Турбовальный двигатель: Турбовальный двигатель. | АВИАЦИЯ, ПОНЯТНАЯ ВСЕМ.

Содержание

Турбовальный двигатель. | АВИАЦИЯ, ПОНЯТНАЯ ВСЕМ.

Привет!

Центробежная ступень компрессора ТВаД.

Сегодня продолжаем серию рассказов о типах авиационных двигателей.

Как известно, основной узел любого газотурбинного двигателя ( ГТД) – это турбокомпрессор. В нем компрессор работает в связке с турбиной, которая его вращает. Функции турбины этим могут и ограничиться. Тогда вся оставшаяся полезная энергия газового потока, проходящего через двигатель, срабатывается в выходном устройстве (реактивном сопле). Как говорил мой преподаватель «спускается на ветер» :-). Тем самым создается реактивная тяга и ГТД становится обычным турбореактивным двигателем (ТРД).

Но можно сделать и по-другому. Турбину ведь можно заставить кроме компрессора вращать и другие нужные агрегаты, используя ту самую оставшуюся полезную энергию. Это может быть, например, самолетный воздушный винт. В этом случае ГТД становится уже турбовинтовым двигателем, в котором 10-15% энергии все же расходуется «на воздух» :-), то есть создает реактивную тягу.

Принцип работы турбовального двигателя.

Но если вся полезная энергия в двигателе срабатывается на валу и через него передается для привода агрегатов, то мы уже имеем так называемый турбовальный двигатель (ТваД).

Такой двигатель чаще всего имеет свободную турбину. То есть вся турбина как бы поделена на две части, между собой механически несвязанные. Связь между ними только газодинамическая. Газовый поток, вращая первую турбину, отдает часть своей мощности для вращения компрессора и далее, вращая вторую, тем самым через вал этой (второй) турбины приводит в действие полезные агрегаты. Сопла на таком двигателе нет. То есть выходное устройство для отработанных газов конечно имеется, но соплом оно не является и тяги не создает. Просто труба… Зачастую еще и искривленная :-).

Компоновка двигателя Arriel 1E2.

Турбовальный двигатель ARRIEL 1E2.

Eurocopter BK 117 c 2-мя турбовальными двигателями Arriel 1E2.

Выходной вал ТваД, с которого снимается вся полезная мощность, может быть направлен как назад, через канал выходного устройства, так и вперед, либо через полый вал турбокомпрессора, либо через редуктор вне корпуса двигателя.

Компоновка двигателя Arrius 2B2.

Турбовальный двигатель ARRIUS 2B2.

Eurocopter EC 135 с 2-мя турбовальными двигателями Arrius 2B2.

Надо сказать, что редуктор – непременная принадлежность турбовального двигателя. Ведь скорость вращения как ротора турбокомпрессора, так и ротора свободной турбины велика настолько, что это вращение не может быть напрямую передано на приводимые агрегаты. Они просто не смогут выполнять свои функции и даже могут разрушиться. Поэтому между свободной турбиной и полезным агрегатом обязательно ставится редуктор для снижения частоты вращения приводного вала.

Компоновка двигателя Makila 1A1.

Турбовальный двигатель MAKILA 1A1

Eurocopter AS 332 Super Puma с 2-мя турбовальными двигателями Makila 1A1

Компрессор у ТваД может быть осевым (если двигатель мощный) либо центробежным. Часто компрессор бывает и смешанным по конструкции, то есть в нем есть как осевые, так и центробежные ступени. В остальном принцип работы этого двигателя такой же, как и у ТРД.

Примером разнообразия конструкций ТваД могут служить двигатели известной французской двигателестроительной фирмы TURBOMEKA. Здесь я представляю ряд иллюстраций на эту тему (их сегодня вообще много как-то получилось :-)… Ну много — не мало… :-)).

Компоновка двигателя Arrius 2K1

Турбовальный двигатель ARRIUS 2K1.

Вертолет Agusta A-109S с 2-мя турбовальными двигателями Arrius 2K1.

Основное свое применение турбовальный двигатель находит сегодня конечно же в авиации, по большей части на вертолетах. Его часто и называют вертолетный ГТД. Полезная нагрузка в этом случае – несущий винт вертолета. Известным примером ( кроме французов :-))могут служить широко распространенные до сих пор отличные классические вертолеты МИ-8 и МИ-24 с двигателями ТВ2-117 и ТВ3-117.

Вертолет МИ-8Т с 2-мя турбовальными двигателями ТВ2-117.

Турбовальный двигатель ТВ2-117.

Вертолет МИ-24 с 2-мя турбовальными двигателями ТВ3-117.

Турбовальный двигатель ТВ3-117 для вертолета МИ-24.

Кроме того ТваД может применяться в качестве вспомогательной силовой установки (ВСУ, о ней подробнее в следующей статье :-)), а также в виде специальных устройств для запуска двигателей. Такие устройства представляют собой миниатюрный

турбовальный двигатель, свободная турбина которого раскручивает ротор основного двигателя при его запуске. Называется такое устройство турбостартер. В качестве примера могу привести турбостартер ТС-21, используемый на двигателе АЛ-21Ф-3, который устанавливается на самолеты СУ-24, в частности на мой родной СУ-24МР :-)…

Двигатель АЛ-21Ф-3 с турбостартером ТС-21.

Турбостартер ТС-21, снятый с двигателя.

Фронтовой бомбардировщик СУ-24М с 2-мя двигателями АЛ-21Ф-3.

Однако, говоря о турбовальных двигателях, нельзя не сказать о совсем неавиационном направлении их использования. Дело в том, что ведь изначально газотурбинный двигатель не был монополией авиации. Главный его рабочий орган, газовая турбина, создавался задолго до появления самолетов. И предназначался ГТД для целей более прозаических, нежели полеты в воздушной стихии :-). Эта самая воздушная стихия его все же завоевала. Однако неавиационное приземленное предназначение существует и серьезности своей не потеряло, скорее наоборот.

На земле, так же как и в воздухе ГТД (турбовальный двигатель) применяется на транспорте.

Первое – это перекачка природного газа по крупным магистралям через газоперекачивающие станции. ГТД используются здесь в качестве мощных насосов.

Второе – это водный транспорт. Суда, использующие турбовальные газотурбинные двигатели называют газотурбоходы. Это чаще всего суда на подводных крыльях, у которых гребной винт приводит в движение турбовальный двигатель механически через редуктор или электрически через генератор, который он вращает. Либо это суда на воздушной подушке, которая создается при помощи ГТД.

Газотурбоход "Циклон-М" с 2-мя газотурбинными двигателями ДО37.

Пасажирских газотурбоходов за российскую историю было всего два. Последнее очень перспективное судно «Циклон-М» появилось в очень неудобное для себя время в 1986 году. Успешно пройдя все испытания, оно «благополучно» перестало существовать для России. Перестройка… Более таких судов не строили. Зато у военных в этом плане дела обстоят несколько лучше. Чего стоит один только десантный корабль «Зубр», самое большое в мире судно на воздушной подушке.

Десантный корабль на воздушной подушке "Зубр" с газотурбинными двигателями.

Третье – это железнодорожный транспорт. Локомотивы на которых стоят турбовальные газотурбинные двигатели, называют газотурбовозы. На них используется так называемая электрическая передача. ГТД вращает электрогенератор, а вырабатываемый им ток, в свою очередь, вращает электродвигатели, приводящие локомотив в движение. В 60-е годы прошлого века в СССР проходили довольно успешную опытную эксплуатацию три газотурбовоза. Два пассажирских и один грузовой. Однако они не выдержали соревновавния с электровозами и в начале 70-х проект был свернут. Но в 2007 году по инициативе ОАО «РЖД» был изготовлен опытный образец газотурбовоза с ГТД, работающем на сжиженном природном газе (опять криогенное топливо :-)). Газотурбовоз успешно прошел испытания, планируется его дальнейшая эксплуатация.

И наконец четвертое, самое, наверное, экзотическое… Танки. Грозные боевые машины. На сегодняшний момент достаточно широко известны два типа ныне использующихся боевых танков с газотурбинными двигателями. Это американский М1 Abrams и российский Т-80.

Танк M1A1 Abrams с газотурбинным двигателем AGT-1500.

Во всех вышеописанных случаях применения ГТД (суть турбовальный двигатель), он обычно заменяет дизельный двигатель. Это происходит потому, что (как я уже описывал здесь) при одинаковых размерах турбовальный двигатель значительно превосходит дизельный по мощности, имеет гораздо меньший вес и шумность.

Танк Т-80 с газотурбинным двигателем ГТД-1000Т.

Однако у него есть и крупный недостаток.Он обладает сравнительно низким коэффициентом полезного действия, что обуславливает большой расход топлива. Это естественно снижает запас хода любого транспортного средства (и танка в том числе :-)). Кроме того он чувствителен к грязи и посторонним предметам, всасываемым вместе с воздухом. Они могут повредить лопатки компрессора. Поэтому приходится создавать достаточно объемные системы очистки при использовании такого двигателя.

Эти недостатки достаточно серьезны. Именно поэтому турбовальный двигатель получил гораздо большее распространение в авиации, чем в наземном транспорте. Там этот трудяга-движок, ничего не пуская «на ветер» :-), заставляет подниматься в воздух вертолеты. И они в родной для них стихии из несуразных, на первый взгляд, машин превращаются в изумительные по красоте и возможностям творения рук человеческих… Все-таки авиация – это здорово :-)…

P.S. Вы только посмотрите, что они вытворяют!

Все фотографии и схемы кликабельны.

Компрессоры авиационных ГТД. | АВИАЦИЯ, ПОНЯТНАЯ ВСЕМ.

Здравствуйте, уважаемые читатели!

Тема сегодня достаточно непростая из-за своей изначальной обширности и сложности теории осевого компрессора. По крайней мере для меня она всегда в определенных аспектах была таковой :-). Но исходя из политики сайта постараюсь ее сократить до основных понятий, упростить и втиснуть в одну статью.Что получится, не знаю… Увидим :-)…

При этом… Говоря о таких сложных устройствах, как авиационный газотурбинный двигатель, несмотря на постоянное стремление к простоте рассказа, приходится периодически обращаться к точным техническим наукам. Благо, что такое бывает не часто, не глубоко и обычно хватает школьного курса физики. Прямо, как сейчас :-).

Итак, чуть-чуть теории.

Тепловые машины уже упоминалось нами неоднократно. И, видимо термин этот появится еще не раз, потому что все двигатели, используемые на современных летательных аппаратах, представляют из себя именно тепловые машины (двигатели), то есть такие, принцип работы которых основан на превращении внутренней энергии (в том числе тепловой) рабочего тела (газа) в полезную работу в процессе его расширения.

Все используемые в настоящее время силовые установки на летательных аппаратах принадлежат к определенному виду — двигателям внутреннего сгорания (ДВС). Исходя из самого названия понятно, что процесс сгорания топлива у них происходит в специальных

внутренних камерах.

Причем такие двигатели могут представлять из себя как поршневые машины (класс так называемых объемных расширительных машин), так и лопаточные машины (эти обычно относятся к динамическим расширительным машинам).

Нетрудно заключить, что представителями первых являются поршневые ДВС (как бензиновые, так и дизельные), а вторых – газотурбинные. Понятно, что коль скоро все темы у нас авиационные, то и двигатели имеются ввиду тоже авиационные :-).

Для любого теплового двигателя с точки зрения его практического применения самым важным термодинамическим процессом является процесс расширения рабочего тела, выливающийся в итоге в создание мощности на валу, а также реактивной тяги (для динамических расширительных машин). То есть ради этого такие двигатели собственно и применяются.

Однако начальный этап при формировании рабочего цикла любого ДВС – это сжатие. Уже после него в камере сгорания организуется подвод тепловой энергии к сжатому рабочему телу (газу). Делается это потому, что согласно законам термодинамики при одинаковом расширении нагретый газ совершает работу большую, нежели холодный.

То есть в итоге работа, полученная при расширении сжатого и затем нагретого газа в цикле теплового двигателя, больше работы чистого сжатия, что собственно и нужно для работоспособного двигателя, так как эта разница как раз и идет на благие цели, то есть вращает вал (а значит и винт), создает реактивную тягу или то и другое вместе.

Идеальный цикл ГТД. Цикл Брайтона.

Термодинамические циклы, принципиально описывающие рабочий процесс в двигателях,  применяемых для авиации это цикл Отто для поршневых двигателей и цикл Брайтона/Джоуля для газотурбинных двигателей. Показанные на рисунках – это циклы идеальные. Реальные процессы несколько отличаются от идеальных, однако позволяют производить общий технический расчет двигателя.

Идеальный цикл поршневого ДВС. Цикл Отто.

Процесс сжатия в целом очень важен для теплового двигателя. Чем выше давление в цикле, тем больше его работа, а значит и мощность. Давление подводимого воздуха определяет процессы горения в камере сгорания, напрямую влияя на полноту сгорания, а значит и экономичность ( а также эмиссионные выбросы).

Чем выше степень сжатия, тем ниже потребление топлива. Этот факт описывается таким физическим термином, как термический КПД цикла. Такой КПД характеризует совершенство превращения теплоты в механическую работу.

Формулы этого КПД как для поршневого двигателя, так и для ГТД (для идеальных циклов) выглядят красноречиво. В правой стороне этих формул в знаменателе только одна изменяемая величина – степень повышения давления π (для ГТД) или степень сжатия n (для поршневых двигателей).

Автомобилистам в этой области хорошо известно понятие «компрессия». Хотя этот термин не означает буквально степень сжатия в цилиндре, но напрямую с ним связан. Двигатель с малой компрессией будет плохо работать и потреблять много топлива.

Примерно то же самое в плане улучшения условий горения можно сказать и о газотурбинном двигателе. Однако влияние степени повышения давления в нем на тяговые характеристики не столь однозначно, потому что чем выше давление, тем больше мощность необходимая для его получения.

Несмотря на принципиальную одинаковость тепловых процессов в поршневом и газотурбинном двигателях, существует определенное отличие в организации их протекания. В поршневом двигателе все процессы протекают практически в одном и том же объеме – цилиндре. По этой причине они не могут быть непрерывными, то есть поршневой двигатель – это двигатель периодического действия.

В ГТД же все процессы термодинамического цикла идут непрерывно и постоянно, то есть это двигатель непрерывного действия. Этот факт – одна из причин того, что мощность газотурбинного двигателя при прочих равных условиях ощутимо выше.

Ведь в единицу времени через него проходит значительно большая масса воздуха, или точнее говоря рабочего тела.  А каждая единица массы рабочего тела – это источник полезной работы.

В итоге через такой двигатель ежесекундно прокачиваются большие массы воздуха (100-300 кг/с и более), которые к тому же сжимаются до больших величин (на современных двигателях давление может повышаться более чем в 35 раз). Столь важные и «нелегкие» функции в ГТД выполняет отдельный, очень важный агрегат — компрессор.

Немного истории.

Газотурбинные двигатели (как и их предшественники паротурбинные установки) изначально разрабатывались для получения механического привода различных промышленных машин.

Авиация, конечно, первоначально не входила в планируемую сферу применения подобного рода агрегатов хотя бы по той простой причине, что она сама появилась достаточно недавно. Идея применения ГТД в авиации впервые была сформулирована (по некоторым источникам) в 1890 году русским инженером В.Д. Кузьминским, а первые патенты на турбореактивные двигатели стали выдаваться в 1920-е годы.

Газовая турбина Джона Барбера.

История их создания охватывает достаточно большой период времени. Первый патент на газовую турбину (а точнее говоря все же газотурбинный двигатель) был выдан в 1791 году англичанину Джону Барберу.

В двигателе Барбера топливом служил горючий газ, получаемый при перегонке из угля, нефти, дерева и т.п. Он подавался поршневым компрессором в камеру сгорания, куда другим компрессором накачивался воздух. Продукты сгорания поступали на осевую турбину, которая с помощью механических передач (в т.ч. цепных) приводила указанные компрессоры.

По сути дела этот двигатель имел все необходимые компоненты реального ГТД. Имелась даже система водяного охлаждения турбины. Но конечно низкий уровень знаний создателя и отсутствие теории тепловых процессов в двигателе делало его примитивным и фактически неработоспособным.

Таковым положение оставалось вплоть до начала 20-го века. Интересно, что в 1902 году один из известных в те годы разработчиков паровых турбин Чарлз Парсонс (Charles Algernon Parsons) сказал буквально следующее: «Я думаю, что газовую турбину никогда создать не удастся. Об этом не может быть двух мнений.»

Сам Парсонс неоднократно пытался это сделать и в некоторых его патентах описывались полноценные модели ГТД, состоящих из компрессора, камеры сгорания и турбины, и работающих на жидком топливе.

Но для решения этой задачи, то есть создания работоспособной газовой турбины с высоким КПД равной или превосходящей паровую по экономичности и мощности, нужно было решить две непростые задачи. Первая – это обеспечение высокой температуры в начале процесса расширения, а вторая – создание высокоэффективного агрегата для сжатия воздуха, то есть компрессора.

Обе эти задачи к тому времени были практически неразрешимы. Первая из-за отсутствия специальных жаропрочных материалов, а вторая из-за неразвитости науки, в частности аэродинамики.

В паротурбинной установке рабочее тело сжимается после конденсации в жидком состоянии насосом, который является простым, экономичным и дешевым устройством. Да и сама работа сжатия в паро-водяном цикле незначительна.

В газотурбинном же двигателе сжимается воздух, причем работа сжатия, как уже упоминалось выше, достаточно велика. Обычно она бывает не меньше половины работы, которую производит турбина. Так как это значительно уменьшает полезную работу цикла двигателя, то требования как к мощности, так и к экономичности компрессора (то есть к его КПД) достаточно высоки.

На первых этапах создания полноценных газовых турбин (а по сути дела ГТД со своим компрессором) были попытки применить в качестве компрессоров обычные поршневые устройства, в начале 1930-х годов даже пробовались объемные винтовые компрессоры. Но ни один из подобного рода агрегатов не мог обеспечить требуемых характеристик сжатия (как мощность, так и КПД). И это была одна из причин столь категорического заявления Парсонса.

«Радикальную обработку» воздуха могли обеспечить только осевые или центробежные компрессоры. В 1930-х годах все чаще стали появляться проекты ГТД именно с такого рода компрессорами. Одним из первых, например, стал проект английского инженера Френка Уиттла (Sir Frank Whittle) от 16 января 1930 года.

Один из вариантов двигателя Уиттла.

В этом проекте был использован комбинированный компрессор, состоявший из нескольких осевых и центробежной ступеней. Однако, существовавший в то время уровень развития науки и техники не позволял полноценно использовать  осевой компрессор и в подавляющем большинстве тогдашних проектов и двигателей использовался только центробежный компрессор.

Турбореактивный двигатель W-1.

Уиттл тоже в дальнейшем использовал только двусторонние центробежные компрессоры, в которых воздух всасывался с двух сторон, а выходил радиально. По такой схеме был создан первый ТРД W-I (Уиттл -1). Он при массе 287 кг развивал тягу 388 кГ и был установлен на истребителе Gloster Е28/39. 15 мая 1941 года состоялся первый полет этого самолета с двигателем W-I.

Такое положение просуществовало практически до конца 1950-х годов. В дальнейшем на первый план все увереннее стал выходить более выгодный по многим параметрам осевой компрессор. Хотя центробежный не сошел со сцены и до сих пор используется на некоторых типах двигателей, часто в комбинации с осевым.

Принцип работы двигателя W-1 и размещение его в в самолете Gloster E28/39.

Экспериментальный истребитель Gloster E28-39 Pioneer.

На данный момент на подавляющем большинстве ГТД компрессор представляет из себя осевую многоступенчатую машину. Это один из самых дорогих и трудоемких в исполнении агрегатов двигателя, не идущий, конечно, ни в какое сравнение с насосами паротурбинных установок или другими поршневыми машинами, но отлично выполняющий работу, которая им не под силу.

Центробежные компрессоры ГТД.

В английском сentrifugal compressors (ЦК). Другое, менее употребимое название, – радиальный. Главный элемент центробежного компрессора – крыльчатка. Она представляет собой достаточно большой (в диаметре до 1 м) диск (или колесо), насаженный на вал турбины и приводимый ею во вращение.

С одной, а чаще с обеих сторон на диске имеются специальные криволинейные лопатки, расположенные от центра по радиусу и загнутые в сторону вращения. Их называют заборными (от понятия «забор воздуха»).

Центробежный компрессор двигателя РД-45.

Лопатки могут быть изогнуты как относительно двух пространственных осей (Х,У), это так называемый 2-D тип, так и относительно трех осей (X,Y,Z), это тип 3-D. А само колесо может быть как с открытыми лопатками, так и с закрытыми или полуоткрытыми. Второе его название импеллер.

Типы импеллеров центробежного компрессора.

Закрытые импеллеры чаще всего применяются в компрессорах наземных энергетических установок. Кроме того типичный закрытый импеллер – это крыльчатка обыкновенного бытового пылесоса.

В ТРД крыльчатка (или рабочее колесо) обычно располагается внутри корпуса, в котором организован вход для атмосферного воздуха (или два, если заборные лопатки с двух сторон) и выход для сжатого воздуха, перенаправляемого в камеру сгорания.

Схема принципа работы центробежного компрессора.

Двойной вход и заборные лопатки с двух сторон позволяют увеличить расход воздуха через двигатель и устраняют действие осевой силы на ротор. Скорость вращения колеса до 15000 об/мин, а окружная скорость на крайней точке обода до 500 м/с.

В каналах входа двигателя часто располагают неподвижные лопатки, именуемые входным направляющим аппаратом. Они имеют такую конфигурацию, что входящий воздух отклоняется и подкручивается перед входом в рабочее колесо. Относительная скорость колеса и лопаток становится меньше, и это позволяет увеличить скорость вращения крыльчатки, повышая сжатие и сохраняя устойчивую работу компрессора.

Механизм повышения давления в центробежном компрессоре достаточно прост и основан на двух источниках. Первый – это центробежная сила. Воздух, поступающий к рабочему колесу, захватывается и закручивается заборными лопатками с большой скоростью.

Обладая массой, вращающийся воздух отбрасывается от центра к периферии колеса с силой тем большей, чем он ближе к периферии (из-за возрастания окружной скорости). В итоге с крыльчатки «сходит» масса воздуха, сжатая центробежной силой.

Треугольники скоростей для крыльчатки центробежного компрессора.

Источник второй. Воздух, сошедший с крыльчатки за счет разгона в ней обладает линейными скоростями (окружная, абсолютная и относительная), превышающими скорости, с которыми он в нее входил (треугольник скоростей на рисунке).

Это означает, что его кинетическая энергия возросла. В этом случае имеет смысл преобразовать ее в потенциальную или, вспоминая уравнение Бернулли, преобразовать динамическое давление в статическое, то есть сжать выходящий воздух еще больше.

Это с успехом делается в устройстве, именуемом диффузор.

Схема работы диффузора центробежного компрессора.

Так как аэродинамические процессы с изменением давлений и скоростей газового потока – основа теории авиационных ТРД,

то диффузоры – это обязательная принадлежность таких двигателей. Обычно это расширяющийся в том или ином виде канал, в котором газовый поток теряет скорость с соответствующим увеличением давления.

Диффузор центробежного компрессора представляет из себя кольцеобразный канал, охватывающий крыльчатку по ее внешнему контуру. Воздух попадая туда из узких межлопаточных каналов тормозится с увеличением давления.

Изменение параметров по тракту ЦБ.

Такого рода диффузор может выполняться как без лопаток, так и со специально установленными лопатками, похожими по конфигурации на лопатки импеллера (2-D). Кроме того диффузор может быт комбинированным.

В этом случае безлопаточный диффузор называется щелевым и представляет собой щель шириной около 15-30 мм, опоясывающую крыльчатку. Далее за ним в диаметральном направлении следует лопаточный диффузор.

Сжатый воздух после прохождения диффузора попадает в камеру сгорания по каналам, конфигурация которых зависит от конструкции КС. Но в любом случае эти каналы имеют форму, близкую к Г-образной, что не лучшим образом сказывается на КПД компрессора, потому что неизбежно ведет за собой увеличение гидравлических потерь.

Основные элементы центробежного компрессора.

Центробежные компрессоры чаще всего одноступенчатые (то есть с одной крыльчаткой), бывает и несколько ступеней, но обычно не более 2-х, так как велики гидропотери между ступенями. В качестве примера современного применения ЦБ компрессора можно привести турбовинтовые двигатели семейства Garrett TPE331.

Турбовинтовой двигатель Garrett TPE331 с двухступенчатым центробежным компрессором.

Эти двигатели имеют двухступенчатый центробежный компрессор. Устанавливаются в основном на небольшие ближнемагистральные пассажирские, транспортные и спортивные самолеты. Например: Ан-38, Jetstream 41, Cessna 441 Conquest II и даже при ремоторизации нашего Ан-2 (новое название ТВС-2МС).

Самолет Ан-38-120.

Самолет Jetstream 41 с двигателями Garrett TPE331.

Самолет Cessna 441 Conquest II с двигателями Garrett TPE331.

Самолет ТВС-2МС. Ремоторизированный Ан-2 с двигателем Garrett TPE331.

Осевой компрессор ГТД.

В английском аxial compressor или axial-flow compressor (ОК). В этом компрессоре в отличие от центробежного воздух в процессе сжатия продвигается по оси (а не от центра к периферии), откуда и произошло такое название.

Осевой компрессор – типичная лопаточная машина. Согласно выдержки из Википедии «рабочий процесс в лопаточных машинах происходит в результате движения рабочего тела через системы неподвижных каналов и межлопаточных каналов вращающихся колес».

Совершенно точное определение. Конструкция и принцип действия ОК полностью ему соответствует. Этот компрессор состоит из ряда так называемых ступеней, количество которых может быть различным в зависимости от величины требуемой степени повышения давления (обозначается πк) и назначения: от одной-двух до 14 и больше.

Компрессор одновального ТРД.

Ступень состоит из двух рядов (их еще называют венцы) лопаток специального профиля. Первый ряд – это так называемое рабочее колесо, которое «сидит» на одной оси с турбиной и ею приводится во вращение. То есть лопатки эти подвижные. Второй ряд – так называемый направляющий аппарат (НА). Эти лопатки неподвижны и соединяются с корпусом компрессора.

Воздух, проходя по тракту осевого компрессора, участвует в сложном движении. Это в первую очередь абсолютное движение массы воздуха по тракту (скорость С), также движение относительно лопаток (скорость W) и движение, придаваемое массам воздуха вращающимся рабочим колесом (скорость вращения рабочего колеса U).

Повышение давления в осевом компрессоре тоже, как и в центробежном, имеет два источника и каждый венец лопаток вносит в это свой вклад. Лопатки рабочего колеса расположены и спрофилированы так, что промежутки между ними имеют вид расширяющихся каналов (диффузор). Естественным следствием этого является торможение воздушного потока в этих каналах с повышением статического давления.

Но при этом те же лопатки захватывают воздушные массы и, закручивая их в направлении вращения ротора, отбрасывают дальше по тракту компрессора, тем самым увеличивая их скорость, а значит и кинетическую энергию (или динамическое давление).

Эту энергию можно преобразовать в потенциальную (тот есть поднять статическое давление воздуха за счет уменьшения динамического) примерно тем же способом, как и для центробежного компрессора, то есть пропустить через диффузор.

Роль диффузора в этом случае играют лопатки направляющего аппарата. Они подобно рабочим лопаткам тоже формируют между собой расширяющиеся каналы, в которых воздух тормозится с повышением его давления. Кроме того НА разворачивает поток, формируя нужный угол его вхождения в следующую ступень.

Треугольники скоростей потока при входе в рабочее колесо и НА показаны на рисунке. Давление повышается в рабочем колесе за счет падения скорости от W1 до W2, а в НА от С2 до Свых. После выхода из ступени воздушный поток имеет абсолютную скорость, близкую к той, которая была до вхождения и, соответственно, повышенное давление (примерно на 25-30%).

Изменение скоростей потока при прохождении ступени осевого компрессора (со входным направляющим аппаратом).

Изменение параметров по тракту осевого компрессора.

Лопатки направляющего аппарата в осевых компрессорах на многих двигателях выполняет еще одну достаточно ценную функцию, опять же близкую по назначению к аналогичной фннкции подобных лопаток на ЦБ компрессорах. Такие лопатки называются ВНА – входной направляющий аппарат.

Они устанавливаются на входе в двигатель непосредственно перед первой ступенью и организуют предварительную «закрутку» воздуха, который входит в двигатель по его оси со скоростью С. ВНА отклоняет этот воздух, придавая ему скорость С1, тем самым улучшая углы обтекания рабочих лопаток и позволяя увеличить скорость вращения рабочего колеса, что увеличивает напорность ступени.

Поворотные лопатки ВНА двигателя АЛ-21Ф-3 (комплектация "С"). Самолет семейства Су-17М.

ВНА на некоторых двигателях делаются управляемыми. Своими торцами они расположены на поворотных осях и по командам автоматики управления двигателем могут менять угол своего расположения по отношению к потоку в зависимости от режима работы двигателя и внешних условий.

Диагональный компрессор ГТД.

В английском его называют mixed flow compressor или diagonal flow compressor (ДК). Почему «смешанный поток» ясно из его принципа действия. Он занимает промежуточное положение между ЦК и ОК. Это означает, что поток воздуха движется в нем как в радиальном, так и в осевом направлении, то есть в итоге имеет суммарное движение по диагонали.

Отличие диагонального компрессора (В) от осевого (А) и центробежного (Б).

Однако преобладает при этом обычно осевое направление. Конструктивно это выражается в том, что в таком компрессоре крыльчатка, унаследованная от ЦК, имеет ощутимо увеличенные осевые размеры. В некотором роде она может напоминать некий осевой мини-компрессор с одним рабочим колесом.

Примерный вид крыльчатки (ступени) диагонального компрессора.

Диагональный компрессор не требует для себя выходной диффузор большого диаметра, как у центробежного компрессора, но при этом по сравнению с ЦК имеет увеличенные осевые размеры (при прочих равных условиях). Крыльчатка ДК изготавливается на тех же принципах, как и крыльчатка ЦК.

Такие компрессоры в авиационных ГТД применяются очень мало, в основном на небольших или вспомогательных двигателях (ВСУ). Как пример можно привести двигатель Pratt & Whitney Canada PW610F. Это турбовентиляторный двигатель с одноступенчатым диагональным КВД. Двигатель сертифицирован к применению на самолете Eclipse 500. Самолет из раздела легких реактивных.

Двигатель PW610F с диагональным КВД.

Самолет Eclipse 500 с двигателями Pratt & Whitney Canada PW610F.

В последнее время ДК часто применяются в модельном конструировании турбореактивных двигателей.

Комбинированные компрессоры.

Помимо основных видов существуют также и комбинированные виды компрессоров. Это осецентробежные и оседиагональные. Наиболее часты в применении осецентробежные в различных конфигурациях. Обычно они устанавливаются на двигателях, где внешние диаметральные размеры не играют особой роли.

Это чаще всего турбовальные двигатели для вертолетов. В качестве примера можно привести вертолетные двигатели французской фирмы Turbomecа, такие как Makila 1A1 (вертолеты Eurocopter AS 332) или Arrius 2B2 (вертолеты Eurocopter EC 135).

Турбовальный двигатель MAKILA-1A1 с осецентобежным компрессором.

Турбовальный двигатель Makila 1A1.

Вертолет Eurocopter AS 332 Super Puma с 2-мя турбовальными двигателями Makila 1A1.

Турбовальный двигатель ARRIUS-2B1 с осецентробежным компрессором.

Турбовальный двигатель Arrius 2B2.

Вертолет Eurocopter EC 135Т1 с 2-мя турбовальными двигателями Arrius 2B1.

КПД и потери.

Помимо роста давления воздуха в компрессоре растет и его температура. На входе в камеру сгорания в зависимости от типа и конструкции компрессора она вможет достигать величины 300-400°С. Причина этому – физические условия работы ГТД.

То есть двигатель – реальный агрегат. Поэтому цикл его работы, как теплового двигателя, все же несколько отличается от идеального цикла Брайтона и представляет из себя реальный цикл, в котором учтены гидравлические потери. От них в реальной работе никуда не деться.

Реальный цикл Брайтона - сплошная линия. Идеальный - пунктир.

Именно поэтому существует понятие КПД, которое показывает, вся ли работа, переданная турбиной компрессору расходуется по назначению, то есть на повышение давления. На самом деле не вся. Часть ее расходуется на компенсацию потерь, которые по большей части относятся к гидравлическим.

Это профильные потери или потери на трение, потери на образование вихрей при турбулизации потока вокруг лопаток, потери при концевом перетекании воздуха на рабочих лопатках осевого компрессора.

Работа, затрачиваемая на преодоление сил трения, выделяется в виде тепла. В результате воздух нагревается. То есть в реальном рабочем цикле ГТД сжатие происходит по политропе, а не по адиабате, как в идеальном цикле, и конечная температура воздуха в конце реального (политропного) процесса выше, чем могла бы быть в адиабатном процессе без внешнего подвода тепла.

Достаточно большое влияние на эффективность осевых компрессоров оказывают потери энергии, возникающие из-за перетекания воздуха через радиальные зазоры рабочих лопаток.

Сами по себе лопатки осевого компрессора имеют определенный аэродинамический профиль. Верхняя, выпуклая сторона рабочей лопатки называется спинкой, а вогнутая — корытцем. При вращении рабочего колеса на корытце образуется зона поддавливания, а на спинке – разрежение.

Далее картина примерно та же, что и у самолетного крыла (описано здесь). То есть из-за разности давлений возникает явление перетекания воздуха из области повышенного давления в область пониженного с образованием сложного вихревого течения. В компрессоре к тому же рабочее колесо за счет вращения этому еще больше способствует, как бы «выдавливая» воздух через радиальные зазоры на спинки лопаток.

Для самолета подобное явление чревато увеличением сопротивления (индуктивное сопротивление), а для компрессора снижением эффективности, то есть меньшим повышением давления при той же затрате энергии на вращение компрессора или, говоря иначе, снижением напорности и КПД.

В целях предотвращения задевания верхней кромки лопатки за корпус во время работы (что чревато заклиниванием ротора) устанавливается определенный радиальный зазор, то есть зазор между верхней оконечностью лопатки и корпусом компрессора. В среднем его величина около 0,5-2,0мм. Она зависит от конструктивных размеров и режимов работы двигателя.

Лопатки во время работы подвергаются механической и температурной деформации (особенно лопатки последних ступеней). Иначе говоря, просто вытягиваются, потому как нагрузки при больших частотах вращения очень велики. Этот факт, а также производственные допуски  на точность изготовления обязательно учитывается при выборе радиального зазора во время проектирования.

С появлением высоконапорных компрессоров с большим показателем πк и, как следствие, более укроченными лопатками последних ступеней (или компрессора высокого давления – КВД), влияние перетекания усилилось. Поэтому появилась необходимость управления радиальными зазорами, особенно в высоконапорных ступенях КВД.

Способы такого управления условно делят на пассивные и активные. К первым относятся различные конструктивные мероприятия, которые стабилизируют величину радиальных зазоров по режимам работы двигателя.

Увеличиается жесткость всей конструкции, подбираются материалы, обеспечивающие одинаковое термическое расширение деталей роторов и сопрягаемых с ними деталей корпуса и деталей с уплотнителями.

Это позволяет уменьшить сам радиальный зазор и снизить выработку уплотнений. Над рабочими лопатками в корпусе располагают специальные уплотнители из материала более мягкого, истирающегося при соприкосновеии с лопаткой (например алюмографит, то есть смесь окиси алюминия с графитом).

Активное же управление обеспечивается за счет механического смещения вышеуказанных сопрягаемых деталей, либо же за счет принудительного охлаждения (воздухом) уплотняющих деталей (колец), упруго соединенных с корпусом компрессора или дисков рабочих колес. Подобного рода мероприятия, кстати, активно применяются также на турбинах современных и перспективных двигателей.

Такие меры позволяют повысить КПД двигателя на основных эксплуатационных режимах и снизить расход топлива на 1-3%.

Так как лопатки компрессора представляют собой аэродинамические поверхности, подобные профилю крыла, то вихреобразование, имеющее место при различных режимах обтекания, —  явление практически неизбежное.

Это различного вида и конфигурации спутные струи и зоны турбулентности, образующиеся при изменении углов атаки лопаток и срыва потока с их поверхности. Образование такого рода вихрей – один из источников энергетических потерь в компрессоре.

Сравнение формы лопаток 2-D и 3-D.

С целью максимального устранения возможности возникновения такого рода явлений проводится «облагораживание» воздушного тракта компрессоров. Это касается как качества и чистоты поверхности, так и тщательной отработки формы рабочих лопаток. На современных двигателях в осевых компрессорах все чаще находят применение лопатки, разработанные и изготовленные по так называемой 3-D технологии (двигатель SaM-146, CFM-56-7 и др.).

Такие лопатки от комля до верхней кромки имеют специально рассчитанные обводы, максимально приспособленные к обеспечению безотрывного обтекания.

Коэффициент полезного действия (политропический) современных осевых компрессоров достигает 92% (и даже выше). Аналогичные КПД центробежного компрессора около 83-85%, а для диагонального компрессора около 85-87%.

Однако, компрессор – это все-таки стабильная металлическая конструкция и ее, к сожалению, невозможно приспособить к абсолютно любым изменениям движения такой «нестабильной» среды, как воздух.

Срывные режимы работы компрессора. Помпаж.

Воздух при прохождении компрессора участвует, как уже указывалось выше, в сложном движении. Изменение величины скоростей С и U этого движения, зависящих, соответственно, от расхода воздуха и частоты вращения определяет углы обтекания лопаток.

При превышении этими углами критических значений происходит срыв и турбулизация потока воздуха. Например, как видно из треугольника скоростей, это может произойти при уменьшении расхода воздуха через двигатель. В этом случае уменьшается величина скорости потока С и растет угол атаки.

Принцип образования срыва на рабочих лопатках осевого компрессора.

То есть в межлопаточном пространстве появляется турбулентная зона. Она сразу нарушает работу ступени, так как в определенном смысле запирает (или дросселирует) ее, соответственно уменьшая напор и КПД.

Срывные турбулентные зоны образуются не на всех лопатках сразу из-за имеющихся в реальных условиях некоторых различий в их геометрии и асимметрии потока. Но такая зона в свою очередь может вызвать срыв в соседней ступени (например, дросселируя впереди стоящую) и таким образом увеличить область срыва вплоть до распространения ее по всему тракту.

Причем вихревые зоны могут формироваться как на спинках, так и на корытцах лопаток в зависимости от величины расхода и, соответственно, углов атаки лопаток. Иной раз этот процесс может происходить достаточно быстро, за сотые доли секунды.

Локальных срывных зон может быть несколько, и они могут занимать разное положение по высоте лопаток,  по периметру ступени и быть довольно развитыми по величине. Существует такое явление, как вращающийся срыв. Это область срыва, вращающаяся вокруг оси рабочего колеса в сторону его вращения, но с меньшей окружной скоростью.

В зависимости от условий и режима работы двигателя срывные зоны могут распространяться на несколько ступеней и существовать, не нарушая устойчивой работы компрессора в целом. При этом,однако, они очень опасны, потому что вызывают вибрацию лопаток вплоть до возможности их поломки, и поэтому абсолютно недопустимы.

При распространении зон  вращающегося срыва на весь компрессор происходит глобальная потеря устойчивости его работы. Падает напорность ступеней (особенно в области малых расходов воздуха), появляются колебания давления за компрессором, расхода воздуха, частоты вращения, возможен некоторый рост температуры газа за турбиной. Двигатель теряет эффективность, растет вибрация и опасность разрушения лопаток компрессора.

В эксплуатации наблюдается еще один неустойчивый режим работы компрессора, именуемый достаточно известным словом помпаж. Это название, впрочем, не придумано специально для авиационного ГТД. Оно относится к лопаточным компрессорам и насосам вообще и суть его для всех этих агрегатов одинакова.

Для ГТД помпаж является как бы следующей ступенью после формирования глобального срыва компрессора. И он затрагивает весь газовоздушный тракт двигателя от компрессора до  турбины, включая различные зазоры и каналы, по которым протекает газ во время работы, а также воздухозаборник двигателя, являющийся уже частью летательного аппарата, но определяющий работу двигателя.

Сам процесс заключается в следующем. После быстрого формирования глобального срыва компрессора и резкого падения его напорности и πк газ из тракта за компрессором (в т.ч. в КС и турбине), сохранивший высокое полное давление, начинает прорываться обратно, не встречая существенного противодавления.

Происходит обратный резкий проброс горячих газов высокого давления на вход в двигатель и воздухозаборник. То есть по сути дела имеет место явление, получившее в гидравлике название «гидроудар». Это действительно удар, могу это сказать исходя из собственного опыта :-).

Для сидящего в левом кресле самолета Су-24МР в закрытой, загерметизированной кабине с работающим двигателем на максимальных оборотах ощущения такие, как будто по борту снаружи с размаху ударили огромным тяжелым молотом так,что даже заглушили звук двигателя.

Самолет Су-24МР после посадки.

Двигатель, получив своеобразную «разрядку», продолжает работать, набирает давление и напор. Но. если условия работы и аэродинамика компрессора не изменилась, то условия для срыва в компрессоре и резкого падения напорности остаются. Весь процесс повторяется. То есть имеют место низкочастотные колебания потока (давления и расхода воздуха) по всему газовоздушному тракту двигателя и воздухозаборника. Это и есть суть помпажа.

Весь этот процесс сопровождается ростом температуры газов за турбиной, часто очень резким с большими забросами, в результате которых возможно разрушение деталей турбины. Источником роста температуры становится автоматика двигателя, которая штатно реагирует на падение мощности двигателя, а значит и частоты вращения увеличением подачи топлива.

Кроме того вся конструкция из-за резких пульсаций испытывает большие динамические и тепловые нагрузки по всему тракту, что при повторяющемся воздействии чревато их разрушением.

Что касается центробежного компрессора, то его аэродинамика более проста, и он менее подвержен срывным явлениям. Но, тем не менее при малых расходах воздуха, если направление входящего потока не соответвствует изгибу заборных лопаток, то появление вихревых зон в каналах этих лопаток возможно. В итоге из ЦК может выходить воздух с колебаниями давления и скорости потока.

Способы защиты и повышения запасов устойчивости.

Несмотря на сложность аэродинамики осевых компрессоров и наличие по этой причине повышенной возможности перехода их на неустойчивый режим работы, ряд их положительных качеств тем не менее обуславливают преимущественное их применение в современной авиации.

Но при этом конструкторам приходится применять специальные меры для повышения запасов устойчивости двигателей, в особенности с высоконапорными многоступенчатыми компрессорами.

При расчете такого компрессора согласование работы всех ступеней и выбор формы проточной части производится для одного исходного режима, который называется расчетным. На таком режиме все ступени от первой до последней работают согласованно при максимальном КПД и оптимальном соотношении скоростей С и U для каждой из них.

При этом площади их проходных сечений тоже оптимально соответствуют друг другу, то есть проточная часть вдоль тракта сужается в соответствии с ростом плотности воздуха (ведь расход воздуха должен быть постоянным) и тем значительнее, чем выше расчетная πк компрессора.

Однако, условия работы двигателя меняются и выход на нерасчетный режим так или иначе неизбежен. В этом случае степени сжатия (π) отдельных ступеней меняются, как следствие меняется плотность воздуха в них. Она становится отличной от расчетной и уже не соответствует расчетной площади проходного сечения в этих ступенях.

Это приводит к изменению распределения осевых скоростей воздуха по тракту, а следовательно, в соответствии с характериситками этих конкретных ступеней, к изменению углов атаки их рабочих лопаток. И это изменение в разных ступенях уже не согласовано друг с другом, как было на расчетном режиме.

Наступает рассогласование ступеней. Физически это объясняется появившимся несоответствием плотностей воздуха площадям проходных сечений, которые выбраны на условиях заданного распределения осевых скоростей С для расчетного режима.

То есть если, к примеру, уменьшается приведенная частота, то на первых ступенях многоступенчатого компрессора падают осевые скорости, значит растут углы атаки. Это значит, что запас устойчивости на этих ступенях падает (близко к срыву), а сами ступени требуют большей мощности для вращения, то есть «затяжеляются».

На последних же ступенях осевые скорости падают не так сильно, возможно даже растут. Это можно объяснить тем, что из-за падения степени повышения давления плотность здесь не соответствует расчетным проходным сечениям тракта.

Она ниже, и чтобы «протолкнуть» большие объемы воздуха через суженные (расчетные) каналы нужна скорость большая. Таким образом углы атаки на последних ступенях уменьшаются и становятся значительно ниже, чем на первых. Срывных явлений нет и ступени эти «облегчаются».

Рассогласование налицо. Ступени единого узла, то есть одного компрессора, «сидящие» на одном валу, на нерасчетном режиме могут работать совершенно несогласованно, лишь только усугубляя возможность неустойчивой работы двигателя. И это рассогласование  тем больше, чем больше πк (количество ступеней) компрессора.

Отсюда возник один из способов борьбы с рассогласованием ступеней многоступенчатого осевого компрессора, а значит и повышением запаса его устойчивой работы. Это многовальность двигателя.

То есть компрессор с высоким πк нужно (или можно :-)) разделить на два или несколько каскадов со значительно меньшими πк, что, соответственно, также значительно уменьшит возможность рассогласования ступеней внутри каскада.

Схема двухвального ТРД. 1 - КНД. 2 - КВД.

Например, одновальный компрессор со степенью повышения давления 25 можно преобразовать в двухвальный с двумя каскадами, имеющими степень повышения 5. Или же одновальный со степенью повышения давления 27 в трехвальный с πк для каждого равной 3.

Валы в многовальном двигателе располанаются один внутри другого и механически друг сдругом не связаны. Каждый каскад компрессора приводится соответственно своей турбиной.

Например в двухвальном ТРД так называемый компрессор низкого давления (КНД) приводится турбиной низкого давления (ТНД), а следующий за ним компрессор высокого давления турбиной высокого давления (ТВД). Частоты вращения на установившихся режимах обычно либо одинаковы, либо частота КВД выше.

Понятно, что рассогласование между ступенями в таких малонапорных каскадах будет минимальное. Достаточно просто уменьшается и рассогласование между ступенями соседних каскадов. Это происходит следующим образом.

Компрессор двухвального ТРД.

Если компрессор переходит на нерасчетный режим работы, когда углы атаки на передних ступенях (соответствует КНД) растут, а на задних (соответствует КВД) падают, то передние ступени «затяжеляются», а задние «облегчаются» (описано выше). В одновальном компрессоре это сопровождается перераспределением нагрузок на элементы конструкции и уменьшением его устойчивости.

В двухвальном же каждый каскад приводится своей турбиной. Поэтому частота вращения КНД падает, а частота вращения КВД растет. Изменения эти в общем случае равновелики и противоположны по воздействию на общий расход воздуха через двигатель. Поэтому он практически не меняется.

Компрессор трехвального ТРД (ТВРД).

Получается, что при одинаковом расходе воздуха частота вращения КНД падает, а это означает (из треугольника скоростей), что углы атаки лопаток уменьшаются. Для КВД же все наоборот, углы атаки здесь растут. То есть двигатель естественным образом возвращается к исходному устойчивому режиму работы.

Это так называемый эффект саморегулирования, значительно повышающий КПД и запасы устойчивости двигателя. Он применяется на очень многих современных двигателях (все ТРДД) и часто позволяет обойтись без использования других способов улучшения работы компрессора. Тем не менее такие способы есть.

Перепуск воздуха. Это один из наиболее простых способов повышения устойчивости с использованием механизации компрессора. Реализуется при пониженных режимах работы двигателя (вариант нерасчетного режима уже описан выше). Воздух из проточной части в районе средних ступеней (3-я, 4-я, 5-я) через специальный клапан перепускается в атмосферу или в затурбинное пространство.

В этом случае расход воздуха через передние ступени растет, то есть растут осевые скорости потока, а это означает уменьшение углов атаки (растущих при уменьшении приведенной частоты вращения) и устранение возможности срыва.

Схема перепуска воздуха в осевом компрессоре (лента перепуска).

Кроме того выпуск части воздуха из газовоздушного тракта ведет к падению мощности турбины, то есть к уменьшению частоты вращения. Автоматика двигателя поддерживает ее на необходимом уровне увеличением подачи топлива, а значит ростом температуры газа за турбиной.

Это, в свою очередь, вызывает уменьшение объемного расхода воздуха на последних ступенях компрессора, что влечет за собой рост углов атаки на этих ступенях. Таким образом углы атаки как на первых, так и на передних ступенях возвращаются к расчетным, запас устойчивости и КПД компрессора увеличиваются.

Клапана перепуска часто выполняются в виде металлических лент, опоясывающих корпус компрессора двигателя в районе средних ступеней. В этом случае употребляется название «лента перепуска». Управляет лентой перепуска топливная автоматика двигателя, учитывающая параметры и условия работы двигателя. Пример двигателя Р-15Б-300.

Щелевой перепуск над лопатками 1-ой ступени. Как уже говорилось, при рассогласовании  наиболее интенсивно углы атаки растут на первой ступени (всего компрессора или его каскада), причем именно на периферийной части лопаток, потому что на большем радиусе больше окружная скорость.

Чтобы избежать в этом месте срыва и распространения его на другие области применяется щелевой (или кольцевой) перепуск воздуха над рабочими лопатками. Кольцевая полость в корпусе компрессора выполняется так, что воздух в нее может поступать из сечения в середине пера лопатки и подаваться на вход в ступень.

Для этого должен существовать перепад между указанными областями. На расчетном режиме он незначителен и циркуляции практически нет. При повышении углов атаки перепад увеличивается и начинается циркуляция. Воздух поступает на вход в ступень, увеличивая тем самым осевую скорость и снижая углы атаки.

Щелевой перепуск воздуха над первой ступенью ОК. Слева - через перфорацию.

Таким образом устраняется (или оттягивается по режимам) возможность образования местных условий для образования срывных зон на периферийных участках лопаток, растет запас устойчивости как ступени, так и всего компрессора.

Кольцевые полости могут выполняться в виде сот. В них также могут устанавливаться небольшие профилированные лопатки для придания проходящему воздуху закрутки, также способствующей снижению углов атаки на периферии лопаток.

Регулировка установки лопаток осевого компрессора. Этот способ по своей сути самый простой, но по конструктивному исполнению самый сложный. Так как возможности срыва и, в конечном итоге, возникновения неустойчивых режимов работы зависит от углов установки лопаток по отношению к потоку, то вполне логично менять эти углы при изменении условий обтекания.

В принципе можно менять углы как рабочих лопаток ( в том числе и лопаток вентилятора в ТВРД – так называемые вентиляторы ВПЛ, близкие к турбовинтовентиляторным двигателям), так и лопаток НА. Последний способ наиболее употребим из-за более простого технического исполнения.

Транформация треугольника скоростей для поворотных НА.

Поворотные лопатки направляющего аппарата осевого компрессора.

При повороте лопаток НА меняется конфигурация треугольника скоростей (а значит углов атаки) для рабочих лопаток и устраняется возможность срывных явлений.

НА регулируются чаще всего группами. Обычно на первых ступенях и на последних. Например, на ТРДФ АЛ-21Ф-3 (14-ступенчатый компрессор) передняя регулируемая группа это ВНА и далее с нулевой по третью ступень. А задняя – с восьмой по двенадцатую ступень.

Одновальный ТРДФ АЛ-21Ф-3 (комплектация "С" - для самолетов Су-17М). На корпусе компрессора видны группы управляемых поворотных НА и гидроцилиндры управления (1 и 2).

Регулировка и перестановка углов осуществляется автоматически по сигналам, формируемым системой автоматического управления двигателем. Привод обычно гидромеханический. Эта же система для повышения запасов устойчивости управляет НА при стрельбе из бортового оружия на военных самолетах.

Что лучше и что хуже.

Как уже говорилось выше, в современной реактивной авиации подавляющее большинство двигателей оборудовано именно осевыми компрессорами. Понятно, что выбор этот делается на основании совокупности положительных и отрицательных качеств ОК и ЦК. Итак плюсы…

При прочих равных условиях. Осевой компрессор обладает большим проходным сечением. Для входа воздуха у ОК отводится до 80% площади поперечного сечения, тогда как у ЦК только около 30%.

Воздух попадающий на вход в ОК имеет большую скорость (в 1,5-2,0 раза). Все это обеспечивает значительно большие расходы воздуха для ОК, что обеспечивает более высокие тяговые характеристики для ТРД, и с увеличением диаметра двигателя расход растет значительно быстрее, чем у ЦК, который для большого расхода воздуха неизбежно требует больших радиальных размеров.

Таким образом ОК обладает меньшим удельным весом (по отношению к расходу воздуха) и при этом обеспечивает значительно большие степени повышения давления (в целом), которые в свою очередь делают ТРД с ОК более экономичным.

Одна ступень в ЦБ дает высокую степень повышения давления, до 10:1, две ступени до 15:1, но применение большего количества ступеней не практикуется из-за быстрого роста потерь давления. Гидравлические потери у ОК ниже, и в целом КПД такого компрессора выше.

Однако, есть и минусы. ОК имеет достаточно большой абсолютный вес (до 40% от общего для ТРД). Для начальной раскрутки ротора необходима достаточная мощность. ОК достаточно сложен в производстве. Аэродинамика компрессора очень непроста.

Он имеет склонность к переходу на неустановившиеся режимы при работе в нерасчетных условиях, что усложняет его конструкцию и эксплуатацию. Этот факт, кроме того, увеличивает склонность к вибрации элементов конструкции (лопаток).

Боевая живучесть ОК значительно ниже, чем у ЦБ. Попадание в проточную часть снаряда или его части однозначно вызывает разрушение лопаток, после чего работа двигателя становится практически невозможной.

Аналогично усложнет эксплуатацию осевых компрессоров попадание в двигатель любого посторонненго предмета.

Контроль проточной части.

Попадание посторонних предметов в двигатель – это вообще что называется «болезнь века» для авиационных ТРД (конечно с ОК). Вне зависимости от конкретного типа (ТРД или ТРДД) все они в той или иной степени имеют склонность «подбирать» предметы, по какой-то причине оказавшиеся на ВПП и отправлять их прямиком в компрессор. К этому конечно же относится и проблема попадания птиц в двигатель.

Частоты вращения ротора таковы, что при встрече с посторонним предметом, даже небольшим и непрочным по структуре, часто бвает неизбежно получение рабочей лопаткой забоины. В худшем случае она может и разрушиться.

Любая забоина – концентратор напряжений. Это означает, что при постоянном действии огромных центробежных сил во время работы компрессора в районе забоины материал лопатки будет испытывать увеличенные напряжения, и велика возможность ее обрыва. Чем это может грозить тайны ни для кого не составляет.

Конечно разрабатываются и существуют различные варианты защиты от попадания посторонних предметов в воздухозаборник и двигатель. Даже на на старом РД-45 на входе в его центробежный компрессор стоит металлическая сетка.

Двигатель RB41, предшественник ВК-1 (РД-45). Хорошо видна защитная сетка на входе в центробежный компрессор.

Однако, не везде возможна установка такого рода защиты, и она далеко не всегда бывает высокоэффективна. Кроме того существует определенная вероятность, так сказать, естественного разрушения деталей воздушного тракта компрессора в процессе эксплуатации. Поэтому для исключения различного рода «неожиданностей» должна быть возможность своевременного обнаружения и фиксации возникающих проблем.

Практически все современные ТРД обладают достаточно высоким уровнем контролепригодности. Это в первую очередь относится к компрессору. Приходится контролировать состояние всей его проточной части, рабочих лопаток и лопаток НА. Это делается как планово, так и в экстренных случаях.

Хорошая контролепригодность в этом случае означает возможность всестороннего контроля проточной части без снятия двигателя с самолета и его разборки. Конечно пару передних ступеней компрессора обычно можно осмотреть со стороны воздухозаборника.

Но для контоля остального тракта без современной бороскопии не обойтись. В настоящее время практически повсеместно при бороскопических инспекциях проточной части ТРД используются очень удобные видеобороскопы (видеоэндоскопы). Такие, например, как видеоэндоскопы японской фирмы RF System Lab.

Видеоэндоскоп VJ-Advance фирмы RF System Lab.

Такого рода приборы достаточно совершенны, обладают большим количеством функций и позволяют гарантированно обнаружить и всесторонне оценить любое повреждение в компрессоре практически в любой части его воздушного тракта.

Для того чтобы щуп видеоэндоскопа попал в проточную часть, в корпусе компрессора (обычно между лопатками НА) выполняются отверстия (порты) небольшого диаметра, закрывающиеся герметичными легкосъемными пробками. Ротор компрессора при этом вращается либо вручную (за лопатки) из воздухозаборника, либо с помощью специального приспособления (обычно большие двигатели на пилонах).

Немного о конструкции.

Роторы осевых компрессоров по конструктивному исполнению могут быть трех типов: барабанные, дисковые или диско-барабанные. При выборе типа конструкции учитываются различные параметры: масса, сложность, жесткость в сборе, несущая способность, окружные скорости ротора. Чаще применяются диско-барабанные конструкции. Диски в зависимости от параметров двигателя соединяются между собой и с валом сваркой, болтовыми соединениями, с помощью специальных шлицов.

Схемы конструкции ОК. 1 - барабанного типа, 2 - диско-барабанного типа, 3 - дискового типа.

Пример двигателя с компрессором диско-барабанной конструкции (Rolls-Royce RB.162-86).

На концах ободов диска закреплены лопатки. Способ крепления, типичный для компрессора – так называемый «ласточкин хвост» с индивидуальным гнездом для каждой лопатки. Лопатки также могут набираться в кольцевой паз на ободе диска. Это тоже «ласточкин хвост», но с кольцевыми рабочими поверхностями.

Лопатки ОК с хвостовиками "ласточкин хвост" различной конфигурации.

Гораздо реже применяется способ крепления с замком типа «елочка». Такой способ чаще применяется для крепления лопаток турбины.

Кроме того длинные лопатки (обычно передних ступеней) для уменьшения нагрузок на перо и устранения лишней вибрации могут закрепляться шарнино в кольцевых пазах обода диска с фиксацией специальными пальцами.

Такие лопатки под действием центробежной силы во ремя работы двигателя радиально ориентируются самостоятельно (двигатель АЛ-21Ф-3). Длинные лопатки передних ступеней для уменьшения вибрационных нагрузок могут иметь специальные сопрягаемые друг с другом бандажные полки (обычно в верхней половине пера лопатки или на нескольких уровнях).

Крепление лопаток осевого компрессора.

Двигатель PW4000 с двумя бандажными полками на вентиляторе.

Однако в современных ТРДД с большой степенью двухконтурности нашли применение широкохордные лопатки ( в ступенях вентилятора) без бандажных полок. Это позволяет повысить аэродинамическую эффективность вентилятор (до 6%), увеличить общий расход воздуха и повысить экономичность двигателя (до 4%). Кроме того снижается масса вентилятора и уровень его шума.

Бандажированные лопатки ОК.

Широкохордные лопатки изготавливаются с использованием новейших достижений техники. Используются специальные композитные материалы на основе полимеров (ПКМ), делаются пустотелые лопатки из титановых сплавов с сотовыми заполнителями а также лопатки из неполимерных композитных материалов (например борное волокно в алюминиевой матрице с титановой обшивкой).

Статор компрессора выполняется либо в виде цельных секций, либо собранных из двух половин (верх-низ). Лопатки направляющего аппарата крепятся в наружном корпусе, обычно в объединяющем кольце.

Лопатки вентилятора. Широкохордная и обычная с бандажной полкой.

В зависимости от нагрузок, вибрации и назначения они либо консольные, либо (что чаще) по внутреннему корпусу тоже объединены кольцом с уплотнениями (сотовые или легкоистираемые (например алюмографит – Al2O3 + 8-13% графита)). Встречные уплотнения (обычно гребешковые с лабиринтом) стоят в этом случае на роторе. Это позволяет предотвратить вредные перетекания воздуха на НА.

Материалы компрессора – сплавы алюминиевые, титановые, а также стали.

На некоторых современных двигателях нашли применение рабочие колеса компрессоров, выполненные по технологии “Blisk”(сокращенно от bladed disk), иначе еще называемой IBR (integrally bladed rotor). В этом случае рабочие лопатки и само тело диска выполнены как одно целое. Это один узел, чаще всего литой, или сварной и соответствующим образом обработанный.

Крепление лопаток НА осевого компрессора.

Такие конструкции ощутимо прочнее сборных дисков. В них значительно меньше концентраторов напряжений, таких например, которые неизбежно присутствуют при использовании крепления лопаток по принципу «ласточкин хвост». Кроме того масса всей конструкции меньше (до 25%).

Кроме того качество поверхности узла и его обтекаемость гораздо лучше, что способствует уменьшению гидравлических потерь и повышению КПД ступени с таким диском (вплоть до 8%). Есть, правда у «блисков» и существенный недостаток. В случае какого-либо повреждения лопатки замене подлежит весь диск, а это неизбежно влечет за собой разборку двигателя.

Диск с рабочими лопатками, изготовленный по технологии "Blisk".

В такой ситуации акутальным становится наряду с бороскопами использование специального оборудования (напрмер фирмы Richard Wolf GmbH) для зачистки забоин и местного устранения возникающих дефектов лопаток. Такого рода операции производятся с использованием все тех же смотровых окон, которые имеются практически на всех ступенях современных компрессоров.

Блиски устанавливаются чаще всего в КВД современных ТРДД. Примером может служить двигатель SaM146.

Можно и без компрессора.

Современный авиационный ГТД вкупе со всеми обеспечивающими его работу системами и узлами очень сложный и тонкий агрегат. Компрессор в этом плане пожалуй на первом месте (может быть делит его с турбиной :-)). Но обойтись без него невозможно.

Чтобы двигатель совершал работу должен быть аппрата для сжатия воздуха. Да к тому же нужно организовать поток в газовоздушном тракте пока двигатель на земле. В этих условиях компрессор авиационного ГТД ничем не отличается от компрессора наземной ГТУ.

Однако стоит самолету подняться в воздух и начать разгон, как условия меняются. Сжатие воздуха происходит ведь не только в компрессоре, но и во входном устройстве, то есть в воздухозаборнике. С ростом скорости оно может достичь и даже превзойти величину сжатия в компрессоре.

На очень больших скоростях (в несколько раз превышающих скорость звука) степень повышения давления достигает оптимального значения (соответствующего максимальным тяговым характеристикам или максимальным характеристикам экономичности). После этого компрессор, как и приводящая его турбина, становятся ненужными.

ТРД и ПВРД в сравнении.

Происходит так называемое «вырождение» компрессора или иначе «вырождение»ТРД, потому что двигатель перестает быть газотурбинным и, оставаясь в классе воздушно-реактивных, он уже должен быть прямоточным воздушно-реактивным двигателем.

Самолет МиГ-25РБ.

ТРДФ Р15Б-300.

Примером двигателя, находящегося, так сказать, на пути к вырождению компрессора является двигатель Р15Б-300, устанавливавшийся на самолеты МиГ-25 и изначально предназначенный для полетов с большими числами М. Этот двигатель имеет совсем «короткий» компрессор (5 ступеней) со степенью сжатия 4,75. Большая доля сжатия (в особенности на сверхзвуке) происходит в воздухозаборнике МиГ-25.

Однако, это уже темы для других статей.

Спасибо, что дочитали до конца.

До новых встреч.

Фотографии кликабельны.

В конце еще несколько картинок по теме, которые «не влезли» в текст……….

Треугольники скоростей для ступени осевого компрессора.

Гнезда для лопаток вентилятора по принципу "ласточкин хвост" CFM56.

Пример шарнирного крепления лопаток осевого компрессора.

Пустотелая титановая лопатка вентилятора с сотовым заполнителем.

Турбовальный двигатель | Техника и человек

 

Для тех, кто интересуется моторами в целом и их авиационными моделями в частности, турбовальный двигатель в первую очередь ассоциируется с вертолетами, недаром их называют «вертолетными ГТД». Именно здесь ТВаД нашли наибольшее применение и уже не один десяток лет с успехом используются. Но вертолеты – не предел их возможностей, многие другие отрасли машино- и судостроения взяли на вооружение этот тип двигателей, но обо всем по порядку.

Итак, турбовальный двигатель принадлежит славному семейству газотурбинных двигателей (ГТД) наравне с турбореактивными (ТРД) и турбовинтовыми (ТВД). ГТД представляет собой тепловую машину, в упрощенной схеме состоящую из компрессора и турбины, работающей за счет сжигания топлива в камере сгорания. Наиболее простой его разновидностью является турбореактивный двигатель, в котором энергия от сжигания топлива идет только на вращение компрессора через турбину, а излишек энергии выходит через сопло в виде газов под высоким давлением, образуя реактивную тягу. Но эта энергия может не только «вылетать в трубу», но и выполнять полезную работу, вращая воздушный винт (турбовинтовой двигатель) или вал (турбовальный двигатель). Это и является принципиальной разницей между всеми вышеотмеченными видами моторов семейства ГТД – способ использования свободной энергии.

Устройство и принцип работы двигателя

Строение турбовального двигателя в общих чертах напоминает строение ТРД. Основными составляющими являются комрессор, турбина, камера сгорания и вал. В отличие от других газотурбинных двигателей ТВаД совсем не имеет реактивной тяги – вся свободная энергия расходуется на вращение вала, поэтому и сопла, как такового, у него нет, а есть только каналы (своеобразные выхлопные трубы), по которым отводятся отработанные газы. Еще одна особенность ТВаД – наличие не одной, а двух турбин, не связанных между собой механически. Одна турбина приводит в движение компрессор, а вторая – рабочий вал. Между собой они связаны газодинамически. Некоторые модели турбовинтовых двигателей также имеют схожую конструкцию, но не обязательно. В случае с ТВаД турбин всегда две.

Две основные схемы устройства ТВаД с описание расположенных механизмов. Картинки кликабельны.

Принцип работы турбовального двигателя тоже не сильно отличается от ТРД или ТВД. Компрессор, приводимый в движение турбиной, нагнетает воздух в камеру сгорания, где он перемешивается с впрыснутым через форсунки топливом. Топливный заряд воспламеняется и сгорает, в результате чего образуются газы с большим запасом энергии. Расширяясь, они вращают турбины, приводя в движение компрессор и вал, а отработанные газы выводятся наружу.

Компрессор турбовального двигателя имеет несколько ступеней и может быть центробежным, осевым или комбинированным. Комбинированные компрессоры сочетают в себе и центробежные, и осевые ступени.

Обязательным конструктивным элементом ТВаД, как, впрочем, и турбовинтового двигателя, является редуктор, установленный между турбиной и валом. Сама турбина вращается с угловой скоростью, достигающей 20 000 об/мин. Понятно, что винт, закрепленный на валу и создающий тягу, не сможет работать при такой скорости и выполнять свои функции, ведь тогда ему придется вращаться со сверхзвуковой скоростью. Редуктор, установленный перед валом, понижает обороты и увеличивает крутящий момент, так что скорость вращения лопастей винта вертолета значительно меньше скорости вращения турбины.

Если турбовинтовые двигатели, которые используются на самолетах, должны иметь компактные размеры, а вал турбины и вал винта у них устанавливаются параллельно в одном корпусе, то к габаритам турбовальных двигателей таких жестких требований нет. Рабочий вал у них может находиться впереди турбины или за ней, в одном корпусе с ней или отдельно. Это объясняется тем, что мотор спрятан в конструкции кабины, где его можно расположить в любом удобном положении. Различают цельные моторы и модульные, состоящие из отдельных модулей, связанных между собой механически. Часто в одном модуле расположены компрессор и турбины, а в другом – рабочий вал, связанный с валом турбины редуктором.

Легкий американский вертолет AH-6j Little Bird

 

Применение

Нашел себе применение турбовальный двигатель и на земле. Правильнее даже говорить, что именно на земле он изначально и использовался, и только после появления авиации, как таковой, «переселился» на небо. Его можно встретить и на транспорте, и на различных магистральных станциях, где он обычно используется, как альтернатива дизельного двигателя. В сравнении с дизелем ТВД более легкий по весу, менее шумный и более мощный, если брать двигатели одного размера.

В промышленности и народном хозяйства

ТВаД успешно используется в качестве нагнетателя природного газа на газоперекачивающих станциях. Его нередко можно увидеть на крупных газовых магистралях. Одна из последних разработок газовая турбина T16, мощностью 16 МВт. Короткое видео с применением турбовального двигателя в электроэнергетики.

Основные показатели:

  • 16,5 МВт — мощность на валу.
  • 37% — КПД, механический привод.
  • 36% — КПД, электрический (простой цикл).
  • 80% — КПД, комбинированное производство электроэнергии и тепла
  • 200 000 часов — полный жизненный цикл
  • выбросы NOx — не более 25 ppm.

Турбовальные двигатели используются в мобильных электростанциях для привода генератора. Электростанции с данным двигателем занимают меньший объем, аналогичной электростанции с традиционными двигателями.

В транспортной сфере

Несмотря на то, что в большинстве случаев турбовальные двигатели описываются, как силовые установки вертолетов, их применение не ограничено только ими. Частенько ТВаД играет роль не основного движителя, а вспомогательной установки. Такими установками обычно оснащаются самолеты, а используются они для питания энергией основных систем судна при его наземном обслуживании. То есть, когда самолет находится на земле, не обязательно запускать его основные моторы для получения электричества или создания давления в гидросистемах, для этого достаточно запуска такой небольшой установки. Также ТВаД используется в качестве пускового агрегата, который проворачивает ротор турбины при запуске. В этом случае он имеет название турбостартер.

Вид железнодорожного транспорта, на который устанавливается ТВаД, носит название газотурбовоз. Принцип его работы заключается в том, что турбовальный двигатель вращает вал генератора, вырабатывающего электрический ток. Ток поступает на электромоторы, которые, по сути, и являются основной силовой установкой. История газотурбовозов началась в 60-е годы, когда были сконструированы первые опытные образцы, правда, потом они уступили место более известным сейчас электровозам. Вместе с тем с 2007 года возобновились работы по созданию газотурбовозов, и даже был создан пробный экземпляр, работающий на сжиженном газе. Его испытания прошли успешно, так что в скором будущем, возможно, он будет выпускаться серийно.

Не обошли стороной ТВаД и создатели военной наземной техники. Некоторые танки, в том числе и отечественный Т-80 и американский М1 Abrams, оснащены ТВаД. Короткое видео разработки, внедрения и применения турбовального двигателя на танке.

Турбовальные двигатели также используются и на водном транспорте, называемом газотурбоходами. К ним относятся суда на воздушной подушке или на подводных крыльях. Наиболее известным отечественным газотурбоходом является военное судно «Зубр» — наиболее крупный десантный корабль на воздушной подушке. Этот гигант известен далеко за пределами России и является мировым рекордсменом среди суден на воздушной подушке по своим габаритам. А вот с отечественными пассажирскими газотурбоходами как-то не сложилось. Судно «Циклон», сконструированное в 80-хх годах, не пережило перестройки и со временем забылось, а новые пассажирские суда, оснащенные ТВаД пока не появились.

Танк Т-80 с газотурбинным двигателем

Десантное судно «Зубр»

Преимущества и недостатки

Основным преимуществом турбовального двигателя является то, что по сравнения с поршневыми двигателями он более легкий по весу, менее шумный и более мощный, если брать двигатели одного размера. Вся суть турбовального двигателя и заключается, чтоб максимально использовать энергию сгорающего топлива, по сравнению с поршневыми двигателями это реализуется лучшим образом. Тем самым в одном килограмме двигателя можно реализовать конструкцию, более мощную своих цилиндрических сородичей, которая с каждого килограмма топлива будет забирать тепловую энергию и преобразовывать ее в механическую.

Есть у турбовального двигателя и недостатки. Первый из них – сравнительно большой расход топлива и, соответственно, низкий КПД, несмотря на высокие показатели мощности. Именно этот недостаток объясняет его ограниченное применение на наземном транспорте, где его можно заменить более эффективными силовыми установками. Второй недостаток – чувствительность к загрязнениям. Компрессор, втягивая воздух в камеру сгорания, заодно всасывает и пыль, и посторонние предметы, что сказывается на качестве работы двигателя и на его исправность в целом. На высоких оборотах даже незначительные твердые частички могут повредить лопасти турбины. Поэтому ТВаД нуждается в надежной системе тщательной очистки воздуха, а расходы на нее далеко не всегда оправданы – в большинстве случаев намного проще и дешевле использовать традиционный дизель. Это еще одна причина, по которой эти двигатели в основном используются в воздухе: там и грязи меньше, и птицы летают ниже высоты полета, так что нормальной работе компрессора и турбины ничего не мешает. Зато масса ТВаД намного меньше любого поршневого двигателя, а это в авиации немаловажно.

Турбовальные двигатели – это действительно в первую очередь «сердца» вертолетов, а уж потом все остальное. Именно эти стальные «стрекозы» дают возможность оценить основные преимущества ТВаД, ну а недостатки в этом случае совсем незначительны.

Газотурбинный двигатель подробно — Энциклопедия журнала "За рулем"

ИДЕЯ применить в автомобилях газотурбинные двигатели возникла давно. Но лишь за последние несколько лет их конструкция достигла той степени совершенства, которая дает им право на существование.
Высокий уровень развития теории лопаточных двигателей, металлургии и техники производства обеспечивает теперь реальную возможность создания надежных газотурбинных двигателей, способных с успехом заменить на автомобиле поршневые двигатели внутреннего сгорания.
Что представляет собой газотурбинный двигатель?
На рис. показана принципиальная схема такого двигателя. Ротационный компрессор, находящийся на одном валу с газовой турбиной, засасывает воздух из атмосферы, сжимает его и нагнетает в камеру сгорания. Топливный насос, также приводимый в движение от вала турбины, нагнетает топливо в форсунку, установленную в камере сгорания. Газообразные продукты сгорания поступают через направляющий аппарат на рабочие лопатки колеса газовой турбины и заставляют его вращаться в одном, определенном направлении. Газы, отработавшие в турбине, выпускаются в атмосферу через патрубок. Вал газовой турбины вращается в подшипниках.
По сравнению с поршневыми двигателями внутреннего сгорания газотурбинный двигатель обладает весьма существенными преимуществами. Правда, он тоже еще не свободен от недостатков, но они постепенно ликвидируются по мере развития конструкции.
Характеризуя газовую турбину, прежде всего следует отметить, что она, как и паровая турбина, может развивать большие обороты. Это дает возможность получать значительную мощность от гораздо меньших по размерам (по сравнению с поршневыми) и почти в 10 раз более легких по весу двигателей.
Вращательное движение вала является по существу единственным видом движения в газовой турбине, в то время как в двигателе внутреннего сгорания, помимо вращательного движения коленчатого вала, имеет место возвратно-поступательное движение поршня, а также сложное движение шатуна. Газотурбинные двигатели не требуют специальных устройств для охлаждения. Отсутствие трущихся деталей при минимальном количестве подшипников обеспечивают длительную работоспособность и высокую надежность газотурбинного двигателя.
Для питания газотурбинного двигателя используется керосин либо топлива типа дизельных.
Основная причина, которая сдерживает развитие автомобильных газотурбинных двигателей, заключается в необходимости искусственно ограничивать температуру газов, поступающих на лопатки турбины. Это снижает коэффициент полезного действия двигателя и приводит к повышенному удельному расходу топлива (на 1 л. с ). Температуру газа приходится ограничивать для газотурбинных двигателей пассажирских и грузовых автомобилей в пределах 600—700°С, а в авиационных турбинах до 800—900°С потому, что еще очень дороги высокожаропрочные сплавы.
В настоящее время уже существуют некоторые способы повышения коэффициента полезного действия газотурбинных двигателей путем охлаждения лопаток, использования тепла отработавших газов для подогрева поступающего в камеры сгорания воздуха, производства газов в высоко эффективных свободно-поршневых генераторах, работающих по дизель-компрессорному циклу с высокой степенью сжатия и т. д. От успеха работ в этой области во многом зависит решение проблемы создания высокоэкономичного автомобильного газотурбинного двигателя.


Принципиальная схема двухвального газотурбинного двигателя с теплообменником

Большинство существующих автомобильных газотурбинных двигателей построено по так называемой двухвальной схеме с теплообменниками. Здесь для привода компрессора 1 служит специальная турбина 8, а для привода колес автомобиля — тяговая турбина 7. Валы турбин не соединены между собой. Газы из камеры сгорания 2 вначале поступают на лопатки турбины привода компрессора, а затем на лопатки тяговой турбины. Воздух, нагнетаемый компрессором, прежде чем поступить в камеры сгорания, подогревается в теплообменниках 3 за счет тепла, отдаваемого отработавшими газами. Применение двухвальной схемы создает выгодную тяговую характеристику газотурбинных двигателей, позволяющую сократить число ступеней в обычной коробке передач автомобиля и улучшить его динамические качества.

Ввиду того, что вал тяговой турбины механически не связан с валом турбины компрессора, числ

Газотурбинный двигатель самолета. Фото. Строение. Характеристики.

 

Авиационные газотурбинные двигатели.

 

На сегодняшний день, авиация практически на 100% состоит из машин, которые используют газотурбинный тип силовой установки. Иначе говоря – газотурбинные двигатели. Однако, несмотря на всю возрастающую популярность авиаперелетов сейчас, мало кто знает каким образом работает тот жужжащий и свистящий контейнер, который висит под крылом того или иного авиалайнера.

 

Принцип работы газотурбинного двигателя.

 

Газотурбинный двигатель, как и поршневой двигатель на любом автомобиле, относится к двигателям внутреннего сгорания. Они оба преобразуют химическую энергию топлива в тепловую, путем сжигания, а после - в полезную, механическую. Однако то, как это происходит, несколько отличается. В обоих двигателях происходит 4 основных процесса – это: забор, сжатие, расширение, выхлоп. Т.е. в любом случае в двигатель сначала входит воздух (с атмосферы) и топливо (из баков), далее воздух сжимается и в него впрыскивается топливо, после чего смесь воспламеняется, из-за чего значительно расширяется, и в итоге выбрасывается в атмосферу. Из всех этих действий выдает энергию лишь расширение, все остальные необходимы для обеспечения этого действия.

А теперь в чем разница. В газотурбинных двигателях все эти процессы происходят постоянно и одновременно, но в разных частях двигателя, а в поршневом – в одном месте, но в разный момент времени и по очереди. К тому же, чем более сжат воздух, тем большую энергию можно получить при сгорании, а на сегодняшний день степень сжатия газотурбинных двигателей уже достигла 35-40:1, т.е. в процессе прохода через двигатель воздух уменьшается в объеме, а соответственно увеличивает свое давление в 35-40 раз. Для сравнения в поршневых двигателях этот показатель не превышает 8-9:1, в самых современных и совершенных образцах. Соответственно имея равный вес и размеры газотурбинный двигатель гораздо более мощный, да и коэффициент полезного действия у него выше. Именно этим и обусловлено такое широкое применения газотурбинных двигателей в авиации в наши дни.

 

А теперь подробней о конструкции. Четыре вышеперечисленных процесса происходят в двигателе, который изображен на упрощенной схеме под номерами:

  • забор воздуха – 1 (воздухозаборник)
  • сжатие – 2 (компрессор)
  • смешивание и воспламенение – 3 (камера сгорания)
  •  выхлоп – 5 (выхлопное сопло)
  • Загадочная секция под номером 4 называется турбиной. Это неотъемлемая часть любого газотурбинного двигателя, ее предназначение – получение энергии от газов, которые выходят после камеры сгорания на огромных скоростях, и находится она на одном валу с компрессором (2), который и приводит в действие.

 

Таким образом получается замкнутый цикл. Воздух входит в двигатель, сжимается, смешивается с горючим, воспламеняется, направляется на лопатки турбины, которые снимают до 80% мощности газов для вращения компрессора, все что осталось и обуславливает итоговую мощность двигателя, которая может быть использована разными способами.

В зависимости от способа дальнейшего использования этой энергии газотурбинные двигатели подразделяются на:

  • турбореактивные
  • турбовинтовые
  • турбовентиляторные
  • турбовальные

 

Двигатель, изображенный на схеме выше, является турбореактивным. Можно сказать «чистым» газотурбинным, ведь газы после прохождения турбины, которая вращает компрессор, выходят из двигателя через выхлопное сопло на огромной скорости и таким образом толкают самолет вперед. Такие двигатели сейчас используются в основном на высокоскоростных боевых самолетах.

Турбовинтовые двигатели отличаются от турбореактивных тем, что имеют дополнительную секцию турбины, которая еще называется турбиной низкого давления, состоящую из одного или нескольких рядов лопаток, которые отбирают оставшуюся после турбины компрессора энергию у газов и таким образом вращает воздушный винт, который может находится как спереди так и сзади двигателя. После второй секции турбины, отработанные газы выходят фактически уже самотеком, не имея практически никакой энергии, поэтому для их вывода используются просто выхлопные трубы. Подобные двигатели используются на низкоскоростных, маловысотных самолетах.

Турбовентиляторные двигатели имеют схожую схему с турбовинтовыми, только вторая секция турбины отбирает не всю энергию у выходящих газов, поэтому такие двигатели также имеют выхлопное сопло. Но основное отличие состоит в том, что турбина низкого давления приводит в действия вентилятор, который закрыт в кожух. Потому такой двигатель еще называется двуконтурным, ведь воздух проходит через внутренний контур (сам двигатель) и внешний, который необходим лишь для направления воздушной струи, которая толкает двигатель вперед. Потому они и имеют довольно «пухлую» форму. Именно такие двигатели применяются на большинстве современных авиалайнеров, поскольку являются наиболее экономичными на скоростях, приближающихся к скорости звука и эффективными при полетах на высотах выше 7000-8000м и вплоть до 12000-13000м.

Турбовальные двигатели практически идентичны по конструкции с турбовинтовыми, за исключением того, что вал, который соединен с турбиной низкого давления, выходит из двигателя и может приводить в действие абсолютно что угодно. Такие двигатели используются в вертолетах, где два-три двигателя приводят в действие единственный несущий винт и компенсирующий хвостовой пропеллер. Подобные силовые установки сейчас имеют даже танки – Т-80 и американский «Абрамс». 

 

Газотурбинные двигатели имеют классификацию также по другим признакам:

  • по типу входного устройства (регулируемое, нерегулируемое)
  •  по типу компрессора (осевой, центробежный, осецентробежный)
  • по типу воздушно-газового тракта (прямоточный, петлевой)
  • по типу турбин (число ступеней, число роторов и др.)
  • по типу реактивного сопла (регулируемое, нерегулируемое) и др.

 

Турбореактивный двигатель с осевым компрессором получил широкое применение. При работающем двигателе идет непрерывный процесс. Воздух проходит через диффузор, притормаживается и попадает в компрессор. Затем он поступает в камеру сгорания. В камеру через форсунки подается также топливо, смесь сжигается, продукты сгорания перемещаются через турбину. Продукты сгорания в лопатках турбины расширяются и приводят ее во вращение. Далее газы из турбины с уменьшенным давлением поступают в реактивное сопло и с огромной скоростью вырываются наружу, создавая тягу. Максимальная температура имеет место и на воде камеры сгорания.

Компрессор и турбина расположены на одном валу. Для охлаждения продуктов сгорания подается холодный воздух. В современных реактивных двигателях рабочая температура может превышать температуру плавления сплавов рабочих лопаток примерно на 1000 °С. Система охлаждения деталей турбины и выбор жаропрочных и жаростойких деталей двигателя — одни из главных проблем при конструировании реактивных двигателей всех типов, в том числе и турбореактивных.

Особенностью турбореактивных двигателей с центробежным компрессором является конструкция компрессоров. Принцип работы подобных двигателей аналогичен двигателям с осевым компрессором.

 

 

Газотурбинный двигатель. Видео.

 

Полезные статьи по теме.

 

Ещё узлы и агрегаты

 

5.7. Дроссельные характеристики турбовальных двигателей

Рис. 5.12. Дроссельные характеристики турбовального двигателя

В отличие от дроссельных характеристик ГТД прямой реакции, которые при М = const в ряде случаев могут быть представлены в виде критериальных зависимостей от одного критерия подобия – приведенной частоты вращения , у турбовальных двигателей, как уже указывалось, такая возможность исключается. Это объясняется тем, что приnт.к.пр = const у них режимы подобия на свободную турбину не распространяются, поскольку она работает при условииnс.т = const, а следовательно, у нееnс.т.пр const. Поэтомудроссельными характеристиками турбовальных двигателей называют зависимости мощности на валу свободной турбины Nе и удельного расхода топлива Се от физической частоты вращения ротора ГГ nт.к при заданных атмосферных условиях рН и ТН или, что то же самое, при заданных значениях температурыТНи высоты полетаН. Они имеют вид, показанный на рис. 5.12.

Физическое объяснение протекания дроссельных характеристик турбовального ГТД имеет много общего с ГТД других типов. При увеличении nт.к возрастает Gв. Повышается также работа Lс.т = Lц, поскольку увеличиваются параметры термодинамического цикла  и . Это приводит к интенсивному возрастанию Ne.

Внутренний КПД с увеличением nт.к все время возрастает, как и у любого другого ГТД, вследствие одновременного повышения  и . Отличие от ТРД и ТРДД состоит в том, что турбовальный ГТД является чисто тепловым двигателем и эффективность использования теплоты в нем оценивается только величиной вн, как это следует из формулы (5.5). Поэтому с увеличением nт.к величина Се все время снижается. У ГТД прямой реакции при определении Суд приходится учитывать еще тяговый КПД, который при повышении режима работы двигателя снижается, что приводит к появлению на дроссельной характеристике этих двигателей характерной «ложки», аналогичной той, которая наблюдается при анализе зависимости Суд от  при  = const. У турбовальных ГТД минимум Се обеспечивается на максимальном режиме.

На дроссельной характеристике принято отмечать точки, соответствующие крейсерскому, номинальному и максимальному режимам.

5.8. Климатические характеристики турбовальных двигателей

Климатическими характеристиками турбовальных ГТД называются зависимости Ne и Се от температуры ТН на разных высотах полета. Следует отметить, что изменение только барометрического атмосферного давления рН не приводит к изменению режима работы ГГ. Не изменяется при этом также и Lс.т. Величины же Gв и Nе изменяются пропорционально рН, что легко учитывается расчетом. Поэтому климатические характеристики турбовальных ГТД рассматривают в зависимости от двух параметров, характеризующих внешние условия – температуры ТН и высоты полета Н.

Климатические характеристики могут быть определены для ГТД любого типа. Но при изучении характеристик ТРД и ТРДД на этом вопросе внимание не заостряется по той причине, что, имея дроссельные характеристики этих двигателей при стандартных атмосферных условиях, их можно пересчитать на другие атмосферные условия путем использования формул подобия. Для турбовальных двигателей такой пересчет произвести нельзя, поскольку, как указывалось, при nт.к.пр = const подобие режимов не распространяется на свободную турбину, а следовательно, и на весь двигатель в целом.

При заданном (например, максимальном) режиме работы двигателя и при отсутствии эксплуатационных ограничений повышение температуры окружающего воздуха при условии рН = const приводит при nт.к = const к снижению мощности двигателя и к увеличению его удельного расхода топлива (штриховые линии на рис. 5.13). Снижение Nе с ростом ТН физически объясняется уменьшением расхода воздуха через двигатель (вследствие падения его плотности), а также уменьшением работы Lс.т (вследствие снижения и соответственно с.т при снижении nт.к.пр с ростом температуры ТН). Возрастание Cе обусловлено падением внутреннего КПД вследствие уменьшения  и .

Рис. 5.13. Климатические характеристики

при Н =Нр:с учетом и - - - - без учета

эксплуатационных ограничений

Такое влияние температуры ТНна изменениеNеявляется неблагоприятным с точки зрения согласования потребной мощности для полета вертолета, которая от температурыТНпрактически не зависит, и располагаемой мощности двигателя, сильно снижающейся с ростомТН. Это противоречие может быть преодолено уменьшением полезной нагрузки вертолета в условиях жаркого климата, либо установкой более мощного двигателя, подбираемого из условий обеспечения полета при высоких значениях температурыТН. Этому последнему условию отвечают высотные турбовальные двигатели. У них при работе у земли и в некотором диапазоне высотН Нpдвигатель работает с ограничением поNе max, т.е. он в той или иной степени задросселирован. В таком случае на рассматриваемой высоте полета величинаNес ростом температурыТНвначале поддерживается постоянной за счет увеличенияnт.ки температурыдо выхода ГГ на расчетный режим работы.

Климатические характеристики высотного турбовального двигателя на максимальном режиме с учетом эксплуатационных ограничений для случая Н = Нр представлены на рис. 5.13 сплошными линиями. Их протекание легко объяснить с использованием рис. 5.8, на котором для этого же случая показано изменение параметров в областях соответствующих ограничений. Постоянная максимальная мощность Nе поддерживается в области II (рис. 5.13) за счет раскрутки ротора ГГ. В точке «р» двигатель выходит на ограничение по nт.к.max и только с этого момента Nе при дальнейшем возрастании ТН начинает падать – вначале на участке III более медленно (вследствие повышения температуры ), а на участкеIV более интенсивно (вследствие снижения nт.к в области ограничения по ). На участкеI снижение мощности при уменьшении ТН вызвано необходимостью поддержанияnт.к.пр = const из условияKу.min =const, что требует более интенсивного дросселирования двигателя, чем на участкеII. Некоторое увеличениеСев областяхI,IIиIV(по сравнению со штриховой линией) связано со снижениемвниз-за уменьшенияnт.к. На участкеIвеличинаСесохраняется практически постоянной (вследствие неизменности параметрови).

Рис. 5.14. Объединенные дроссельно-климатические характеристики

при nс.т = 100% иН = 1 км

На высотах, меньших расчетной, диапазон температур, соответствующих условию Nе.max = const, существенно расширяется. В частности, на взлетном режиме (приН = 0), как это видно из рис. 5.9, условиеNе.max = const обеспечивается во всем диапазоне температурТН <ТН3, в том числе на участке0-3приТН > 288 К.

Поддержание постоянства мощности ТВаД на взлетном режиме при увеличении температуры Тн до определенного значения является важным эксплуатационным показателем вертолетного двигателя. Эти температуры могут составлять 30…40С.

Объединенные дроссельно-климатические характеристики турбовального двигателя ТВ3-117 при Н = 1 км изображены на рис. 5.14. Они представляют собой совокупность дроссельных характеристик при различных значениях температуры tН,°C. На рис. 5.14 а показано изменение мощности двигателя Ne , а на рис. 5.14 б – расхода топлива Gт от относительной частоты вращения ротора ГГ ,%. Выход на тот или иной режим ограничения зависит от величины температурыtН. При tН < –40 С достигается ограничение по nт.к.пр.max, в диапазоне tН от –40 С до +15 С наступает ограничение по Nе.max, а при tН > 15 С – по . Отштрихованными линиями на рис. 5.14 отмечены режимы, соответствующие максимальному, номинальному и крейсерскому режимам работы двигателя.

Турбовальный двигатель

- Перевод на французском языке - Примеры на английском языке

Ces examples peuvent contenir des mots vulgaires liés à votre recherche

Ces examples peuvent contenir des mots familiers liés à votre recherche

вертолет турбовальный двигатель в составе газогенератора и свободной турбины

turbomoteur de helicoptère comrpenant un générateur de gaz et une turbine libre

способ и система пуска турбовального двигателя от холода.

Процесс и система для разрушения turbomoteur par temps froid

General Electric T58 - это американский турбовальный двигатель , разработанный для вертолетов.

Le General Electric T58 - это турбомоторов, американских, для электрического оборудования.

Этот вертолет Astar при изготовлении оснащался турбовальным двигателем Turbomeca Arriel1D1 , заводской номер 9631.

Cet hélicoptère Astar avait été équipé, au moment de sa construction, turbomoteur Turbomeca Arriel1D1 portant le numéro de série9631.

Турбовальный двигатель с пониженным уровнем шума для самолетов

turbomoteur с резервным двигателем для аэронавтики

Honeywell HTS900 - это американский турбовальный двигатель производства Honeywell Aerospace.

Le Honeywell HTS900 - это турбомотор , произведенный американским конструктором Honeywell Aerospace (en).

Rolls-Royce Gnome - это британский турбовальный двигатель , первоначально разработанный компанией de Havilland Engine Company как лицензионный General Electric T58, американский дизайн середины 1950-х годов.

Le Rolls-Royce Gnome имеет turbomoteur britannique à l'origine développé par la De Havilland Engine Company, в соответствии с версией, созданной на основе лицензии General Electric T58, американского двигателя окружающей среды 1950.

После войны этот завод был переоборудован для производства турбовального двигателя T53 , одной из наиболее успешных их разработок.

После того, как герой был использован, он был преобразован для производства turbomoteur T53, программы qui connaît le plus de succès.

General Electric T64 - это турбовальный двигатель со свободной турбиной, который первоначально был разработан для использования на вертолетах, но позже использовался и на самолетах с неподвижным крылом.

Le General Electric T64 является turbomoteur à turbine libre qui fut initialement développé pour être usedé par des helicoptères, mais qui fut ensuite ég

определение турбовального вала и синонимов турбовального вала (на английском языке)

Принципиальная схема, показывающая работу упрощенного турбовального двигателя. Золотник компрессора показан зеленым цветом, а золотник свободного / силового режима - фиолетовым.

Турбовальный двигатель представляет собой разновидность газовой турбины, которая оптимизирована для выработки мощности на валу свободной турбины (см. Рисунок справа), а не реактивной тяги.

По своей концепции турбовальные двигатели очень похожи на турбореактивные, с дополнительным расширением турбины для извлечения тепловой энергии из выхлопных газов и преобразования ее в мощность на выходном валу. Они даже больше похожи на турбовинтовые, с небольшими отличиями, и часто один двигатель продается в обеих формах.

Турбовальные двигатели

обычно используются в приложениях, где требуется стабильно высокая выходная мощность, высокая надежность, небольшие размеры и легкий вес. К ним относятся вертолеты, вспомогательные силовые установки, лодки и корабли, танки, суда на воздушной подушке и стационарное оборудование.

Обзор

Турбовальный двигатель состоит из двух основных узлов: газогенератора и силовой части . Газогенератор состоит из компрессора, камер сгорания с воспламенителями и топливными форсунками, а также одной или нескольких ступеней турбины. Силовая часть состоит из дополнительных ступеней турбин, зубчато-редукторной системы и выходного вала. Газогенератор создает горячие расширяющиеся газы для привода силовой части. В зависимости от конструкции агрегаты двигателя могут приводиться в действие газогенератором или силовой частью.

В большинстве конструкций газогенератор и силовая часть механически разделены, так что каждая из них может вращаться с разными скоростями, соответствующими условиям. Это называется свободной силовой турбиной . Турбина со свободным приводом может быть чрезвычайно полезной конструктивной особенностью для транспортных средств, поскольку она позволяет отказаться от веса и стоимости сложных многоступенчатых трансмиссий и сцеплений.

Генеральная схема турбовального двигателя аналогична турбовинтовому. Основное отличие состоит в том, что турбовинтовой двигатель конструктивно спроектирован так, чтобы выдерживать нагрузки, создаваемые вращающимся воздушным винтом, поскольку винт не прикреплен ни к чему, кроме самого двигателя.Напротив, турбовальные двигатели обычно приводят в движение трансмиссию, которая конструктивно не прикреплена к двигателю. Трансмиссия прикреплена к конструкции автомобиля и поддерживает нагрузки, создаваемые вместо двигателя. Однако на практике многие из одних и тех же двигателей строятся как в турбовинтовой, так и в турбовальной версии, с небольшими различиями.

Необычным примером принципа турбовального двигателя является двигатель Pratt & Whitney F135-PW-600 для STOVL F-35B - в обычном режиме он работает как турбовентилятор, но при включении LiftFan он частично переключается в режим турбовального двигателя для передачи мощности вперед. через вал (как у турбовинтового двигателя) и частично в турбореактивный режим, чтобы продолжать передавать тягу на заднее сопло.

История

Первые газотурбинные двигатели, использованные для боевой бронированной машины GT 101, были установлены на танке «Пантера» в середине 1944 года. [1] Первый настоящий турбовальный двигатель для вертолета был построен французской моторной фирмой Turbomeca во главе с основателем Джозефом Шидловски. В 1948 году они построили первый газотурбинный двигатель французской конструкции - 100 л.с. 782. Первоначально задуманный как вспомогательная силовая установка (ВСУ), он вскоре был адаптирован для силовой установки самолетов и нашел свою нишу в качестве силовой установки для вертолетов с турбовальным приводом в 1950-х годах. . Кей, Энтони, Разработка немецких реактивных двигателей и газовых турбин 1930-1945 гг. , Эйрлайф Паблишинг, 2002 г.

Внешние ссылки

Infogalactic: ядро ​​планетарного знания

Принципиальная схема, показывающая работу упрощенного турбовального двигателя. Золотник компрессора показан зеленым цветом, а золотник свободного / силового режима - фиолетовым.

Турбовальный двигатель представляет собой разновидность газовой турбины, которая оптимизирована для выработки мощности на валу, а не реактивной тяги.

По своей концепции турбовальные двигатели очень похожи на турбореактивные, с дополнительным расширением турбины для извлечения тепловой энергии из выхлопных газов и преобразования ее в мощность на выходном валу. Они даже больше похожи на турбовинтовые, с небольшими отличиями, и один двигатель часто продается в обеих формах.

Турбовальные двигатели

обычно используются в приложениях, где требуется стабильно высокая выходная мощность, высокая надежность, небольшие размеры и легкий вес. К ним относятся вертолеты, вспомогательные силовые установки, лодки и корабли, танки, суда на воздушной подушке и стационарное оборудование.

Обзор

Турбовальный двигатель может состоять из двух основных узлов: «газогенератора» и «силовой части». Газогенератор состоит из компрессора, камер сгорания с воспламенителями и топливными форсунками, а также одной или нескольких ступеней турбины. Силовая часть состоит из дополнительных ступеней турбин, зубчато-редукторной системы и выходного вала. Газогенератор создает горячие расширяющиеся газы для привода силовой части. В зависимости от конструкции агрегаты двигателя могут приводиться в действие газогенератором или силовой частью.

В большинстве конструкций газогенератор и силовая часть механически разделены, поэтому каждая из них может вращаться с разной скоростью, соответствующей условиям, называемой «турбиной свободной мощности». Турбина со свободной мощностью может быть чрезвычайно полезной конструктивной особенностью для транспортных средств, поскольку она позволяет отказаться от веса и стоимости сложных трансмиссий и сцеплений с несколькими передаточными числами.

Генеральная схема турбовального двигателя аналогична турбовинтовому. Основное отличие состоит в том, что турбовинтовой двигатель конструктивно рассчитан на поддержку нагрузок, создаваемых вращающимся винтом, поскольку винт не прикреплен ни к чему, кроме самого двигателя.Напротив, турбовальные двигатели обычно приводят в движение трансмиссию, которая конструктивно не прикреплена к двигателю. Трансмиссия прикреплена к конструкции автомобиля и поддерживает нагрузки, создаваемые вместо двигателя. Однако на практике многие из одних и тех же двигателей построены как в турбовинтовой, так и в турбовальной версиях, с небольшими различиями.

Необычным примером принципа турбовального двигателя является турбовентиляторный двигатель Pratt & Whitney F135-PW-600 для STOVL F-35B - в обычном режиме он работает как турбовентилятор, но при включении LiftFan он частично переключается в режим турбовального двигателя для передачи 29 000 лошадиных сил вперед через вал [1] (как у турбовинтового двигателя) и частично в режим турбовентиляторного двигателя, чтобы продолжать передавать тягу на вентилятор главного двигателя и заднее сопло.

В больших вертолетах используются два или три турбовальных двигателя для резервирования. На Ми-26 используются два Лотарев Д-136 мощностью 11400 л.с. каждый, [2] , а на Sikorsky CH-53E Super Stallion используются три General Electric T64 мощностью 4380 л.с. каждый. [3]

Ранние турбовальные двигатели были модификациями турбовинтовых двигателей, передавая мощность через вал, приводимый непосредственно от валов газогенератора, через редуктор. Примеры турбовалов с прямым приводом включают морские или промышленные двигатели Rolls-Royce Dart.

Газовая турбина Austin 250 л.с., секционная.

История

Первый образец газотурбинного двигателя, когда-либо рассматривавшийся для боевых бронированных машин, GT 101 на базе BMW 003, был испытан на танках Panther нацистской Германии в середине 1944 года. [4] Первый настоящий турбовальный двигатель для вертолетов был построен французской моторной фирмой Turbomeca во главе с основателем Джозефом Шидловски. В 1948 году они построили первый газотурбинный двигатель французской конструкции - 100-сильный 782. Первоначально задуманный как вспомогательная силовая установка, вскоре он был адаптирован для двигателей самолетов и нашел свою нишу в качестве силовой установки для вертолетов с турбовальным приводом в 1950-х годах. .В 1950 году эта работа была использована при разработке более крупного 280-сильного Artouste, который широко использовался на Aérospatiale Alouette II и других вертолетах. Это произошло после экспериментальной установки турбовального двигателя Boeing T50 на примере синхронизатора Kaman K-225 11 декабря 1951 года как первого в мире вертолета с турбовальным двигателем любого типа, который летал. [5] С 1984 года в армии США эксплуатируется танк M1 Abrams. Этот танк, спроектированный и построенный в конце 1970-х годов, оснащен газотурбинным двигателем по сравнению с большинством танков, в которых используются поршневые дизели.В двигателе значительно меньше деталей, он очень надежен механически, производит пониженный внешний шум и работает практически на любом топливе: бензине (бензине), дизельном топливе, авиационном топливе. Точно так же шведский Stridsvagn 103 был первым танком, в котором использовалась газовая турбина, в данном случае в качестве вторичного мощного «спринтерского» двигателя для увеличения производительности первичного поршневого двигателя.

См. Также

Список литературы

  1. ↑ Warwick, Graham. «F-35B - вызовы STOVL» Неделя авиации и космических технологий , 9 декабря 2011 г.Доступ: 10 апреля 2014 г.
  2. ↑ «Ми-26 HALO» fas.org , 21 сентября 1999 г. Дата обращения: 10 апреля 2014 г.
  3. ↑ «О GE T64» BGA-aeroweb , 17 мая 2012 г. Дата обращения: 10 апреля 2014 г.
  4. ↑ Кей, Энтони, Разработка немецких реактивных двигателей и газовых турбин 1930-1945 гг. , Эйрлайф Паблишинг, 2002 г.
  5. «Смитсоновский национальный музей авиации и космонавтики - Kaman K-225». http://airandspace.si.edu . NASM. Проверено 14 января 2015 года.

Внешние ссылки

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *