Дизель степень сжатия: Степень сжатия дизельного двигателя – что нужно знать? + Видео » АвтоНоватор

Содержание

Степень сжатия дизельного двигателя – что нужно знать? + Видео » АвтоНоватор

Знаете ли вы, как работает сердце вашего автомобиля – двигатель? Какие процессы происходят, когда вы давите на педаль газа или когда переключаете скорости? Не стоит открещиваться от этих знаний – чем лучше вы узнаете свой автомобиль, тем раньше почувствуете возможную неисправность. Одна из важных характеристик – степень сжатия двигателя.

Изучаем теорию – что происходит внутри камеры сгорания?

Степень сжатия в теории – это соотношение объема в пространстве над рабочим поршнем в момент, когда он проходит нижнюю мертвую точку,  к объему в камере над поршнем в момент прохождения верхней мертвой точки. Это определение выражает разницу давления в самой камере сгорания в момент, когда происходит впрыск топлива в цилиндр.

В повседневной жизни часто путают степень сжатия с другим понятием, а именно с компрессией дизельного двигателя, однако на практике это два разных термина. Компрессия – это наибольшее давление поршнем в цилиндре на момент его прохождения от нижней мертвой точки к верхней. Эту величину измеряют в атмосферах.

Степень сжатия измеряют математическим соотношением, к примеру, 19:1. Для дизельных двигателей наилучшим считается соотношение в рамках от 18 до 22 к 1. При такой степени сжатия сердце автомобиля будет работать наиболее эффективно. Использование топлива связано напрямую со степенью сжатия. Чем больше давление поднимается в камере и больше сжатие, тем экономичней будет расход топлива, при этом полученная мощность может увеличиваться.

Степень сжатия на практике – как это происходит?

Сгорание топливной смеси в двигателе происходит при взаимодействии смешанных паров топлива и воздуха. При возгорании смеси происходит ее расширение, в результате чего увеличивается давление в камере. Коленчатый вал при этом выполняет обороты, соответственно двигатель выполняет один такт полезной работы. В наше время уже практически не выпускаются дизельные двигатели с низкой степенью сжатия, так как в этом нет необходимости, также и низкооктановое топливо практически исчезло с рынка. Все стремятся к более экономичным и высокооборотистым двигателям с большей степенью сжатия.

Увеличения степени сжатия можно добиться за счет уменьшения камеры сгорания дизельного двигателя. Но при таких изменениях инженерам на заводах приходятся искать компромиссное решение, потому что нужно сохранить давление в камере, а также уменьшить объем сжигания топлива. Одним из способов увеличения сжатия является расточка блоков головки цилиндра – степень сжатия при этом увеличивается, а объем сгорания топлива в камере уменьшается. При этом цилиндр сохраняет свой рабочий объем, и объем двигателя не меняется.

Изменение степени сжатия – как улучшить показатели?

В наше время инженеры нашли альтернативный способ повысить давление в камере сгорания – это установка турбо-нагнетателя. Установка данного устройства приводит к увеличению давления в камере внутреннего сгорания, при этом объемы самой камеры изменять не нужно. Появление подобных устройств привело к существенному увеличению мощности, вплоть до 50 % от изначальных цифр. Достоинством нагнетателей является возможность их установки своими руками, хотя лучше всего поручить эту задачу специалистам.

Принцип работы нагнетателей всех типов сводится к одному простому действию, которое понятно даже детям. Мы знаем, что мотор автомобиля работает благодаря постоянному сгоранию топливно-воздушной смеси, поступающей в цилиндры двигателя. Производители устанавливают оптимальное соотношение поступающих в цилиндры топлива и воздуха – последний попадает в камеру сгорания благодаря созданию разреженной атмосферы на такте впуска. Нагнетатели же позволяют в тот же объем камеры сгорания подать на впуске больше горючего и воздуха. Соответственно, увеличивается количество энергии при сгорании, растет мощность агрегата.

Однако автолюбителям не стоит увлекаться чрезмерным увеличением исходных показателей своего «железного коня» – при возрастании количества тепловой энергии увеличивается и амортизация деталей двигателя.

Быстрее прогорают поршни, изнашиваются клапаны, выходит из строя система охлаждения. Причем если турбонаддув можно установить своими руками, то ликвидировать последствия этого эксперимента далеко не всегда возможно даже в хорошей автомастерской. В особо неудачных случаях модернизации авто его «сердце» может попросту взорваться. Вряд ли нужно объяснять, что страховая компания откажется выплачивать вам какие-либо компенсации по этому прецеденту, возложив всю ответственность исключительно на вас.

В дизельных двигателях отсутствует дроссельная заслонка, в результате этого появилась возможность лучше и эффективней наполнять цилиндры независимо от оборотов. На очень многих современных автомобилях устанавливают такое устройство, как интеркулер. Он позволяет увеличить массу наполнения в цилиндрах на 20 %, что и поднимает мощность двигателя.

Увеличенное давление степени сжатия дизельного двигателя не всегда носит положительный характер и не всегда поднимает его мощность. Рабочая степень сжатия может находиться уже возле своего предела детонации для данного типа топлива, и дальнейшие её увеличение способно снизить мощность и время работы двигателя. В современных автомобилях давление в камере сгорания постоянно находится под управлением и контролем электроники, которая быстро реагирует на изменения работы в двигателе. Прежде, чем выполнить какие-либо операции по увеличению параметров современного «железного коня», обязательно проконсультируйтесь со специалистами.

Мнение эксперта

Руслан Константинов

Эксперт по автомобильной тематике. Окончил ИжГТУ имени М.Т. Калашникова по специальности «Эксплуатация транспортно-технологических машин и комплексов». Опыт профессионального ремонта автомобилей более 10 лет.

Для большинства дизельных двигателей степень сжатия находится в пределе от 18/22 к 1. Подобные характеристики обеспечивают максимальный КПД силовой установки, а если степень сжатия будет увеличена хотя бы на один процент, мощность поднимается минимум на 2%. Кроме использования турбонаддува повысить эти показатели можно и другими способами.
• Система Common Rail.
Современная система, которая используется на большинстве современных автомобилей с дизельной силовой установкой. Принцип заключается в том, что топливная смесь подаётся в камеры сгорания всегда с одинаковым давлением независимо от количества оборотов двигателя и мощности. Если в обычной системе сжатие происходит во впускном коллекторе, то в common rail в момент впрыска топлива в камеру. Благодаря этой системе производительность возрастает на 30%, однако эта цифра может отличаться в зависимости от давления впрыска топлива.

• Чип-тюнинг.
Не менее востребованный способ повышения мощности это чип тюнинг. Принцип доработки заключается в изменении характеристик давления в топливной системе за счёт изменения параметров электронного блока управления двигателем. Чип повышает производительность и КПД мотора, а также отслеживает время подачи топлива в цилиндры. К тому же чип тюнинг позволяет снизить расход топлива и сделать эксплуатацию более экономичной.
Чтобы выполнить чип тюнинг самостоятельно, потребуется специальное оборудование, знания и опыт. Установка доработанного контроллера обязательно подразумевает тонкую настройку под конкретный двигатель, также предварительно необходимо провести диагностику. Поэтому для получения гарантированного результата лучше обратиться к профессионалам.

Оцените статью: Поделитесь с друзьями!

Степень сжатия дизельного двигателя


В любом автомобиле двигатель является очень сложной системой, и дизельный не исключение. Они состоят из различных механизмов и сложных систем.
Когда происходит взаимодействие всех систем и механизмов, в двигателе образуется энергия, которая преобразуется во время сгорания смеси, образуемой из воздуха и топлива  и далее кривошипно-шатунный механизм преобразует поступательно-возвратное движение поршня во вращательное движение коленчатого вала.

Содержание:

  1. Что такое степень сжатия дизельного двигателя
  2. Принцип работы
  3. Разница степени сжатия бензинового и дизельного двигателей

Что такое степень сжатия дизельного двигателя

Степенью сжатия является соотношение между полным объемом цилиндра, когда поршень располагается в нижней мертвой точке (НМТ) и объемом камеры сгорания во время достижения поршнем верхней мёртвой точки (ВМТ).


Такое соотношение показывает разницу в давлении, которое образуется в цилиндре мотора при попадании в него топлива. В документах, которые идут вместе с двигателем, такое соотношение указывается при помощи математических расчетов, например 18:1. Наилучшая степень сжатия в таком двигателе располагается в диапазоне от 18:1 до 22:1.

Принцип работы

В дизельных моторах в процессе сжатия, то есть когда происходит движение поршня к ВМТ, происходит очень быстрое сокращение объёма цилиндра. В итоге в камере сгорания располагается только воздушная масса, именно она сжимается, такой процесс носит название такт сжатия.
Когда к ВМТ подходит поршень, сжатие воздуха происходит на необходимую степень, происходит подача топлива в камеру сгорания под высоким давлением.

Топливо-воздушная смесь при образованном высоком давлении мгновенно воспламеняется и создает повышенное давление в камере, поршень в такой момент как раз проходит ВМТ. Одним из преимуществ дизеля является то, что смесь возгорается только от давления, нет необходимости в сложной и высокоточной системе зажигания. Но роз без шипов не бывает — обратной стороной повышенного давления является особое внимание к герметизации соединений и наличие топливного насоса высокого давления (ТНВД), штуки прецизионной и очень капризной. В процессе сгорания смеси образуется сильное давление, которое начинает давить на поршень и вести его к НМТ. При помощи шатуна все поршневые движения преобразуются во вращение коленчатого вала.

Процесс образования давления при возгорании смеси, которое заставляет передвигаться поршень к НМТ, носит название рабочий ход.
Степень сжатия играет особую роль в такте сжатия. Чем больше степень, тем быстрее и легче воспламеняется смесь, которая полностью сгорает и образует требуемое давление.

Если степень сжатия дизельного двигателя имеет высокий показатель, то она будет создавать высокую мощность при низком заборе топлива. Но у них степень сжатия способна варьироваться в оптимальном диапазоне, который нарушать не стоит, и это не просто так:

  • Если образовалась степень сжатия ниже допустимого диапазона, то значительно понижается мощность показателя, а объем потребляемого топлива начнет расти;
  • Если образовалась степень сжатия выше необходимого диапазона, то образуется сильная нагрузка на цилиндры и поршни, в результате они быстро изнашиваются.
  • Если произошло сильное увеличение степени сжатия, поршень начинает прогорать, а шатун изгибаться.

Зафиксированы случаи, когда при сильном повышении сжатия происходил взрыв всей системы без возможности ее восстановления.

Разница степени сжатия бензинового и дизельного двигателей

Степень сжатия и количество расхода топлива считаются основными показателями в обоих видах двигателей. Так как между сжатием и мощностью существует прямая зависимость.

В двигателях на бензине показатель сжатия находится на отметке 12 единиц, а у дизельных моторов данное число варьируется от 13 до 25 единиц.
Показателем экономичности является удельный расход топлива. Его прямой функцией является определение объема сжигаемого топлива во время работы при мощности 1 кВт за один час.
Бензиновые двигатели за час сжигают около 305 граммов топлива, в то время как дизельные всего 200 граммов.
К тому же у бензиновых моторов существует один существенный недостаток, у них низкая тяга во время работы на холостых оборотах. Очень часто двигатель глохнет, если совершается попытка движения на низких оборотах. А вот у дизельных двигателей такого недостатка нет.

Степень сжатия в двигателе играет очень важную роль, и за этим показателем рекомендуется следить, чтобы мотор работал долгое время, а основные запчасти не изнашивались за короткое время. Вмешиваться в систему, которая создана производителем, нежелательно, но если такая необходимость возникла, то лучше предоставить это дело специалисту.

Читайте также:


Степень сжатия дизельного двигателя - что это такое?

В этой статье речь пойдет об процессах, происходящих внутри камер сгорания мотора. Наверное, большинство из Вас имеет хотя бы общее приставление о принципе работы двигателя, но дело в том, что данный элемент не является универсальным устройством и на сегодняшний день выделяют несколько его видов: бензиновый, дизельный, газовый, газодизельный, роторно-поршневый.

Еще до недавнего времени, наиболее распространенными были первых два варианта, но с ростом цен на соответствующие топливо, довольно большое количество автолюбителей, перевели свои автомобили на газовое потребление.

Однако, говорить о том, что газ полностью вытеснил бензин и дизельное топливо, конечно же не приходится, а значит информация касающееся работы таких моторов не будет лишней. Говоря конкретнее, речь пойдет о процессе сжатия, которое происходит внутри камеры сгорания конкретно дизельного двигателя. Начнем с теоретической стороны этого вопроса.

Изучаем теорию – что происходит внутри камеры сгорания

Дизельный двигатель внутреннего сгорания (дизель) являет собой поршневую систему, работающую благодаря воздействию сжатого воздуха на распыленное топливо, которое впоследствии самовоспламеняется. В качестве такого топлива используют довольно широкий вариативный ряд веществ: продукты нефтеперегонки (керосин, мазут), а также некоторые продукты имеющие природное происхождение, в том числе: фритюрный жир, пальмовое и рапсовое масла. В теории дизельный двигатель может работать даже на сырой нефти, но гарантировать полную успешность этого процесса сложно.

Давайте же посмотрим каким образом дизтопливо заставляет мотор работать. Весь процесс деятельности дизельного двигателя можно разделить на четыре взаимосвязанных этапа (четырехтактная система): этап впрыска (впуска), этап сжатия, этап расширения (его еще называют «рабочий ход»), этап выпуска отработанного газа. Повторение, раз за разом, такого цикла обеспечивает движение автомобиля. Но сегодня мы не будем детально разбирать каждый этап и сосредоточим свое внимание в основном лишь на процессе сжатия.

В теории, степень сжатия характеризуется соотношением объемов пространства над рабочим поршнем, в процессе прохождения им нижней и верхней мертвой точки. Иными словами, данное понятие выражает разницу давления в камеры сгорания, когда топливо впрыскивается в цилиндр, соответственно относится исключительно к поршневым двигателям, обладающими такой камерой. Степень сжатия чем то схоже с понятием «компрессии», некоторые их даже путают, хотя на деле они совершенно разные.

Компрессия характеризуется размеренностью давления и ее можно измерить в Атмосферах, Барах или Паскалях, чего нельзя сказать про степень сжатия, так как это величина относительная, представляющая собой соотношение объема полного цилиндра и объема камеры сгорания. Данный параметр не меняется на протяжении всего строка службы двигателя и чаще всего его указывают в технических характеристиках.

Практически измерить степень сжатия невозможно, но многие автолюбители прибегают для этого к математическим расчетам (например 10:1). Оптимальным соотношением для дизельных двигателей считается 18-22:1, при котором мотор способен работать наиболее эффективно. Со степенью сжатия напрямую связано качественное использование дизельного топлива, ведь чем выше поднимается давление в камере (повышается сжатие), тем меньше расходуется топливо, что совсем не означает снижение мощности, даже наоборот — она может увеличиваться.

Степень сжатия на практике – как это происходит

Как мы уже знаем, работа двигателя стает возможной благодаря воспламенению образующейся смеси паров топлива и воздуха. Такая горючая смесь расширяется, толкая поршень, который, в свою очередь, вращает каленной вал. Давление в камере при этом значительно возрастает и двигатель совершает один такт работы.

Если степень сжатия возрастает — увеличивается и сила давления на поршень, заставляя мотор совершать больше полезной работы. На дизельных двигателях, для большей эффективности использования высокой степени сжатия, не используют дроссельную заслонку.

Вместо этого, мощность мотора регулируется количеством топлива, которое впрыскивается в цилиндр. Это способствует сильному сжатию воздуха в цилиндре, даже при низкой мощности (например когда в камеру сгорания впрыскивается незначительное количество топлива), при чем выделяется достаточное количество тепла для воспламенения и очень обедненной смеси.

Однако, увеличив степень сжатия Вы не всегда сможете добиться увеличения мощности. В случае, когда статистическая степень сжатия находится близко к пределу детонации для конкретно используемого топлива, то продолжение возрастания сжатия способно ухудшить надежность и мощность двигателя.

Казалось бы, что происходящие процессы должны влиять на безопасность окружающих, так как получающаяся смесь обладает повышенной взрывоопасностью, но на практике практически ничто и никогда не взрывается, как же так? Все дело в том, что в камеру сгорания топливо впрыскивается после того как в ней сжимается чистый воздух, при чем общее количество топлива в топливно-воздушной смеси не меняется, а за счет большого количества воздуха оно сгорает со значительно высоким уровнем коэффициента полезного действия.

Сегодня производители практически сняли с производства дизельные двигатели, имеющие низкую степень сжатия, так как в условиях нынешней рыночной экономики все большее количество людей стремятся к накоплению денежных средств, а расход большего количества топлива никак этому не способствует. Их место заняли высокооборотные дизельные двигатели с возможностью большей степени сжатия. Также практически исчезло из рынка низкооктановое топливо, так как потребность в нем отпала вместе с ограничением выпуска моторов для которых оно было предназначено.

Изменение степени сжатия – как улучшить показатели

Понятно, что смесь, попадающая в камеру сгорания должна равномерно гореть сопровождая процесс движения поршня вниз и ни в коем случае не взрываться, ведь только при соблюдении подобного условия, можно говорить про максимально эффективный расход топлива и равномерное изнашивание деталей поршневой системы. Проблема состоит в скорости, с которой такая смесь сгорает, так как это происходит быстрее, чем поршень успевает пройти свой путь.

В этом кроется главная сложность увеличения степени сжатия, встающая на пути водителей, задавшихся этой целью. В такой ситуации, увеличение давления повлияет на самопроизвольное возгорание смеси (преждевременное воспламенение), когда поршень еще не успел полностью завершить начатую фазу сжатия. Энергия, при этом, образует ненужное сопротивление и попусту растрачивается.

Еще одной проблемой можно назвать выделение слишком большого количества энергии, что приводит к взрыву (детонации). О том, какие последствия может иметь это явление говорить, лишний раз, не приходится.

Как видите, увеличение степени сжатия не только сложный, но и опасный процесс, тем не менее находятся смельчаки, которые все же решаются на это. Делается это двумя основными способами:

Устанавливается более тонкая прокладка двигателя, но так как при этом клапана и поршни могут столкнуться, необходимо все тщательно рассчитать. Возможен, также, вариант установки новых поршней с большими углублениями для клапанов. Нужно учитывать и тот факт, что при применении данного способа, нужно будет заново настраивать фазы газораспределения, которые непременно изменятся.

Растачиваются цилиндры двигателя, при чем поршни нужно будет заменить. Такой метод не только повышает степень сжатия, но и увеличивает рабочий объем двигателя. Благодаря соотношению прежнего объема камеры (он не меняется) и увеличеного объема цилиндра в большую сторону меняется степень сжатия.

Повысив степень сжатия, Вы не всегда можете получить желаемую прибавку в мощности. Чем под большую степень сжатия двигатель настроен изначально, тем меньшей будет прибавка. Другими словами, повышение мощности Вашего автомобиля, с изначальным показателем сжатия 8 будет более эффективным, чем у Вашего соседа, обладающим двигателем с аналогичным показателем в 13.

Если самостоятельно страшно вносить какие либо изменения в работу двигателя, а увеличить общую мощность автомобиля все-таки хочется, на помощь Вам придет альтернативный вариант повышения давления в камере сгорания и называется он «турбо-нагнетатель». Установив на транспортное средство такое устройство, объем камеры сгорания не изменится, но мощность существенно увеличится (иногда на 50% от изначальных показателей).

Еще одним преимуществом данного изобретения является относительная легкость монтажа, не требующее вмешательства специалистов, а значит не придется совершать лишние растраты. Правда, многие автолюбители все же предпочитают обращаться в сервисные центры, что может самое верное решение.

Принцип работы всех нагнетателей базируется на подачи большего количества воздуха и горючего на впуске, при чем объем камеры сгорания не меняется. Благодаря этому, при сгорании увеличивается количество энергии и возрастает мощность двигателя.

Как бы не хотелось увеличить степень сжатия дизельного двигателя своего автомобиля, всем автолюбителям стоит учитывать и дополнительную нагрузку на детали, которая возрастает вместе с увеличением количества энергии тепла. В следствии этого быстрее изнашиваются клапаны, прогорают поршни и выходит из строя система охлаждения. Также, несмотря на то, что турбонадув можно установить самостоятельно, демонтировать его, даже профессионалы не всегда смогут Вам помочь, а в особо тяжелых случаях двигатель может просто взорваться, причем страховка тут уже не поможет.

Так что, стоит или не стоит вмешиваться в предусмотренную производителем конструкцию мотора — решать Вам, но всегда помните о возможных последствиях. Тем более, на многих, выпускаемых сегодня, автомобилях устанавливают интеркулеры, позволяющие увеличивать наполнение цилиндров до 20%, что также значительно повышает мощность.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Степень сжатия

Степень сжатия в теории – это соотношение объема в пространстве над рабочим поршнем в момент, когда он проходит нижнюю мертвую точку, к объему в камере над поршнем в момент прохождения верхней мертвой точки. Это определение выражает разницу давления в самой камере сгорания в момент, когда происходит впрыск топлива в цилиндр.

В повседневной жизни часто путают степень сжатия с другим понятием, а именно с компрессией дизельного двигателя, однако на практике это два разных термина. Компрессия – это наибольшее давление создаваемое поршнем в цилиндре на момент его прохождения от нижней мертвой точки к верхней. Эту величину измеряют в атмосферах.

Степень сжатия измеряют математическим соотношением, к примеру, 19:1. Для дизельных двигателей наилучшим считается соотношение в рамках от 18 до 22 к 1. При такой степени сжатия сердце автомобиля будет работать наиболее эффективно. Использование топлива связано напрямую со степенью сжатия. Чем больше давление достигается в камере и больше сжатие, тем экономичней будет расход топлива, при этом полученная мощность может увеличиваться.

Степень сжатия на практике – как это происходит?

Cгорание топливной смеси в двигателе происходит при взаимодействии смешанных паров топлива и воздуха. При возгорании смеси происходит ее расширение, в результате чего увеличивается давление в камере. Коленчатый вал при этом выполняет обороты, соответственно двигатель выполняет один такт полезной работы. В наше время уже практически не выпускаются дизельные двигатели с низкой степенью сжатия — все стремятся к более экономичным и высокооборотистым двигателям с большей степенью сжатия. Увеличения степени сжатия можно добиться за счет уменьшения камеры сгорания дизельного двигателя. Но при таких изменениях инженерам на заводах приходятся искать компромиссное решение, потому что нужно сохранить давление в камере, а также уменьшить объем сжигания топлива. Одним из способов увеличения сжатия является расточка блоков головки цилиндра – степень сжатия при этом увеличивается, а объем сгорания топлива в камере уменьшается. При этом цилиндр сохраняет свой рабочий объем и объем двигателя не меняется.

Какие бывают дизели

В последние годы растет интерес автомобилестроителей к дизельным двигателям. Сейчас почти все крупные фирмы оснащают ими часть своих легковых моделей. О грузовых машинах, автобусах, фургонах и говорить не приходится: на подавляющем большинстве западноевропейских, японских американских стоят дизели. Все значительнее их доля и в производстве наших грузовиков и автобусов. В ряде стран практически не встретишь такси с бензиновым двигателем, хотя автомобиль с дизелем дороже и тяжелее, более дымен и шумен, у него хуже скоростные и динамически качества.

Но все эти недостатки дизеля «искупаются» тем, что он потребляет меньше топлива, которое вдобавок часто стоит дешевле бензина. Так не идет ли дело к постепенному вытеснению бензинового мотора? Нет. При выборе типа двигателя решающее значение имеют условия эксплуатации, в первую очередь годовой пробег: чем он больше — тем быстрее покрывается разница в цене автомобилей с дизелем и бензиновым мотором. Так, в некоторых странах более высокие затраты на приобретение автомобиля с дизелем компенсируются уже за 20 тысяч километров: после этого эксплуатация дизельного автомобиля становится выгоднее. Отсюда и предпочтение дизелям для такси, грузовиков, автобусов, фургонов: все они имеют большие годовые пробеги.

Конечно, в разных странах величина «компенсирующего» пробега колеблется. Она зависит от разницы цен на дизельное топливо и бензин, а также от налоговой политики. Поэтому и доля легковых автомобилей с дизелями в разных странах неодинакова.

Предкамерный дизель. Объем предкамеры — 20-40% от общего объема камеры сгорания; степень сжатия — 20-21.

Чтобы разобраться, почему дизельный двигатель экономичнее бензинового, надо сравнить особенности их конструкции и рабочие процессы. Как известно, в двигателях обоих типов после такта сжатия сгорает смесь топлива с воздухом. В бензиновом эта смесь приготавливается в карбюраторе или во впускной трубе, куда топливо впрыскивается форсункой, и воспламеняется в камере сгорания от искры.

Таким образом, в цилиндр бензинового двигателя всасывается смесь топлива с воздухом. В дизеле всасывается чистый воздух, а в конце такта сжатия, когда температура сжатого воздуха становится достаточно высокой, в камеру сгорания впрыскивается топливо. Здесь оно должно успеть распылиться, смешаться с воздухом и воспламениться. На эти процессы в дизеле отведен очень короткий промежуток времени: он соответствует повороту коленчатого вала на 20-40° против почти 360° в бензиновом. При этом надо учесть, что вал вращается с частотой 4500-4800 об/мин: на таких оборотах работают современные дизели легковых автомобилей. Становится ясно, что их топливная аппаратура должна удовлетворять весьма высоким требованиям. Здесь мы подошли к самому сложному этапу создания дизельного двигателя — к организации его рабочего процесса.

Итак, за очень короткий отрезок времени топливо необходимо впрыснуть в камеру сгорания и смешать с воздухом, а для этого — тонко распылить. Если капли топлива будут слишком крупными, они не успеют сгореть за отводимое им для этого время. Несгоревшее топливо вылетит в выхлопную трубу в виде темного дыма, а также напомнит о себе повышенным расходом. Но недостаточно хорошо распылить топливо: его, как уже говорилось, нужно тщательно перемешать с воздухом, чтобы обеспечить полное сгорание. Для этого используют разные методы. В основном они сводятся к завихрению воздуха, в который и подают топливо. Организовать интенсивное движение воздуха в цилиндре оказывается не так просто. В современных двигателях для этого, например, камеру сгорания разделяют на несколько частей, обычно на две. Такие камеры называют двухполостными. При этом одна часть является основной, а другая — дополнительной. В последней и происходит интенсивное перемешивание топлива с воздухом и его воспламенение.

Вихрекамерный дизель. Объем вихревой камеры — 50-80% от общего объема камеры сгорания; степень сжатия — 20-23.

Дело в том, что при сжатии давление воздуха в основной камере сгорания нарастает быстрее, чем в дополнительной, поэтому воздух перетекает из основной в дополнительную камеру. В автомобильных двигателях в основном применяют два варианта дополнительных камер. В первом она представляет собой тело вращения. Воздух подается в нее вдоль оси вращения, а топливо впрыскивается навстречу воздуху. При этом происходит интенсивное перемешивание топлива с воздухом и воспламенение. Такие двигатели называют предкамерными (форкамерными). Камеры другого типа имеют форму сферы, куда воздух подводится по каналу (или каналам), направление которого касательно к сферической поверхности. При этом в дополнительной камере происходит интенсивное вращательное движение воздуха, а топливо впрыскивается (в большинстве случаев) перпендикулярно к направлению движения воздуха. При этом также происходит интенсивное перемешивание топлива с воздухом и воспламенение. Эти двигатели называют вихрекамерными. В результате воспламенения резко повышается давление в дополнительной камере, и горящие газы перетекают в основную, где и происходит их догорание и расширение, то есть рабочий ход. Как вихрекамерные так и предкамерные двигатели надежны в работе, обладают неплохой экономичностью и требуют сравнительно невысокого (120-150 кгс/см2/12-15 МПа) давления впрыска. Это очень важно: создаются условия для использования сравнительно простой топливной аппаратуры, в частности, одно дырчатых форсунок. Практически все выпускаемые в настоящее время дизели легковых автомобилей являются вихрекамерными или предкамерными.

Другой тип дизелей — с камерой сгорания, образованной полостью между днищем поршня и головкой цилиндра (при положении поршня в верхней мертвой точке). Такие камеры называют однополостными, поскольку они представляют собой единый объем, в который и впрыскивают топливо, и вот почему сами дизели именуют также двигателями с непосредственным впрыском топлива. Основной объем камеры сгорания здесь образует, как правило, выемка в днище поршня.

Дизель непосредственным впрыском топлива. Степень сжатия — 13-18.

У однополостных камер при одинаковом с двухполостными объеме меньше площадь поверхности, через которую тепло, образовавшееся в процессе сгорания, уходит в охлаждающую среду. У них не теряется энергия на перекачивание газа из одной полости в другую.

Благодаря этому дизели с непосредственным впрыском имеют более высокий КПД и, следовательно, лучшую (примерно на 15%) экономичность, чем вихрекамерные и предкамерные.

Для организации рабочего процесса с непосредственным впрыском необходимо решить уже известные нам задачи подать топливо в камеру сгорания достаточно тонко его распылить и хорошо перемешать с воздухом.

Качество распыливания и «дальнобойность» топливного факела обеспечивают более высоким, чем при разделенных камерах, давлением впрыска (200—1500 кгс/см2 /20—150 МПа), а для равномерного распределения топлива по объему форсунки делают с несколькими (пятью—семью) отверстиями. Аппаратура, рассчитанная на большее давление, несколько сложнее и дороже, чем для предкамерных и вихрекамерных дизелей.

Дизель с пленочным смесеобразованием. Степень сжатия — 13-18.

Но процесс, давно освоенный на двигателях среднего и большого литража (грузовиков, тракторов, судов), оказывается непросто осуществить на моторе со сравнительно малым объемом камеры сгорания и цилиндра. В однополостной камере одновременно воспламеняется больший объем смеси, чем в разделенной, быстрее нарастает давление газов, а значит, и нагрузки на детали шатунно-поршневой группы. Такую работу двигателя называют жесткой. Она сопровождается повышенным шумом. Из-за высоких нагрузок поршни, шатуны коленчатый вал приходится делать более массивными, поэтому двигатель получается тяжелее. Из-за этих недостатков он неприемлем для легкового автомобиля.

Разработаны такие однополостные камеры, где перемешивание топлива с воздухом и его воспламенение происходит не во всем объеме одновременно. Часть топлива направляется на стенку камеры и растягивается воздухом в тонкую пленку. По мере испарения оно подхватывается воздушными вихрями и последовательно вводится в очаг сгорания. Вначале воспламеняется небольшое количество топлива; благодаря этому давление нарастает постепенно и дизель работает мягче. Если на стенки направляется почти все впрыскиваемое топливо, смесеобразование называют пленочным, если часть его — объемно-пленочным.

Но для легковых автомобилей достигнутая таким путем экономичность еще недостаточна. Поэтому ищут новые способы организовать турбулентное движение воздуха в камере: устанавливают по два впускных клапана на цилиндр, создают новые типы форсунок и распылителей — специально для малолитражных дизелей. Вместо четырехцилиндровых двигателей предлагают трехцилиндровые: у них больше объем одного цилиндра (при равном суммарном) значит, легче организовать рабочий процесс Задача создания малолитражного двигателя с непосредственным впрыском, конечно, будет решена, но потребует немалых усилий.

Познакомившись с особенностями конструкции дизелей, вернемся к вопросу о том, почему они более экономичны, чем бензиновые двигатели. Тут несколько причин. Основные — различия в системах регулирования и величинах степени сжатия.

Сравнение топливной экономичности легковых автомобилей с различными двигателями: 1 — типичный бензиновый; 2 — бензиновый с улучшенным рабочим процессом; 3 — вихрекамерный дизель; 4 — дизель с непосредственным впрыском.

Регулирование работы дизеля (изменение его мощности) осуществляется увеличением или уменьшением подачи топлива в цилиндр. Работа бензинового двигателя регулируется прикрытием или открытием дроссельной заслонки карбюратора. 3десь необходимо напомнить, что сжатие воздуха в цилиндре дизеля или рабочей смеси в бензиновом двигателе начинается при давлении ниже атмосферного, то есть при некотором разрежении. Оно возникает в результате того, что во время всасывания впускной клапан и впускной тракт оказывают значительное сопротивление потоку смеси или воздуха. Поэтому когда поршень находится в нижней мертвой точке перед тактом сжатия в цилиндре — разрежение. В итоге фактическая степень сжатия всегда ниже геометрической (той, которая должна быть, если бы сопротивление впускного тракта равнялось нулю и сжатие начиналось с давления, равного атмосферному). У бензинового двигателя очень большое сопротивление создает дроссельная заслонка. Когда она прикрыта, то есть водителю не нужна полная мощность двигателя, разрежение в цилиндре достаточно велико, оно даже используется например, для работы усилителя тормозов. При этом действительная степень сжатия намного ниже геометрической, указанной в технической характеристике. А именно от степени сжатия прежде всего зависят мощность и экономичность двигателя. Вот на этих, так называемых частичных режимах и выигрывает дизель: у него нет дроссельной заслонки и фактическая степень сжатия меньше отличает от геометрической. Вдобавок у дизеля она выше по условиям сгорания — 18—23, тогда как у бензинового не превышает, как правило, 10. Чтобы получить практически такие высокие степени сжатия, необходимо изготовлять детали кривошипно-шатунного механизма, полости в поршне и головку блока дизеля с большой точностью, а это требует дополнительных производственных затрат, что сказывается на стоимости двигателя. На нее оказывает влияние и топливная аппаратура она сложнее, требует очень высокой точности изготовления и потому дорога.

Таким образом, дизельные двигатели более экономичны, но и более дороги, чем бензиновые. Существенно и то, что регулировка и ремонт дизельной аппаратуры (насосов, форсунок) требуют большой точности и трудовых затрат и возможны только в специально оборудованных мастерских и СТО. Целесообразность применения дизелей зависит от условий эксплуатации автомобилей, на которых они установлены. И выбор того или иного типа двигателя диктуется в основном экономическими расчетами.

Разумеется, мы смогли коснуться лишь основных проблем, связанных с этим выбором. Более подробно конструктивные особенности различных двигателей освещены в специальной литературе.

Ю. Пташкин, инженер. («За рулем», 1983, №11)

Литература

П. Белов, В. Бурячко, Е Акатов. Двигатели армейских машин. Ч. 1. М., Воениздат, 1971.

Двигатели внутреннего сгорания Теория поршневых и комбинированных двигателей. Под ред. А. Орлина, М. Круглова, 4-е изд. М., Машиностроение, 1983.

И. Ленин, К. Попык, О. Малашкин и др. Автомобильные и тракторные двигатели (теория, системы питания, конструкции и расчет). М., Высшая школа, 1969.

А. Орлин, В. Алексеев, Н. Костыгов и др. Устройство и работа поршневых и комбинированных двигателей. 2-е изд. М., Машиностроение, 1970.

Поделиться в FacebookДобавить в TwitterДобавить в Telegram

Компрессия и степень сжатия двигателя автомобиля

Кто изучает устройство автомобиля, встречает непонятные термины из области работы двигателя. Расскажем что такое компрессия и степень сжатия мотора, их определения. Рассмотрим работу мотора с изменяемой степенью сжатия.

Что такое степень сжатия

Это отношение полного объема цилиндра к объему камеры сгорания. На бензиновом моторе, в зависимости от конкретной задачи, степень сжатия может серьезно варьироваться, достигая величин в 8 до 12. На дизельных двигателях из-за их конструктивных особенностей она намного больше и оставляет от 14 до 18 единиц. Для бензиновых двигателей, чем выше степень сжатия - тем выше удельная мощность. Но если её сильно увеличить, то может снизится ресурс и возрастает риск проблем с мотором при заправке некачественным топливом.

Что такое компрессия двигателя

Это максимальное давление воздуха в камере сгорания в конце такта сжатия.

Компрессия это давление в цилиндре. Поэтому она зависит от степени сжатия (величина давления в меньшем объеме всегда будет больше, т.е. при увеличении степень сжатия компрессия растет). По величине компрессии можно предварительно судить о состоянии двигателя. При этом важно правильно провести процедуру замера компрессии.

При снижении уровня компрессии необходимо выяснить причину. Это могут быть поршневые кольца или проблемы в клапанном механизме, выяснить это можно так. В проблемные цилиндры с помощью шприца вводят 15-20 грамм моторного масла. Процедуру замера повторяют. Если показания манометра выросли - причина падения в поршневых кольцах, если остались на прежнем уровне - в клапанах.

Двигатели с изменяемой степенью сжатия

Японские производители улучшили эффективность традиционного двигателя за счет поднятия степени сжатия до 14:1, что ранее было просто невозможно. Они заявляют, что с данной степенью сжатия могут работать, как бензиновый, так и дизельный двигатели, причем на обычном 95-ом бензине. Как это возможно? Один из недостатков бензиновых моторов с искровым зажиганием — относительно невысокая степень сжатия. Если ее поднять с нынешних 10:1 до 12,5:1, то эффективность использования теплоты сгоревшего топлива возрастет процентов на шесть. Но чем сильнее сжимаем поршнем воздух с парами бензина, тем выше риск взрывного неконтролируемого самовоспламенения смеси — это детонация, страшный враг двигателя: ударные нагрузки, перегрев, разрушение поршней и колец.

Не зря степень сжатия бензиновых агрегатов редко поднимается выше 11:1.

На самом деле все дело в снижении средней температуры цикла. Чем «холоднее» горючая смесь в камере сгорания, тем сильнее ее можно сжать без риска возникновения детонации. Думаете, японцы решили охлаждать всасываемый воздух? Нет, они занялись системой выпуска.


Этот прием давно известен по гоночным моторам — «настроенные» выпускные каналы по схеме 4-2-1, в которых порции выхлопных газов из всех четырех цилиндров не «толкаются» друг с другом, а строго поочередно вылетают в атмосферу. При чем здесь температура цикла? «Настроенный» выпуск за счет газодинамического наддува улучшает продувку цилиндров — в них остается меньше горячих отработавших газов, которые неизбежно подмешиваются к свежему воздуху на такте впуска и поднимают температуру в конце такта сжатия. Как уверяют, если долю выхлопа снизить с обычных 8% до 4%, то степень сжатия можно безболезненно поднять на три единицы. А за счет охлаждения воздуха при распыле бензина прямо в цилиндр — сжатие можно увеличить еще на единичку.

Чтобы реализовать продвинутый газообмен, пришлось раскошелиться на фазовращатели на обоих распредвалах — и впускном, и выпускном. А вдобавок с помощью компьютерного моделирования придумать еще кучу всяких ухищрений. К примеру, чтобы улучшить «термоизоляцию» камеры сгорания, диаметр цилиндра пришлось уменьшить с нынешних 87,5 мм до 83,5 мм, соответственно увеличив ход поршня.

Длинноходность способствует увеличению крутящего момента на низких оборотах, вдобавок тягу «на низах» улучшают непосредственный впрыск и увеличение степени сжатия — и возникает эффект, который именуют downspeeding. Мол, мотор настолько хорошо тянет «внизу», что среднестатистические обороты при езде снижаются на 15% — это дает эффект по части снижения расхода бензина и выбросов СО2 по сравнению с турбомотором с уменьшенным до 1,4 л рабочим объемом.

Подготовка дизеля к зиме

Многие знают, что дизельные двигатели более чувствительны к низкой температуре зимой, чем бензиновые. Так почему все больше людей отдает предпочтение дизелю и с какими проблемами сталкиваются? Рассмотрим подробнее основные проблемы и возможности их решения.
Преимущества дизельных двигателей Дизельные двигатели набирают популярность у водителей легковых автомобилей. Дизели, изначально работавшие для тяжелой дорожной, строительной, военной и сельскохозяйственной техники, на современных машинах проявляют себя как наиболее экономичные и выгодные с эксплуатационной точки зрения двигатели.

Почему потребители покупают дизельные автомобили?
  1. Экономичность. КПД дизеля на 15-20 пунктов выше, чем бензинового двигателя. Для дизельных двигателей - это 45-50% энергии, полученной от преобразования топлива, для бензиновых - от 20 до 30%. Это говорит об экономичном расходе ресурса.
  2. Надежность. Дизель работает по циклу «впрыск топлива - сжатие - расширение - выпуск отработанных газов», запускаюсь от ТНВД или поступившего к компьютеру сигнала датчика в системах Common Rail. У бензиновых двигателей запуск осуществляет система зажигания, которая при скачкообразном поступлении высокого напряжения создает влияющие на электронику помехи. Разница в способе воспламенения топлива даёт большую нагрузку на дизельный двигатель, поэтому детали изначально имеют повышенную прочность материала внутренних компонентов. Повышенная стойкость деталей двигателя значительно увеличивает его общий ресурс и срок эксплуатации.
  3. ГСМ. При современном уровне почти сравнявшихся цен на бензин и дизельное топливо, благодаря высокому КПД, расход у дизельных автомобилей меньше на 15-20%. С финансовой точки зрения дизели более выгодны.
  4. ТО и ремонт. Надежность дизеля реже приводит к серьезным поломкам, которые требуют больших финансовых вложений для их устранения.
  5. Цена автомобиля. При одинаковых ценах на модели дизельных и бензиновых машин через пять лет эксплуатации в одинаковых режимах потеря в цене на первые не превысит 5-7%. На вторые - упадет на 35-40%.
  6. Экологичность и безопасность. Устройство двигателей дизельных автомобилей и принцип воспламенения топлива в разы снижают концентрацию вредных веществ в выхлопных газах. А сам мотор мало подвержен нагреву до критических температур.
  7. Автомобили, использующие ДТ, могут без внесения конструктивных изменений в ДВС работать на альтернативном топливе.



Поведение дизельного мотора зимой Дизельный двигатель запускается при сильном сжатии впрыснутого топлива. Сама сила сжатия остается неизменной и зависит от максимально близкого расположения поршня и верхней стенки камеры сгорания. Также существует такое понятие, как компрессия. 

Компрессия - показатель того, насколько увеличилось в большую сторону от нормального расстояние между этими деталями в процессе эксплуатации. Иначе – это уровень давления в цилиндрах, которые обеспечивают оптимальное давление для силы сжатия. Иначе - износ указанных деталей двигателя.

Чем лучше состояние цилиндров и поршневых колец, тем выше компрессия. При большем давлении воспламенение топлива наступает быстрее и двигатель запускается. При недостаточном - температуры в камерах на запуск не хватает, и двигатель не заводится.

В нормальном состоянии топливо воспламеняется в температурном диапазоне от 230°С до 345 °С. При похолодании дизельное топливо обычно мутнеет, густеет, становится вязким и замерзает.

Летнее ДТ начинает процесс преобразования при -5°С, зимнее при -25°С. При низкой компрессии поршню не хватает мощности, чтобы «продавить» ДТ через топливные фильтры и добрать необходимую для воспламенения температуру в камере сгорания. Как и любое давление, измерить компрессию можно в атмосферах.


В новом автомобиле компрессия в цилиндрах составляет примерно 36-40 атмосфер: машина спокойно заведется в -30-35°С. Условно-общие значения компрессии для запуска мотора в холодное время года:
  • 30-36 атмосфер: запуск мотора возможен при понижении температуры до -30°С;
  • 28-30 атмосфер: диапазон допустимых значений температуры воздуха от -15 до -30°С, или многодневная парковка на улице при температуре не ниже -15°С;
  • 25-28 атмосфер: авто способно выдержать продолжительное время на стоянке под открытым небом и завестись, если за этот период температура не опускалась ниже -10°С;
  • 20-25 атмосфер: автомобилю необходим отапливаемый гараж или теплый паркинг для запуска двигателя;
  • До 20 атмосфер: машина не заведется даже при положительной температуре.

Тем, кто взял новый автомобиль, волноваться не о чем ближайшие 2-3 года. А тем, у кого постгарантийное ТС, лучше подготовиться к зимним холодам и холодной осени.
Компрессия в дизельном двигателе Замер компрессии в дизельном двигателе - это ряд несложных операций, в ходе которых измеряют процент сжатия поршнем воздуха. По результатам проверки можно сделать выводы о состоянии поршневой группы, цилиндра, прокладок, и головки этого блока. Для измерений используют специальный прибор - компрессометр или компрессограф. Компрессометр - простая конструкция, которая в основном состоит из манометра. Он, в свою очередь, соединен с переходником, на котором расточена такая же резьба, как и на стандартной свече и имеет похожий вид.

Помимо компрессии в цилиндрах существует ещё и другая величина - степень сжатия. Степень сжатия - это геометрическая величина, которая отображает соотношение камеры сгорания между головкой и поршнем при его положениях в верхней и нижней мертвой точке.

Часто эти понятия путают, хотя компрессия - это физическая величина, которая измеряется в кг/см2, pci или барах и является давлением, которое создается в цилиндрах двигателя при работе поршня. Величина компрессии всегда больше, чем степень сжатия.

Измерение компрессии дизельного двигателя выполнятся в несколько этапов. Для начала нужно учесть некоторые аспекты:

  • Измерения проводятся исключительно на прогретом дизельном двигателе, его температура должна быть приблизительно около 70-90 С.
  • Необходимо отключить подачу топлива (отключить бензонасос или форсунки).
  • Стоит вывернуть абсолютно все свечи, так как они будут создавать компрессию в других цилиндрах, из-за этого у двигателя при прокрутке стартером упадут обороты и будет возникать сопротивление вращению.
  • Аккумулятор должен быть полностью заряжен или подключено пусковое устройство. Стартер также должен быть исправен.


Рассмотрим этапы замера компрессии в дизельном двигателе:
  1. Необходимо перекрыть подачу топлива для того, чтобы в цилиндре помимо масла больше ничего не создавало излишнюю компрессию. Лучше всего - отсоединить клеммы с топливного насоса.
  2. Выкручиваем все свечи и присоединяем компрессометр. Его установка выполняется так же, как и установка обычной свечи. Закручиваем измерительный прибор по резьбе.
  3. Подключаем заряженный аккумулятор и прокручиваем стартером поршни до тех пор, пока стрелка на компрессометре не остановится в максимальном значении (пока не перестанет возрастать давление). Во время выполнения этой операции нужно поставить нейтральную передачу и ручник.
  4. Повторяем замер со всеми цилиндрами, устанавливая прибор вместо каждой из свеч.
  5. Записываем результаты каждого теста, чтобы сравнить их с нормальными показаниями.
  6. Вкручиваем обратно все свечи, восстанавливаем работу бензонасоса (подачу топлива). Присоединяем клеммы на место.

Подготовка дизеля к зиме Комплекс мероприятий по подготовке автомобиля к зимнему сезону входят: 
  1. Проверка компрессии и устранение причин.
  2. Замена масла. Масло обеспечивает нужный уровень скольжения подшипникам и качение турбокомпрессору, увеличивая продолжительность их службы. Зимнее масло имеет меньший коэффициент вязкости, тем самым облегчая запуск. Для турбированных двигателей масла имеют улучшенный состав.
  3. Замена фильтров. Дизельные двигатели чаще нуждаются в смене расходников, из-за того, что нагрузка на них больше. Поэтому желательно проверить и заменить фильтры.
  4. Чистка форсунок. ДТ не всегда бывает хорошего качества. Некачественное топливо может привести к засорению топливной системы, что скажется на потере мощности турбины и увеличит вероятность выхода её строя. Форсунки склонны к высокому нагреву, поэтому часть топлива запекается, образуя нагар. Этот запекшийся слой уменьшает сечение пропускного канала, снижая работоспособность форсунки и объем подачи ДТ в камеру сгорания для запуска на 20%.
  5. Корректировка работы ТНВД.
  6. Зарядка АКБ.
  7. Проверка свечей накала, если установлен предпусковой подогреватель. Свечи разогревают камеру сгорания топливной смеси в холодное время года, обеспечивая запуск мотора. Зимой проблема актуальна, ведь с пуском могут возникнуть сложности. Летом система не используется.
  8. Утепление двигателя. Не обязательная, но популярная процедура – укрыть двигатель одеялом.
  9. Установка предпускового зажигания. Разнообразие жидкостных, электрических и автономных подогревателей позволяет выбрать необходимый вариант для конкретного случая.

Что делать, если наступило резкое похолодание?
Основные проблемы, с которыми может столкнуться хозяин дизеля на неподготовленной к сезону машине, и методы их решения:
  1. В баке было летнее ДТ, и оно стало вязким. В таком случае в бак заливают депрессорные присадки, но если их нет - подойдет бензин или керосин (не более 15% от объема бака). Долив производится в отогретый автомобиль, поэтому лучше заранее позаботиться о свечах накаливания. Можно попробовать сменить топливный фильтр - возможно, его наглухо забило соляркой и парафинизировало, из-за чего он потерял пропускную способность и топливо не попадает в камеру сгорания.
  2. На улице резко похолодало, и мотор остыл. При кратковременных заморозках стоит утеплить двигатель одеялом или вспененным гофрированным полиэтиленом - это поможет ему быстро отогреться, но не спасет в сильный мороз.
  3. Неисправны свечи накала, а компрессии не хватает. Можно несколько раз включить-отключить зажигание для прогрева свечей накаливания. Также есть старый метод - эфиросодержащий спрей впрыскивают в воздушный фильтр. С помощью него и газовой горелки можно попробовать разогреть воздух в цилиндрах.
  4. Сел аккумулятор. Нужно подзарядить АКБ и попросить «прикурить». Важно помнить, что донор должен заглушить двигатель, иначе мощный дизель может спалить или серьезно повредить электронику прикуривающего авто. Провода должны быть с сечением не менее 1-1,5 квадрата. Предпусковые подогреватели лучше включить.

Во всех остальных случаях поможет только эвакуация ТС в теплый бокс.

Понять, почему дизельный двигатель не заводится на морозе довольно трудно. Есть множество причин и способов их устранения. Поэтому лучше обезопасить себя от возможных проблем и заранее провести подготовку к зимнему сезону.

Компания CAR-TOOL предлагает большой выбор оборудования для диагностики и обслуживания дизельных двигателей.


Что такое степень сжатия в бензиновых и дизельных двигателях?

Что такое степень сжатия?

Коэффициент сжатия

- одна из основных характеристик двигателя внутреннего сгорания. Это отношение объема над поршнем, когда он находится в самом нижнем положении (НМТ), к объему над поршнем, когда он находится в самом верхнем положении (ВМТ). Он указывает на степень сжатия топливовоздушной смеси в двигателе.

Рисунок 1 - Простая диаграмма камеры сгорания и степени сжатия

Это отношение объема камеры сгорания от ее наибольшего к наименьшему объему.Это соотношение между общим объемом цилиндра и камеры сгорания, когда поршень находится в НМТ (нижней мертвой точке), к объему одной только камеры сгорания, когда поршень находится в ВМТ (верхней мертвой точке). Это соотношение является одним из основных требований для всех двигателей внутреннего сгорания.

В рабочем состоянии:

Поскольку бензин очень летуч, «Степень сжатия» для бензиновых двигателей обычно ниже. Таким образом, он варьируется от 10: 1 до 14: 1. Бензиновый двигатель сжимает воздух и топливо в соотношении от 10: 1 до 14: 1.Бензиновый двигатель смешивает бензин с воздухом и сжимает эту смесь в камере сгорания. Лучшее смешивание воздуха и топлива друг с другом делает его однородным. Затем электрическая свеча зажигания воспламеняет топливно-сжатую смесь искрой. Таким образом, топливо полностью и мгновенно сгорает.

Степень сжатия

В дизельных двигателях «Степень сжатия» варьируется от 18: 1 до 23: 1, что зависит от конструкции и конструкции двигателя. В бензиновых двигателях используется метод искрового зажигания.Однако в технологиях дизельных двигателей, таких как «Прямой впрыск», «Непрямой впрыск» и «Прямой впрыск Common-Rail», используется метод воспламенения от сжатия , , , . Однако степень сжатия остается практически одинаковой как для бензинового, так и для дизельного двигателя, соответственно, независимо от объема / рабочего объема двигателя.

Преимущества более высокой степени сжатия:

Чем выше степень сжатия, тем лучше тепловой КПД двигателя.Таким образом, двигатель может извлечь больше механической энергии из заданной массы топливовоздушной смеси. В этом контексте дизельные двигатели имеют более высокую топливную экономичность для данного количества топлива, чем бензиновые двигатели того же размера.

Это означает, что скажем; Вы сравниваете обычные бензиновые и дизельные двигатели с одинаковым объемом двигателя 1,0 л. Тогда в реальном мире дизельный двигатель объемом 1,0 л будет потреблять меньше топлива, чем бензиновый двигатель объемом 1,0 л. Другими словами, автомобиль с 1,0-литровым дизельным двигателем будет иметь больший пробег по сравнению с автомобилем с 1-литровым дизельным двигателем.Бензиновый двигатель 0L при аналогичных условиях движения.

Дизельные двигатели

- Engineer-Educators.com

Дизельный двигатель аналогичен бензиновому двигателю, используемому в большинстве автомобилей. Оба двигателя являются двигателями внутреннего сгорания, то есть сжигают топливно-воздушную смесь в цилиндрах. Оба являются поршневыми двигателями, приводимыми в движение поршнями, перемещающимися в двух направлениях в поперечном направлении. Большинство их частей похожи. Хотя дизельный двигатель и бензиновый двигатель работают с одинаковыми компонентами, дизельный двигатель, по сравнению с бензиновым двигателем равной мощности, тяжелее из-за более прочных и тяжелых материалов, используемых для противодействия большим динамическим силам от более высокого давления сгорания, присутствующего в дизельном топливе. двигатель.

Более высокое давление сгорания является результатом более высокой степени сжатия, используемой в дизельных двигателях. Степень сжатия - это мера того, насколько двигатель сжимает газы в цилиндре двигателя. В бензиновом двигателе степень сжатия (которая контролирует температуру сжатия) ограничена воздушно-топливной смесью, поступающей в цилиндры. Более низкая температура воспламенения бензина приведет к его воспламенению (горению) при степени сжатия менее 10: 1. У среднего автомобиля степень сжатия 7: 1.В дизельном двигателе обычно используются степени сжатия от 14: 1 до 24: 1. Возможны более высокие степени сжатия, потому что сжимается только воздух, а затем впрыскивается топливо. Это один из факторов, который позволяет дизельному двигателю быть таким эффективным. Степень сжатия будет обсуждаться более подробно позже в этом модуле.

Еще одно различие между бензиновым двигателем и дизельным двигателем заключается в способе управления частотой вращения двигателя. В любом двигателе скорость (или мощность) напрямую зависит от количества топлива, сожженного в цилиндрах.Бензиновые двигатели имеют автоматическое ограничение скорости из-за метода, который двигатель использует для управления количеством воздуха, поступающего в двигатель. Частота вращения двигателя косвенно регулируется дроссельной заслонкой в ​​карбюраторе. Дроссельная заслонка в карбюраторе ограничивает количество воздуха, поступающего в двигатель. В карбюраторе скорость воздушного потока определяет количество бензина, которое будет смешано с воздухом. Ограничение количества воздуха, поступающего в двигатель, ограничивает количество топлива, поступающего в двигатель, и, следовательно, ограничивает скорость двигателя.Ограничивая количество воздуха, поступающего в двигатель, добавление большего количества топлива не увеличивает частоту вращения двигателя сверх точки, в которой топливо сжигает 100% доступного воздуха (кислорода).

Дизельные двигатели не имеют автоматического ограничения скорости, поскольку количество воздуха (кислорода), поступающего в двигатель, всегда является максимальным. Следовательно, частота вращения двигателя ограничивается исключительно количеством топлива, впрыскиваемого в цилиндры двигателя. Следовательно, в двигателе всегда имеется достаточно кислорода для сгорания, и двигатель будет пытаться разогнаться, чтобы соответствовать новой скорости впрыска топлива.Из-за этого ручное управление подачей топлива невозможно, поскольку эти двигатели в ненагруженном состоянии могут ускоряться со скоростью более 2000 оборотов в секунду. Дизельным двигателям требуется ограничитель скорости, обычно называемый регулятором, для контроля количества топлива, впрыскиваемого в двигатель.

В отличие от бензинового двигателя, дизельный двигатель не требует системы зажигания, потому что в дизельном двигателе топливо впрыскивается в цилиндр, когда поршень достигает верхней точки своего такта сжатия.Когда топливо впрыскивается, оно испаряется и воспламеняется из-за тепла, создаваемого сжатием воздуха в цилиндре.

Дизель и бензиновый двигатель - Энергетическое образование

Вы можете узнать о процессах отдельных двигателей, щелкнув следующие ссылки: Дизельный двигатель, Бензиновый двигатель.

Два основных типа двигателей, используемых в настоящее время в автомобилях, работают либо на дизельном топливе, либо на бензине. В то время как двигатели имеют много одинаковых деталей, включая блок цилиндров, у двигателей есть несколько отличий, а именно зажигание, стартерные двигатели и мощность.

Зажигание

Наиболее существенное различие между дизельным и бензиновым 4-тактным двигателем - это метод зажигания. В бензиновом двигателе используется свеча зажигания с синхронизацией по времени, а в дизельном - самовозгорание. Самовозгорание - это состояние - температура и давление, при которых материал, в данном случае дизельное топливо, сгорает без искры. Эффективность дизельного двигателя можно объяснить более высокой степенью сжатия; то есть отношение наибольшего объема к наименьшему объему камеры сжатия в дизельном двигателе намного выше.

В дизельном двигателе самовозгорание достигается за счет высокого давления и температуры. Температура топливного воздуха повышается за счет его сжатия в цилиндре. Давление также достигается при сжатии. Дизельные двигатели действительно требуют высокой степени сжатия. Если бы такие же высокие степени сжатия применялись к бензиновому двигателю, воздушно-топливная смесь воспламенилась бы слишком рано при сжатии. Это заставило бы двигатель изменить направление почти мгновенно.Степень сжатия бензинового двигателя обычно намного ниже, чем у дизельного двигателя.

Стартеры

Если у вас когда-либо был автомобиль с дизельным двигателем, и у вас разрядился аккумулятор, вы знаете, что запускать его снова - кошмар. Это связано с тем, что батареи, используемые в дизельных двигателях, намного мощнее, чем батареи, используемые в бензиновых двигателях. Поскольку у дизельных двигателей нет свечей зажигания, стартер должен сжимать поршень, что приводит к самовозгоранию.Это требует гораздо больше энергии, чем просто зажигание свечи зажигания.

Выходы

Как правило, дизельные двигатели имеют более высокий удельный крутящий момент, чем бензиновые. Это отношение выходного крутящего момента к объему двигателя. Например, четырехцилиндровый дизельный двигатель на Golf TDI 2015 года выдает 236 фунт-футов крутящего момента по сравнению с всего 185 фунтами на фут для его бензинового аналога [1] . Кроме того, поскольку дизельные двигатели могут работать с более высокими степенями сжатия, они, как правило, более эффективны.Например, Golf TDI 2014 года показал на 8 миль на галлон лучше в смешанном цикле и на 12 миль на галлон лучше на шоссе. [2]

С другой стороны, дизельные двигатели могут загрязнять больше, поскольку дизельное топливо может содержать вредные химические вещества и, как правило, производить больше твердых частиц [3] .

Список литературы

Почему дизельные двигатели более эффективны, чем бензиновые

Термический КПД, степень сжатия и плотность топлива являются основными факторами, определяющими эффективность использования топлива - a.к.а. экономия топлива - двигателя. При установке в автомобиле, пикапе, грузовике, лодке, корабле, тяжелом оборудовании и т. Д., Даже в большей степени, переменные факторы влияют на эффективность использования топлива в двигателе. Что касается топливной эффективности двигателя, используемого для передвижения, транспорта и мобильности, такие факторы, как вес транспортного средства, местность и динамика воздушного потока, играют роль. Но, хотя эти переменные играют роль в определении эффективности использования топлива, они ни в коем случае не являются самыми важными факторами.

Три переменных, которые в наибольшей степени влияют на топливную эффективность двигателя, - это плотность топлива, полнота сгорания и тепловая эффективность. Из трех наиболее важных переменных, определяющих экономию топлива, наибольшее влияние оказывает термический КПД.

Никакая другая переменная не играет большей роли в определении экономии топлива, чем тепловой КПД. Причина в том, что тепловой КПД является побочным продуктом всех других переменных, связанных с сгоранием, включая плотность топлива, плотность энергии топлива, степень сжатия двигателя и соотношение воздуха и топлива, подаваемого в двигатель.

Тепловой КПД, для всех практических целей, - это «газовый» пробег.

Что такое термический КПД

Как определение непрофессионала, так и строгое определение термического КПД - два самых простых объяснения в физике для понимания. Термический КПД - это процент энергии (топлива), который производит работу. Dictionary.com объясняет: «Определение термической эффективности, отношение производимой работы теплового двигателя к подводимой теплоте, выраженное в тех же единицах энергии.«Тепловой КПД - это часть энергии, которую двигатель производит во время сгорания, которая толкает автомобиль по дороге, раскручивает гребной винт лодки, поднимает стрелу и ковш экскаватора с обратной лопатой и т. Д.

Что касается двигателей внутреннего сгорания, термический КПД - это мера того, какой процент тепла - тепла, являющегося синонимом энергии / топлива - вложено в двигатель, который тот же самый двигатель может преобразовать в работу. Тепловая энергия - это мера процента тепла в галлоне топлива, которое двигатель может использовать, чтобы толкать транспортное средство по дороге или выполнять какую-либо другую механическую задачу, такую ​​как подъем ковша или стрелы, процент энергии в топливе, который двигатель не тратит впустую.

Другой взгляд на тепловую энергию

Тепловая энергия также может рассматриваться как количество энергии, которое использует двигатель, по сравнению с количеством энергии, которое он тратит впустую, сколько энергии в галлоне газа идет на движение и сколько тепла уходит в выхлоп или теряется. в окружающую среду, окружающую двигатель.

Чтобы понять основы термического КПД двигателя, необходимо понимать основы двигателей внутреннего сгорания.

Тепловой КПД дизельных двигателей по сравнению с бензиновыми двигателями

Двигатели внутреннего сгорания также называют «тепловыми двигателями». Двигатели внутреннего сгорания преобразуют энергию - энергию топлива - в тепло, а тепло создает работу. Но только небольшая часть тепла / энергии / топлива становится работой, гораздо меньше половины.

В транспортных средствах и механизмах используются два типа двигателей внутреннего сгорания: двигатели с искровым зажиганием и двигатели с воспламенением от сжатия. Дизельные и биодизельные двигатели - это двигатели сжатия, а двигатели, работающие на бензине, этаноле и пропане, - это двигатели с искровым зажиганием.

Механика искрового двигателя

Электродвигатели с искровым зажиганием воспламеняют топливовоздушную смесь небольшим электрическим зарядом. Когда поршень начинает опускаться после такта выпуска - хода, в котором поршень выталкивает выхлопные газы из предыдущего цикла выпуска из цилиндра, - форсунки заполняют цилиндр топливовоздушной смесью. С нижней точки своего хода поршень начинает подниматься, сжимая топливно-воздушную смесь. В верхней части поршневого цикла зажигается искра, воспламеняющая смесь.

Механика компрессорного двигателя

В отличие от двигателей с искровым зажиганием, которые добавляют топливовоздушную смесь в нижней части поршневого цикла, только воздух находится в цилиндре в нижней части поршневого цикла в двигателе сжатия. Поршень поднимается и сжимает воздух, повышая температуру внутри цилиндра, а в верхней части хода поршня форсунки впрыскивают дизельное топливо в горячий сжатый воздух. Температура воздуха настолько высока, что вызывает возгорание дизельного топлива.

Хотя и компрессионные двигатели, и двигатели с искровым зажиганием на удивление неэффективны, дизельные двигатели значительно более эффективны, чем бензиновые.

Тепловые двигатели - особенно бензиновые, этанольные и газовые двигатели - чрезвычайно неэффективны. Даже самые термически эффективные бензиновые двигатели теряют около 70 процентов производимой ими энергии. По данным GreenCarReports, хотя и немного лучше, даже самые термически эффективные дизельные двигатели по-прежнему теряют от 50 до 60 процентов.com. «Эффективность, с которой они это делают, измеряется с точки зрения« теплового КПД », и большинство бензиновых двигателей внутреннего сгорания в среднем составляют около 20 процентов теплового КПД. Дизель обычно выше - в некоторых случаях приближается к 40 процентам ».

Почему тепловые двигатели неэффективны

Существуют разные типы двигателей внутреннего сгорания - дизельный, бензиновый, этанол, природный газ, пропан, биодизель и т. Д. Но в разной степени все двигатели внутреннего сгорания неэффективны. Причина неэффективности двигателей внутреннего сгорания универсальна.Просто технологии двигателей, необходимые для преобразования 100 процентов тепла, производимого двигателем во время сгорания, не существуют.

Очень большая часть тепла, выделяемого при сгорании, выдувается через выхлопную трубу. Конвекция и теплопроводность несут ответственность за оставшуюся потерю тепла; тепловые двигатели производят то, что не превращается в механическую энергию. Блок двигателя поглощает тепло, потому что охлаждающая жидкость в радиаторе сохраняет двигатель холодным, поэтому он не перегревается и не заедает. Воздух за пределами двигателя также поглощает тепло, потому что он также отбирает тепло от блока цилиндров.

Однако, честно говоря, не существует системы преобразования энергии, которая была бы эффективна на 100 процентов. Например, дровяные печи и электростанции тратят огромное количество энергии. Большая часть энергии просто выходит из дымохода или дымовой трубы.

Тепловые двигатели, однако, особенно неэффективны.

Но есть средства повышения теплового КПД двигателей внутреннего сгорания. Повышение степени сжатия двигателя внутреннего сгорания - первое средство.

Какая степень сжатия

Именно степень сжатия в большей степени, чем любая другая инженерная характеристика двигателя, определяет тепловой КПД - или, точнее, тепловую неэффективность . Степень сжатия - это разница в объеме цилиндра между временем, когда поршень находится в нижней части своего цикла, и временем, когда поршень находится в верхней части своего цикла.

Опять же, когда поршень находится в нижней части цикла, цилиндр наполнен воздухом в случае компрессионного двигателя и заполнен воздушно-топливной смесью в случае двигателя с искровым зажиганием и когда поршень движется вверх. , воздушная или воздушно-топливная смесь начинает сжиматься, и чем сильнее сжимается воздух или воздушно-топливная смесь, тем больше увеличивается температура внутри цилиндра, и как только поршень достигает вершины своего цикла, воздушно-топливная смесь сгорает.

Чем больше нагревается воздух или топливовоздушная смесь в результате сжатия перед сгоранием, тем выше термический КПД.

Как степень сжатия влияет на тепловую эффективность

Чем выше степень сжатия до определенного момента, тем выше термический КПД двигателя. Термический КПД определяется как количество тепла или теплового потенциала, то есть топлива, которое двигатель преобразует в механическую энергию, работу. Термическая эффективность, с точки зрения непрофессионала, - это процент топлива, которое двигатель использует, чтобы толкать автомобиль по дороге.

Формула теплового КПД проста. Формула теплового КПД - это количество тепла, выделяемого двигателем, деленное на количество тепла - опять же в виде топлива - затраченного на двигатель. Чем ближе две температуры, тем выше термический КПД двигателя. Если температура сжатого воздуха или топливовоздушной смеси в цилиндре такая же, как температура сгорания топлива и воздуха, тепловой КПД составляет 100 процентов.

Теоретически, сжатие воздуха или топливовоздушной смеси до тех пор, пока выделяемое тепло не сравняется с температурой сгорания топливовоздушной смеси, было бы идеальным.Однако это невозможно.

Пределы степени сжатия

Повышение степени сжатия конструкции двигателя невозможно сверх определенной степени. Инженеры могут сделать степень сжатия дизельного двигателя намного выше, чем у бензинового. Причина в том, что в цилиндре дизельного двигателя воздух находится только при подъеме поршня. Дизельное топливо впрыскивается в цилиндр, когда поршень достигает верхней точки своего хода. После впрыска дизельное топливо автоматически воспламеняется, и давление, создаваемое при сгорании дизельного топлива, толкает поршень обратно вниз, что приводит к вращению коленчатого вала.

Цилиндры бензиновых двигателей с искровым зажиганием, с другой стороны, заполняются воздушно-бензиновой смесью в нижней части поршневого цикла. Итак, когда поршень начинает подниматься, тепло, выделяемое при сжатии воздуха - в определенный момент - вызывает самовоспламенение бензина в топливовоздушной смеси.

Самовоспламенение в бензиновом двигателе - катастрофическое событие. Самовоспламенение, также известное как , предварительное зажигание не следует путать с детонацией. Детонация - это когда карманы топливовоздушной смеси в цилиндре воспламеняются в разное время.Детонация вызывает свистящий звук, поэтому детонацию часто называют «стуком». Самовоспламенение полностью отличается от детонации. Детонация происходит при нижнем ходе поршневого цикла. Самовоспламенение происходит при движении вверх. Нет звука, связанного с самовоспламенением. Двигатель просто взрывается. Самовоспламенение разрушает головки и штоки поршней, разрушает кольца и уплотнения и даже может выдуть свечи зажигания сбоку двигателя.

Для предотвращения самовоспламенения в двигателе с искровым зажиганием - чтобы предотвратить воспламенение бензина в топливовоздушной смеси в результате тепла, выделяемого при сжатии поршнем смеси внутри цилиндра, - инженеры должны поддерживать степень сжатия между 8: 1 и 12: 1.

Но, поскольку дизельное топливо подается в цилиндр компрессионного двигателя в конце поршневого цикла - в верхней мертвой точке - в отличие от начала поршневого цикла, поскольку топливо находится в двигателе с искровым зажиганием, степень сжатия составляет дизельные двигатели могут быть намного выше: от 14: 1 до 25: 1. Это означает, что температура внутри дизельного двигателя становится намного выше, чем у бензинового двигателя, что означает, что температура на входе и температура на выходе ближе. Таким образом, дизельные двигатели обладают гораздо более высокой термической эффективностью, чем бензиновые.

Тепловой КПД, наряду с плотностью топлива, определяет топливный КПД двигателя. Дизельные двигатели более экономичны, чем бензиновые, потому что они более термически эффективны и потому что дизельное топливо является более плотным топливом. Дизельные двигатели имеют более высокий тепловой КПД, чем бензиновые, потому что у дизельных двигателей более высокая степень сжатия. Дизельные двигатели могут иметь более высокие степени сжатия, поскольку двигатели сжатия впрыскивают топливо в цилиндр двигателя в конце поршневого цикла.

Плотность топлива и топливная эффективность

Даже без большей степени сжатия, ведущей к более высокому тепловому КПД, дизельные двигатели все равно будут значительно более экономичными. Дизельные двигатели, естественно, более экономичны, поскольку дизельное топливо имеет более высокую плотность, чем бензин. В то время как дизельное топливо и бензин имеют одинаковую плотность energy - равную сумму энергии при измерении по весу, - дизельное топливо имеет больше энергии при измерении по объему. А жидкое ископаемое топливо продается в единицах измерения объема, галлонах или литрах.

«Теплотворная способность дизельного топлива составляет примерно 45,5 МДж / кг (мегаджоули на килограмм), что немного ниже, чем у бензина, который составляет 45,8 МДж / кг. Однако дизельное топливо плотнее бензина и содержит примерно на 15% больше энергии по объему (примерно 36,9 МДж / литр по сравнению с 33,7 МДж / литр). С учетом разницы в плотности энергии общий КПД дизельного двигателя все еще примерно на 20% выше, чем у бензинового, несмотря на то, что дизельный двигатель также тяжелее ».

Из-за одной только плотности топлива дизельный двигатель проезжает пять (5) миль на каждые четыре (4) мили бензинового двигателя сопоставимого размера.

«Газовый» пробег - и причина того, что дизельные двигатели более экономичны, чем бензиновые - является продуктом теплового КПД, а тепловой КПД является продуктом степени сжатия. Тепловой КПД и степень сжатия в сочетании с плотностью топлива являются причиной того, что дизельный двигатель имеет на 25-35 процентов большую экономию топлива, чем бензиновый двигатель.

Почему дизельные двигатели эффективнее бензиновых

Степень сжатия играет такую ​​же большую роль в топливной эффективности, как и любой другой фактор сгорания двигателя.Дизельные двигатели на 25-35 процентов более экономичны, чем бензиновые двигатели сопоставимого размера. Если два автомобиля имеют двигатели одинакового размера, но у одного дизельный двигатель, а у другого - бензиновый, автомобиль с дизельным двигателем проедет четыре (4) мили на том же количестве топлива, что и бензиновый двигатель проедет три (3). И эти цифры скромные.

Небольшие дизельные двигатели нередко проезжают 50 миль на галлоне бензина. Бензиновый двигатель такого же размера обычно ездит только 32.5 миль на галлон. То есть бензиновый двигатель нередко имеет две трети (⅔) топливной эффективности дизельного двигателя.

«Дизельные двигатели более экономичны и имеют больший крутящий момент на низких оборотах, чем бензиновые двигатели аналогичного размера, а дизельное топливо содержит примерно на 10-15% больше энергии, чем бензин. Таким образом, дизельные автомобили часто могут проехать на галлоне топлива на 20–35% больше, чем их бензиновые аналоги. Кроме того, современные автомобили с дизельным двигателем намного лучше дизельных двигателей прошлого », - поясняет У.С. Министерство энергетики.

Достаточно сказать, что статистика, показывающая, что дизельные двигатели имеют значительно больший расход топлива, чем бензиновые двигатели сопоставимых размеров, не вызывает сомнений. Дизельные двигатели более экономичны, чем бензиновые. Причина? Сам дизель и дизельные двигатели, конкретно степень сжатия дизелей.

Плотность топлива и топливная эффективность

Что касается того, почему дизельные двигатели более эффективны, чем бензиновые, полный ответ включает физические и инженерные концепции, такие как тип воспламенения топлива, диффузия пламени, степень сжатия и термический КПД.Но попросту есть два фактора, которые определяют топливную экономичность. Первый - это плотность топлива, количество энергии в галлоне или литре топлива. Плотность энергии топлива чрезвычайно трудно изменить в массовом масштабе. Топливо - дизельное топливо, бензин, этанол, биодизель, природный газ, пропан и т. Д. - либо имеет высокую плотность, либо ее нет.

Сложно резко изменить плотность топлива. Топливо бывает легким или тяжелым.

Плотность топлива важна не только потому, что это количество энергии в галлоне или литре топлива, но и в плотности топлива, потому что она определяет конструкцию и конструкцию двигателей внутреннего сгорания.Плотность топлива позволяет проектировать двигатели, которые повышают топливную эффективность и сокращают выбросы. Но именно плотность топлива ограничивает возможности конструкции двигателя с точки зрения топливной экономичности и сокращения выбросов.

Определение плотности топлива

Плотность топлива, также известная как плотность в градусах API, представляет собой массу топлива в масштабе объема. Причина, по которой плотность топлива важна для химического состава топлива, заключается в том, что плотность топлива является показателем содержания ископаемого топлива, типов и размеров углеводородов, а также загрязнителей топлива.Тяжелые виды топлива, такие как мазут и бункерное топливо, чрезвычайно плотны, но значительная часть плотности происходит из-за загрязняющих веществ. Легкие виды топлива, такие как газовое топливо и бензин, имеют низкую плотность топлива, но также содержат мало загрязняющих веществ. По сравнению с другими видами ископаемого топлива дизельное топливо имеет средний вес. Обычно единственным значимым загрязнителем в дизельном топливе является сера.

Дизель представляет собой совокупность больших углеводородных молекул и молекулярных цепочек. Более крупные и длинные углеводороды являются причиной того, что дизельное топливо менее летучее, чем бензин, пропан, природный газ и этанол, a.к.а. легкие дистиллятные топлива. Легкие дистиллятные топлива имеют небольшие молекулы и короткие молекулярные цепи, молекулы и цепи, которые очень летучие.

«Бензиноподобные топлива обычно состоят из относительно небольших (т.е. углеродное число в диапазоне 5–10) разветвленных или циклических углеводородов. Эти молекулярные структуры обладают высокой прочностью связи и, следовательно, низкой химической реакционной способностью (например, высоким октановым числом). Напротив, дизельное топливо обладает высокой реакционной способностью из-за длинных насыщенных молекулярных структур (т.е.е. число атомов углерода в диапазоне 10–20) и, таким образом, легко самовоспламеняется, что затрудняет достижение LTC ».

Хотя легко предположить, что чем горючее топливо, тем больше энергии оно производит, но это не так.

Хотя бензин более летуч и воспламеняется / сгорает / горит легче, чем дизельное топливо, у дизельного топлива больше энергии. В весовом масштабе дизельное топливо и бензин имеют примерно одинаковую плотность энергии. Но дизельное топливо более плотное, чем бензин, что означает, что в масштабе объема - галлонах или литрах - дизельное топливо содержит больше энергии.Плотность топлива дизельного топлива на 13-18 процентов больше, чем у бензина.

По данным Европейского союза автопроизводителей, «дизельное топливо плотнее бензина и содержит примерно на 15% больше энергии по объему (примерно 36,9 МДж / литр по сравнению с 33,7 МДж / литр). С учетом разницы в плотности энергии общий КПД дизельного двигателя все еще примерно на 20% выше, чем у бензинового, несмотря на то, что дизельный двигатель также тяжелее ».

Поскольку дизельное топливо более энергоемкое, чем бензин, каждый галлон дизельного топлива может генерировать больше энергии и больше работы.Поскольку дизельное топливо содержит больше энергии на галлон, дизельные двигатели перемещаются дальше на галлон. Другими словами, поскольку дизельное топливо содержит больше энергии, чем бензин, дизельные двигатели более экономичны, чем бензиновые.

Плотность топлива, степень сжатия, тепловая эффективность, топливная эффективность

В дополнение к тому факту, что дизельное топливо имеет больше энергии в масштабе объема, поскольку дизельное топливо является более плотным топливом, чем бензин, имеет большее сопротивление сжатию. Другими словами, дизельное топливо более стабильное топливо, чем бензин.Поскольку дизельное топливо имеет более высокое сопротивление сжатию - поскольку оно более плотное, чем легкие дистиллятные топлива, - инженеры могут проектировать и разрабатывать дизельные двигатели с более высокой степенью сжатия, чем бензиновые двигатели. Чем выше степень сжатия двигателя, тем выше термический КПД. Чем выше термический КПД двигателя, тем, как правило, он более энергоэффективен.

Дизельные двигатели расходуют больше топлива, чем бензиновые, из-за плотности дизельного топлива и из-за степени сжатия дизельных двигателей, причем степень сжатия является катализатором теплового КПД, а тепловой КПД играет важную роль в экономии топлива.

Просто потому, что дизельное топливо более плотное, чем бензин и большинство других ископаемых видов топлива, дизельные двигатели расходуют больше «бензина».

Определенная степень сжатия

Словарное определение степени сжатия - «отношение максимального к минимальному объему в цилиндре двигателя внутреннего сгорания», согласно Google. Хотя это правда, определение не объясняет значение степени сжатия, почему степень сжатия оказывает такое влияние на эффективность использования топлива.

Определение степени сжатия непрофессионалом

Проще говоря, степень сжатия - это то, насколько поршни в двигателе сжимают топливо - дизельное топливо, бензин, биотопливо и т. Д. - внутри цилиндра до того, как топливо сгорит. Проще говоря, степень сжатия - это разница в объеме в цилиндре между моментом, когда поршень находится в нижней части цикла - когда поршень находится в нижней части цикла, цилиндр имеет наибольший объем - и моментом сгорания топлива в виде поршень движется вверх.

В интервью журналу Engine Builder Magazine Рон Бобьен из Diamond Piston объясняет: «Степень сжатия двигателя рассчитывается путем деления общего рабочего объема (с поршнем в нижней мертвой точке) на общий сжатый объем (с поршнем в нижней мертвой точке). верхняя мертвая точка). Например, если общий рабочий объем Chevrolet с большим блоком объемом 632 кубических сантиметра составляет 1380,34 кубических сантиметра, а общий сжатый объем составляет 86,69 кубических сантиметров, степень сжатия будет заявлена ​​как 15,92: 1.”

Чем выше степень сжатия двигателя, тем эффективнее двигатель сжигает топливо.

Влияние степени сжатия на тепловой КПД

То есть, чем выше степень сжатия двигателя двигателя, тем полнее двигатель сжигает топливо. Это синоним того, что чем выше степень сжатия, тем выше эффективность сгорания . Но эффективность сгорания - не единственное преимущество высокой степени сжатия. Высокая степень сгорания также означает более высокий тепловой КПД.

В двух словах, термический КПД - это процент энергии, поступающей в двигатель, которая преобразуется двигателем в механическую энергию. Механическая энергия - это энергия, создающая крутящий момент, энергия, которая толкает автомобиль по дороге. Чем больше степень сжатия двигателя, тем больше тепловая энергия, означающая, что чем больше степень сжатия энергии, тем выше процент общей энергии, подаваемой в двигатель, которая превращается в мощность, а не в трату.

Почему степень сжатия увеличивает тепловую эффективность

Степень сжатия увеличивает тепловой КПД, потому что чем больше степень сжатия, тем больше работы выполняет каждая единица энергии.Чем выше степень сжатия двигателя, тем меньше энергии двигатель теряет на конвекцию и теплопроводность и тем больше уходит на давление на коленчатый вал. Чем больше давление на коленчатый вал, тем больше крутящий момент на приводном валу. Чем больше крутящий момент на приводном валу, тем больше мощность на колеса.

Другой взгляд на термический КПД состоит в том, что чем выше тепловой КПД двигателя, тем меньше энергии он расходует. Как поясняется в Nuclear-Power.net,

«Желательно достичь высокой степени сжатия, чтобы извлечь больше механической энергии из данной массы топливовоздушной смеси.Более высокая степень сжатия позволяет достичь той же температуры сгорания с меньшим количеством топлива, обеспечивая при этом более длительный цикл расширения. Это создает больше механической мощности и снижает температуру выхлопных газов. Снижение температуры выхлопных газов приводит к снижению энергии, отбрасываемой в атмосферу ».

Формула теплового КПД объясняет, почему степень сжатия увеличивает тепловой КПД. Тепловой КПД - это мера энергии в виде тепла. Чем выше температура энергии, поступающей в двигатель, по сравнению с температурой выходящей энергии, тем выше энергоэффективность.

Когда поршень двигателя сжимает воздух внутри цилиндра двигателя, воздух нагревается. При движении поршня двигателя вверх создается такое большое давление, что выделяемого тепла достаточно, чтобы вызвать самовозгорание ископаемого топлива, воспламенение без воздействия пламени.

В двигателе сжатия - дизельном или биодизельном - самовоспламенение является предполагаемым следствием степени сжатия.

В двигателе с искровым зажиганием самовоспламенение приведет к повреждению двигателя.Когда самовоспламенение происходит в двигателе с искровым зажиганием - бензиновом или пропановом двигателе, - это называется предварительным зажиганием . Предварительное зажигание - это другая неисправность двигателя, чем детонация. Детонация - следствие разновременного воспламенения карманов топливовоздушных смесей. Детонация также известна как «стук», это не редкость и не всегда серьезная проблема.

С другой стороны, преждевременное зажигание в двигателе с искровым зажиганием разрушает головки поршней, уплотнительные кольца и выдувает свечи зажигания сбоку двигателя.По этой причине бензиновые двигатели всегда должны иметь значительно более низкую степень сжатия, чем дизельные двигатели. Топливно-воздушная смесь в бензине всегда должна быть достаточно низкой, чтобы давление, создаваемое во время хода поршня вверх, не создавало преждевременного воспламенения.

Поскольку бензиновые двигатели не способны выдерживать преждевременное зажигание, это означает, что степень сжатия двигателей с искровым зажиганием обязательно ниже, чем степень сжатия дизельных двигателей с воспламенением от сжатия. Поскольку степень сжатия бензиновых двигателей в бензиновых двигателях должна быть ниже, это означает, что разница между теплотой энергии, поступающей в двигатель, и теплотой энергии, исходящей из двигателя, меньше, чем разница температур между подводимой теплотой. и тепловая мощность дизельного двигателя.Поскольку разница в тепле на входе и выходе бензинового двигателя меньше, чем у дизельного двигателя, бензиновые двигатели обладают меньшей термической эффективностью. Бензиновые двигатели обязательно менее термически эффективны, чем дизельные, из-за конструкции двигателей, что определяется плотностью топлива.

Поскольку термический КПД является одной из двух переменных, определяющих экономию топлива, бензиновые двигатели обязательно менее экономичны, чем дизельные двигатели. По сути, топливная эффективность связана с тепловым КПД, поскольку степень сжатия определяет тепловой КПД, а плотность топлива определяет степень сжатия.

Переменная степень сжатия

Переменная степень сжатия

Hannu Jääskeläinen

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Abstract : Переменная степень сжатия может дать ряд преимуществ, таких как ограничение необходимого пикового давления сгорания в дизелях и противодействие снижению эффективности из-за детонации в двигателях с искровым зажиганием.Механизмы для изменения степени сжатия двигателя включают в себя двухступенчатую систему, в которой можно выбрать низкую или высокую степень сжатия, или систему бесступенчатого сжатия. В большинстве двухступенчатых систем используется шатун переменной длины, в то время как для бесступенчатых систем было предложено множество механизмов.

Введение

Переменная степень сжатия дает ряд преимуществ для дизельных и бензиновых двигателей. Хотя концепция изучалась много лет [3537] [3538] [3539] [3540] [1942] , для многих приложений было трудно оправдать добавленную стоимость и сложность.Разработки, которые обеспечили более простой механизм за счет использования соединительных стержней переменной длины, по-видимому, делают его жизнеспособным вариантом для серийного производства.

Механизмы для изменения степени сжатия включают в себя либо двухступенчатую систему, в которой можно выбрать низкую или высокую степень сжатия, либо систему с непрерывным изменением, в которой можно выбрать любую степень сжатия между низким и высоким значением.

Двухступенчатые системы включают шатун переменной длины AVL и FEV.Системы с непрерывным изменением параметров могут быть реализованы с помощью различных механизмов, включая:

  • Многорычажный механизм между коленчатым валом и поршнем, Nissan и MCE-5
  • Подвижная головка / цилиндр, SAAB [3541] и Enerva [3542]
  • Эксцентриковые шейки коленчатого вала, Caterpillar [1927] [1921] [1934]
  • Подвижная головка поршня [3543]

Двухступенчатые системы

Система AVL

В двухступенчатой ​​системе переменной степени сжатия AVL используется телескопическая соединительная штанга, рис. 1.Активация осуществляется газом или массовыми силами. Сила инерции F M и сила газа F G используются для удлинения и укорачивания шатуна. Трансляционный шарнир укорачивает шатун, когда результирующая сила на валу F R направлена ​​к центру коленчатого вала (F G > F M ), и удлиняет шатун, когда он находится в противоположном направлении (F G M ). Ограничители определяют минимальную и максимальную длину шатуна.Чтобы «удерживать» одну из двух позиций, масло переносится в объемы ниже или выше трансляционного сочленения. Система управления сигнализирует, когда требуется изменение длины шатуна [3518] [3544] .

Рисунок 1 . Телескопический шатун AVL

###

% PDF-1.5 % 928 0 объект> эндобдж xref 928 88 0000000016 00000 н. 0000003129 00000 н. 0000003390 00000 н. 0000003433 00000 н. 0000003968 00000 н. 0000004002 00000 п. 0000004155 00000 н. 0000004308 00000 п. 0000004357 00000 н. 0000004406 00000 п. 0000004455 00000 н. 0000004504 00000 н. 0000004553 00000 н. 0000004601 00000 п. 0000004650 00000 н. 0000004795 00000 н. 0000004872 00000 н. 0000004935 00000 н. 0000006498 00000 н. 0000007037 00000 н. 0000007274 00000 н. 0000008026 00000 н. 0000008279 00000 н. 0000008526 00000 н. 0000008793 00000 н. 0000009972 00000 н. 0000010211 00000 п. 0000011475 00000 п. 0000012280 00000 п. 0000012893 00000 п. 0000013346 00000 п. 0000042041 00000 п. 0000043167 00000 п. 0000043567 00000 п. 0000044118 00000 п. 0000062483 00000 п. 0000062926 00000 п. 0000074729 00000 п. 0000074786 00000 п. 0000075359 00000 п. 0000075419 00000 п. 0000076272 00000 п. 00000

00000 п. 00000

00000 п. 0000090699 00000 н. 0000091552 00000 п. 0000093766 00000 п. 0000093813 00000 п. 0000093849 00000 п. 0000096518 00000 п. 0000096589 00000 п. 0000096774 00000 п. 0000096868 00000 п. 0000096911 00000 п. 0000097023 00000 п. 0000097066 00000 п. 0000097170 00000 п. 0000097213 00000 п. 0000097387 00000 п. 0000097430 00000 н. 0000097608 00000 п. 0000097651 00000 п. 0000097815 00000 п. 0000097857 00000 п. 0000098027 00000 п. 0000098069 00000 п. 0000098201 00000 п. 0000098243 00000 п. 0000098425 00000 п. 0000098467 00000 п. 0000098639 00000 п. 0000098681 00000 п. 0000098875 00000 п. 0000098918 00000 п. 0000099035 00000 н.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *