Как работает форсунка: Топливные форсунки: устройство и принцип действия

Содержание

Форсунка, инжектор – назначение, виды, устройство, принцип работы

Форсунка (другое название — инжектор), являясь конструктивным элементом системы впрыска, предназначена для дозированной подачи топлива, его распыления в камере сгорания (впускном коллекторе) и образования топливно-воздушной смеси.

Форсунка используется в системах впрыска как бензиновых, так и дизельных двигателей. На современных двигателях устанавливаются форсунки с электронным управлением впрыска.

В зависимости от способа осуществления впрыска различают следующие виды форсунок: электромагнитная, электрогидравлическая и пьезоэлектрическая.

Электромагнитная форсунка

Электромагнитная форсунка устанавливается, как правило, на бензиновых двигателях, в т.ч. оборудованных системой непосредственного впрыска. Форсунка имеет достаточно простое устройство, включающее электромагнитный клапан с иглой и сопло.

Работа электромагнитной форсунки осуществляется следующим образом. В соответствии с заложенным алгоритмом электронный блок управления обеспечивает в нужный момент подачу напряжения на обмотку возбуждения клапана. При этом создается электромагнитное поле, которое преодолевая усилие пружины, втягивает якорь с иглой и освобождает сопло. Производится впрыск топлива. С исчезновением напряжения, пружина возвращает иглу форсунки на седло.

Электрогидравлическая форсунка

Электрогидравлическая форсунка используется на дизельных двигателях, в т.ч. оборудованных системой впрыска Common Rail. Конструкция электрогидравлической форсунки объединяет электромагнитный клапан, камеру управления, впускной и сливной дроссели.

Принцип работы электрогидравлической форсунки основан на использовании давления топлива, как при впрыске, так и при его прекращении. В исходном положении электромагнитный клапан обесточен и закрыт, игла форсунки прижата к седлу силой давления топлива на поршень в камере управления. Впрыск топлива не происходит. При этом давление топлива на иглу ввиду разности площадей контакта меньше давления на поршень.

По команде электронного блока управления срабатывает электромагнитный клапан, открывая сливной дроссель. Топливо из камеры управления вытекает через дроссель в сливную магистраль. При этом впускной дроссель препятствует быстрому выравниванию давлений в камере управления и впускной магистрали. Давление на поршень снижается, а давление топлива на иглу не изменяется, под действием которого игла поднимается и происходит впрыск топлива.

Пьезоэлектрическая форсунка

Самым совершенным устройством, обеспечивающим впрыск топлива, является пьезоэлектрическая форсунка (пьезофорсунка). Форсунка устанавливается на дизельных двигателях, оборудованных системой впрыска Common Rail.

Преимуществами пьезофорсунки являются быстрота срабатывания (в 4 раза быстрее электромагнитного клапана), и как следствие возможность многократного впрыска топлива в течение одного цикла, а также точная дозировка впрыскиваемого топлива.

Это стало возможным благодаря использованию пьезоэффекта в управлении форсункой, основанного на изменении длины пьезокристалла под действием напряжения. Конструкция пьезоэлектрической форсунки включает пьезоэлемент, толкатель, переключающий клапан и иглу, помещенные в корпусе.

В работе пьезофорсунки, также как и электрогидравлической форсунки, используется гидравлический принцип. В исходном положении игла посажена на седло за счет высокого давления топлива. При подаче электрического сигнала на пьезоэлемент, увеличивается его длина, которая передает усилие на поршень толкателя. Открывается переключающий клапан, топливо поступает в сливную магистраль. Давление выше иглы падает. Игла за счет давления в нижней части поднимается и производится впрыск топлива.

Количество впрыскиваемого топлива определяется:

  • длительностью воздействия на пьезоэлемент;
  • давлением топлива в топливной рампе.

 

 

Принцип работы форсунки

Форсунка – это электромагнитный клапан, который управляется специальной программой в блоке управления двигателем. Благодаря форсунке топливо в цилиндры подается дозированно. Когда говорят об инжекторе, имеют в виду систему управляемых форсунок.

  • Принцип работы форсунок
  • Расположение форсунок в двигателе автомобиля

Существуют различные виды форсунок для:

— центрального впрыска топлива;

— распределенного впрыска топлива;

— непосредственного впрыска топлива.

Топливная форсунка — элемент инжекторной системы современного автомобиля. Именно этот элемент отвечает за исполнение команды подачи топлива в цилиндр. 

Как работает форсунка

Топливная форсунка не что иное как кран. Да, это кран, на который подается напряжение 9-15 вольт, катушка электромагнита притягивает иглу и топливо, факелом, выходит из нее. Форсунка — это так же и соленоид.

Принцип работы форсунок

К каждой форсунке топливо от топливной рампы подается под определенным давлением. На электромагнит форсунки поступают электрические импульсы от блока управления двигателем. Они приводят в действие специальный игольчатый клапан, который открывает и закрывает канал в форсунке. Чем дольше поступаемый электрический импульс, тем дольше открыт игольчатый клапан, и тем больше подается топлива.

Время открытия игольчатого клапана регулирует блок управления двигателем. Помимо этого, разновидности форсунок позволяют создавать разные формы и направленность факела распыляемого топлива, что существенно влияет на процесс смесеобразования.

Расположение форсунок в двигателе автомобиля

В таблице ниже указано расположение форсунок в двигателе в зависимости от типа впрыска топлива.

Тип впрыска топлива Расположение форсунок
Центральный впрыск Одна или две форсунки располагаются во впускном трубопроводе перед дроссельной заслонкой. Таким образом, форсунка заменяет устаревшую технологию – карбюратор.
Распределенный впрыск Для каждого цилиндра установлена своя форсунка, которая осуществляет впрыск топлива во впускной трубопровод цилиндра. Форсунка располагается у основания впускного трубопровода
Непосредственный впрыск Форсунки располагаются в верхней части стенок цилиндра и впрыскивают топливо непосредственно в камеру сгорания.

 

Рис. Разрез электрогидравлической форсунки фирмы Бош: 1 – отводящий дроссель; 2 – игла; 3 – распылитель; 4 – пружина запирания иглы; 5 – поршень управляющего клапана; 6 – втулка поршня; 7 – подводящий дроссель; 8 – шариковый управляющий клапан; 9 – шток; 10 – якорь; 11 – электромагнит; 12 – пружина клапана

Форсунка состоит из:

  • электромагнита 11
  • якоря электромагнита 10
  • маленького шарикового управляющего клапана 8
  • запорной иглы 2
  • распылителя 3
  • поршня управляющего клапана 5
  • подпружиненного штока 9

Шарик клапана прижимается к седлу с усилием пружины и электромагнита. Сила пружины рассчитана на давление до 100 кг/см2, что значительно ниже давления в линии высокого давления (250…1800 кг/см2), поэтому только при приложении усилия электромагнита шариковый клапан не отойдет от седла, отделяя аккумулятор от линии слива. Игла распылителя форсунки в нерабочем состоянии прижимается к седлу пружиной распылителя – это предотвращает попадание воздуха в форсунку при пуске двигателя.

Рис. Принцип действия электрогидравлической форсунки: а – форсунка в закрытом состоянии; b – форсунка в открытом состоянии; c – фаза закрытия форсунки

При создании давления в аккумуляторе, оно действует как на конусную поверхность иглы, так и на поршень управляющего клапана 5. Поскольку площадь рабочей поверхности поршня на 50% больше площади конусной поверхности иглы, игла распылителя продолжает прижиматься к седлу.

При подаче напряжения от блока управления на электромагнит 11, шток 9 якоря штока поднимается и открывается шариковый управляющий клапан 8. Давление в камере управления 7 падает в результате открытия дроссельного отверстия и топливо пропускается из зоны над поршнем управляющего клапана в зону слива. Давление на поршень управляющего клапана падает, так как подводящее дроссельное отверстие управляющего клапана имеет меньшее сечение чем отводящее. Запорная игла 2 при этом под действием высокого давления в кармане распылителя 3 открывается. Количество подаваемого топлива зависит от времени подачи напряжения в электромагнит 11, а значит от времени открытия шарикового управляющего клапана 8. При прекращении подачи напряжения на электромагнит 11, якорь под действием пружины опускается вниз, при этом шариковый управляющий клапан закрывается, давление в камере управления восстанавливается через специальный жиклер. Под действием давления топлива на поршень управляющего клапана 5, имеющего диаметр больше диаметра иглы, последняя закрывается.

На входе топлива в форсунку установлен аварийный ограничитель подачи топлива. Он предотвращает опорожнение аккумулятора через форсунку с зависшей иглой или клапаном управления, а также повреждение соответствующего цилиндра дизеля. В нем используется принцип возникновения разницы давлений по обе стороны от клапана 1 при прохождении топлива через его жиклеры 2. Сечение жиклеров, за­тяжка пружины 3 и диаметр клапана подобраны по максимальной продолжительности и расходу, т. е. подаче топлива.

Рис. Аварийный ограничитель подачи топлива через форсунку

В системах «коммон рейл» первых поколений общее количество горючей смеси, впрыскиваемой в цилиндр, разделялось на предварительное и основное. Однако более гармоничной является такая схема сгорания, когда во время одного рабочего такта горючая смесь будет разделена на возможно большее количество частей. До сих пор добиться этого было невозможно по причине инерционности традиционных форсунок с электромагнитным управлением.

Одним из путей совершенствования системы «коммон рейл» является увеличение быстродействия открытия форсунки. Минимальное время открытия форсунки для электромагнита с подвижным сердечником составляет 0,5 мс, что не позволяет оперативно изменять подачу топлива. Для более быстрого срабатывания форсунки в настоящее время применяется пьезокерамическая форсунка, которая работает вчетверо быстрее.

Известно, что при подаче электрического напряжения на пьезокерамическую пластинку она на несколько микрон изменяет свою толщину.

Пьезоэлемент, являющийся исполнительным элементом форсунки, представляет собой параллелепипед длиной 30…40 мм, состоящий из спеченных между собой 300 керамических пластинок (кристаллов), расширяющийся на 80 мкм всего за 0,1 мс, чего достаточно  чтобы воздействовать на иглу форсунки с усилием 6300 Н. При этом для управления пьезоэлементом используют напряжение бортовой сети автомобиля.

Рис. Пьезоэлемент

Для усиления пьезоэффекта в керамику добавляют палладиум и цирконий. Пьезоэлемент потребляет энергию только при подаче напряжения и регенерирует ее при выключении напряжения, таким образом, являясь регенератором энергии.

Использование пьезоэлемента, кроме быстроты срабатывания, обеспечивает большую силу открытия клапана сброса давления над иглой форсунки и высокую точность хода для быстрого сброса давления подачи топлива.

Электрогидравлическая форсунка с пьезоэлементом показана на. Основными составляющими форсунки являются модуль исполнительного элемента, состоящего из пьезоэлектрического элемента и его составляющих, модуль плунжера, состоящего из поршней, амортизатора давления и пружины, клапан переключения, игла. Для окончательной очистки топлива применяется специальный стержневой фильтр.

Рис. Разрез пьезоэлектрогидравличе­ской форсунки: 1 ­– патрубок рециркуляции; 2 – электрический разъем; 3 – стержневой фильтр; 4 – корпус форсунки; 5 – пьезоэлектричесий элемент; 6 – сопряженный поршень; 7 – поршень клапана; 8 – клапан переключения; 9 – игла форсунки; 10 – амортизатор давления

Увеличение длины модуля исполнительного элемента преобразуется модулем соединителя в гидравлическое давление и перемещение, воздействующие на клапан переключения. Модуль плунжера действует как гидравлический цилиндр. На него постоянно воздействует давление подачи топлива 10 кгс/ см2 через редукционный клапан в обратной магистрали.

Топливо выполняет роль амортизатора давления между плунжером соединителя выпускного дросселя 8 и плунжером клапана 5 в модуле плунжера. Из пустого закрытого инжектора (присутствует воздух) воздух удаляется при стартерном пуске двигателя (с частотой вращения вала стартера). Помимо этого, инжектор наполняется топливом, подаваемым погруженным в топливном баке насосом, проходящим через управляемый обратный клапан против направления потока топлива.

Клапан переключения состоит из пластины клапана, плунжера клапана 5, пружины клапана и пластины дросселя 3. Топливо под давлением протекает через впускной дроссель 4 в пластине дросселя к игле форсунки и в камеру над иглой форсунки. Благодаря этому происходит выравнивание давления над и под иглой форсунки. Игла форсунки удерживается в закрытом положении силой пружины форсунки. При нажиме плунжера клапана 5 открывается канал выпускного дросселя и топливо под давлением вытекает через выпускной дроссель 8 большего размера, расположенный над иглой форсунки. Топливо под давлением поднимает иглу форсунки, в результате чего происходит впрыск. Благодаря быстрым командам на переключение пьезо-электрического элемента за один рабочий такт друг за другом производятся несколько впрысков.

Рис. Принцип работы пьезофорсунки: 1 – игла форсунки; 2 – пружина форсунки; 3 – пластина дросселя; 4 — впускной дроссель; 5 – плунжер клапана; 6 – линия высокого давления; 7 – соединительный элемент; 8 – выпускной дроссель; а – форсунка закрыта; б — форсунка открыта

Понравилась статья? Расскажите друзьям:

Оцените статью, для нас это очень важно:

Проголосовавших: 2 чел.
Средний рейтинг: 5 из 5.

Форсунки дизельного топлива — Форсунки Common Rail

| Рекомендации по покупке

Дизельные форсунки становились все более сложными за последние двадцать лет разработки дизельных двигателей, но их базовая конструкция довольно проста. Дизельное топливо из ТНВД поступает в корпус механической форсунки и начинает нагнетать давление. Как только давление становится достаточно высоким (около 4000 фунтов на квадратный дюйм), обратный клапан в форсунке поднимается со своего седла, и топливо распыляется через него. Любое избыточное топливо, которое остается после открытия клапана, затем возвращается обратно через корпус форсунки, а затем обратно в ТНВД.

Ford выбирает другой маршрут
В 1994 году Ford изменил двигатели своей серии F с непрямого впрыска на систему прямого впрыска HEUI. HEUI расшифровывается как гидравлический электронный блок впрыска и использует моторное масло в качестве привода для форсунки. Моторное масло используется для повышения давления топлива внутри форсунки, поэтому, если у вас есть 7,3-литровый или 6,0-литровый двигатель Power Stroke, убедитесь, что ваш двигатель заправлен маслом, и меняйте его почаще — это то, что помогает заправлять ваш грузовик топливом.

Системы Common-Rail
В 2001 году General Motors представила новую линейку дизельных пикапов с системой впрыска Common-Rail Bosch. Хотя система впрыска Common-Rail не является новой идеей, она помогла современным дизелям стать тише, эффективнее и меньше выхлопных газов. В 2002 году компания Dodge перешла на сторону Common-Rail, как и Ford в 2007 году. Форсунки Common-Rail намного сложнее, чем их более ранние аналоги, потому что они используют соленоид и две камеры давления для создания события впрыска. Соленоид запускается компьютером автомобиля, который используется для изменения времени впрыска и запуска нескольких событий впрыска. Многие из новейших дизелей на рынке используют сверхбыстрые форсунки, управляемые пьезоэлектричеством, для краткости называемые пьезофорсунками. Они используют кристаллы и электричество в качестве исполнительного механизма и могут запускать до пяти впрысков за рабочий такт, что помогает снизить выбросы и снизить уровень шума в двигателе.

Модификация форсунок
На самом конце форсунки находится форсунка, которая чаще всего модифицируется при покупке форсунок вторичного рынка. Новые форсунки устанавливаются на старые корпуса форсунок, что обычно приводит к увеличению мощности за счет увеличения или увеличения отверстий форсунки. До тех пор, пока ТНВД и турбонагнетатель могут идти в ногу, более крупные форсунки будут подавать больше топлива в двигатель и производить больше мощности. При заказе индивидуального набора форсунок каждая форсунка обозначается числом отверстий, умноженным на размер отверстия. Следовательно, форсунки 5×13 будут иметь пять отверстий на тринадцать тысяч дюймов. В случае очень больших форсунок также могут присутствовать внутренние модификации, поэтому цена на модели с более высокой мощностью обычно повышается.

Пожалуй, самая важная часть форсунки — это сопло. Угол и форма распыления очень важны для сгорания и влияют на мощность и экономию топлива.

Если картинка стоит тысячи слов…
Тогда видео должно стоить еще больше! Пока мы бродили по сети, мы наткнулись на это классное видео о том, как работает форсунка Common-Rail. Мы не можем брать на себя ответственность за его создание, но тот, кто сделал это видео, проделал отличную работу. Он показывает, как работает форсунка, и даже показывает замедленную анимацию пилотного, основного и дополнительного впрыска внутри отверстия цилиндра. Посмотрите на http://www.youtube.com/watch?v=aGwV9.ueHcz4.

Что такое вибрация форсунки?
Распространено мнение, что дизельные форсунки просто распыляют топливо на поршень, как садовый шланг. На самом деле это не так, и правда куда интереснее. При правильной работе дизельные форсунки будут вибрировать (колебания нажимной пружины), и топливо будет подаваться на поршень со скоростью от 2000 до 3000 раз в секунду, что значительно улучшает распыление. В то время как события впрыска длятся всего доли секунды, это означает, что средний инжектор будет вибрировать по крайней мере несколько сотен раз во время каждого события впрыска. Подумайте об этом в следующий раз, когда будете ехать по дороге. DP

Популярные страницы
  • Мы купили Ford Maverick Hybrid 2023 года, и это настоящий гребаный грузовик, черт побери!
  • 2024 Buick Envista: первый взгляд: новый внедорожник начального уровня, подается горячим и дешевым
  • Все, что мы знаем о следующей Tesla Model 3 Still Visceral
  • Сколько стоит Тесла? Дешевле, чем раньше — вот разбивка цен
Популярные страницы
  • Мы купили Ford Maverick Hybrid 2023 года, и это настоящий гребаный грузовик, черт возьми!
  • 2024 Buick Envista: первый взгляд: новый внедорожник начального уровня, подается горячим и дешевым
  • Все, что мы знаем о следующей Tesla Model 3 Still Visceral
  • Сколько стоит Тесла? Дешевле, чем раньше — вот разбивка цен

Понимание системы впрыска топлива вашего автомобиля

Вы здесь

Главная | Понимание системы впрыска топлива вашего автомобиля

Дэн — опытный автожурналист с более чем 20-летним стажем. Он был редактором таких изданий, как Fast Ford и Redline, а его последним проектом было превращение старого Renault Trafic в семейный дом на колесах.

Способ подачи топлива в камеры сгорания двигателя сильно изменился за последние годы. Раньше он поступал через так называемый карбюратор, относительно простой, но неэффективный и капризный компонент.

В 1990-х годах эта система была быстро заменена системой впрыска топлива, которая соответствовала новым жестким стандартам выбросов, введенным в то время, и при этом повышала производительность двигателя.

В первые дни впрыск топлива был дорогим и ассоциировался с автомобилями премиум-класса, но теперь каждый автомобиль оснащен впрыском топлива.

В целом это надежно, но все же стоит знать, как работает система, где она находится и как определить, когда она работает. Здесь мы отвечаем на эти и другие вопросы…

Что такое система впрыска топлива?

Заманчиво сказать, что это именно то, что следует из названия, за исключением того, что существуют различные типы систем, включая прямые и непрямые.

В конечном счете, они делают то же самое: впрыскивают точно откалиброванную топливную струю в камеру сгорания двигателя или рядом с ней именно тогда, когда это необходимо. В бензиновых и дизельных двигателях используются системы впрыска топлива.

Зачем он нужен двигателю?

Без какой-либо системы подачи топлива, будь то карбюратор или система впрыска, двигатель работать не будет.

Прелесть системы впрыска топлива в том, что она гораздо более управляема, чем старомодный карбюратор. Отчасти поэтому современные двигатели намного эффективнее (чистее, экономичнее и мощнее), чем когда-то.

Как выглядит система впрыска?

Чтобы увидеть его, вам придется разобрать большую часть двигателя, потому что он состоит из нескольких отдельных компонентов:

  • Модуль подачи топлива, содержащий такие элементы, как электрический топливный насос высокого давления и топливный фильтр.
  • Регулятор впускного воздуха, чтобы убедиться, что количество воздуха точно соответствует двигателю.
  • Электронный блок управления и датчики для обеспечения точного впрыска нужного количества топлива в поток всасываемого воздуха.
  • Топливные форсунки, установленные на топливораспределительной рампе для подачи топлива в двигатель.

Как работает система впрыска?

Модуль подачи топлива подает топливо под давлением к форсункам, по одной на цилиндр. Количество топлива, поступающего в форсунку, точно контролируется ЭБУ, который учитывает температуру воздуха, положение дроссельной заслонки, частоту вращения двигателя, крутящий момент двигателя и данные о выхлопе, полученные от датчиков внутри и вокруг двигателя, чтобы регулировать подачу при каждом такте впуска.

Воздух поступает через впускной коллектор и всасывается в двигатель через впускной клапан или клапаны.

Однако способы подачи и смешивания топлива и воздуха различаются в зависимости от используемой системы впрыска топлива.

В большинстве бензиновых двигателей используется так называемая система непрямого впрыска топлива, при которой топливо впрыскивается во впускной коллектор, т. е. расположение трубок, направляющих поступающий воздух к двигателю. Здесь и топливо, и воздух смешиваются перед подачей в камеру сгорания.

В системе непосредственного впрыска топлива, например, в дизельных двигателях и все чаще в бензиновых двигателях, топливо впрыскивается непосредственно в камеру сгорания под чрезвычайно высоким давлением и непосредственно в поток входящего воздуха.

Это гораздо более эффективная технология, чем непрямой впрыск топлива, которая повышает мощность и экономичность, а также снижает выбросы.

Ранние системы впрыска имели механическое управление, но современные системы полностью электронные, в результате чего они более надежны и эффективны.

Почему выходит из строя форсунка?

Форсунка — это прецизионный прибор, который работает в экстремальных условиях и должен подавать топливо под высоким давлением через крошечную форсунку или форсунки во впускной коллектор или непосредственно в камеру сгорания.

Учтите: за 12 000 миль форсунка сработает 18 миллионов раз. Поэтому неудивительно, что он может потерпеть неудачу.

Тем не менее, часто выходит из строя не сама форсунка, а качество поступающего в нее топлива, которое наносит ущерб.

Он может быть загрязнен из-за низкого качества или из-за загрязнения топливного фильтра. Присадки в топливе также могут образовывать отложения на форсунке.

Как диагностировать неисправную форсунку?

  • Изношенная форсунка может стать причиной пропусков зажигания, неравномерной работы на холостом ходу, преждевременного зажигания, когда топливо и воздух сгорают до воспламенения свечи зажигания, или детонации, когда воспламеняется избыточное топливо, оставшееся после сгорания. Это может привести к повреждению двигателя, поэтому не следует игнорировать его.
  • Негерметичная форсунка с заклинивающим внутренним клапаном может затопиться и вызвать проблемы с запуском. Если вы чувствуете запах топлива, это может исходить от форсунки.
  • Поскольку неисправная форсунка вызывает неравномерную температуру сгорания, используйте лазерный термометр для проверки температуры выпускного коллектора. Нормальное показание должно быть около 230°C, но неисправная форсунка, подающая слишком много топлива, может показывать 320°C.
  • Увеличение расхода топлива может быть вызвано тем, что форсунка больше не подает мелкодисперсный распыл, а вместо этого подает большие капли топлива, которые не распыляются должным образом во впускном коллекторе или камере сгорания. Опять подозреваю залипание клапана.
  • Снимите форсунку (будьте осторожны – топливо вытечет, поэтому отсоедините аккумулятор и работайте в хорошо проветриваемом помещении) и осмотрите ее на наличие трещин или утечек. Вы мало что сможете с ними сделать, но, по крайней мере, у вас будет точное объяснение.
  • Проверьте электрическое сопротивление каждой форсунки с помощью мультиметра. Неисправная форсунка будет означать, что остальные форсунки получают слишком большой электрический ток, который зарегистрирует мультиметр.
  • Используйте машинный стетоскоп, чтобы прослушать шум от форсунки. Если вы не слышите обычного тикающего звука, скорее всего, он неисправен.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *