Почему ржавеют автомобильные кузова. Немного теории и страшная сказка на ночь
Проблема борьбы с коррозией стара как мир. И журнал «АБС-авто» уделяет ей самое пристальное внимание. Так, первая антикоррозионная статья увидела свет еще в марте 1997 года – одновременно с рождением журнала.
С той поры редакция опубликовала десятки статей по борьбе с коррозией. И даже выпустила тематическую брошюру совместно с компанией ЮВК, нашим давним партнером и консультантом. Сегодня мы предлагаем вам фрагменты из этого издания, посвященные теории коррозионных процессов. Знания – сила, и чтобы победить врага, надо хорошо изучить его повадки.
Терминология
Что такое коррозия металлов? Это слово происходит от латинского «corrodo – грызу». В литературе встречаются ссылки и на позднелатинское «corrosio – разъедание». Но так, или иначе, коррозия – это процесс разрушения металлов в результате химического и электрохимического взаимодействия с внешней средой.
Мы не зря подчеркнули слово процесс в определении коррозии. Дело в том, что многие водители и механики в бытовых и даже в профессиональных разговорах частенько отождествляют термины «коррозия» и «ржавчина». Однако это не синонимы, разница в следующем.
Слово «коррозия» применимо ко многим металлам (включая цветные), сплавам, а также бетону и некоторым пластмассам. А ржавчина – это результат коррозионного процесса. Этот термин относится только к железу, входящему в состав стали и чугуна. И говоря «ржавеет (или корродирует) сталь», мы подразумеваем, что ржавеет (окисляется) железо, входящее в ее состав.
Столь подробное разъяснение тривиальных, в общем-то, вещей, приводится с единственной целью: подчеркнуть, что бороться надлежит не со ржавчиной, а именно с коррозией. Иными словами, не с результатом, а с процессом, на что и нацелены все современные системы антикоррозионной защиты. И чем раньше начата эта борьба, тем дольше проживет авомобильный кузов.
И еще. В определении коррозии мы подчеркнули слова химического и электрохимического взаимодействия. Это тоже не зря. В некоторых публикациях, включая рекламные, встречается мнение, что коррозия – процесс сугубо химический. Дескать, окисление кислородом воздуха, и все тут. Это далеко не так – едва ли не главную роль в разрушении автомобильного кузова играют электрохимические процессы, и мы подробно поговорим об этом ниже. А пока немного истории.
«От Ромула до наших дней…»
Коррозия отравляет жизнь человечеству уже давно. Еще в первом веке нашей эры римский ученый Плиний-старший писал: «На железо обрушилась месть человеческой крови… Оно ржавеет быстрее, когда соприкасается с нею».
Немало воды утекло с момента высказывания Плиния. А сколько железа превратилось в бурый порошок! Зато процесс коррозии металлов получил теоретическое объяснение – правда, не сразу.
Например, Лавуазье рассматривал коррозию железа как процесс простого окисления – прямо как некоторые наши современники, упомянутые в предыдущем разделе. Однако и великие иногда ошибаются – в 1837 году М. Пайен показал, что при температуре ниже 200 °С в атмосфере сухого кислорода (т.е. среде, не содержащей водяных паров) железо практически не ржавеет! Значит, дело не только в наличии кислорода?
Волей-неволей от взглядов Лавуазье на коррозию пришлось отказаться. Но что предложить взамен, ведь «природа на терпит пустоты»? Какое-то время механизм коррозии увязывали с кислотностью соприкасающейся с железом среды. И лишь электрохимическая теория коррозии металлов смогла объяснить все тонкости этого коварного процесса.
В заключение этого раздела отметим, что в результате коррозии по разным данным теряется от 10 до 25% мировой добычи железа. Значит, железная руда, изначально сконцентрированная в земной коре, в поте лица добытая и искусно переработанная в чугун и сталь, безвозвратно рассеивается, распыляется по всему белому свету. И не борясь с коррозией, мы наказываем не только себя, любимых, но и потомков своих, оставляя их без ценнейшего конструкционного материала – железа. А оно, несмотря на успешные опыты с алюминиевыми сплавами и пластиками, пока что играет ведущую роль в производстве автомобильных кузовов.
Химическая коррозия
Итак, коррозия может быть химической и электрохимической. Их отличие в следующем: первая протекает в среде, не проводящей электрический ток, вторая – в водных растворах электролитов.
В документации некоторых фирм, производящих защитные антикоррозионные материалы, химическую коррозию иногда называют «сухой», а электрохимическую – «мокрой». Однако следует знать, что в присутствии влаги, углекислого газа и кислорода воздуха химическая коррозия также активизируется.
В результате окислительных процессов на поверхности железных изделий образуется ржавчина, состоящая из слоя частично гидратированных оксидов железа. Формула ржавчины – Fe3O4 (или FeO•Fe2O3), а под действием кислорода во влажном воздухе образуется соединение Fe2O3•nh3O. Слой этот хрупок и порист, поэтому не предохраняет железо (сталь) от дальнейшего корродирования.
Электрохимическая коррозия
В отличие от окислительных, процессы электрохимической коррозии протекают по законам электрохимической кинетики. Вспомним тот же курс химии, посмотрев на рисунок внизу.
Элементы, расположенные в указанном на схеме порядке, образуют электрохимический ряд напряжений металлов. Смысл его в следующем: металл, стоящий в этом ряду левее, способен вытеснить из растворов электролитов металл, стоящий правее. Поэтому, глядя на рисунок, можно с уверенностью сказать, что железо будет вытеснять медь из раствора ее солей.
В электрохимический ряд напряжений металлов включен также водород. Казалось бы, зачем? А вот зачем: его положение показывает, какие металлы могут вытеснять водород из растворов кислот, а какие – нет. Так, железо вытесняет водород из растворов кислот, поскольку находится левее его. Медь же на такой подвиг не способна, так как находится правее. Из этого следует вывод: кислотные дожди для железа опасны, а для чистой меди – нет. Чего нельзя сказать о бронзе и других сплавах на основе меди: они содержат алюминий, олово и другие металлы, расположенные левее водорода.
Но вернемся к электрохимической коррозии как таковой. Все, в общем-то, просто: если в каком-либо узле имеется соединение двух металлов с различными потенциалами, то в присутствии электролита они образуют гальваническую пару. И чем дальше разнесены металлы в электрохимическом ряду напряжений, тем больше гальванический ток, активнее переход электронов и, соответственно, сильнее разрушения металла – какого? Правильно, «левого».
Проиллюстрируем это простым примером. Положим, в стальной автомобильной панели появилась медная заклепка. Она будет являться катодом, а стальной лист – анодом. Коррозионное разрушение железа в месте соединения обеспечено.
Итак, контакт данного «левого» металла с менее активным «правым» усиливает коррозию первого. Теперь понятно, почему цинковое покрытие защищает железо от коррозии, а поврежденное медное – усиливает его коррозионное разрушение в местах, медью не покрытых.
Покрытия слоем более активных металлов называют «безопасными», а слоем менее активных – «опасными». Безопасные покрытия давно и успешно применяют в мировом автомобилестроении. Это, в частности, оцинковка кузовных панелей и хромирование некоторых деталей.
Заканчивая этот раздел, еще раз подчеркнем, что автомобильный кузов подвергается действию обоих видов коррозии – химической и электрохимической. Но главная роль все же принадлежит электрохимическим процессам. Дело в том, что при относительной влажности воздуха более 60% на металлической поверхности образуется слой влаги, играющий роль электролита. А для средних широт показатель 60%, как правило, превышается в течение всего года.
Кроме того, в реальных условиях эксплуатции оба вида коррозии усиливаются неоднородностью металла, воздействием напряжений, деформаций, трения, износа и других факторов. А теперь посмотрим, что влияет на коррозию автомобильного кузова.
Химический состав и структура металла
Если бы кузовные панели штамповались из технически чистого железа, их коррозионная стойкойсть была бы выше всяких похвал. Но по многим причинам это невозможно. В частности, применяющееся в электротехнической промышленности железо ARMKO (99,85% Fe), для автомобиля слишком дорого и недостаточно прочно. Хотя оно обладает великолепной пластичностью и ржавеет крайне неохотно – в чем автор убедился лично, работая в свое время с этим материалом.
А вот конструкционные металлы и тем более сплавы пасуют перед коррозией. Например, сталь марки 08КП, широко применяемая в нашей стране для штамповки деталей автомобильных кузовов, при исследовании под микроскопом являет такую картину: мелкие зерна чистого железа, обильно перемешанные с зернами карбида железа (цементита Fe3C) и другими включениями.
Думаем, дальше все понятно: подобная структура порождает множество гальванических пар, в которых примеси играют роль положительных электродов, а зерна железа – отрицательных. При соприкосновении с влажным воздухом в этой системе возникают гальванические токи, вызывающие коррозию железа. Аналогично работают на коррозию примеси и в других металлах.
Так что в рассуждениях опытных мастеров и водителей – дескать, раньше металл был чище, кузова долго не ржавели, содержится изрядная доля истины. Любые отклонения от стандартов и ТУ при изготовлении стального листа сулят будущему автомобилю весьма недолгую жизнь.
Кстати, почему, извините за невольный каламбур, не ржавеют нержавеющие стали? Да потому, что фактически это сплавы, по составу близкие к однородным твердым растворам. Кроме того, в их состав входят изрядные порции хрома и никеля, стоящих в электрохимическом ряду напряжений рядом с железом. И еще: хром и никель на воздухе почти не окисляются, поскольку образуют на своей поверхности прочную оксидную пленку. Поэтому гальванические и окислительные процессы на поверхности нержавеющей стали практически не возникают.
Конструкция кузова и его технологи
Кузов современного легкового автомобиля состоит из большого числа деталей (панелей), собранных в единое целое. Толщина листовой стали, из которой эти детали изготавливаются, как правило, менее 1 мм. Кроме того, в процессе штамповки эта толщина в некоторых местах уменьшается.
Теория обработки металлов давлением гласит, что в любом технологическом процесе – будь то вытяжка, гибка и тому подобные операции, пластическая деформация металла сопровождается возникновением нежелательных остаточных напряжений. Если оборудование и скорости деформирования подобраны правильно, а штамповая оснастка не изношена, эти напряжения незначительны.
В противном случае в кузовную панель закладывается этакая «бомба замедленного действия»: атомы в некоторых кристаллических зернах располагаютя нехарактерно, поэтому механически напряженный металл корродирует интенсивнее, чем ненапряженный. Кстати, нечто подобное поисходит в панелях, востановленных после аварии, а также в старых «уставших» кузовах.
Но вернемся к заводским технологиям. После сборки (сварки) в кузове образуется множество щелей, полостей, нахлестов, кромок, в которых скапливается грязь и влага. И что очень важно – сварные швы образуют с основным металлом все те же гальванические пары. Надо ли указывать, что перечисленные факторы способствуют возникновению и развитию коррозионных процессов?
Влияние окружающей среды при эксплуатации
В результате человеческой деятельности, прежде всего развития промышленности, окружающая среда становится все более агрессивной. В последние годы в атмосфере повысилось содержание оксидов серы, азота, углерода. А значит, автомобиль омывается кислотными дождями, фактически – электролитом, ускоряюющим коррозионные процессы.
Можно и формально утверждать, что в городских условиях кузова живут меньше. Здесь мы можем сослаться на Шведский институт коррозии (о нем будет рассказано далее), опубликовавший следующие данные:
- скорость разрушения стали и цинка в сельской местности в Швеции составляет 8 и 0,8 мкм в год;
- для города эти цифры составляют соответственно 30 и 5 мкм в год.
Немалую роль играет и географическое положение местности, где эксплуатируется автомобиль. Так, морской климат делает коррозию примерно в 2 раза активнее, чем резкоконтинентальный.
Влияние доступа воздуха
В теории коррозии есть так называемый принцип дифференциальной аэрации, гласящий: неравномерный доступ воздуха к различным участкам металлической поверхности приводит к образованию гальванического элемента.
При этом участок, хуже снабжаемый кислородом, будет разъедаться, а участок, интенсивно снабжаемый им, наоборот, останется невредимым. Так, блестящая поверхность витого стального троса вовсе не означает, что он не проржавел внутри: в местах, куда доступ воздуха затруднен, угроза коррозии больше.
Проецируя сказанное на внутренние полости автомобильных кузовов, можно представить, сколько возможностей существует для возникновения коррозии в скрытых, плохо вентилируемых сечениях.
Кроме того, коррозия скрытых полостей начинает свою разрушительную деятельность невидимкой. Когда же она «выходит наружу» в виде перфорированной ржавчины, бороться с ней уже бесполезно. Зачастую ответственные участки кузова становятся ненадежными и дальнейшая эксплуатация такого автомобиля может иметь катастрофические последствия.
Влияние влажности и температуры
Важнейшим фактором, влияющим на скорость коррозии, является время, в течение которого металлическая поверхность остается влажной.
Ясно, что внутренние поверхности коробов, щелей, кромок, отбортовок сохнут гораздо медленнее открытых частей кузова. Немалую роль здесь играет посыпание зимних дорог солью, особенно хлоридом натрия NaCl. Когда снег и лед подтаивают, в результате электролитической диссоциации образуется очень сильный электролит. А поскольку внутренние полости не герметичны, он проникает и в них. Тем самым создаются прекрасные условия для электрохимической коррозии.
Вот еще важный пример: холодное время года. Утром водитель прогревает машину, ночью она остывает – в дверях и порожках образуется конденсат. И так каждый день. А вот, казалось бы, мелочь: в машине мы дышим, выдыхаем углекислый газ, а коррозии это только на руку.
Отметим также, что повышение температуры активизирует коррозию. Так, вблизи выхлопной системы следов коррозии всегда больше.
Ржавеют любые кузова
Как писали сатирики, «статистика знает все». Есть в Стокгольме такая организация – Шведский институт коррозии, далее просто ШИК. Его экспертизы пользуются огромным авторитетом, причем не только в Скандинавии.
Раз в три-четыре года шведские ученые организуют масштабное изучение коррозионного поражения автомобильных кузовов. В этих работах участвуют и автопроизводители, охотно предоставляющие автомобили на испытания. Не остались в стороне и металлургические компании, поставляющие листовой прокат для изготовления кузовов, а также разработчики технологий цинковых и цинко-никелевых покрытий.
Для определения степени коррозионного поражения шведские ученые выбирают сотни кузовов хорошо потрудившихся автомобилей. Вырезают участки вблизи порогов, угловых участков дверей, соединений арок колеса с порогом и тому подобных местах, и оценивают степень их поражения.
Исследованные кузовные панели были защищены от коррозии оцинковкой и (или) антикоррозионными препаратами. Итак, оцинковка и антикор.
Поделим оцинковку на три группы: «толстый» слой – от 7 до 10 мкм; «тонкий» слой – от 2 до 5 мкм; и «нулевой» слой (панель не оцинкована).
Под словом «антикор» будем понимать современные профессиональные антикоррозионные материалы. Получается шесть видов обработки панели:
- «толстая» оцинковка плюс антикор;
- «толстая» оцинковка без антикора;
- «тонкая» оцинковка плюс антикор;
- «тонкая» оцинковка без антикора;
- «нулевая» оцинковка плюс антикор;
- «нулевая» оцинковка без антикора, что означает просто окрашенную панель без дополнительной защиты.
ШИК утверждает, что пять вариантов из шести – плохи. Лишь владелец автомобиля с «толстой» оцинковкой и (внимание!) дополнительной антикоррозионной обработкой может ездить спокойно – 5%-ная поверхностная коррозия грозит ему лишь через семь лет эксплуатации. Выводы очевидны: оцинковка – не панацея; основа долголетия кузова – регулярная дополнительная антикоррозионная защита.
Работы ШИКа дают колоссальный статистический материал по коррозионной стойкости автомобильных кузовов. Именно он ложится в основу совершенствования технологий защиты от коррозии – как заводских, так и послепродажных.
К сожалению, у нас в России столь масштабные исследования не проводятся. А тем временем многие популярные иномарки (новые, «с иголочки»!) прибывают к российским дилерам с голым днищем. Катафорезный грунт, штатная окраска да скромные полоски пластизоля на сварных швах – вот и вся защита. Надолго ли ее хватит на наших дорогах?
Столь же безрадостно выглядят скрытые сечения кузова, если заглянуть в них с помощью соединенного с компьютером технического эндоскопа. Редко, очень редко в автомобильных внутренностях можно встретить антикоррозионный барьер из воскообразного ML-препарата. Чаще монитор показывает точки и даже очаги ржавчины – и в порогах, и в дверях, и в полостях капота и багажника. Вот тебе, бабушка, и новая иномарка…
Но автомобильные мифы живучи, иномарки заманчиво блестящи, а сознание потребителя инертно. Значит, будем развенчивать мифы: рассказывать, доказывать, убеждать.
Опасен ли ржавый кузов?
Регламентирует ли государство эксплуатацию ржавых автомобилей? Много лет назад появился ГОСТ Р 51709–2001 «Автотранспортные средства. Требования безопасности к техническому состоянию и методы проверки». Иными словами – руководство для проведения Государственного технического осмотра. Все было в этом ГОСТе – только вот о коррозии кузова ничего не говорилось.
В марте 2006 года родилась новая редакция документа. Среди многочисленных поправок и дополнений появились и такие:
«4.7.25. Нe допускаются:
- ненадежное крепление амортизаторов вследствие сквозной коррозии мест или деталей крепления;
- чрезмерная общая коррозия рамы и связанных с ней деталей крепления или элементов усиления прочности основания кузова автобуса, грозящая разрушением всей конструкции;
- сквозная коррозия или разрушение пола пассажирского помещения автобуса, способные служить причиной травмы;
- коррозия либо трещины и разрушения стоек кузова, нарушающие их прочность;
- вмятины и разрушения кузова, нарушающие внешние очертания и узнаваемость модели АТС.
4.7.26. Грозящие разрушением грубые повреждения и трещины или разрушения лонжеронов и поперечин рамы, щек кронштейнов подвески, стоек либо каркасов бортов и приспособлений для крепления грузов не допускаются».
Мы еще в 2006 году отметили: в документе нет количественных оценок коррозионного поражения! И методик нет, и приборы не прописаны. Вот для двигателя есть свои нормативы и оборудование. И для тормозов, и для фар… А для коррозии – нет. Сплошь визуальные, а значит, субъективные оценки.
Старый ГОСТ…
Вдумаемся. Что такое «ненадежное крепление амортизаторов вследствие сквозной коррозии мест или деталей крепления»? Поговорку помните: «Поздно пить ”боржоми“»?
А чего стоит сентенция «вмятины и разрушения кузова, нарушающие внешние очертания и узнаваемость модели АТС»? Это как? Несется по шоссе смятый и разрушенный кузов. Внешние очертания настолько нарушены, что его и опознать-то невозможно. Это значит нельзя. А если не совсем разрушенный, очертания сохранивший, это значит – можно…
Господа разработчики! Тревогу надо бить задолго до потери внешних очертаний. И до появления сквозной коррозии. Необходимо периодически защищать автомобиль специализированными антикоррозионными препаратами, о чем наш журнал пишет регулярно. Но вы же не читатели, а писатели. Вам не до журналов.
По уму надо было делать так. Прописать в ГОСТе обязательный контроль скрытых полостей кузова и прежде всего лонжеронов, порогов, стоек и других силовых элементов. В несущем кузове они играют роль каркаса, скелета. Именно от него зависит, способен кузов что-либо «нести» или пора выносить его самого. В последний путь под шредеры и прессы.
Проконтролировать скрытые полости просто: надо лишь обзавестись уже упомянутым эндоскопом. Подключенный к компьютеру, он дает возможность наблюдать на экране любую внутреннюю поверхность. И оценить степень коррозионного поражения. И тогда можно решать – опасен данный кузов или нет. Неужели разработчики ГОСТов о них ничего не знают? Похоже, что нет. То ли дело «узнаваемость модели», «сквозная коррозия» и прочие страшные сказки на ночь…
…и новый Регламент
Впрочем, ГОСТы – это пройденный этап. Теперь во всех отраслях живут по новым нормативным документам: Техническим регламентам Таможенного союза «О безопасности колесных транспортных средств». Когда он готовился, затеплилась надежда: теперь методика инструментального контроля состояния кузова уж точно появится. Но когда Регламент вышел, оказалось, что о коррозии кузова в нем не сказано ничего.
Правда, Правительство РФ распоряжением от 12 октября 2010 года № 1750-р утвердило перечень документов для исполнения Технического регламента. И оказалось тех документов целых 139. И под номером 35 там значится… внимание! – все тот же ГОСТ Р 51709–2001. С теми же страшилками о потере узнаваемости и сквозной коррозии. И опять ни слова об инструментальных методах контроля коррозионных поражений. Не проваливается пол в автобусе, и ладно… Авось, доедет.
Смотрите: Технический регламент разрабатывали не один год. Как тут не вспомнить блестящий скетч Аркадия Райкина. «А работал он в тресте ”Заготбревно“. Они там за год бревно выпускали. За год – бревно!»
Знаете, для треста бревно за год – это нормально. Тут за несколько лет громадный коллектив два десятка строк для Технического регламента не осилил. Вот это я понимаю – темпы! Значит, так у нас и будет: кузов отдельно, коррозия отдельно, нормативные документы отдельно, а безопасность… да кого она волнует, безопасность?
Иллюстрации предоставлены компанией ЮВК
abs-magazine.ru
Борьба с коррозией автомобиля своими руками
Борьба с коррозией авто зачастую доставляет массу проблем его владельцу. Для этого используют три основных метода — пассивный, активный и электрохимический, но каждый из них имеет свои преимущества и недостатки. Чаще всего коррозию удаляют с помощью специальных средств. А в целях профилактики на днище, пороги корпуса и другие скрытые места наклеивают защитную пленку или обрабатывают мастикой. Также существуют другие профилактические средства, о которых мы поговорим с вами далее.
Содержание
Причины возникновения коррозии
Для начала разберемся, почему же возникают коррозионные процессы. Дело в том, что коррозия металлических поверхностей бывает четырех типов — электрохимическая, химическая, водородная и кислородная. В контексте ржавления автомобильного корпуса имеют место лишь первые два типа.
Электрохимическая коррозия возникает по причине того, что два материала с разными восстановительными свойствами взаимодействуют через электролит (любая недистиллированная вода является таковым). Поскольку железо обладает низкими восстановительными свойствами, то оно значительно подвержено ржавлению. Химическая коррозия происходит из-за взаимодействия поверхности металла и коррозионно-активной среды. В роли последней может выступать кислород при высоких температурах. Понимание сути возникающих процессов дает нам почву для поиска методов борьбы с коррозией.
Виды борьбы с коррозией
Существует два основных способа защиты кузова машины от коррозии. Первый — это барьерная защита. Она не допускает физическое взаимодействие поверхности уязвимых металлов с внешней средой. Это выражается в использовании лакокрасочного покрытия и различных механических средств и защит. Второй — протекторная защита. Ее примером служит оцинковка, ведь цинк имеет более отрицательный потенциал, чем железо. Соответственно, если соединить их, то в такой паре железо будет восстанавливаться, а цинк корродировать. Однако поскольку на поверхности цинка имеется оксидная пленка, то этот процесс происходит очень медленно.
Как упоминалось ранее, существует три основных типа борьбы с коррозией на автомобиле:
Щетки для удаления коррозии
- Пассивный.
- Активный.
- Электрохимический.
Пассивный метод борьбы предполагает использование лакокрасочного покрытия корпуса. Задача автовладельца в данном случае заключается в поддержании целостности ЛКП. Нельзя допускать появления мелких сколов или царапин на его поверхности. К этому методу стоит отнести и периодическую мойку машины, а также использование дополнительных защитных средств — воска, жидкого стекла и так далее.
Под активным методом борьбы с коррозией авто подразумевают использование специальных антикоррозионных материалов и мастик. Они отличаются в зависимости от того, для каких участков кузова применяются. Например, днище автомобиля зачастую обрабатывается антигравийным покрытием. Как правило, эти составы созданы на основе мелкодисперсного порошка алюминия. Существуют также специальные антикоррозионные средства для арок колес.Чаще всего для этого используется так называемый жидкий локер (прочный эластичный материал). Отдельным классом являются антикоррозионные материалы для скрытых полостей. Они предназначены для обработки порогов, стоек, лонжеронов, усилителей пола и прочих поверхностей.
Электрохимический метод борьбы с коррозией металла на кузове автомобиля заключается в использовании специального электронного прибора, который имеет в своем составе электрод, предназначенный для того, чтобы взять коррозию на себя. Проще говоря, ржаветь будет не корпус машины, а упомянутый электрод. Этот метод очень эффективен, однако его существенным недостатком является высокая цена.
Как убрать коррозию с авто
Теперь перейдем непосредственно к методам и средствам по борьбе с коррозией на автомобиле своими руками. В первую очередь необходимо механически удалить ржавчину с поверхности. Причем делать это очень тщательно! Для этих целей используют наждачную бумагу, различные абразивные круги на дрель или болгарку, а также пескоструй. Именно последний инструмент наиболее эффективно очищает пораженную поверхность.
При работе с пескоструем пользуйтесь средствами индивидуальной защиты — респиратором, очками, головным убором, перчатками. А работы лучше производить либо в отдельном помещении с принудительной вентиляцией, либо на улице в удалении от поверхностей с ЛКП и стекол.
Работа пескоструя
Также для удаления коррозии используют специальные составы. Самым простым в данном случае является использование слабого раствора соляной кислоты с последующим ее удалением.
Однако наиболее надежный метод борьбы с коррозией заключается в использовании преобразователей или модификаторов ржавчины. Они преобразуют оксид железа в таннат железа. Как правило, в их состав входят полимеры, выступающие в роли грунтовки.
Преобразователи ржавчины для автомобиля превращают коррозию в слой фосфатов и хроматов железа и цинка. Также их иногда используют для обработки не подвергшегося коррозии металла перед нанесением грунта для предотвращения коррозии в будущем, и улучшения степени сцепления ЛКП с поверхностью металла.
Лучшим профилактическим средством для борьбы с коррозией автомобиля является его антикоррозионная обработка на СТО. Ее нужно периодически обновлять через каждые 2-3 года.
Самостоятельная борьба с коррозией автомобиля имеет такую последовательность:
- Обезжиривание поверхности. Для этого можно воспользоваться различными средствами, например, спиртом или уайт-спиритом.
Удаление ржавчины с корпуса
- Удаление ржавчины с пораженных участков на кузове машины. Если ее пока немного, то для этих целей достаточно воспользоваться наждачной бумагой. В противном случае используйте щетку с металлическими зубьями или дрель с цилиндрической насадкой с наждачной поверхностью. Если механически удалить ржавчину тяжело, то воспользуйтесь специальными удалителями или раствором ортофосфорной или соляной кислоты. Они размягчают ржавчину и ее легче будет оттереть. Остатки преобразователя ржавчины необходимо устранить, иначе возникнет риск нового ее появления. Удалить их можно или водой или слабым раствором пищевой соды (одна столовая ложка на литр воды). Он нейтрализует кислоту.
Одним из доступных и эффективных средств для размягчения и удаления ржавчины является Coca-Cola, поскольку в ее состав входит ортофосфорная кислота.
- На финальном этапе избавления от коррозии необходимо выполнить грунтовку поверхности. Причем лучше наносить сначала эпоксидный грунт, а сверху на него — акриловый грунт.
Помните, что все работы необходимо проводить тщательно, так как даже небольшое пятно ржавчины способно со временем значительно разрастись.
Виден ржавый шов
Всегда проверяйте состояние сварных швов на корпусе машины. Помните, что они являются самыми уязвимыми для воздействия коррозии. В частности, ее межкристаллитного вида, который особо опасен. Следствием ее появления становится незаметная потеря пластичности и прочности металла. Так, границы сварных зерен разрушаются хаотически, а области структурных преобразований превращаются в анод, который усиленно растворяется. Причем такое явление можно наблюдать не только на железных корпусах машин, но и на нержавейках, алюминиевых, хромоникелевых и хромистых сплавах. Коррозия в данном случае грозит выкрашиванием отдельных зерен металла, из-за чего шов и корпус в целом постепенно теряют свои механические свойства.
Самыми подверженными ржавлению участками корпуса автомобиля являются нижние части дверных панелей, пороги, передние крылья, коробчатые сечения нижней части кузова, внутренняя поверхность колесных арок. Из-за того, что доступ к перечисленным местам затруднен, всегда существует риск не заметить появление очагов ржавления. Проверяйте их состояние на смотровой яме или на подъемнике!
Популярные средства для удаления ржавчины
В настоящее время в автомагазинах есть десятки различных преобразователей ржавчины, причем их ассортимент может быть разным в различных регионах страны. Поэтому давать рекомендации по поводу покупки того или иного средства не имеет смысла. Но мы все же приведем в качестве примера несколько названий популярных составов, которые распространены среди автовладельцев. Итак:
Популярное средство «Цинкарь»
- «Цинкарь»;
- «Мовиль»;
- линейка преобразователей ржавчины Hi-Gear;
- «Кольчуга»;
- Sonax;
- «СФ-1»;
- Runway;
- Permatex;
- Bitumast;
- «Фосфомет».
Необходимо помнить, что с помощью любого преобразователя можно бороться со ржавчиной, слой которой не превышает 0,1 мм. Кроме этого, активные компоненты борются лишь с въевшейся ржавчиной. Ее рыхлую составляющую лучше удалить механически (с помощью наждачной бумаги, ножа, металлической щетки, пескоструя и так далее).
При работе с преобразователями соблюдайте правила техники безопасности. Желательно работать в резиновых перчатках и не допускать попадания жидкости на открытые участки кожи.
Выбор того или иного средства должен основываться на ассортименте, его составе, цене. Благо, стоят они недорого, поэтому в случае, если купленное средство окажется малоэффективным, вы всегда сможете приобрести другое.
Оцинковка кузова
Использование «Цинкор-Авто»
Оцинковка в домашних условиях
Отличным вариантом пассивной защиты кузова от вредного воздействия коррозии является его оцинковка в домашних условиях. Для этого вы можете купить средство «Цинкор-Авто» или аналогичное ему. В настоящее время многие производители выпускают такие продукты.
Остерегайтесь подделок! В связи с успешным использованием этого средства многие недобросовестные производители стали выпускать фальсификат. Покупайте продукт только в сертифицированных и проверенных магазинах.
«Цинкор-Авто» — это средство покрытия слоем цинка небольших по площади повреждений ЛКП, приведших к появлению ржавчины на корпусе. Принцип действия основан на гальваническом эффекте, благодаря которому частицы цинка покрывают пораженную область металлического корпуса. В состав комплекта входят рабочие электроды, соединительные провода, а также две бутылки с различными составами — преобразователем ржавчины и непосредственно раствором цинка. Алгоритм использования прибора следующий:
Средство для оцинковки «Цинкор-Авто»
- С помощью канцелярского ножа или других подручных средств необходимо тщательно удалить ржавчину с поверхности. Причем не только в местах, где ее видно, но и под краской, так как в дальнейшем она может распространиться дальше по площади.
- Поставить машину на ручной тормоз и запустить двигатель. Далее соединительный провод, входящий в комплект прибора, надо подсоединить к плюсовой клемме аккумулятора. Допускается проведение операции и на незапущенном двигателе, но все же лучше делать это с заведенным мотором, поскольку в этом режиме значение тока будет выше.
- Второй конец провода нужно подключить к красному электроду. Проверьте, чтобы корпус машины был заземлен. От этого напрямую зависит наличие гальванического эффекта.
- На конце электрода есть впитывающая влагу губка, которую нужно окунуть в бутылочку №1 (раствор для удаления ржавчины), а затем тщательно растереть состав по пораженной ржавчиной поверхности. Проводить процедуру до тех пор, пока ржавчина не будет удалена полностью.
- После удаления ржавчины с помощью воды смыть остатки раствора с поверхности.
- Далее нужно отсоединить красный электрод и подсоединить серый.
- Взять бутылочку №2 (раствор цинка), окунуть в нее губку второго электрода и повторить процедуру нанесения раствора.
- Проводить этот процесс до тех пор, пока вы не увидите достаточный слой цинка на поверхности металла.
Как показывает практика, нанесенный слой держится на поверхности корпуса годами, не давая появиться и распространиться ржавчине. Поэтому использование средства «Цинкор-Авто» и ему подобных является эффективным методом устранения появившейся ржавчины на сколах и других повреждениях ЛКП.
Резюме
Главное, что должен помнить каждый автовладелец, когда речь идет о ржавлении кузова машины, так это, что риск появления коррозии существует всегда. Соответственно, необходимо периодически проверять состояние поверхности корпуса, а также выполнять профилактические мероприятия по предотвращению появления коррозии. Лучшим решением в данном ключе будет проведение антикоррозионной обработки кузова на СТО.
В случае, если вы обнаружили очаг коррозии и хотите от него избавиться, то воспользуйтесь для этого специальными преобразователями, которые можно купить в любом автомагазине в отделе автокосметики. Главное, в случае обнаружения не затягивайте выполнение процедуры, а сделайте ее как можно быстрее. Делать ее нужно тщательно, чтобы не оставить на месте поражения ни малейшего участка со ржавчиной.
Спрашивайте в комментариях. Ответим обязательно!
etlib.ru
Коррозия металла: почему ржавеет кузов и как с этим бороться
Думаете, что ржавчина — это проблема владельцев 15-летних "Жигулей"? Увы, рыжими пятнами покрываются и гарантийные авто, даже если кузов оцинкован. Разбираемся, как правильно ухаживать за металлом и можно ли защитить его от коррозии раз и навсегда.
Что такое кузов? Конструкция из тонкого листового металла, причем разных сплавов и со множеством сварных соединений. И еще не нужно забывать о том, что кузов используется как «минус» для бортовой сети, то есть постоянно проводит ток. Да он просто обязан ржаветь! Попробуем разобраться, что же происходит с кузовом машины и как с этим бороться.
Что такое ржавчина?
Коррозия железа или стали — процесс окисления металла кислородом в присутствии воды. На выходе получается гидратированный оксид железа — рыхлый порошок, который мы все называем ржавчиной.
Разрушения автомобильного кузова относят к классическим примерам электрохимической коррозии. Но вода и воздух — это лишь часть проблемы. Помимо обычных химических процессов важную роль в нем играют гальванические пары, возникающие между электрохимически неоднородными парами поверхностей.
Уже вижу, как на лицах читателей-гуманитариев возникает скучающее выражение. Не пугайтесь термина «гальваническая пара» — мы не на лекции по химии и сложных формул приводить не будем. Эта самая пара в частном случае — всего лишь соединение двух металлов.
Металлы, они почти как люди. Не любят, когда к ним прижимается кто-то чужой. Представьте себя в автобусе. К вам прижался помятый мужчина, вчера отмечавший с друзьями какой-нибудь День монтажника-высотника. Вот это в химии называется недопустимой гальванической парой. Алюминий и медь, никель и серебро, магний и сталь… Это «заклятые враги», которые в тесном электрическом соединении очень быстро «сожрут» друг друга.
Вообще-то, ни один металл долго не выдерживает близкого контакта с чужаком. Сами подумайте: даже если к вам прижалась фигуристая блондинка (или стройная шатенка, по вкусу), то первое время будет приятно… Но не будешь же так стоять всю жизнь. Особенно под дождем. Причем тут дождь? Сейчас все станет понятно.
В автомобиле очень много мест, где образуются гальванические пары. Не недопустимые, а «обычные». Точки сварки, кузовные панели из разного металла, различные крепежные элементы и агрегаты, даже разные точки одной пластины с разной механической обработкой поверхности. Между ними всеми постоянно есть разность потенциалов, а значит, в присутствии электролита будет и коррозия.
Стоп, а что такое электролит? Пытливый автомобилист вспомнит, что это некая едкая жидкость, которую заливают в аккумуляторы. И будет прав лишь отчасти. Электролит — это вообще любая субстанция, проводящая ток. В аккумулятор заливают слабый раствор кислоты, но не обязательно поливать машину кислотой, чтобы ускорить коррозию. С функциями электролита прекрасно справляется обычная вода. В чистом (дистиллированном) виде она электролитом не является, но в природе чистой воды не встречается…
Таким образом, в каждой образовавшейся гальванической паре под воздействием воды начинается разрушение металла на стороне анода — положительно заряженной стороны. Как победить этот процесс? Запретить металлам корродировать друг от друга мы не можем, но зато можем исключить из этой системы электролит. Без него «допустимые» гальванические пары могут существовать долго. Дольше, чем служит автомобиль.
Как с ржавчиной борются производители?
Самый простой способ защиты — покрыть поверхность металла пленкой, через которую электролит не проникнет. А если еще и металл будет хорошим, с низким содержанием примесей, способствующим коррозии (например серы), то результат получится вполне достойным.
Но не воспринимайте слова буквально. Пленка — это необязательно полиэтилен. Самый распространенный вид защитной пленки — краска и грунт. Также ее можно создать из фосфатов металла, обработав поверхность фосфатирующим раствором. Входящие в его состав фосфоросодержащие кислоты окислят верхний слой металла, создав очень прочную и тонкую пленку.
Прикрыв фосфатную пленку слоями грунта и краски можно защитить кузов машины на долгие годы, именно по такому «рецепту» готовили кузова на протяжении десятков лет, и, как видите, довольно успешно — многие машины производства пятидесятых-шестидесятых годов смогли сохраниться до наших времен.
Но далеко не все, ведь со временем краска склонна к растрескиванию. Сначала не выдерживают внешние слои, потом трещины добираются до металла и фосфатной пленки. А при авариях и последующем ремонте покрытия часто наносят, не соблюдая абсолютной чистоты поверхности, оставляя на ней маленькие точки коррозии, которые всегда содержат в себе немного влаги. И под пленкой краски начинает появляться новый очаг разрушения.
Можно улучшать качество покрытия, применять все более эластичные краски, слой которых может быть чуть надежнее. Можно покрыть пластиковой пленкой. Но есть лучшая технология. Покрытие стали тонким слоем металла, имеющего более стойкую оксидную пленку, использовалось давно. Так называемая белая жесть — листовая сталь, покрытая тонким слоем олова, знакома всем, кто хоть раз в жизни видел консервную банку.
Олово для покрытия кузовов машин уже давно не применяют, хотя байки про луженые кузова ходят. Это отголосок технологии выправления брака при штамповке горячими припоями, когда часть поверхности вручную покрывали толстым слоем олова, и иногда самые сложные и важные части кузова машины и правда оказывались неплохо защищены.
Современные покрытия для предотвращения коррозии наносятся в заводских условиях до штамповки кузовных панелей, и в качестве «спасателей» используется цинк или алюминий. Оба этих металла, помимо наличия прочной оксидной пленки, обладают еще одним ценным качеством — меньшей электроотрицательностью. В уже упомянутой гальванической паре, которая образуется после разрушения внешней пленки краски, они, а не сталь будут играть роль анода, и, пока на панели остается немного алюминия или цинка, разрушаться будут именно они. Этим их свойством можно воспользоваться иначе, просто добавив немного порошка таких металлов в грунт, которым покрывают металл, что даст кузовной панели дополнительный шанс на долгую жизнь.
В некоторых отраслях промышленности, когда стоит задача защитить металл, применяют и другие технологии. Серьезные металлоконструкции могут быть оборудованы и специальными пластинами-протекторами из алюминия и цинка, которые можно менять со временем, и даже системами электрохимической защиты. С помощью источника напряжения такая система переносит анод на какие-то части конструкции, не являющиеся несущими. На автомобилях подобные вещи не встречаются.
Многослойный бутерброд, состоящий из слоя фосфатов на поверхности стали или цинка, слоя цинка или алюминия, антикоррозийного грунта с цинком и нескольких слоев краски и лака, даже в очень агрессивной внешней среде вроде обычного городского воздуха с влагой, грязью и солью позволяет сохранить кузовные панели на десяток-другой лет.
В местах, где слой краски легко повреждается (например на днище) используют толстые слои герметиков и мастики, которые дополнительно защищают поверхность краски. Мы привыкли называть это «антикором». Дополнительно во внутренние полости закачивают составы на основе парафина и масел, их задача вытеснять влагу с поверхностей, тем самым еще улучшая защиту.
Ни один из способов по одиночке не дает стопроцентной защиты, но все вместе они позволяют производителям давать восьми-десятилетнюю гарантию на отсутствие сквозной коррозии кузова. Однако нужно помнить, что коррозия подобна смерти. Ее приход можно замедлить или отложить, но нельзя исключить совсем. В общем, что мы говорим ржавчине? Правильно: «Не сегодня». Или, перефразируя современного классика, «не в этом году».
Как продлить жизнь кузову?
Итак, как бы вы ни любили свой автомобиль, рано или поздно он превратится в кучку гидратированного оксида железа. Но это не повод расстраиваться — жизнь кузовному металлу можно и нужно продлить. Для этого следуйте несложным советам от Kolesa.Ru.
- Гарантия на отсутствие сквозной коррозии действует только при правильном восстановительном ремонте у дилера, не забывайте об этом. На ТО необходимо восстанавливать лакокрасочное покрытие (ЛКП) по правильной технологии.
- Не пренебрегайте дополнительной антикоррозийной защитой — масляные и парафиновые пленки высыхают и испаряются, их нужно обновлять.
- Держите кузов машины чистым. Грязь вбирает влагу, которая таким образом сохраняется на поверхности и долго выполняет свою разрушительную функцию, потихоньку проникая через микротрещины к железу.
- Своевременно восстанавливайте повреждения ЛКП, даже если кузов оцинкованный. Ведь то, что «голый» металл не ржавеет, является следствием постоянного «расхода» металлов-защитников, а их на поверхности отнюдь не килограммы.
- Пользуйтесь услугами квалифицированных кузовных сервисов, ведь правильное восстановление поверхности требует очень аккуратной и чистой работы, с полным пониманием происходящих процессов. А предложения просто закрасить всё слоем краски потолще обязательно приведут вас в кузовной цех еще раз, причем с куда более серьезными повреждениями металла.
Читайте также:
www.kolesa.ru
Причины коррозии автомобиля
Коррозия — это физико-химический процесс, в котором на металл действует вода и кислород. Результатом коррозии является переход металла в химически стабильные оксиды и соли. Ржавчина является продуктом, который получается в результате коррозии. Практически все металлические элементы автомобиля имеют тенденцию к появлению коррозии. Быстрее всего она появляется в местах повреждения лакокрасочного покрытия (сколы от камней, глубокие царапины до металла и др.). У грязного автомобиля повышается риск возникновения коррозии. Грязь с влагой образуют электролит. Как известно, при наличии электролитов коррозия протекает быстрее. Особенно это справедливо для осенне-зимнего сезона использования транспортного средства.
Коррозия может появляться на отдельных местах кузова в виде пятен (местная коррозия). Примером может являться контактная коррозия, которая возникает в местах соединения деталей (точечная сварка, болты и клёпки). Высокому риску возникновения коррозии подвергаются щели и зазоры кузова машины, в которых скапливается и остаётся влага.
Влажность воздуха, а также его загрязнение выхлопными и промышленными газами, химическими продуктами и пылью, оказывают влияние на скорость атмосферной коррозии. Таким образом, коррозия в промышленных районах, с высоким уровнем загрязнения воздуха может развиваться быстрее.
Кроме ухудшения декоративных свойств лакокрасочного покрытия, коррозия ослабляет металл. Он теряет свою прочность, а при коррозии силовых элементов ухудшаться безопасность кузова.
Лакокрасочное покрытие
Основным защитным барьером металла от влаги и кислорода является лакокрасочное покрытие. Оно имеет необходимые антикоррозионные свойства, такие как водоотталкивание, низкую газо- и паропроницаемость. Значение имеют адгезия, толщина и целостность покрытия. При нанесении и отвердевании краски могут возникать дефекты. В дальнейшем они ухудшат защитные свойства покрытия, повысится проницаемость. Сама структура плёнки ЛКП может иметь поры. Это обусловлено строением, химическим составом молекул и плотностью их расположения. Вообще, любое лакокрасочное покрытие имеет поры. Их размер чрезвычайно мал. Также, причиной пористости ЛКП может стать испаряющийся растворитель при отверждении, а также разрушение структуры плёнки краски в результате старения. Важным параметром является толщина ЛКП. Покрытие должно иметь определённую толщину. Если этот параметр будет уменьшен, то покрытие будет иметь поры, и увеличивается вероятность возникновения коррозии. При нанесении лакокрасочного покрытия, чтобы соблюсти нужную толщину, правильнее наносить несколько тонких слоёв, вместо одного толстого. Нужно также помнить, что увеличение толщины плёнки выше оптимальных параметров, приведёт к ухудшению адгезионных и защитных свойств. Как только нарушится адгезия (прилипание), сразу возникает опасность возникновения коррозии.
Почему ржавеет окрашенная поверхность?
Как было сказано выше, лакокрасочные покрытия нельзя назвать абсолютно непроницаемыми. Они имеют низкую проницаемость влаги и кислорода, но всё же имеют. Слишком долгое нахождение во влажной среде неминуемо запустит процесс коррозии.
Важным фактором возникновения коррозии является воздействие агрессивной окружающей среды. Перепады температур, повышенная влажность и загрязнённый воздух, солнечная радиация, всё это действует на краску и состаривает её. Кроме того, во время движения на скорости на кузов с дороги летят мелкие и крупные твёрдые частицы, которые постепенно повреждают краску.
На появление и развитие коррозии оказывает влияние то, где хранится транспортное средство. Автомобиль должен храниться в сухом проветриваемом помещении. Но, к примеру, если выбирать между хранением на открытом воздухе и непроветриваемым сырым гаражом, то лучше выбрать первый вариант.
Песчано-солевая смесь на дорогах
В районах, где низкие температуры зимой посыпают скользкие дороги составами, содержащими соль. Это смесь технической соли и песка, которая предназначена для предотвращения гололёда и действия на уже заледенелые дороги. Песок помогает не разлетаться и не расползаться соли, а также уменьшает скольжение на дороге.
В результате действия этой смеси получается «каша» из соли и талого снега. Всё это агрессивно действует на защитное покрытие кузова, а особенно на места, имеющие микроповреждения этого покрытия. В районах, где дороги посыпают песчано-солевой смесью, отдельные части автомобиля, без своевременного ухода и обработки, ржавеют достаточно быстро.
Преобразователи ржавчины
Преобразователи ржавчины необходимы для борьбы с коррозией. Они содержат в своём составе ортофосфорную кислоту и другие добавки, которые действуют на ржавчину, приостанавливают её распространение и образуют из неё защитный слой. По сути ржавчина становится инертным соединением, никак не действующим на металл. Перед нанесением преобразователя очень важно убрать рыхлую ржавчину. Должно остаться только минимальное количество ржавчины, которую невозможно убрать инструментами.
Существуют, также, грунты-преобразователи. Они преобразуют ржавчину и подготавливают поверхность к нанесению следующего слоя необходимого покрытия.
Как предотвратить коррозию?
Лучше предотвращать появление коррозии, так как бороться с ней достаточно сложно. В большинстве случаев приходится вырезать проржавевшие места и вваривать ремонтные вставки, либо менять всю панель целиком. О способах устранения ржавчины можете прочитать статью “как убрать ржавчину с автомобиля”.
Регулярный уход за лакокрасочным покрытием автомобиля и своевременное восстановление антигравийных и антикоррозионных покрытий поможет продлить срок службы кузова и предотвратить возникновение коррозии.
Итак, можно дать следующие рекомендации и советы:
- Мойте машину каждые две недели или 1 раз в неделю, особенно в сезон гололёда, когда слякоть и соль на дорогах.
- Не забывайте мыть места под машиной и колёсные арки хотя бы 1 раз в неделю.
- Старайтесь быстро устранять повреждения краски. Если появились признаки коррозии, то сразу устраняйте их. Если скол успеть покрыть ремонтной краской до появления коррозии, то это предотвратит её появление. Если в сколе ржавчина начала появляться, то нужно счистить её наждачной бумагой (можно использовать размер абразива P220 или мельче), обезжирить и покрыть (замазать кисточкой) ремонтной краской цвета кузова.
- Наносите восковый защитный слой. Правильное нанесение воска повысит коррозионную стойкость кузова, а также даст защиту от повреждений. Воски или специальные синтетические защитные герметики заполнят поры и трещинки лакокрасочного покрытия, образуя плёнку.
- Днище и арки нужно по мере необходимости покрывать антикором.
- Большинство моющих средств смывают защитный воск с кузова. Нужно не забывать периодически восстанавливать защитное покрытие кузова.
- Если автомобиль перед мойкой весь в соли, добавьте в воду соду, чтобы нейтрализовать соль.
Примечание: Нужно помнить, что любые защитные покрытия нужно наносить на тщательно очищенную, обезжиренную и высушенную поверхность. Защитные покрытия, нанесённые не по правилам, могут навредить лакокрасочному покрытию и только ускорить возникновение коррозии.
[adsp-pro‑4]
Печатать статью
Ещё интересные статьи:
kuzov.info
Коррозия кузова автомобиля. Защита и профилактика.
Коррозия кузова автомобиля — это, как минимум один раз в пару лет собственник эксплуатируемого им авто понимает, что его любимцу необходима защита кузова от коррозии. Он с сожалением отмечает небольшие пятна ржавчины, размножение грибка на лакокрасочном покрытии или порыжение сварных мест, на краях дверей, на порогах и арках.
Независимо от того, стоит ли автотранспорт в гараже на консервации, или постоянно в пути, появление коррозии неизбежно.
Прежде чем рассматривать варианты разрешения проблемы, лучше всего ознакомиться с причинами ее возникновения.
В чем причины возникновения коррозии? Почему из двух совершенно одинаковых автомобилей один будет десятки лет ездить не поврежденный, а другой начнёт разрушаться уже через пару лет эксплуатации? Как найти виновного в этом?
Если два авто используются идентично, а их кузова поражаются по-разному, то причины заключаются исключительно в следующем:
- Качество металла, который использует завод — производитель.
- Неправильное хранение и уход за автомобилем самим собственником.
- Первопричина появления коррозии любого отечественного автомобиля заложена еще в металле. Для изготовления кузовных деталей заводы — производители зачастую используют некачественный металл, в котором уже заложены грибки и ржавчина. Это результат использования вторичного сырья, которое не подвергается никакому контролю соблюдения стандартов. Кроме этого, отечественный автором попросту пренебрегает антикоррозийной защитой, или она очень слабая. Старые же иномарки просто разрушаются от езды по нашим «трассам», щедро усыпанным всевозможными реогентами, от неправильного ухода и от неблагоприятных климатических условий.
- Даже при покупке новой иномарки водитель может столкнуться с таким явлением, как коррозия кузова, через небольшой промежуток времени. Многие автозаводы сейчас просто экономят на оцинковке кузова и установке защитных элементов.
Так что, как всегда, решение проблем, связанных с защитой кузова от коррозии или устранением уже образовавшихся дефектов лежит исключительно на собственнике автомобиля. Главное — вовремя предупредить образование коррозии или принять меры для борьбы с ней.
Коррозия кузова автомобиля — методы защиты.
Еще при приобретении новенького автомобиля в салоне, его владелец должен позаботиться о приобретении и установке механических средств защиты от повреждений.
Это подкрылки, пластиковые накладки, брызговики, металлическая защита двигателя.
Нелишними будут специальные пленки на порогах и крыльях автомобиля.
Также следует менять в осенне-зимний период текстильные коврики на резиновые с бортиками. Это поможет избежать промокания ковра и образования между ним и кузовом влаги.
Далее выполняются профилактические меры с применением защитных антикоррозийных химических средств. Ошибочно думать, что защита кузова необходима только снаружи. Основная профиактика заключается в обработке именно труднодоступных мест внутри кузова.
Для этого нам понадобится:
- Помещение с подъемником;
- Набор инструментов для демонтажа/монтажа салона;
- Компрессор;
- Пистолет под мовиль и мастику;
- Пистолет под жидкую резину;
- Мовиль;
- Мастика.
В мастику можно добавлять бензин и отработку масла для лучшего разжижения смеси и удобства её использования при нанесении пистолетом.
Приступим к работе:
- Для начала полностью разбираем салон, снимая дверные карты, сидения, ковёр с полов.
- После демонтажа салона мы увидим, что в порогах, лонжеронах и стойках с внутренней стороны есть резиновые пробки. Открываем их и видим, что внутри сухо. Технологические отверстия также есть и с обратной стороны.
- Берём специальный пистолет с резиновой шлангой, и заливаем эти отверстия, нажимая и вытягивая шланг постепенно. В это время большой слой мовиль обволакивает все труднодоступные поверхности.
- Повторяем ту же процедуру в стойках и лонжеронах через технологические отверстия.
- В задних стаканах есть большие продольные отверстия по крыло с внутренней стороны. Заливаем мовиль в арку с внутренней стороны заднего крыла. Оно не съёмное, поэтому доступ к нему только с внутренней стороны кузова.
- Переходим к передней части кузова. Если возможен съем крыла, снимаем его. Под крылом и в стаканах есть труднодоступные места, не обработав которые в итоге получаем разрушения. В них тоже есть технологические отверстия, о которых многие и не догадываются. Обрабатываем крыло с внутренней стороны мастикой и устанавливаем его на место.
- На днище наносим мастику равномерным слоем по всей поверхности.
- Собираем салон, устанавливаем брызговики, подкрылки и другие аксессуары для механической защиты.
После длительной эксплуатации автомобиль уже столкнулся с коррозией. Скорее всего тут не избежать сварочных работ. Их лучше всего доверить специалистам. Возможно, некоторые детали придется полностью вырезать и заменить. Все новые детали необходимо предварительно подготовить к сварке, прогрунтовав их внутренние части. После сварки грунтуются все наружные поверхности деталей, наносится лакокрасочное покрытие. На скрытые от ЛКП детали наносится жидкая резина и мастика. Далее можно готовить авто к дальнейшей эксплуатации. Для этого проводятся те же самые профилактические меры, что и в новом авто.
Коррозия кузова автомобиля и химические средства защиты.
Современный рынок предлагает автолюбителям множество разнообразных способов защиты металлических деталей кузова автомобиля от коррозии. Их использование может способствовать более продолжительной эксплуатации авто. Лучше всего обработку проводить сразу же после ремонтных работ или непосредственно после покупки автомобиля. Среди них и мастики, и грунты с различными назначениями, например, цинкосодержащие грунты.
Важно! Т.к. зачастую используется обычный Мовиль, то следует знать, что он не совместим с многими синтетическими мастиками.
Коррозия кузова автомобиля — профилактика.
- Традиционное гаражное хранение автомобиля, где присутствуют подвалы с овощами, где есть перепады температуры, разная степь влажности — все это только способствует развитию коррозии кузова.
Специфический микроклимат гаража способствует росту грибков и появлению ржавчины. Мы пытаемся спрятать транспорт в гараже от неблагоприятных внешних воздействий и воров, а сами крадем у своего автомобиля его здоровье.
2. Доказано, что стоянка на открытых площадках под навесом куда полезнее, чем в герметичном гараже. Ведь в таких условиях машина постоянно находится в естественных климатических условиях.
При хранении автомобиля на открытой площадке в зимний период нельзя использовать чехлы из промокающих тканей. Намокший чехол может прилипать к внутренним частям кузова и повреждать ЛКП.
3. Чистота — залог здоровья. Также и с автомобилями. Смесь воды, пыли, дорожных регентом и химикатов представляет прямую опасность для кузова, особенно если автомобиль редко подвергается обычной мойке.
Рекомендуется чаще мыть автотранспорт, желательно с применением восковых покрытий, которые имеют свойство отталкивать от поверхностей влагу и грязь.
4. Установка на авто специальных «кенгурятников», дуг, отбойников, является не только элементом тюнинга, но и дополнительной защитой кузова от механических повреждений. Не забывайте, что каждая царапина на металле — путь к его разрушению.
5. Существуют специальные средства защиты хромированных деталей. Например, специальный лак Антикор. При его применении на поверхности образуется блестящая тонкая , защищающая хромированное покрытие от внешних воздействий.
Можно защитить и резиновые уплотнители или детали на кузове. Делается это с помощью нанесения специальных паст, которые после нанесения должны сутки сохнуть. Можно просто протирать резиновые поверхности силиконом или глицерином.
В процессе эксплуатации автомобиля, независимо от того, старый он или новый, стоит внимательно относиться к ухожу за ним и его хранению.
Любые профилактические меры, направленные на защиту кузова авто от коррозии позволит сэкономить немалые средства, которые придётся потом вложить в его капитальный ремонт. Желательно каждые полгода проводить профилактических осмотр, направленный на выявление очагов коррозии.
autojust-blog.ru
Коррозия металлов. Почему ржавеют автомобильные кузова?
Коррозия металлов, как известно, приносит много бед. Уж не вам ли, уважаемые автовладельцы, объяснять, чем она грозит: дай ей волю, так от машины одни покрышки останутся. Поэтому, чем раньше начнется борьба с этим бедствием, тем дольше проживет автомобильный кузов.
Чтобы быть успешными в борьбе с коррозией, необходимо выяснить, что же это за «зверь» и понять причины ее возникновения.
Сегодня вы узнаете
Есть ли надежда?
Ущерб, наносимый человечеству коррозией, колоссален. По разным данным коррозия «съедает» от 10 до 25% мировой добычи железа. Превращаясь в бурый порошок, оно безвозвратно рассеивается по белому свету, в результате чего не только мы, но и наши потомки остаемся без этого ценнейшего конструкционного материала.
Но беда не только в том, что теряется металл как таковой, нет — разрушаются мосты, машины, крыши, памятники архитектуры. Коррозия не щадит ничего.
Неизлечимо больна та же Эйфелева башня — символ Парижа. Изготовленная из обычной стали, она неизбежно ржавеет и разрушается. Башню приходится красить каждые 7 лет, отчего ее масса каждый раз увеличивается на 60-70 тонн.
К сожалению, полностью предотвратить коррозию металлов невозможно. Ну, разве что полностью изолировать металл от окружающей среды, например поместить в вакуум. 🙂 Но какой прок от таких «консервированных» деталей? Металл должен «работать». Поэтому единственным способом защиты от коррозии является поиск путей ее замедления.
В незапамятные времена для этого применяли жир, масла, позднее начали покрывать железо другими металлами. Прежде всего, легкоплавким оловом. В трудах древнегреческого историка Геродота (V в. до н.э.) и римского ученого Плиния-старшего уже есть упоминания о применении олова для защиты железа от коррозии.
Интересный случай произошел в 1965 году на Международном симпозиуме по борьбе с коррозией. Некий индийский ученый рассказал об обществе по борьбе с коррозией, которое существует около 1600 лет и членом которого он является. Так вот, полторы тысячи лет назад это общество принимало участие в постройке храмов Солнца на побережье у Конарака. И несмотря на то, что эти храмы некоторое время были затоплены морем, железные балки прекрасно сохранились. Так что и в те далекие времена люди знали толк в борьбе с коррозией. Значит, не все так безнадежно.
Что такое коррозия?
Слово «коррозия» происходит от латинского «corrodo – грызу». Встречаются ссылки и на позднелатинское «corrosio – разъедание». Но так или иначе:
Коррозия – это процесс разрушения металла в результате химического и электрохимического взаимодействия с окружающей средой.
Хотя коррозию чаще всего связывают с металлами, ей также подвергаются бетон, камень, керамика, дерево, пластмассы. Применительно к полимерным материалам, правда, чаще используется термин деструкция или старение.
Коррозия и ржавчина — не одно и то же
В определении коррозии абзацем выше не зря выделено слово «процесс». Дело в том, коррозию частенько отождествляют с термином «ржавчина». Однако это не синонимы. Коррозия — это именно процесс, в то время как ржавчина — один из результатов этого процесса.
Также стоит отметить, что ржавчина — продукт коррозии исключительно железа и его сплавов (таких как сталь или чугун). Поэтому, когда говорим «ржавеет сталь», мы подразумеваем, что ржавеет железо в ее составе.
Если ржавчина относится только к железу, значит другие металлы не ржавеют? Не ржавеют, но это не значит, что они не корродируют. Просто продукты коррозии у них другие.
Например, медь, корродируя, покрывается красивым по цвету зеленоватым налетом (патиной). Серебро на воздухе тускнеет — это на его поверхности образуется налет сульфида, чья тонкая пленка придает металлу характерную розоватую окраску.
Патина — продукт коррозии меди и ее сплавов
Механизм протекания коррозионных процессов
Разнообразие условий и сред, в которых протекают коррозионные процессы, очень широко, поэтому сложно дать единую и всеобъемлющую классификацию встречающихся случаев коррозии. Но не смотря на это, все коррозионные процессы имеют не только общий результат — разрушение металла, но и единую химическую сущность — окисление.
Упрощенно окисление можно назвать процессом обмена веществ электронами. Когда одно вещество окисляется (отдает электроны), другое, наоборот, восстанавливается (получает электроны).
Например, в реакции…
… атом цинка теряет два электрона (окисляется), а молекула хлора присоединяет их (восстанавливается).
Частицы, которые отдают электроны и окисляются, называются восстановителями, а частицы, которые принимают электроны и восстанавливаются, называются окислителями. Два этих процесса (окисление и восстановление) взаимосвязаны и всегда протекают одновременно.
Такие вот реакции, которые в химии называются окислительно-восстановительными, лежат в основе любого коррозионного процесса.
Естественно, склонность к окислению у разных металлов неодинакова. Чтобы понять, у каких она больше, а у каких меньше, вспомним школьный курс химии. Было там такое понятие как электрохимический ряд напряжений (активности) металлов, в котором все металлы расположены слева направо в порядке повышения «благородности».
Так вот, металлы, расположенные в ряду левее, более склонны к отдаче электронов (а значит и к окислению), чем металлы, стоящие правее. Например, железо (Fe) больше подвержено окислению, чем более благородная медь (Cu). Отдельные металлы (например, золото), могут отдавать электроны только при определенных экстремальных условиях.
К ряду активности вернемся немного позднее, а сейчас поговорим об основных видах коррозии.
Виды коррозии
Как уже говорилось, критериев классификация коррозионных процессов существует множество. Так, различают коррозию по виду распространения (сплошная, местная), по типу коррозионной среды (газовая, атмосферная, жидкостная, почвенная), по характеру механических воздействий (коррозионное растрескивание, явление Фреттинга, кавитационная коррозия) и так далее.
Но основным способом классификации коррозии, позволяющим наиболее полно объяснить все тонкости этого коварного процесса, является классификация по механизму протекания.
По этому критерию различают два вида коррозии:
- химическую
- электрохимическую
Химическая коррозия
Химическая коррозия отличается от электрохимической тем, что протекает в средах, не проводящих электрический ток. Поэтому при такой коррозии разрушение металла не сопровождается возникновением электрического тока в системе. Это обычное окислительно-восстановительное взаимодействие металла с окружающей средой.
Наиболее типичным примером химической коррозии является газовая коррозия. Газовую коррозию еще называют высокотемпературной, поскольку обычно она протекает при повышенных температурах, когда возможность конденсации влаги на поверхности металла полностью исключена. К такому виду коррозии можно отнести, например, коррозию элементов электронагревателей или сопел ракетных двигателей.
Скорость химической коррозии зависит от температуры — при ее повышении коррозия ускоряется. Из-за этого, например, в процессе производства металлического проката, во все стороны от раскаленной массы разлетаются огненные брызги. Это с поверхности металла скалываются частички окалины.
Окалина — типичный продукт химической коррозии, — оксид, возникающий в результате взаимодействия раскаленного металла с кислородом воздуха.
Помимо кислорода и другие газы могут обладать сильными агрессивными свойствами по отношению к металлам. К таким газам относятся диоксид серы, фтор, хлор, сероводород. Так, например, алюминий и его сплавы, а также стали с высоким содержанием хрома (нержавеющие стали) устойчивы в атмосфере, которая содержит в качестве основного агрессивного агента кислород. Но картина кардинально меняется, если в атмосфере присутствует хлор.
В документации к некоторым антикоррозионным препаратам химическую коррозию иногда называют «сухой», а электрохимическую — «мокрой». Однако химическая коррозия может протекать и в жидкостях. Только в отличие от электрохимической коррозии эти жидкости — неэлектролиты (т.е. не проводящие электрический ток, например спирт, бензол, бензин, керосин).
Примером такой коррозии является коррозия железных деталей двигателя автомобиля. Присутствующая в бензине в качестве примесей сера взаимодействует с поверхностью детали, образуя сульфид железа. Сульфид железа очень хрупок и легко отслаивается, освобождая свежую поверхность для дальнейшего взаимодействия с серой. И так, слой за слоем, деталь постепенно разрушается.
Электрохимическая коррозия
Если химическая коррозия представляет собой не что иное, как простое окисление металла, то электрохимическая — это разрушение за счет гальванических процессов.
В отличие от химической, электрохимическая коррозия протекает в средах с хорошей электропроводностью и сопровождается возникновением тока. Для «запуска» электрохимической коррозии необходимы два условия: гальваническая пара и электролит.
В роли электролита выступает влага на поверхности металла (конденсат, дождевая вода и т.д.). Что такое гальваническая пара? Чтобы понять это, вернемся к ряду активности металлов.
Смотрим. Cлева расположены более активные металлы, справа — менее активные.
Если в контакт вступают два металла с различной активностью, они образуют гальваническую пару, и в присутствии электролита между ними возникает поток электронов, перетекающих от анодных участков к катодным. При этом более активный металл, являющийся анодом гальванопары, начинает корродировать, в то время как менее активный коррозии не подвергается.
Схема гальванического элемента
Для наглядности рассмотрим несколько простых примеров.
Допустим, стальной болт закреплен медной гайкой. Что будет корродировать, железо или медь? Смотрим в ряд активности. Железо более активно (стоит левее), а значит именно оно будет разрушаться в месте соединения.
Стальной болт — медная гайка (корродирует сталь)
А если гайка алюминиевая? Снова смотрим в ряд активности. Здесь картина меняется: уже алюминий (Al), как более активный металл, будет терять электроны и разрушаться.
Таким образом, контакт более активного «левого» металла с менее активным «правым» усиливает коррозию первого.
В качестве примера электрохимической коррозии можно привести случаи разрушения и затопления кораблей, железная обшивка которых была скреплена медными заклепками. Также примечателен случай, который произошел в декабре 1967 года с норвежским рудовозом «Анатина», следовавшим из Кипра в Осаку. В Тихом океане на судно налетел тайфун и трюмы заполнились соленой водой, в результате чего возникла большая гальваническая пара: медный концентрат + стальной корпус судна. Через некоторое время стальной корпус судна начал размягчаться и оно вскоре подало сигнал бедствия. К счастью, экипаж был спасен подоспевшим немецким судном, а сама «Анатина» кое-как добралась до порта.
Олово и цинк. «Опасные» и «безопасные покрытия
Возьмем еще пример. Допустим, кузовная панель покрыта оловом. Олово — очень стойкий к коррозии металл, кроме того, оно создает пассивный защитный слой, ограждая железо от взаимодействия с внешней средой. Значит, железо под слоем олова находится в целости и сохранности? Да, но только до тех пор, пока слой олова не получит повреждение.
А коль уж такое случается, между оловом и железом тут же возникает гальваническая пара, и железо, являющееся более активным металлом, под воздействием гальванического тока начнет корродировать.
Кстати, в народе до сих пор ходят легенды о якобы «вечных» луженых кузовах «Победы». Корни этой легенды таковы: ремонтируя аварийные машины, мастера использовали паяльные лампы для нагрева. И вдруг, ни с того ни с сего, из-под пламени горелки начинает «рекой» литься олово! Отсюда и пошла молва, что кузов «Победы» был полностью облужен.
На самом деле все гораздо прозаичнее. Штамповая оснастка тех лет была несовершенной, поэтому поверхности деталей получались неровными. Вдобавок тогдашние стали не годились для глубокой вытяжки, и образование морщин при штамповке стало обычным делом. Сваренный, но еще не окрашенный кузов приходилось долго готовить. Выпуклости сглаживали наждачными кругами, а вмятины заполняли оловяным припоем, особенно много которого было вблизи рамки ветрового стекла. Только и всего.
Ну, а так ли «вечен» луженый кузов, вы уже знаете: он вечен до первого хорошего удара острым камешком. А их на наших дорогах более чем достаточно.
А вот с цинком картина совсем иная. Здесь, по сути, мы бьем электрохимическую коррозию ее же оружием. Защищающий металл (цинк) в ряду напряжений стоит левее железа. А значит при повреждении будет разрушаться уже не сталь, а цинк. И только после того, как прокорродирует весь цинк, начнет разрушаться железо. Но, к счастью, корродирует он очень и очень медленно, сохраняя сталь на долгие годы.
а) Коррозия луженой стали: при повреждении покрытия разрушается сталь. б) Коррозия оцинкованной стали: при повреждении покрытия разрушается цинк, защищая от коррозии сталь.
Покрытия, выполненные из более активных металлов называются «безопасными», а из менее активных — «опасными». Безопасные покрытия, в частности оцинковка, давно и успешно применяются как способ защиты от коррозии автомобильных кузовов.
Почему именно цинк? Ведь помимо цинка в ряду активности относительно железа более активными являются еще несколько элементов. Здесь подвох вот в чем: чем дальше в ряду активности находятся друг от друга два металла, тем быстрее разрушение более активного (менее благородного). А это, соответственно, сокращает долговечность антикоррозионной защиты. Так что для автомобильных кузовов, где помимо хорошей защиты металла важно достичь и продолжительного срока действия этой защиты, оцинковка подходит как нельзя лучше. Тем более, что цинк доступен и недорог.
Кстати, а что будет, если покрыть кузов, например, золотом? Во-первых, будет ох как дорого! 🙂 Но даже если золото стало бы самым дешевым металлом, такого делать нельзя, поскольку оно окажет нашей «железке» плохую услугу.
Золото ведь стоит очень далеко от железа в ряду активности (дальше всего), и при малейшей царапине железо вскоре превратится в груду ржавчины, покрытую золотой пленкой.
Автомобильный кузов подвергается воздействию как химической, так электрохимической коррозии. Но главная роль все же отводится электрохимическим процессам.
Ведь, чего греха таить, гальванических пар в автомобильном кузове воз и маленькая тележка: это и сварные швы, и контакты разнородных металлов, и посторонние включения в листовом прокате. Не хватает только электролита, чтобы «включить» эти гальванические элементы.
А электролит тоже найти легко — хотя бы влага, содержащаяся в атмосфере.
Кроме того, в реальных условиях эксплуатации оба вида коррозии усиливаются множеством других факторов. Поговорим о главных из них поподробнее.
Факторы, влияющие на коррозию автомобильного кузова
Металл: химический состав и структура
Конечно, если бы автомобильные кузова изготавливались из технически чистого железа, их коррозионная стойкость была бы безупречной. Но к сожалению, а может быть и к счастью, это невозможно. Во-первых, такое железо для автомобиля слишком дорого, во-вторых (что важнее) — недостаточно прочно.
Впрочем, не будем о высоких идеалах, а вернемся к тому, что имеем. Возьмем, к примеру, сталь марки 08КП, широко применяемую в России для штамповки кузовных элементов. При изучении под микроскопом эта сталь представляет собой следующее: мелкие зерна чистого железа перемешаны с зернами карбида железа и другими включениями.
Как вы уже догадались, подобная структура порождает множество микрогальванических элементов, и как только в системе появится электролит, коррозия потихоньку начнет свою разрушительную деятельность.
Интересно, что процесс коррозии железа ускоряется под действием серосодержащих примесей. Обычно она попадает в железо из каменного угля при доменной выплавке из руд. Кстати, в далеком прошлом для этой цели использовался не каменный, а древесный уголь, практически не содержащий серы.
В том числе и по этой причине некоторые металлические предметы древности за свою многовековую историю практически не пострадали от коррозии. Взгляните, к примеру, на эту железную колонну, которая находится во дворе минарета Кутуб-Минар в Дели.
Она стоит уже 1600 (!) лет, и хоть бы что. Наряду с низкой влажностью воздуха в Дели, одной из причин такой поразительной коррозионной стойкости индийского железа является, как раз-таки, низкое содержание в металле серы.
Так что в рассуждениях на манер «раньше металл был чище и кузов долго не ржавел», все-таки есть доля правды, и немалая.
Кстати, почему же тогда не ржавеют нержавеющие стали? А потому, что хром и никель, используемые в качестве легирующих компонентов этих сталей, стоят в электрохимическом ряду напряжений рядом с железом. Кроме того, при контакте с агрессивной средой они образуют на поверхности прочную оксидную пленку, предохраняющую сталь от дальнейшего корродирования.
Хромоникелевая сталь — наиболее типичная нержавейка, но кроме нее есть и другие марки нержавеющих сталей. Например, легкие нержавеющие сплавы могут включать алюминий или титан. Если вы были во Всероссийском выставочном центре, вы наверняка видели перед входом обелиск «Покорителям космоса». Он облицован пластинками из титанового сплава и на его блестящей поверхности нет ни единого пятнышка ржавчины.
Заводские кузовные технологии
Толщина листовой стали, из которой изготавливаются кузовные детали современного легкового автомобиля, составляет, как правило, менее 1 мм. А в некоторых местах кузова эта толщина — и того меньше.
Особенностью процесса штамповки кузовных панелей, да и вообще, любой пластической деформации металла, является возникновение в ходе деформации нежелательных остаточных напряжений. Эти напряжения незначительны, если шпамповочное оборудование не изношено, и скорости деформирования настроены правильно.
В противном случае в кузовную панель закладывается этакая «часовая бомба»: порядок расположения атомов в кристаллических зернах меняется, поэтому металл в состоянии механического напряжения корродирует интенсивнее, чем в нормальном состоянии. И, что характерно, разрушение металла происходит именно на деформированных участках (изгибах, отверстиях), играющих роль анода.
Кроме того, при сварке и сборке кузова на заводе в нем образуется множество щелей, нахлестов и полостей, в которых скапливается грязь и влага. Не говоря уже о сварных швах, образующих с основным металлом все те же гальванические пары.
Влияние окружающей среды при эксплуатации
Среда, в которой эксплуатируются металлические конструкции, в том числе и автомобили, с каждым годом становится все более агрессивной. В последние десятилетия в атмосфере повысилось содержание сернистого газа, оксидов азота и углерода. А значит, автомобили омываются уже не просто водичкой, а кислотными дождями.
Коль уж зашла речь о кислотных дождях, вернемся еще раз к электрохимическому ряду напряжений. Наблюдательный читатель подметил, что в него включен также и водород. Резонный вопрос: зачем? А вот зачем: его положение показывает, какие металлы вытесняют водород из растворов кислот, а какие — нет. Например, железо расположено левее водорода, а значит вытесняет его из растворов кислот, в то время как медь, стоящая правее, на подобный подвиг уже не способна.
Отсюда следует, что кислотные дожди для железа опасны, а для чистой меди — нет. А вот о бронзе и других сплавах на основе меди этого сказать нельзя: они содержат алюминий, олово и другие металлы, находящиеся в ряду левее водорода.
Замечено и доказано, что в условиях большого города кузова живут меньше. В этой связи показательны данные Шведского института коррозии (ШИК), установившего, что:
- в сельской местности Швеции скорость разрушения стали составляет 8 мкм в год, цинка — 0,8 мкм в год;
- для города эти цифры составляют 30 и 5 мкм в год соответственно.
Немаловажны и климатические условия, в которых эксплуатируется автомобиль. Так, в условиях морского климата коррозия активизируется примерно в два раза.
Влажность и температура
Насколько велико влияние влажности на коррозию мы можем понять на примере ранее упомянутой железной колонны в Дели (вспомним сухость воздуха, как одну из причин ее коррозионной стойкости).
Поговаривают, что один иностранец решил раскрыть тайну этого нержавеющего железа и каким-то образом отколол небольшой кусочек от колонны. Каково же было его удивление, когда еще на корабле по пути из Индии этот кусочек покрылся ржавчиной. Оказывается, на влажном морском воздухе нержавеющее индийское железо оказалось не таким уж и нержавеющим. Кроме того, аналогичную колонну из Конарака, расположенного поблизости моря, коррозия поразила очень сильно.
Скорость коррозии при относительной влажности до 65% сравнительно невелика, но когда влажность возрастает выше указанного значения — коррозия резко ускоряется, поскольку при такой влажности на металлической поверхности образуется слой влаги. И чем дольше поверхность остается влажной, тем быстрее распространяется коррозия.
Вот почему основные очаги коррозии всегда обнаруживаются в скрытых полостях кузова: cохнут-то они гораздо медленнее открытых частей. Как результат — в них образуются застойные зоны, — настоящий рай для коррозии.
Кстати, применение химических реагентов для борьбы с гололедом коррозии тоже на руку. Вперемешку с подтаявшими снегом и льдом антигололедные соли образуют очень сильный электролит, способный проникнуть куда угодно, в том числе и в скрытые полости.
Что касается температуры, то мы уже знаем, что ее повышение активизирует коррозию. По этой причине вблизи выхлопной системы следов коррозии всегда будет больше.
Доступ воздуха
Интересная все-таки вещь эта коррозия. Насколько интересна, настолько же и коварна. К примеру, не удивляйтесь, что блестящий стальной трос, с виду абсолютно не тронутый коррозией, внутри может оказаться проржавевшим. Так происходит из-за неравномерного доступа воздуха: в тех местах, где он затруднен, угроза коррозии больше. В теории коррозии это явление называется дифференциальной аэрацией.
Принцип дифференциальной аэрации: неравномерный доступ воздуха к разным участкам металлической поверхности приводит к образованию гальванического элемента. При этом участок, интенсивно снабжаемый кислородом, остается невредимым, а участок хуже снабжаемый им, корродирует.
Яркий пример: капля воды, попавшая на поверхность металла. Участок, находящийся под каплей и потому хуже снабжаемый кислородом, играет роль анода. Металл на этом участке окисляется, а роль катода выполняют края капли, более доступные влиянию кислорода. В результате на краях капли начинает осаждаться гидроксид железа — продукт взаимодействия железа, кислорода и влаги.
Кстати, гидроксид железа (Fe2O3·nH2O) и является тем, что мы называем ржавчиной. Поверхность ржавчины, в отличие от патины на медной поверхности или оксидной пленки алюминия, не защищает железо от дальнейшего корродирования. Изначально ржавчина имеет структуру геля, но затем постепенно происходит ее кристаллизация.
Кристаллизация начинается внутри слоя ржавчины, при этом внешняя оболочка геля, который в сухом состоянии очень рыхлый и хрупкий, отслаивается, и воздействию подвергается следующий слой железа. И так до тех пор, пока все железо не будет уничтожено или в системе не закончится весь кислород с водой.
Возвращаясь к принципу дифференциальной аэрации, можно представить, сколько существует возможностей для развития коррозии в скрытых, плохо проветриваемых участках кузова.
Ржавеют… все!
Как говорится, статистика знает все. Ранее мы упоминали о таком известном центре борьбы с коррозией, как Шведский институт коррозии (ШИК) — одной из наиболее авторитетных организаций в данной области.
Раз в несколько лет ученые института проводят интересное исследование: берут кузова хорошо потрудившихся автомобилей, вырезают из них наиболее полюбившиеся коррозии «фрагменты» (участки порогов, колесных арок, кромок дверей и т.д.) и оценивают степень их коррозионного поражения.
Важно отметить, что среди исследуемых кузовов есть как защищенные (оцинковкой и/или антикором), так и кузова без какой либо дополнительной антикоррозионной защиты (просто окрашенные детали).
Так вот, ШИК утверждает, что наилучшей защитой автомобильного кузова является лишь сочетание «цинк плюс антикор». А вот все остальные варианты, включая «просто оцинковку» или «просто антикор», по словам ученых — плохи.
Оцинковка — не панацея
Сторонники отказа от дополнительной антикоррозионной обработки часто ссылаются на заводскую оцинковку: с ней, мол, никакая коррозия автомобилю не грозит. Но, как показали шведские ученые, это не совсем так.
Действительно, цинк может служить в качестве самостоятельной защиты, но только на ровных и плавных поверхностях, к тому же не подверженных механическим атакам. А на кромках, краях, стыках, а также местах, регулярно подвергающихся «обстрелу» песком и камнями, оцинковка перед коррозией пасует.
К тому же, далеко не у всех автомобилей кузова оцинкованы полностью. Чаще всего цинком покрыто лишь несколько панелей.
Ну и не нужно забывать, что цинк хоть и защищает сталь, но в процессе защиты неизбежно расходуется сам. Поэтому толщина цинкового «щита» со временем будет постепенно снижаться.
Так что легенды о долгожительстве оцинкованных кузовов правдивы лишь в тех случаях, когда цинк становится частью общего барьера, дополнением к регулярной дополнительной антикоррозионной обработке кузова.
Пора заканчивать, но на этом тема коррозии далеко не исчерпана. О борьбе с ней мы продолжим говорить в следующих статьях рубрики «Антикоррозионная защита».
artmalyar.ru
Как убрать ржавчину с автомобиля?
Приветствую Вас на блоге kuzov.info!
В этой статье разберёмся как убрать ржавчину с автомобиля. Рассмотрим способы удаления ржавчины, химические и механические средства.
Чтобы лучше понять, с чем Вам придётся иметь дело, сначала разберёмся в теории возникновения ржавчины и её типах.
Содержание:
Почему возникает ржавчина?
Когда железо или сталь не защищены, происходит процесс реакции с кислородом и возникает коррозия металла. Металл разрушается и формирует ржавчину, красно-коричневый состав, который является очевидным знаком электрохимического окисления металла. Другие металлы также окисляются, но у них это происходит иначе. Так, к примеру, коррозия алюминия распространяется намного медленнее.
При коррозии ухудшаются свойства металла, его структура и толщина, ведущие к потере прочности. Коррозия может концентрироваться в отдельных точках, а может распространиться по большой площади более или менее равномерно.
Скорость, с которой металл ржавеет достаточно медленная, но она ускоряется контактом с водой, в особенности, если вода имеет высокую концентрацию соли, которая выступает в роли электролита (субстанции, которая помогает электронам двигаться). Также, на скорость распространения ржавчины влияет температура окружающей среды. Чем выше температура, тем быстрее металл ржавеет.
Почему же металл ржавеет? За исключением золота, платины и нескольких других, металлы не встречаются в природе в чистой форме. Они химически соединены с другими элементами в руде, такими как сульфиды и оксиды. Для извлечения металлов из сульфидов и оксидов должна быть потрачена энергия (в доменной печи), чтобы получить чистый металл. Так как все элементы во вселенной стремятся возвратиться в их низшее энергетическое, основное состояние, то чистые металлы также стремятся вернуться в своё основное состояние, в котором они были в природе (в виде сульфидов и оксидов). Путь, который возвращает металл в его основное состояние, является его окислением. Таким образом, коррозия является натуральным процессом, который преобразует металл в его химически более стабильную форму.
Ржавчина не распространяется через контакт, как биологическая инфекция. Вместо этого, процесс окисления железа происходит самостоятельно, в зависимости от условий окружающей среды.
Разные сплавы металла ржавеют с разной скоростью, в зависимости от состава. Примеси в металлических сплавах ускоряют процесс коррозии. Чистое железо не окисляется так агрессивно. К сожалению, чистое железо не очень хороший материал для изготовления кузовов автомобилей. Добавляя углерод, получается сталь, которая уже имеет все необходимые свойства для формовки листового металла, такие как эластичность и прочность на разрыв.
Борьбу против ржавчины честнее было бы назвать отсрочкой от её возникновения. Полностью её выиграть нельзя. Автомобили с завода имеют слабые места, которые «ждут» благоприятных условий для возникновения коррозии. Внешне не ржавый автомобиль может содержать ржавчину в скрытых полостях или с обратной стороны некоторых панелей.
На кузове автомобиля коррозия может возникнуть в следующих случаях:
- Из-за появления глубокой царапины или скола лакокрасочного покрытия.
- Ржавчина возникает в местах кузова, где скапливается грязь и соль. Это области вокруг крыльев, внизу дверей, из-за заблокированных дренажных отверстий.
- Места с точечной сваркой также предрасположены к возникновению ржавчины.
- Ржавчина обычно начинается с краёв панелей. Эти части имеют более тонкий слой краски, который быстрее стирается.
- Пороги и другие скрытые полости могут ржаветь изнутри.
- Ржавчина может появиться в местах, где осуществлялся кузовной ремонт, и не была правильно сделана антикоррозионная обработка.
Типы ржавчины кузова автомобиля
В целом можно назвать два главных типа ржавчины. Первая – поверхностная ржавчина. Она возникает и распространяется снаружи панелей кузова и происходит из-за нарушения целостности краски, её износа или сколов и глубоких царапин. В зависимости от погодных условий (влажности, температуры и использования дорожных солей), этот тип коррозии металла может прогрессировать медленно и может быть легко очищен.
Второй тип ржавчины возникает изнутри и распространяется незаметно. Этот тип коррозии гораздо хуже и опаснее. Если вы видите признаки ржавчины под неповреждённой краской, то это вероятнее всего ржавчина, возникшая с обратной стороны панели и распространившаяся по всей толщине металла. Такая ржавчина часто возникает в городах, где дороги зимой посыпают солью.
Также, процесс коррозии металла можно условно разделить на разные стадии.
- Первая стадия характеризуется окислением, которое не повреждает металл и легко счищается.
- Если не успеть устранить лёгкую поверхностную ржавчину, то ржавчина переходит во вторую стадию. В этом случае ржавчина «въедается», металл может иметь мелкие углубления с ржавчиной внутри, но металлическая панель по-прежнему имеет хорошую прочность.
- На третьей стадии, кроме «въевшейся», появляется отслаивающаяся ржавчина и сквозные отверстия. Металл начинает терять прочность.
Молекулы ржавчины физически имеют больший размер, чем молекулы железа или стали. Ржавчина увеличивается в объёме и становится в 10 раз больше, чем металл, из которого она образуется. Таким образом, ржавчина прорывается сквозь лакокрасочное покрытие и оголяет металл, после чего распространяется ещё быстрее. Кроме того, ржавая поверхность впитывает и удерживает воду, что также ведёт к её распространению. Таким образом, удаление ржавчины очень важно. Возникает вопрос, как убрать ржавчину с автомобиля? Какие способы существуют и какие из них наиболее действенные?
Как убрать ржавчину с автомобиля?
Наиболее важным принципом при устранении ржавчины является как можно быстрее её выявить и принять меры по ремонту. Чем дольше ржавчина остаётся без внимания, тем сложнее и дороже будет её устранить.
Прежде всего, нужно определить, что собой представляет коррозия на конкретной панели кузова. Она начинается под краской и её можно не сразу увидеть. Окисление под лакокрасочным покрытием может проявляться в виде пузырей краски или её отслаивания. Нужно понять насколько ржавчина распространилась. Для этого нужно счистить краску в местах с коррозией, с запасом до чистого металла.
Есть несколько способов избавиться от коррозии металла:
- Преобразовать ржавчину
- Остановить и герметизировать ржавчину
- Использовать средство с сильнодействующей кислотой (rust remover, удалитель ржавчины)
- Механически обработать (может предшествовать трём предыдущим способам)
- Удалить и заменить ржавый на новый металл.
- Альтернативный метод ремонта стекловолокном
Преобразователь ржавчины
Преобразователь ржавчины представляет собой водный раствор с кислотой (обычно фосфорной или дубильной). Дополнительно к кислоте может присутствовать органический полимер (бутилгликоль) и смачивающие вещества, которые сокращают поверхностное натяжение и увеличивают проникающую способность кислоты в ржавчину. Некоторые преобразователи могут иметь в составе дополнительные кислоты, чтобы ускорить химическую реакцию, а также другие компоненты. Продукты разных производителей могут иметь разный состав.
Фосфорная кислота растворяет ржавчину и потом переводит её в фосфат железа. Фосфат железа формирует тонкий защитный слой, чтобы минимизировать дальнейшее окисление. Он предназначен для нанесения прямо на ржавчину.
Когда нужно использовать преобразователь ржавчины?
- На средне- ржавой поверхности. Области, которые полностью покрыты существенным, не рыхлым слоем ржавчины. Нужно чтобы не было смешанной поверхности (чистый металл+ржавчина+старая краска).
- Преобразователь хорошо работает на поверхности, на которой коррозия начала проникать внутрь металла (но не глубоко) и покрывает весь металл. Перед нанесением преобразователя нужно убрать рыхлую, отслаивающуюся ржавчину. После действия преобразователя, ржавчина приобретает багрово-чёрный цвет.
- Может использоваться для преобразования (нейтрализации) остатков очищенной коррозии. Если остатки ржавчины располагаются в нескольких местах, между чистым металлом, то в этом случае общего защитного слоя не образуется.
Недостаток преобразователей ржавчины
В теории преобразователи отлично решают проблему ржавого металла, на практике же не всё так радужно.
Вот некоторые моменты, которые нужно учитывать:
- Если преобразователь используется с избытком, то на поверхности и в порах остаётся кислота, которая будет препятствовать адгезии грунта и может послужить отправной точкой для новой коррозии. Учитывая это, после действия преобразователя, его остатки нужно убрать и нейтрализовать поверхность после воздействия кислоты. Этот момент мы рассмотрим ниже, когда будем рассматривать особенности применения преобразователя ржавчины.
- Проблема преобразователей состоит в том, что если под преобразованным слоем осталась ржавчина, то она не остановлена и не может служить хорошим основанием для последующих покрытий. Поэтому необходимо удалять как можно больше корродированного металла механически. Преобразователь может действовать не глубже, чем может впитаться в ржавчину, а это не слишком глубоко. Таким образом, преобразователи могут быть эффективными лишь для тонких слоёв ржавчины.
- Есть исследования, показывающие, что не все преобразователи успешно преобразуют ржавчину в инертный слой. Некоторые преобразователи только меняют её цвет или же оказывают недостаточное действие для преобразования всего слоя. В любом случае, перед использованием преобразователя ржавчины лучше посоветоваться с людьми, успешно использовавшими конкретный продукт.
- Преобразователи не образуют плёнки, поэтому не могут герметизировать поры. Производители утверждают, что преобразователь про
kuzov.info