнце, ветряные турбины и солнечные устройства вырабатывают электроэнергию, иногда больше, чем можно потребить. Эти излишки возобновляемой энергии можно было бы использовать для электролиза воды для производства водорода - процесса, открытого Уильямом Николсоном и Энтони Карлайлом в 1800 году. Водород, произведенный электролитами, можно было либо хранить, либо вводить непосредственно в системы трубопроводов природного газа.Во время перерывов в производстве солнечной и ветровой энергии водород будет использоваться для использования в электростанциях комбинированного цикла, работающих на газовых турбинах.

Переход в два этапа - сначала с использованием газовых турбин, работающих на метане, а затем преобразование этих турбин для сжигания электролизованного водорода, - позволит быстро и по доступной цене сократить выбросы углерода в ближайшем будущем, а затем позволит сократить выбросы углерода до системы с нулевым выбросом углерода за счет перепрофилирование этих недавно построенных заводов. Такой план должен быть намного дешевле, чем строительство сотен новых атомных станций.

Точно так же, как переоборудование B-52 может удерживать их в небе, выполняя важную оборонную роль на десятилетия вперед, так же и «заправка» парка газовых турбин водородом, производимым из возобновляемых источников, может добавить годы к существующим. активы и новая жизнь на уже застойном рынке.

Ли. С. Лэнгстон - почетный профессор машиностроения в Университете Коннектикута в Сторрсе.

Адаптируемая газовая турбина | Американский ученый

Турбины существуют уже давно - ранними примерами являются ветряные мельницы и водяные колеса.Название происходит от латинского турбо, означает вихрь, и, таким образом, определяющим свойством турбины является то, что жидкость или газ вращают лопасти ротора, прикрепленного к валу, который может выполнять полезную работу. Однако турбины, работающие на углеводородном топливе, являются одними из самых молодых устройств преобразования энергии: их первое использование для выработки электроэнергии или приведения в действие реактивного самолета произошло в 1939 году. Благодаря усилиям многих тысяч инженеров за прошедшие 70 лет или около того, такие Газовые турбины стали доминирующими в силовых установках самолетов и, благодаря их не имеющему себе равных тепловому КПД и низкой стоимости, являются суперзвездами электростанций.Поскольку энергия является центральной проблемой современного общества, технология газовых турбин продолжает оставаться инновационной.

Многие мои усилия как инженера-механика, как в промышленности, так и в академических кругах, основывались на первом законе термодинамики (сформулированном в принципе сохранения энергии): энергия не создается и не разрушается, но может быть изменена по форме. Часть закона, «измененная по форме», - это то, что делают многие инженеры-механики, исследуя и разрабатывая устройства преобразования энергии.Примером этого преобразования является преобразование тепла (например, от сгорания углеводородного топлива) в движущую силу (например, в самолет с реактивным двигателем) или электричество. Устройства, выполняющие это преобразование, называются первичные двигатели.

Основные современные первичные двигатели преобразуют тепло, выделяемое в результате ядерных или химических реакций, в полезные формы энергии. Газовая турбина, изобретенная совместно Гансом фон Охайном, Фрэнком Уиттлом и инженерами швейцарской фирмы Brown, Boveri & Cie, пришла на смену паровой машине, созданной в 1769 году Томасом Ньюкоменом и Джеймсом Ваттом; двигатель с искровым зажиганием Николауса Отто 1876 года; двигатель с воспламенением от сжатия Рудольфа Дизеля 1884 года и паровая турбина Чарльза Парсонса 1897 года.

Название газовая турбина несколько вводит в заблуждение, поскольку подразумевает простую турбину, использующую газ в качестве рабочего тела. Собственно, газовая турбина имеет компрессор втягивать и сжимать газ (обычно воздух), камера сгорания (или горелки) для добавления горючего топлива (обычно углеводородной жидкости или газа) для нагрева сжатого газа, и турбина (или детандер) для извлечения мощности из потока горячего газа с его вращением лопаток турбины.

Поскольку происхождение газовой турбины лежит как в области электроэнергетики, так и в авиации, газовая турбина получила множество других названий. Для наземного и морского применения газовая турбина прозвище является наиболее распространенным, но его также называют турбина внутреннего сгорания , а турбовальный двигатель а иногда газотурбинный двигатель . Для авиационных приложений его обычно называют реактивный двигатель и различные другие названия (в зависимости от конкретной авиационной конфигурации или применения), такие как реактивный газотурбинный двигатель, турбореактивный двигатель, турбовентиляторный двигатель, вентиляторный двигатель и турбовинтовой или же реактивный двигатель (если он используется для привода воздушного винта).Компрессор-камера сгорания-турбина часть газовой турбины обычно называется газогенератор.

В газовой турбине самолета вся мощность турбины используется для привода компрессора (который также может иметь связанный вентилятор или пропеллер). Затем газовый поток, покидающий турбину, ускоряется в атмосферу через выхлопное сопло для обеспечения толкать или же тяговая мощность. Тяговая мощность газовой турбины или реактивного двигателя равна увеличению количества движения массового потока от входа к выходу двигателя, умноженному на скорость полета.Фактическая сила тяги, создаваемая в двигателе (и тянущая самолет вперед), является суммой всех осевых составляющих сил давления на внутренних поверхностях двигателя, подверженных воздействию потока газа.

Реактивный двигатель может быть достаточно маленьким, чтобы его можно было переносить в ручном режиме, и производить тягу в несколько фунтов (1 фунт тяги эквивалентен 4,45 ньютону силы) для использования на моделях самолетов или военных дронах. (Швейцарский пилот в отставке Ив Росси по прозвищу «Реактивный человек» прикрепил четыре таких небольших реактивных двигателя, каждый из которых имел тягу 50 фунтов или около 223 ньютонов, к заднему крылу и пролетел через Ла-Манш в 2008 году и над Гранд-Каньоном. в 2011.На современных коммерческих реактивных самолетах газовые турбины обычно имеют тягу в диапазоне 30 000 фунтов (или 136 000 ньютонов), при этом самая большая в настоящее время составляет около 100 000 фунтов тяги (445 000 ньютонов) на дальних самолетах Boeing 777.

Реактивный двигатель, показанный на рисунке выше, представляет собой турбовентиляторный двигатель с установленным на компрессоре вентилятором большего диаметра. Тяга создается воздухом, проходящим только через вентилятор (так называемый байпасный воздух) и через сам газогенератор. Комбинация механизмов значительно увеличивает топливную экономичность двигателя.Благодаря большой площади лобовой части, позволяющей втягивать большую массу воздуха (с учетом того, что конфигурация действительно создает более высокие силы аэродинамического сопротивления при крейсерских скоростях полета), турбовентиляторный двигатель генерирует максимальную тягу на взлетной скорости. Поэтому он больше всего подходит для коммерческих самолетов, которым требуется большая часть подъемной силы для отрыва от земли, а не для выполнения маневра в воздухе. Напротив, турбореактивный не имеет вентилятора и генерирует всю свою тягу из воздуха, проходящего через газогенератор.Турбореактивные двигатели имеют меньшую лобовую поверхность (и, следовательно, меньшее сопротивление при высоких скоростях полета) и создают пиковые тяги на высоких скоростях, что делает их наиболее подходящими для истребителей, которые движутся с гораздо более высокими скоростями, чем коммерческие самолеты.

В неавиационных газовых турбинах только часть мощности турбины используется для привода компрессора. Остаток используется как выход мощность на валу для включения устройства преобразования энергии, такого как электрический генератор, или для сжатия природного газа в трубопроводе, чтобы его можно было транспортировать.Наземные газовые турбины с валовой мощностью могут быть очень большими (с выходной мощностью до 375 мегаватт, чего достаточно для питания около 300 000 домов). Блок, показанный на рисунке справа, называется промышленный или же Рамка машина. Он сконструирован для обеспечения прочности и длительного срока службы, поэтому вес не является важным фактором, как в случае с реактивным двигателем. Обычно рамные машины проектируются консервативно, но в них используются технические достижения в разработке реактивных двигателей, когда это имело смысл.

Более легкие газовые турбины, созданные на основе реактивных двигателей и используемые для неавиационных применений, называются авиационные газовые турбины. Авиационные двигатели используются для привода компрессоров трубопроводов природного газа, кораблей и производства электроэнергии. Они используются, в частности, для обеспечения пиковой и промежуточной мощности для электросетей, поскольку они могут быстро запускаться. Пиковая мощность дополняет нормальную мощность коммунального предприятия в периоды высокого спроса, например, при кондиционировании летом в крупных городах.

Газовая турбина имеет некоторые конструктивные преимущества перед другими энергосистемами. Он способен производить большое количество полезной энергии при относительно небольшом размере и весе. Поскольку движение всех его основных компонентов связано с чистым вращением (например, отсутствует возвратно-поступательное движение, как в поршневом двигателе), его механический срок службы велик, а соответствующие затраты на техническое обслуживание относительно низкие. Однако на ранней стадии разработки обманчивая простота газовой турбины вызывала проблемы, пока не стали лучше поняты аспекты ее механики жидкости, теплопередачи и горения.По словам Эдварда Тейлора, первого директора газотурбинной лаборатории Массачусетского технологического института, первые конструкции газотурбинных компрессоров рухнули на скалу, и скала остановилась. Ларек Это внезапная блокировка и даже обратное движение потока в двигателе, вызванное тем, что жидкость отделяется от поверхностей аэродинамического профиля компрессора вместо того, чтобы равномерно течь по ним. Тейлор перефразировал слова П.Т. Барнума, чтобы описать два вида срывов: вы можете управлять компрессором так, чтобы он некоторое время останавливал все лопасти (так называемый помпаж), или некоторые из лопастей все время (так называемый вращающийся срыв).Чтобы избежать таких срывов, потребовалось много предварительных исследований и разработок.

Хотя газовая турбина должна запускаться с помощью каких-либо внешних средств (небольшой внешний двигатель или другой источник, например, другая газовая турбина), ее можно довести до состояния полной нагрузки (пиковой мощности) за считанные минуты, в отличие от паротурбинной установки. время запуска которого измеряется часами.

Газовые турбины также могут использовать различные виды топлива. Природный газ обычно используется в наземных газовых турбинах, тогда как легкие дистиллятные (или керосиноподобные) масла используются в авиационных реактивных двигателях и морских газовых турбинах.Также можно использовать дизельное топливо или специально обработанные остаточные масла (например, биодизель), а также горючие газы (например, метан), полученные из доменных печей, нефтеперерабатывающих заводов, свалок, сточных вод и газификации твердого топлива, такого как уголь, древесная щепа и жмых. (измельченные стебли сахарного тростника или сорго). Некоторые недавние работы в Южной Африке по типу атомной электростанции, называемой реактор с галечным слоем (в котором используются сферы графита размером с теннисный мяч, залитые делящимся материалом), обеспечивающий газообразный гелий для питания турбины, имеющей замкнутый цикл, Это означает, что в нем используется газ, предварительно нагретый внешним источником, который рециркулирует через систему.)

Дополнительным преимуществом газовых турбин является то, что обычным рабочим телом является атмосферный воздух, и машина не требует жидкостного охлаждения - важное соображение во многих частях мира, где не хватает охлаждающей воды.

На начальном этапе разработки одним из основных недостатков газовой турбины был ее более низкий КПД (следовательно, более высокий расход топлива) по сравнению с другими двигателями и паротурбинными электростанциями. Однако за последние 70 лет непрерывное инженерное развитие привело к тому, что тепловой КПД (18% для газовой турбины Brown Boveri 1939 г.) достиг нынешнего уровня около 45% для работы в простом цикле.Эффективность может достигать более 60 процентов для комбинированный цикл операции, на которых выхлопные газы используются дополнительно.

Сейчас трудно вспомнить, когда авиационная газовая турбина - реактивный двигатель - не использовалась в полете самолета. До появления реактивных двигателей производитель авиационных поршневых двигателей мог рассчитывать на продажу запасных частей в 20–30 раз больше первоначальной стоимости двигателей. С появлением реактивного двигателя эта цифра послепродажного обслуживания упала в три-пять раз по сравнению с первоначальной стоимостью (важное сокращение, сделавшее авиаперелеты доступными и надежными, а авиакомпании - прибыльными, хотя производителям двигателей пришлось изменить свои бизнес-модели).В последние годы технологии и требования рынка привели к тому, что компоненты двигателей стали более долговечными, что привело к снижению количества запасных частей на рынке запасных частей до все более низких уровней.

Хорошо управляемая авиакомпания будет стараться поддерживать в воздухе реактивный самолет 18 часов в сутки 365 дней в году. Авиакомпания ожидает, что при хорошем техническом обслуживании двигатели останутся в эксплуатации и на крыле в течение от 15 000 до 30 000 часов работы, в зависимости от количества взлетов и посадок, совершенных самолетом.По истечении этого периода реактивный двигатель будет снят и отремонтирован, обычно с заменой деталей, которые нагреваются, таких как камера сгорания и турбина. (В настоящее время частота отключения реактивного двигателя в полете составляет менее 1 на 100 000 летных часов. Другими словами, в среднем двигатель выходит из строя в полете раз в 30 лет.)

Авиационные реактивные двигатели составляют около 25% стоимости самолета. В 2011 году мировой рынок авиационных газовых турбин составил 32 миллиарда долларов, из которых 27 миллиардов долларов пришлось на коммерческие самолеты, а остальная часть - на военные нужды.В настоящее время в мировом авиапарке насчитывается около 19 400 самолетов. Оба основных производителя самолетов, Boeing в США и Airbus в Европе, прогнозируют, что к 2030 году в мировом парке будет 34 000 самолетов.

Этот многообещающий рынок стимулирует разработку реактивных двигателей для коммерческих авиакомпаний с упором на экономию топлива. В настоящее время от 40 до 60 процентов операционных расходов авиакомпаний приходится на авиакеросин. Турбореактивный двухконтурный двигатель Pratt & Whitney, показанный на втором рисунке, в настоящее время разрабатывается для новых узкофюзеляжных самолетов вместимостью от 90 до 200 пассажиров.Этот двигатель имеет систему зубчатой ​​передачи, установленную на ступице, которая приводит в движение передний вентилятор на более низких скоростях, что позволяет снизить расход топлива на 16% и значительно снизить уровень шума двигателя. Позже технология редукторного вентилятора может быть применена к двигателям большей тяги для более крупных самолетов.

Хотя военные реактивные двигатели представляют собой меньший сегмент рынка газовых турбин, разработанные там технологии исторически приносили выгоду коммерческой авиации. Яркий тому пример - новый американский двигатель F135 Joint Strike Fighter с тягой 40000 фунтов.На нем установлены три варианта самолетов: истребитель ВВС, который взлетает обычным способом, авиалайнер ВМС США и самолет с коротким взлетом / вертикальной посадкой для морской пехоты.

Температура в двигателе Joint Strike Fighter составляет 3600 градусов по Фаренгейту (1982 градусов по Цельсию). Каким образом профили турбины из кобальт-никелевого сплава выдерживают такие рабочие условия? Лопатки и лопасти охлаждаются примерно до восьми десятых до девяти десятых температуры плавления их сплава (от 2200 до 2600 градусов по Фаренгейту).Каждый аэродинамический профиль высокотемпературной турбины сформирован из сложной отливки для размещения сложных внутренних каналов и рисунков отверстий на поверхности, необходимых для направления охлаждающего воздуха (отбираемого из компрессора) внутри и над ее внешними поверхностями. Ошибка в расположении отверстия или соотношении давлений охлаждающего воздуха может привести к вдыханию газового тракта аэродинамического профиля, а не к охлаждающему выдоху, что при таких высоких температурах будет иметь катастрофические последствия. Конструкция системы охлаждения основана на 30-летних исследованиях и однозначно продвигает вперед самые современные характеристики и надежность турбины.

За последние 30 лет достижения в области неавиационных технологий почти вдвое увеличили тепловой КПД новых газотурбинных электростанций. В 2011 году мировой рынок неавиационных газовых турбин составил 16 миллиардов долларов, большая часть из которых пришлась на новые электрические установки. Современные газотурбинные электростанции с комбинированным циклом вырабатывают электроэнергию на уровне до половины гигаватта с тепловым КПД, который сейчас превышает 60-процентную отметку - почти вдвое больше, чем я узнал, когда был студентом-механиком.

Газотурбинная электростанция с комбинированным циклом использует газовую турбину (обычно работающую на природном газе) для приведения в действие электрического генератора. Горячий выхлоп затем используется для производства пара в теплообменнике (называемом парогенератор с рекуперацией тепла) для питания паровой турбины, полезная работа которой обеспечивает средства для выработки большего количества электроэнергии. (Если вместо этого для обогрева зданий используется пар, агрегат будет называться когенерационная установка. ) Хорошее значение КПД для современных газовых турбин составляет 40 процентов, тогда как паровая турбина в типичных условиях комбинированного цикла составляет около 30 процентов.Согласно первому закону термодинамики и определению термического КПД, общий КПД этих двух устройств составляет около 58 процентов, что выше, чем у любого из отдельных устройств по отдельности.

Сердцем электростанции с комбинированным циклом (или, точнее, комбинированной электростанции, поскольку термодинамические циклы не объединены) является газовая турбина с температурой выхлопных газов, обычно около 1000 градусов по Фаренгейту (или 538 градусов по Цельсию), достаточно для производства пара для питания паровой турбины.Газовая турбина Siemens мощностью 375 мегаватт, показанная на третьем рисунке, является центром новой 578 мегаваттной газотурбинной установки с комбинированным циклом в Иршинге, Германия. 19 мая 2011 года компания Siemens объявила о достижении теплового КПД 60,75 процента, что, вероятно, делает его самым эффективным тепловым двигателем из когда-либо эксплуатируемых.

«Я продаю здесь, сэр, то, что желает весь мир - СИЛУ». Это были слова раннего британского промышленника Мэтью Бултона Джеймсу Босвеллу, процитированные в книге Босвелла 1791 года. Жизнь Сэмюэля Джонсона .Бултон и его партнер, шотландский инженер Джеймс Ватт, создали первые паровые машины. Их фирма давно прекратила существование, но потребность мира во власти многократно возросла с тех пор, как Боултон встретил Босвелла.

Такая растущая потребность в энергии удовлетворяется за счет газовых турбин как в летных двигателях, так и в производстве электроэнергии. Можно с уверенностью предсказать, что газовая турбина усилит свою роль в качестве первичного двигателя, поскольку инженеры продолжают улучшать ее характеристики и находить новые применения.

  • Бати, В. В. 1996. Основы газовых турбин , 2-е издание. Нью-Йорк: Джон Вили и сыновья.
  • Коннер, М. 2001. Ханс фон Охайн: Элегантность в рейсе . Рестон, Вирджиния: Американский институт аэронавтики и астронавтики.
  • Голли Дж. 1987. Уиттл: правдивая история . Вашингтон, округ Колумбия: Пресса Смитсоновского института.
    • Хорлок, Дж. Х. 1992. Комбинированные электрические станции .Оксфорд, Англия: Pergamon Press.
    • Лэнгстон, Л. С. 2013. Не такие простые машины. Журнал "Машиностроение" Январь: 46–51.
    • Лэнгстон, Л. С. 2012. Преодолевая барьер. Журнал "Машиностроение" Май: 33–37.
    • Лэнгстон, Л. С. 2008. Галька, создающая волны. Журнал "Машиностроение" Февраль: 34–38.
    • Лэнгстон, Л. С. 2007. По Фаренгейту 3600. Журнал "Машиностроение" Апрель: 34–37.
    • Лэнгстон, Л. С. 2004. Турбины, газ. Энциклопедия энергетики, том 6 . Сан-Диего: Elsevier, стр. 221–230.
    • Тейлор, Э. С. 1970. Эволюция реактивного двигателя. Астронавтика и воздухоплавание 8: 64–72.
    • Ван дер Линден, Септимус. Первая в мире промышленная газовая турбина в Невшателе (1939 г.): международная историческая достопримечательность в области машиностроения, 2 сентября 1988 г. Нью-Йорк: Американское общество инженеров-механиков.http://files.asme.org/ASMEORG/Communities/History/Landmarks/5604.pdf

Турбинный двигатель | RadMax Technologies

Турбинный двигатель

Двигатели внутреннего и внешнего сгорания - это два основных типа первичных двигателей, которые сжигают топливо для выработки энергии. Примерами двигателей внутреннего сгорания являются бензиновые двигатели с искровым зажиганием (цикл Отто) и двигатели с воспламенением от сжатия (дизельный цикл). Примерами двигателей внешнего сгорания являются паровой двигатель (цикл Ренкина), двигатель горячего воздуха (Стерлинг) и газотурбинный двигатель (цикл Брайтона).

Все эти циклы имеют особые рабочие и физические характеристики и различные экономические соображения, которые позволяют использовать их для конкретных приложений. В следующей таблице приводится сравнение этих факторов.

Сравнение типов двигателей

Тип двигателя

КПД

Выбросы

Стоимость

Масса

Искровое зажигание (Отто)

Плохо

Плохо

Хорошо

Хорошо

Компрессионное зажигание (Дизель)

Хорошо

Плохо

Ярмарка

Ярмарка

Steam (Ранкин)

Хорошо

Плохо - Хорошо

Плохо - Хорошо

Плохо

Горячий воздух (Стерлинг)

Хорошо

Плохо

Плохо

Плохо

Газовая турбина (Брайтон)

Плохо

Хорошо

Плохо

Хорошо

Длительный срок службы, низкое отношение мощности к массе, а также растущие требования к защите окружающей среды и нормативные требования заставляют по-новому взглянуть на жизнеспособность газотурбинных двигателей для более широкого применения.Оптимизированное сгорание газотурбинного двигателя производит меньше общих выбросов, чем двигатели внутреннего сгорания. Однако их более низкая операционная эффективность и более высокие операционные и капитальные затраты препятствуют их более широкому использованию.

Двигатель RadMax Turbine Engine призван улучшить эффективность существующих газовых турбин и снизить затраты за счет включения более высокого КПД и более дешевого компрессора прямого вытеснения и газового расширителя технологии RadMax.

Турбинный двигатель прямого вытеснения RadMax
Турбинный двигатель RadMax оснащен высокоэффективным компрессором прямого вытеснения RadMax и детандером газа, соединенным с внешней камерой сгорания и рекуператором (теплообменником выхлопных газов).Комбинация этих устройств обеспечивает значительно более высокую эффективность извлечения топлива и энергии по сравнению с обычными газотурбинными двигателями.

Получающаяся в результате более низкая температура выхлопных газов за счет использования более высокоэффективного компрессора и детандера также имеет преимущество в виде снижения выбросов по сравнению с обычными газотурбинными двигателями. Кроме того, интеграция компрессора и детандера в один блок, использование впускных и выпускных отверстий большой площади вместо клапанов и большой рабочий объем для каждого размера устройства - все это значительно снижает потери тепла.

Газотурбинный двигатель RadMax способен сжигать практически любой тип газообразного или жидкого топлива и характеризуется следующими характеристиками:

  • Постоянно оптимизированное сгорание, приводящее к снижению выбросов, повышению эффективности двигателя и большей экономии топлива (расчетная эффективность торможения 50 +%)
  • Скорость ниже, чем у обычных газовых турбин с более высоким крутящим моментом
  • Большой диапазон изменения
  • Высокое отношение мощности к массе
  • Плавный ход
  • Низкий уровень шума
  • Снижение затрат на производство, эксплуатацию и обслуживание
  • Легко масштабируется от 20 л.с. и выше

RadMax Turbine Engine, цикл

Благодаря своей многотопливной, высокой топливной эффективности, компактным размерам и возможности чистого сжигания газотурбинный двигатель RadMax хорошо подходит для производства электроэнергии и гибридных транспортных средств.

RadMax Turbine Engine Operation
В газотурбинном двигателе RadMax, когда лопатки компрессора и расширителя перемещаются в осевом направлении, приводимые в движение торцом ротора, давление в каждой камере изменяется, когда соседние лопатки выдвигаются или втягиваются. Во время вращения ротора концы лопаток движутся по траектории, которая приближается к синусоидальной волне. Этот путь имеет уникальную конструкцию, так что при каждом обороте ротора объемы камер попеременно расширяются и сжимаются. Этот процесс повторяется в каждой из секций турбины, в каждой камере и с каждой стороны ротора.Сжатый воздух из компрессорных секций направляется в камеру сгорания, а горячий газ под высоким давлением из камеры сгорания направляется на вход секций газового расширителя.

Ротор газотурбинного двигателя RadMax непрерывно вращается в одном направлении, а не резко меняет направления, как в поршневых двигателях с возвратно-поступательным движением. Поскольку верхняя и нижняя поверхности ротора смещены по фазе на 90 градусов, газотурбинный двигатель RadMax всегда сбалансирован и демонстрирует минимальную вибрацию.

Комбинированная конфигурация турбины RadMax
Конструкция турбины RadMax представляет собой комбинацию из четырех отдельных секций, по две на каждом кулачке.Эта уникальная конструкция позволяет потенциально настраивать каждую из этих секций с различными степенями сжатия или расширения. Для некоторых приложений можно было бы сконфигурировать две или три секции как расширители и одну или две секции как компрессор, тем самым устраняя необходимость в отдельных кулачках компрессора и расширителя.

Это проиллюстрировано на этом рисунке, где зеленый центр представляет ротор в «развернутом» состоянии. Вертикальные желтые полосы - это скользящие лопатки, разделяющие каждую камеру, а черные синусоидальные кривые - поверхности кулачков.По мере вращения ротора сегменты, образованные ротором, кулачками и лопатками, увеличиваются или уменьшаются в объеме, таким образом, функционируя как турбины или компрессоры.

В этом примере три секции движка RadMax настроены как расширители. Четвертая секция настроена как компрессор. Каждая из секций расширения принимает газы под высоким давлением из внешней камеры сгорания и вырабатывает энергию вращения. Секция компрессора всасывает окружающий воздух и подает сжатый воздух в камеру сгорания.

MIT Школа инженерии | »Как начинают вращаться лопасти реактивного двигателя?

Как начинают вращаться лопасти реактивного двигателя?

С небольшим толчком от вспомогательной силовой установки…

Сара Дженсен

Когда пилот втягивает коммерческий самолет в ворота аэропорта, он не просто бросает его в парк и оставляет двигатели на холостом ходу.Фактически, объясняет Макс Бранд, кандидат в магистратуру, работающий в газотурбинной лаборатории отдела аэронавтики и космонавтики Массачусетского технологического института, реактивные двигатели выключаются, когда самолет приближается к воротам. Однако, как известно любому, кто ходил в самолете, это не совсем так. Свет горит, самолет гудит у вас под ногами. Вы могли даже заметить выхлоп, идущий из задней части самолета, когда смотрели в окно в зоне выхода на посадку.

«Выхлоп от вспомогательной силовой установки», - говорит Бранд.«ВСУ похожа на мини-реактивный двигатель, обычно расположенный в задней части самолета, содержащий компрессор, камеру сгорания и турбину, которые обеспечивают самолет электричеством и сжатым воздухом для системы кондиционирования воздуха, пока самолет находится на земле. ” APU также обеспечивает первый шаг в запуске главных двигателей реактивного самолета и заставляет его лопасти вращаться со скоростью в десятки тысяч оборотов в минуту, необходимой для того, чтобы двигатель стал достаточно самоподдерживающимся и продвигал самолет во время взлета и полета.

Только после того, как пассажиры пристегнуты, а их столики с подносами встанут в вертикальное положение и закреплены, ВСУ начинает подавать сжатый воздух в главные газотурбинные двигатели самолета. Сжатый воздух проходит через небольшую турбину снаружи двигателя, заставляя ее вращаться. К турбине прикреплен вал, который зубчатыми колесами соединен с главным валом двигателя и тоже начинает вращаться.

«Лопасти, соединенные с валом двигателя, затем начинают вращаться все быстрее и быстрее», - поясняет Бранд.«Деталь, которую вы видите в передней части двигателя, - это вентилятор, который представляет собой большой компрессор, обеспечивающий большую тягу, которая движет самолет», - объясняет Бранд. «За вентилятором внутри двигателя есть более мощный компрессор меньшего размера, который повышает давление и температуру воздуха, подготавливая его к сгоранию на реактивном топливе». Как только лопасти начинают двигаться достаточно быстро, пилот медленно добавляет топливо в камеру сгорания двигателя. Там электрическая искра воспламеняет смесь воздуха и топлива, и выхлопные газы проходят из камеры сгорания через турбину, состоящую из еще большего количества лопастей, ускоряя двигатель до тех пор, пока он не достигнет холостого хода, точки, в которой он самоподдерживается.Тяга создается, когда пилот добавляет больше топлива, что еще больше разгоняет двигатель, увеличивая его выходную мощность.

Такое расположение зубчатых колес, вращающихся валов и вращающихся лопастей может показаться довольно сложным, но процесс столь же прост, как третий закон физики Ньютона: для каждого действия существует равная и противоположная реакция. Когда сжатый воздух и топливная смесь воспламеняются в камере сгорания двигателя, газы образуются и расширяются, создавая силу и создавая тягу вперед, когда они стреляют из задней части двигателя, заставляя самолет двигаться вперед.

«В большинстве коммерческих самолетов этот метод запуска двигателей используется в течение длительного времени», - говорит Бранд. «Сжатый воздух уже вырабатывается APU, поэтому в системе очень мало избыточности».

Спасибо Муртазе из Бангалора за этот вопрос.

Опубликовано: 19 марта, 2013

Как работают реактивные двигатели?

На базе Air

Airbus A380 - самый большой в мире пассажирский самолет

Самолету требуется огромная мощность двигателя для взлета и полета.Полностью загруженный Airbus A380 - самый большой из действующих пассажирских самолетов - может весить на взлете более 500 тонн, для чего требуются четыре мощных двигателя, объединяющих тягу в 300 000 фунтов.
Двигатели должны приводить самолет в движение достаточно быстро, чтобы создать достаточную подъемную силу для преодоления силы тяжести. Но в отличие от наземных транспортных средств, которые прижимаются к земле с помощью приводных колес, самолет создает тягу с помощью пропеллеров или двигателей, которые толкают воздух.
Газотурбинные двигатели заполнены аэродинамическими профилями или «лопастями» различных размеров, прикрепленными к вращающейся оси.Лопасти перемещают воздух через различные ступени двигателя, сжимая и расширяя газ, создавая тягу, которая толкает самолет вперед.

Как выглядит газотурбинный двигатель?

Ниже представлена ​​схема типичного газотурбинного двигателя. Забор воздуха слева часто сопровождается большим вентилятором для увеличения всасывания. Затем воздух сжимается до меньшего объема перед смешиванием с топливом в камере сгорания. Смесь воспламеняется от искры или пламени, и горячий газ проходит через турбину, которая вращается, чтобы привести в действие компрессор и вентилятор.Выхлоп под высоким давлением затем выходит из задней части двигателя, создавая тягу и продвигая самолет вперед. Более подробно ступени газовой турбины описаны ниже.

Схема газотурбинного двигателя

Ступени газотурбинного реактивного двигателя

Большой всасывающий вентилятор

Вентилятор: Вентилятор расположен в передней части двигателя и является основным воздухозаборником. Большие вращающиеся лопасти всасывают огромное количество воздуха, ускоряя газ и разделяя его на два отдельных потока.Часть воздуха направляется в заднюю часть двигателя для создания тяги, а остальная часть направляется в ядро ​​двигателя, где он входит в следующую ступень.
Компрессор: Компрессор сжимает воздух, всасываемый лопастями вентилятора, сжимая его до меньшего объема и увеличивая давление. Секция компрессора покрыта несколькими рядами лопастей, которые направляют воздух в каналы все меньшего размера. Сжатие воздуха увеличивает потенциальную энергию и концентрирует молекулы кислорода для более эффективного сгорания на следующей стадии.
Камера сгорания: Камера сгорания вводит топливо в сжатый воздух и воспламеняет смесь, создавая расширяющийся газ под высоким давлением. Это самая горячая часть двигателя, где энергия выделяется при сжигании топлива, а температура может подниматься выше 2000 градусов по Фаренгейту. Камера сгорания снабжена форсунками для впрыска топлива и воспламенителем, чтобы вызвать реакцию. Как только происходит воспламенение, устойчивый поток топлива обеспечивает поддержание горения, а расширяющийся газ направляется вниз по потоку в секцию турбины.

Этот вид внутри реактивного двигателя показывает секции компрессора, камеры сгорания и турбины.

Турбина: Секция турбины - это еще одна серия вращающихся лопастей, которые приводятся в движение воздухом под высоким давлением, выходящим из камеры сгорания. Лопатки турбины улавливают быстрый воздушный поток и вращаются, приводя в движение вращающийся вал, который вращает вентилятор и компрессор в передней части двигателя. Турбина, по сути, приводит в действие остальную часть двигателя, используя энергию камеры сгорания для поддержания постоянного впуска и сжатия воздуха.Воздух, проходящий через турбину, теряет энергию для вращающихся лопастей, но то, что остается, перемещается в последнюю ступень выхлопа двигателя, откуда он выталкивается для создания тяги.

Реактивный истребитель с включенной форсажной камерой

Сопло: Сопло представляет собой конусообразный канал в задней части двигателя. Здесь воздушный поток из сердечника двигателя и воздух, отводимый из секции вентилятора, выбрасываются для создания тяги. Сопло двигателя обычно сужается для ускорения выходящего газа, а воздух, выходящий из сопла, оказывает на двигатель силу, которая толкает самолет вперед.
В некоторых двигателях используется форсажная камера для создания дополнительной тяги. Форсажная камера впрыскивает больше топлива и воспламеняет смесь после того, как она прошла через турбину. Процесс значительно увеличивает скорость воздуха, выходящего из сопла, но при этом расходуется избыточное топливо и используется только в течение коротких периодов времени на специализированных военных самолетах.

Как работает реактивный двигатель - сводка видео

Вот забавное видео, созданное CFM International, которое отслеживает анимированные частицы воздуха на каждой ступени турбовентиляторного двигателя с большим байпасом.

Улучшение аэродинамического профиля

Один реактивный двигатель может иметь сотни лопастей в секциях вентилятора, компрессора и турбины. Эти лопасти различаются по размеру, форме и составу материала, но все они выполняют важные функции в работе двигателя. Учитывая экстремальные силы и температуры, присутствующие в газотурбинном двигателе, методы улучшения качества металла, такие как лазерная обработка, имеют жизненно важное значение для безопасности и производительности двигателя и его компонентов.

Лопасти вентилятора бомбардировщика B-1 обработаны лазером на устойчивость к FOD

Стойкость к FOD: Повреждение инородными предметами (FOD) представляет серьезную опасность для авиационных двигателей. Мощное всасывание, создаваемое вентилятором и компрессором, может втягивать твердые предметы, такие как глыбы льда или обломки взлетно-посадочной полосы, потенциально повреждая компоненты двигателя. Лазерная обработка обеспечивает непревзойденную стойкость к FOD и, как было показано, значительно препятствует растрескиванию и разрушению титановых лопастей вентилятора, связанных с FOD.Лазерное упрочнение используется более 20 лет для защиты критических компонентов двигателя бомбардировщика B-1.
Предотвращение усталостных трещин: Усталостное растрескивание - еще одна серьезная опасность для лопастей авиационных двигателей. Поскольку компоненты вращаются с высокой скоростью, каждое лезвие испытывает растягивающее напряжение, повторяющееся в течение миллионов циклов. Если в металле развивается трещина, даже в микроскопическом масштабе, повторное нагружение каждого цикла может постепенно расширять трещину, пока она не станет настолько большой, что сломается лезвие.Лазерное упрочнение часто применяется к лопаткам вентилятора, компрессора и турбины в областях, склонных к растрескиванию и усталости. Глубокие сжимающие остаточные напряжения, создаваемые лазерным упрочнением, препятствуют возникновению и распространению трещин, продлевая срок службы лопастей и предотвращая неожиданные отказы.
На следующей неделе мы обсудим различные типы авиационных двигателей: от турбовентиляторных и турбовинтовых до ПВРД и ГПВРД.
Подписывайтесь на нас в LinkedIn, чтобы не пропустить ни одной статьи или блога.
Свяжитесь с LSPT, чтобы узнать больше о компонентах газотурбинных двигателей с лазерной упрочнением.

Возвращаясь в будущее с автомобилем Chrysler Turbine 1963 года выпуска

Из майского 1989 года выпуска Автомобиль и водитель.

Некоторые парни утверждают, что могут видеть будущее, и я люблю время от времени щуриться от этого взгляда. Но это маленькое приключение будет в обратном направлении, вроде того, как пройти к дульной части и заглянуть в ствол, пытаясь понять, почему мы услышали хлопок, а потом ничего не вышло.

Старая корпорация Chrysler сразу же собиралась производить автомобили с газотурбинными двигателями.... черт возьми, скоро. То, что началось - в умах нескольких инженеров, вдохновленных изобретательностью Второй мировой войны, - как мозговой штурм, который мог бы сработать, в октябре 1953 года превратилось в универсальный прототип: Chrysler начал испытания стандартного Plymouth 1954 года с двигателем. турбина. По прошествии десятилетия все больше и больше прототипов турбин выходили из инженерного отдела Chrysler на улицы Америки, где они были запечатлены на пленку и изображены в каждой газете, журнале для механиков и автомобильных справочниках в стране.У General Motors и Ford тоже были турбины, но Chrysler, казалось, был впереди, ближе всего к тому дню, когда мы все будем кружиться в автомобилях реактивного возраста, лишенных систем охлаждения, глушителей, поршней, клапанов, карбюраторов и необходимости для бензина. Они работали бы на керосине или дизельном топливе или даже на водке, если бы вы увлекались трюками. Публицисты Chrysler на пресс-гала-концерте зашли так далеко, что налили несколько драгоценных унций модных французских духов. Судя по отзывам, все, что он делал, это придавал выхлопу запах, который попадает сюда.

Дик Келли Автомобиль и водитель

Этот энтузиазм по поводу газовых турбин продолжал расти, пока, наконец, будущее не стало терять свою неопределенность. 14 мая 1963 года в отеле Essex House в Нью-Йорке компания Chrysler представила автомобиль с газотурбинным двигателем, который не был прототипом. Это был первый из 50 идентичных, блестящих бронзовых гламурных автомобилей с кузовом Ghia, которые собирались одолжить обычным людям для поездки на работу или для прогулок по полосе или для чего-то еще, что обычные люди делали с автомобилями.По словам Крайслера, единственной целью было определить реакцию типичных американских водителей на автомобили с турбинными двигателями. Другими словами, подлинное исследование рынка, подразумевающее, что если люди там достаточно сильно задыхаются и дадут другие признаки готовности подписывать чеки, то скоро турбины могут быть в каждом представительстве Chrysler от моря до сияющего моря.

Конечно, так было тогда и сейчас, и на участке Честного Эла в вашем районе ровно ноль подержанных автомобилей Chrysler Turbine с большим пробегом.Будущее, судя по всему, потерпело неудачу. И в этот поздний срок вашего автора отправляют в темную дыру с инструкциями доложить.

Мы идем по коридору главного здания на полигоне Крайслер в Челси, штат Мичиган. Металлические стены цвета желто-коричневого цвета выглядят такими же свежими и немаркированными, какими я их помню, когда я впервые установил законцовку крыла на место, когда новичок-инженер Chrysler - как и предполагало совпадение - летом 1963 года, всего через несколько дней после аварии. Анонсированы автомобили Ghia Turbine Cars.

Дик Келли Автомобиль и водитель

Мы поворачиваем к табличке с золотыми буквами на синем фоне, которая гласит: «Выставочный зал». При виде этого у меня на чердаке раздается зуммер. Я забыл выставочную комнату. Это было пространство размером с просторный гараж на одну машину, со стальными стенами и набором промышленных мощных ворот, ведущих в главный магазин. Выставочный зал был предназначен для просмотра будущего. Любой прототип, настолько масштабный, что переставал работать в обычной мастерской, катили в демонстрационный зал.Машины настолько продвинутые, что они не могли выйти на улицу без укрытия, были введены внутрь. Стальные двери были закрыты на замок . Крышка была снята. И вот оно, вот и дрожь , будущее!

Но, как я сказал, сегодня мы смотрим на другой конец ствола. Дверь открывается, и я вхожу в 1963.

Я только что вернулся с обеда или как? Ничего не изменилось. Стены по-прежнему бледные, верстаки серые, ящики для инструментов красные. И Turbine Car по-прежнему совершенно гламурен, его выдающаяся форма вся украшена блестящим хромом и блестящей бронзой, как у какой-то танцовщицы на Копакабане.Я чувствую, что должен свистеть.

Как и все танцовщицы, эта выглядит немного потрепанной, если подойти поближе. У нее на боках крошечные морщинки от дверей, брошенных ей на парковках. Но она все еще умеет принимать позу.

Я видел много машин с турбонаддувом во времена Крайслера, кружащихся по инженерному комплексу, как руление Боингов, оставляя за собой теплое облако реактивного дыхания, которое кружилось вокруг моих лодыжек, когда они проезжали мимо. Однако, несмотря на их количество, они всегда были таинственными кораблями.Трудно было поймать кого-то для радостной поездки: мне так и не удалось. Ребята, которые работали в турбинной лаборатории, держались в стороне. Некоторые из моих друзей перешли туда, когда программа процветала. Как будто они присоединились к культу. После этого они больше не разговаривали за кофемашиной и больше не возвращались к столам старого кафетерия на обед. Слухи о специальных высокотемпературных материалах и прорыве в эффективности ходили по виноградной лозе Engineering, но я никогда не слышал, чтобы кто-нибудь сказал хоть слово. Я тоже не помню, чтобы когда-либо видел хоть одну улыбку.

Дик Келли Автомобиль и водитель

Я спрашиваю об этом Джорджа Стечера. Можно сказать, что он один из первых актеров: 39 лет в Chrysler, работал над турбинами до самого конца программы, до сих пор несет за них огонь. Сегодня утром он приехал в Челси, чтобы помочь турбинному автомобилю пережить это приключение.

О культе он говорит просто: «Джордж Хюбнер умел вдохновлять своих людей».

Да, Джордж Хюбнер, я помню, как он шагал по коридорам: высокий, чопорный, как генерал, германец в своих седых волосах и очках в стальной оправе, со всеми острыми складками и четким воротником - мужчина на миллион долларов.Проект турбины был его делом. С ним было невозможно спорить.

Stecher воспроизводит детали турбинных дней Chrysler, как если бы они произошли ранее на этой неделе. Всего, по его словам, было 55 таких автомобилей, построенных компанией Ghia, 45 из которых были переданы в аренду избранным «клиентам». С 29 октября 1963 года, когда вышла первая машина, и до 28 января 1966 года, когда вернули последнюю, 203 автомобилиста предстали перед трехмесячным испытанием.

Автомобили были стилизованы под Chrysler под руководством Элвуда П.Энгель, который тогда был только что из Форда. По силуэту Турбинные Машины были похожи на Громовых Птиц того времени. Вероятно, именно так, по мнению Энгеля, должен выглядеть четырехместный автомобиль. Кузова были изготовлены вручную в Италии и оснащены двигателями и шасси на заводе Chrysler в Гринфилде.

«В мире осталось девять», - говорит Стечер. «У Крайслера их три».

Дик Келли Автомобиль и водитель

В автомобиле scuttlebutt, изготовленном в 1960-х годах, говорилось, что автомобили были ввезены в беспошлинный режим на ограниченное время и в конечном итоге будут списаны, чтобы избежать пошлины.Не так давно до меня дошли слухи о большом кладбище машин с турбинными двигателями на каком-то удаленном участке полигона. Стечер подтверждает слухи. Единственным спасением от налога было отправить их обратно в Италию или отдать музеям в нерабочем состоянии. Шесть автомобилей отправились в музеи со снятыми двигателями и выставлены на выставочные стенды. Но музейные коллекции, похоже, не вечны, и сейчас несколько машин с турбинным двигателем попадают в частные руки. По причуде налоговых правил, после пяти лет демонстрации автомобили навсегда освобождаются от пошлины.Продавец Domino's Pizza, Том Монаган, недавно приобрел для своей коллекции автомобиль с турбинным двигателем, хотя кто-то опередил его.

А как насчет кладбища? Элмер Киль, координатор полигона, кивает. «Мы порезали их, разбили, сожгли. Я плакал, но мы должны были это сделать».

Но он смеется над другим аспектом работы по утилизации. Когда время разрушений было близко, сотрудники полигона начали накапливать несколько памятных подарков. Фаворитом была хромированная центральная часть колесных колпаков.Это был чистый мотив Turbine, блюдо с внутренними плавниками. Получилась отличная пепельница, и многие курильщики держали их на своих столах. Затем в один прекрасный день без предупреждения все они исчезли. Никто не знал почему. Может быть, таможня США?

Нет. Бригада ночных уборщиков посчитала, что пепельницы с внутренними ребрами неудобно чистить, поэтому они выполнили небольшую операцию по утилизации.

Дик Келли Автомобиль и водитель

Я спрашиваю Стечера, почему турбины так и не пошли в производство.Он говорит, что в первые дни большие улучшения пришли быстро, и повсюду царил оптимизм. Но когда уровень развития техники приблизился к приемлемому уровню для легковых автомобилей, прогресс начал замедляться. Некоторое время выбросы NOx были огромными. Когда этот барьер был наконец преодолен, разразился энергетический хруст. Недостатком турбины всегда была экономия топлива, но пятнадцать лет разработки подтолкнули ее к приблизительному паритету с большими автомобилями V-8 того времени - 17 или 18 миль на галлон в поездке, где-то там.Но когда напуганные кризисом покупатели автомобилей начали покупать импортные автомобили на 30 и 40 миль на галлон, оптимизм в отношении турбин угас. В середине 1970-х годов Chrysler выиграла государственный контракт на разработку турбины на сумму 6,4 миллиона долларов. На заре 1980-х годов в стадии моделирования находилась даже компактная турбина с передним приводом. Но с точки зрения турбинщика будущее выглядело ужасно. Турбина может быть высокоэффективным двигателем при работе с постоянной скоростью, как в самолете или на электростанции, но она жадина при вождении с постоянными остановками.Первоначальным аттракционом для автомобилей была идеальная плавность хода и, скажем прямо, новизна. Но единственный сценарий, который не предвиделся в те безумные послевоенные годы, был именно тем, который сближался. Топливо собирались ограничить. В конце концов, Chrysler смирился с этой точкой зрения в апреле 1981 года и в последний раз выключил свет в лаборатории Turbine Lab.

Я хорошо помню жужжащий звук турбинного вагона, но в нем много оттенков. В масштабе от Boeing до Cuisinarts я бы не вспомнил, где именно он подходит.Но теперь, когда включено зажигание и лопасти крутятся до максимальной скорости, я слышу порыв воздуха, чистый Electrolux. Принеси на ковер.

Стрелке тахометра требуется около трех секунд для перехода в режим холостого хода - при 22 000 об / мин. Жужжание пронзительное и воздушное, что совершенно не подходит для машины. И в целом идеально подходит для фантастических путешествий.

Интерьер, конечно, фантастический. Три циферблата с глубокими туннелями, сгруппированные, как пушки, указывают на меня через отверстие с капюшоном в приборной панели. Бронзовая кожа подходит ко всем поверхностям, кроме хрома.Яркая консоль в виде турбины простирается от брандмауэра до багажника, разделяя кабину пополам. На радиолифце есть два символа гражданской обороны, каждый из которых представляет собой треугольник в круге, показывающий, где настраиваться, когда коммуняки бросают большой. Тахометр показывает до 60 000 об / мин.

Стечер нервничает из-за двигателя. Он говорит, что температура на входе в турбину выше примерно на 75 градусов. Моя идея о взлете на полной мощности в туманную дистанцию ​​полигона его нисколько не забавляет. Так что нам придется отправиться в круиз.

Дик Келли Автомобиль и водитель

Мой мозг был вовлечен в интенсивный сеанс посредничества между глазами, которые говорят «машина», и ушами, которые настаивают на «Боинге». Уши знают о реактивных двигателях, знают, как свистит двигатель, и довольно скоро скорость набирает обороты. Турбинная машина делает это так, как если бы двигатель не был связан с ведущими колесами. Круиз - это ил. Я нажимаю педаль хода, и мы идем вперед. Стрелка тахометра подскакивает на тысячи оборотов в минуту; спидометр кажется успокоенным.

Турбина Автомобильная жижа, скользкая, как чистый полиэстер. В этом была загадка. Без вибрации точно. Но это также отталкивает, потому что он настолько не связан с задачей движения вперед - как старый Hydramatic, только в большей степени.

Забудьте все, что вы знаете об автомобилях. Турбина - двухсекционный двигатель. Свистящая часть - это секция компрессора, которая работает все время, увеличивая и уменьшая обороты в ответ на поток топлива, регулируемый вашей ногой. Работа компрессора заключается в подаче горячего ветра в силовую турбину, соединенную с трансмиссией.Между компрессором и силовой турбиной нет никакой связи, кроме горячего ветра. Остановитесь на светофоре, и силовая турбина тоже остановится, горячий ветер на холостом ходу пробьет лопасти, ожидая, когда вы отпустите тормоза и дадите топливо.

Двигатель, по сути, служит отдельным преобразователем крутящего момента - я должен добавить, что он исключительно слабый. И это источник чувства разобщенности. Chrysler использовал трехступенчатую автоматическую коробку передач без обычного гидротрансформатора, чтобы улучшить работу в городе.

Стечер только что заметил, что этот не переключается. Неудивительно, что машина сочится. Осталось не так много запчастей для турбины. Его лицо выражает разочарование владельца: «О нет! Что теперь?»

А, но для круиза нам не нужна коробка передач. Кроме того, кому нужна трансмиссия на самолете? Звук двигателя абсолютно убедительный. Вы знаете, как в «Боинге» струя реактивного двигателя, кажется, растворяется в счастливой гармонии с порывом наружного воздуха на крейсерской скорости? По мере приближения к 0,1 Маха турбинный вагон делает то же самое.

Мой голос становится хрипловатым, и мне хочется сказать: «Это говорит ваш капитан».

Технические характеристики

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

1963 Chrysler Turbine Car

ТИП АВТОМОБИЛЯ
передний двигатель, задний привод, 4 пассажира, 2 двери купе

ТИП ДВИГАТЕЛЯ
регенеративная газовая турбина, железный корпус с алюминиевым компрессором, стальным рабочим колесом и турбинами из алюминиевого сплава
Мощность
130 л.с. при 3600 об / мин на выходном валу
Крутящий момент
425 фунт-футов при остановке на выходе вал

ТРАНСМИССИЯ
3-ступенчатая АКПП

ШАССИ
Подвеска (передняя / правая): поперечные рычаги / ведущая ось
Тормоза (передняя / правая): 10.0-дюймовые чугунные барабаны / 10-дюймовые чугунные барабаны
Шины: Goodyear Tubeless, 7,75 x 14

РАЗМЕРЫ
Колесная база: 110,0 дюйма
Длина: 201,6 дюйма
Ширина: 72,9 дюйма
Высота: 53,5 дюйма
Снаряженная масса: 3900 фунтов

C / D РЕЗУЛЬТАТЫ ИСПЫТАНИЙ
60 миль в час: 13,2 с
Максимальная скорость: 115 миль в час

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *