Принцип работы ДВС современного типа простыми словами
Современные двигатели работают по достаточно простой схеме, которая была изобретена целый век назад. Единственное, что подверглось сильному изменению после производства первого двигателя внутреннего сгорания, это система питания. С карбюраторов и прочих не слишком эффективных средств подачи топлива промышленность перешла на инжектор для бензиновых двигателей. Дизельные агрегаты обладают отдельным типом впрыска через систему с повышенным давлением. Все последние разработки в технологиях работы ДВС являются мелочными дополнениями к уже известной конструкции, которые призваны обеспечить либо автоматическую регулировку определенных параметров работы, либо определенную экономию топлива.
Тем не менее, суть двигателя остается прежней. По части работы двигателя внутреннего сгорания сегодня мы обсудим отдельно службу бензинового и дизельного силового агрегата, а также обсудим некоторые особенности использования бензинового двигателя в гибридных устройствах.
Также затронем тему турбины в различных агрегатах, ее типов и смысла использования. Ознакомившись со всеми тонкостями работы современных силовых агрегатов внутреннего сгорания, вы поймете, что нынешние ДВС фактически ничем не отличаются от классических устройств.
Содержание
- Тонкости работы бензинового двигателя
- Дизельный силовой агрегат
- Бензиновый гибридный двигатель
- Подводим итоги
Бензиновый двигатель внутреннего сгорания — тонкости работы
Двигатель на бензиновом топливе представляет собою классический вариант силового агрегата, который может работать только на очищенном и качественном бензине, производимом из нефти. Современные двигатели работают только на бензине с октановым числом 95 или даже 98. Залив в хороший агрегат бензин плохого качества, вы можете приобрести массу проблем.
Топливо подается в агрегат с помощью бензонасоса, а количество подачи регулируется специальной системой впрыска.
Инжекторы обладают тонкими форсунками, которые распыляют топливо в системе, позволяя его полностью сжечь в камерах сгорания. После подачи топлива по трубке на систему инжектора происходят следующие процессы:
- инжектор распыляет бензин, превращая его в облако пара, а также смешивает получившиеся частицы с воздухом;
- смесь бензина и кислорода попадает дальше в камеру сгорания, где в верхней части поджигается свечей зажигания;
- подожженный бензин быстро воспламеняется, формируя определенной мощности взрыв с конкретным давлением и усилием;
- камера сгорания исключительно герметична, потому сила этого взрыва направляется на рабочую плоскость поршня;
- от мощности удара поршень опускается вниз и приводит в движение коленчатый вал, на котором закреплены другие поршни;
- с помощью неоднократного повторения такого процесса происходит постоянное вращение двигателя.

Если топливо не распыляется должным образом, поскольку форсунки забиты или поломаны, один из цилиндров не будет давать нужной мощности, поскольку топливо не сможет поджигаться и нормально выполнять свои функции. В таком случае двигатель теряет мощность и значительно увеличивает расход. Также в таком агрегате крайне важна фильтрация воздуха.
Турбина в бензиновых двигателях представляет собой механизм усиленной подачи воздуха, за счет чего на определенных режимах работы увеличивается мощность агрегата без увеличения потребления топлива. Интенсивная подача воздуха с разными значениями позволяет компаниям достигать невероятных технических характеристик вполне стандартных бензиновых агрегатов.
Дизельный силовой агрегат — второй тип ДВС
Еще один важный тип двигателя, который стал прекрасной альтернативой бензиновому агрегату в обыденной и коммерческой эксплуатации, — это дизельный силовой агрегат. Его стандартными преимуществами считается менее активный расход топлива и очень ощутимая тяга.
Дизельный силовой агрегат подает топливо также через форсунки со значительным распылением. Это требует высокой чистоты дизельного топлива и значительной безопасности работы системы подачи топлива, поскольку жидкость подается на форсунки в достаточно большом давлении. Принцип работы агрегата несколько отличается от бензинового:
- топливо подается на распыление в гораздо большем давлении, оно прогревается еще до входа в камеры сгорания;
- под воздействием значительного давления поршней в камерах сгорания топливо самовоспламеняется;
- создаваемая при этом энергия производит толчок поршня в нижнее положение, выводя при этом другие поршни вверх;
- для работы двигателя требуется меньше топлива, а вот подача воздуха имеет большое значение;
- по данной причине в дизельных двигателях практически всегда присутствует турбина, распространены только турбодизели;
- агрегат создает очень завидную мощность поршней, потому даже на низких оборотах он обладает большой тягой.

Определенная специфика работы дизельного двигателя вызывает и некоторые особенности его эксплуатации. В частности, водителю придется научиться раньше переключать передачи, довольствоваться низкими оборотами и контролировать тягу машины. Современные турбодизели потребляют на 15-20 процентов меньше топлива на ту самую мощность, чем бензиновые агрегаты.
Объемистые и тяговитые дизельные двигатели в промышленности могут работать не только на продуктах нефтеобработки. Многие агрегаты приспособлены даже на сжигание сырой нефти, а также принимают в качестве топлива природные биомасла, которые воспламеняются при сильном давлении. Это может стать одним из будущих перспективных моментов автомобилестроения.
Бензиновый гибридный двигатель — электричество в моде
Не так давно на рынок начали поступать гибридные автомобили. Это машины, у которых силовой агрегат состоит из двух частей. Первая часть не отличается от стандартных бензиновых агрегатов, но зачастую не столь объемистая и мощная.
А вторая часть представлена электродвигателями в разных количествах и расположениях.
Батареи для электродвигателя оснащены отдельным генератором, который заряжается от работы бензинового агрегата. Также энергия берется из рекуперации энергии торможения и прочих процессов, которые обычно теряются в стандартном исполнении. Гибрид работает по следующей схеме:
- в стандартных ситуациях городской поездки используются только электромоторы, вы ведете электромобиль;
- когда энергия батарей на исходе, в дело включается бензиновый двигатель, нагнетающий запас в аккумуляторах;
- также при резком нажатии на педаль газа включаются сразу все двигатели, давая огромную энергию;
- при полной разрядке батарей ДВС продолжает работать и весьма экономично везет вас в нужном направлении;
- у некоторых гибридных автомобилей есть выход для зарядки батарей от обычной электрической сети.
Такие технологии являются дыханием будущего, поскольку экономия на гибридных автомобилях ощутима.
Большой внедорожник с такой установкой может затрачивать всего 5-6 литров топлива, независимо от выбранного режима поездки. Хороший двигатель внутреннего сгорания обеспечивает быструю зарядку батарей.
Сегодня активно развивается применение гибридных установок на основе дизельного двигателя. В таком случае расход опускается до невероятных 2-3 литров на 100 километров. Впрочем, технологии гибридного использования знают и расход в 1 литр на 100 километров, который является эталонным для современных производителей автомобилей. Предлагаем изучить принцип работы гибридного двигателя на следующем видео:
Подводим итоги
Сегодня покупатель автомобилей имеет большой выбор технологий, которые для него будут оптимальными во всех отношениях. Подобрать лучшее решение будет непросто, поскольку производители расписывают преимущества своих предложений в самых неожиданных аспектах.
Иногда правильно преподнесенная технология кажется нам самым важным элементом автомобиля, но на самом деле не занимает и части технического потенциала транспорта.
Потому многие покупатели просто становятся жертвами рекламного влияния, покупая те или иные технологии и оплачивая их в полной мере. Сегодня лучше отказаться от рекламы при выборе типа машины. Положитесь на собственные впечатления и ощущения, на решения, которые вам нравятся больше всего. В каждом типе двигателя и силовой установки есть свои преимущества и недостатки. Расскажите о главных преимуществах двигателя в вашем автомобиле.
Понравился этот контент? Подпишитесь на обновления!
Фирменные турбины бензиновых двигателей
Принцип работы карбюратора – главные проблемы и возможные неполадки
Принцип работы двигателя на дизельном топливе
Устройство топливных систем автомобилей: основные элементы и неполадки
Как заводить машину правильно в зависимости от типа двигателя?
К списку статей
Социальные комментарии Cackle
Поршень на свободе: двигатель со свободным поршнем
«Современный двигатель внутреннего сгорания по определению не самый выдающийся продукт с точки зрения технологий.
Это значит, что его можно совершенствовать до бесконечности» (Мэтт Тревитник, президент венчурного фонда семьи Рокфеллер Venrock).
Владимир Санников
Уже в ноябре этого года на американский рынок выйдет Chevrolet Volt, электромобиль с бортовым генератором электроэнергии. Volt будет оснащен мощным электродвигателем, вращающим колеса, и компактным ДВС, который лишь подзаряжает истощенную литий-ионную батарею. Этот агрегат всегда работает на максимально эффективных оборотах. С этой задачей легко справляется обычный ДВС, привыкший к куда более тяжкому бремени. Однако в скором времени его могут сменить куда более компактные, легкие, эффективные и дешевые агрегаты, специально созданные для работы в качестве электрогенератора.
Когда речь заходит о принципиально новых конструкциях ДВС, скептики начинают морщить носы, кивать на сотни пылящихся на полках псевдореволюционных проектов и трясти святыми мощами четырех горшков и распредвала.
Сто лет господства классического двигателя внутреннего сгорания кого хочешь убедят в бесполезности инноваций. Но только не профессионалов в области термодинамики. К таковым относится профессор Питер Ван Блариган.
Энергия взаперти
Одна из самых радикальных концепций ДВС в истории — двигатель со свободным поршнем. Первые упоминания о нем в специальной литературе относятся к 1920-м годам. Представьте себе металлическую трубу с глухими концами и цилиндрический поршень, скользящий внутри нее. На каждом из концов трубы расположены инжектор для впрыска топлива, впускной и выпускной порты. В зависимости от типа топлива к ним могут добавлены свечи зажигания. И все: меньше десятка простейших деталей и лишь одна — движущаяся. Позднее появились более изощренные модели ДВС со свободным поршнем (FPE) — с двумя или даже четырьмя оппозитными поршнями, но это не изменило сути. Принцип работы таких моторов остался прежним — возвратно-поступательное линейное движение поршня в цилиндре между двумя камерами сгорания.
Теоретически КПД FPE переваливает за 70%. Они могут работать на любом виде жидкого или газообразного топлива, крайне надежны и великолепно сбалансированы. Кроме того, очевидны их легкость, компактность и простота в производстве. Единственная проблема: как снять мощность с такого мотора, механически представляющего собой замкнутую систему? Как оседлать снующий с частотой до 20000 циклов в минуту поршень? Можно использовать давление выхлопных газов, но эффективность при этом падает в разы. Эта задача долго оставалась неразрешимой, хотя попытки предпринимались регулярно. Последними о нее обломали зубы инженеры General Motors в 1960-х годах в процессе разработки компрессора для экспериментального газотурбинного автомобиля. Действующие образцы судовых насосов на основе FPE в начале 1980-х были изготовлены французской компанией Sigma и британской Alan Muntz, но в серию они не пошли.
Возможно, об FPE еще долго бы никто не вспомнил, но помогла случайность.
В 1994 году Департамент энергетики США поручил ученым Национальной лаборатории Sandia изучить эффективность бортовых генераторов электроэнергии на базе ДВС различных типов, работающих на водороде. Эта работа была поручена группе Питера Ван Бларигана. В ходе осуществления проекта Ван Блариган, которому концепция FPE была отлично известна, сумел найти остроумное решение проблемы превращения механической энергии поршня в электричество. Вместо усложнения конструкции, а значит — снижения результирующего КПД, Ван Блариган пошел путем вычитания, призвав на помощь магнитный поршень и медную обмотку на цилиндре. Несмотря на всю простоту, такое решение было бы невозможным ни в 1960-х, ни в 1970-х годах. В то время еще не существовало достаточно компактных и мощных постоянных магнитов. Все изменилось в начале 1980-х после изобретения сплава на основе неодима, железа и бора.
За эту работу в 1998 году на Всемирном конгрессе Общества автомобильных инженеров SAE Ван Бларигану и его коллегам Нику Парадизо и Скотту Голдсборо была присвоена почетная премия имени Харри Ли Ван Хорнинга.
Очевидная перспективность линейного генератора со свободным поршнем (FPLA), как назвал свое изобретение Ван Блариган, убедила Департамент энергетики продолжить финансирование проекта вплоть до стадии экспериментального агрегата.
Электронный пинг-понг
Двухтактный линейный генератор Бларигана представляет собой трубу из электротехнической кремнистой стали длиной 30,5 см, диаметром 13,5 см и массой чуть более 22 кг. Внутренняя стенка цилиндра представляет собой статор с 78 витками медной проволоки квадратного сечения. Во внешнюю поверхность алюминиевого поршня интегрированы мощные неодимовые магниты. Топливный заряд и воздух поступают в камеру сгорания двигателя в виде тумана после предварительной гомогенизации. Зажигание происходит в режиме HCCI — в камере одновременно возникает множество микроочагов возгорания. Никакой механической системы газораспределения у FPLA нет — ее функции выполняет сам поршень.
В 1981 году немецкий изобретатель Франк Штельзер продемонстрировал двухтактный мотор со свободным поршнем, который он разрабатывал в своем гараже с начала 1970-х.
По его расчетам, движок был на 30% экономичнее обычного ДВС. Единственная движущаяся деталь мотора – сдвоенный поршень, снующий с бешеной частотой внутри цилиндра. Стальная труба длиной 80 см, оснащенная карбюратором низкого давления от мотоцикла Harley-Davidson и блоком катушек зажигания Honda, по грубым прикидкам Стельзера, могла вырабатывать до 200 л.с. мощности при частоте до 20 000 циклов в минуту. Штельзер утверждал, что его моторы можно делать из простых сталей, а охлаждаться они могут как воздухом, так и жидкостью. В 1981 году изобретатель привез свой мотор на Франфуртский международный автосалон в надежде заинтересовать ведущие автокомпании. Поначалу идея вызвала определенный интерес со стороны немецких автопороизводителей. По отзывам инженеров Opel, прототип двигателя демонстрировал великолепный термический КПД, а его надежность была совершенно очевидной – ломаться там было практически нечему. Всего восемь деталей, из которых одна движущаяся – сдвоенный поршень сложной формы с системой уплотнительных колец общей массой 5 кг.
В лаборатории Opel были разработаны несколько теоретических моделей трансмиссии для мотора Штельзера, включая механическую, электромагнитную и гидравлическую. Но ни одна из них не была признана достаточно надежной и эффективной. После Франкфуртского автосалона Штельзер и его детище пропали из поля зрения автоиндустрии. Еще пару лет после этого в прессе то и дело появлялись сообщения о намерениях Штельзера запатентовать технологию в 18 странах мира, оснастить своими моторами опреснительные установки в Омане и Саудовской Аравии и т.д. С начала 1990-х Штельзер навсегда пропал из виду, хотя его сайт в интернете все еще доступен.
Максимальная мощность FPLA составляет 40 кВт (55 лошадок) при среднем потреблении топлива 140 г на 1кВтч. По эффективности двигатель не уступает водородным топливным ячейкам — термический КПД генератора при использовании в качестве топлива водорода и степени сжатия 30:1 достигает 65%. На пропане чуть меньше — 56%. Помимо этих двух газов FPLA с аппетитом переваривает солярку, бензин, этанол, спирт и даже отработанное растительное масло.
Однако ничто не дается малой кровью. Если проблема превращения тепловой энергии в электрическую Ван Блариганом решена успешно, то управление капризным поршнем стало серьезной головной болью. Верхняя мертвая точка траектории зависит от степени сжатия и скорости сгорания топливного заряда. Фактически торможение поршня происходит за счет создания критического давления в камере и последующего самопроизвольного возгорания смеси. В обычном ДВС каждый последующий цикл является аналогом предыдущего благодаря жестким механическим связям между поршнями и коленвалом. В FPLA же длительность тактов и верхняя мертвая точка — плавающие величины. Малейшая неточность в дозировке топливного заряда или нестабильность режима сгорания вызывают остановку поршня или удар в одну из боковых стенок.
Таким образом, для двигателя такого типа требуется мощная и быстродействующая электронная система управления. Создать ее не так просто, как кажется. Многие эксперты считают эту задачу трудновыполнимой.
Гарри Смайт, научный руководитель лаборатории General Motors по силовым установкам, утверждает: «Двигатели внутреннего сгорания со свободным поршнем обладают рядом уникальных достоинств. Но чтобы создать надежный серийный агрегат, нужно еще очень много узнать о термодинамике FPE и научиться управлять процессом сгорания смеси». Ему вторит профессор Массачусетского технологического института Джон Хейвуд: «В этой области еще очень много белых пятен. Не факт, что для FPE удастся разработать простую и дешевую систему управления».
Ван Блариган более оптимистичен, чем его коллеги по цеху. Он утверждает, что управление положением поршня может быть надежно обеспечено посредством той же пары — статор и магнитная оболочка поршня. Более того, он считает, что полноценный прототип генератора с настроенной системой управления и КПД не менее 50% будет готов уже к концу 2010 года. Косвенное подтверждение прогресса в этом проекте — засекречивание в 2009 году многих аспектов деятельности группы Ван Бларигана.
Конструктивная оппозиция
В январе 2008 года знаменитый венчурный инвестор Винод Хосла рассекретил один из своих последних проектов — компанию EcoMotors, созданную годом ранее Джоном Колетти и Петером Хоффбауэром, двумя признанными гуру моторостроения. В послужном списке Хоффбауэра немало прорывных разработок: первый турбодизель для легковых автомобилей Volkswagen и Audi, оппозитный двигатель для Beetle, первый 6-цилиндровый дизель для Volvo, первый рядный 6-цилиндровый дизель Inline-Compact-V, впервые установленный в Golf, и его близнец VR6, созданный для Mercedes. Джон Колетти не менее известен в среде автомобильных инженеров. Долгое время он руководил подразделением Ford SVT по разработке особых серий заряженных автомобилей.
В общем активе Хоффбауэра и Колетти более 150 патентов, участие в 30 проектах по разработке новых двигателей и в 25 проектах новых серийных автомобилей. EcoMotors была создана специально для коммерциализации изобретенного Хоффбауэром модульного двухцилиндрового двухтактного оппозитного турбодизеля с технологией OPOC.
Небольшой размер, сумасшедшая удельная мощность 3,25 л.с. на 1 кг массы (250 л.с. на 1л объема) и танковая тяга в 900 Н•м при более чем скромном аппетите, возможность собирать из отдельных модулей 4-, 6- и 8-цилиндровые блоки — вот основные преимущества стокилограммового модуля OPOC EM100. Если современные дизели на 20−40% эффективнее бензиновых ДВС, то OPOC — на 50% эффективнее лучших турбодизелей. Его расчетный КПД — 57%. Несмотря на свою фантастическую заряженность, двигатель Хоффбауэра отличается идеальной сбалансированностью и очень мягкой работой.
В OPOC поршни соединяются с коленвалом, расположенным в центре, длинными шатунами. Пространство между двумя поршнями служит камерой сгорания. Топливный инжектор находится в области верхней мертвой точки, а впускной воздушный порт и выпускной порт для отработанных газов — в области нижней мертвой точки. Такое расположение вкупе с электрическим турбонагнетателем обеспечивает оптимальную продувку цилиндра — в OPOC нет ни клапанов, ни распредвала.
Турбонагнетатель — неотъемлемая часть мотора, без которой его работа невозможна. Перед запуском двигателя турбонагнетатель в течение одной секунды нагревает порцию воздуха до температуры 100 °C и закачивает ее в камеру сгорания. Дизелю OPOC не нужны калильные свечи, а запуск в холодную погоду не доставляет проблем. При этом Хоффбауэру удалось снизить степень сжатия с привычных для дизелей 19−22:1 до скромных 15−16. Все это, в свою очередь, приводит к снижению рабочей температуры в камере сгорания и расхода топлива.
Троянский конь
Уже сегодня у EcoMotors имеются три полностью готовых к производству оппозитных агрегата различной мощности: модуль мощностью 13,5 л.с. (размеры — 95 мм / 155 мм / 410 мм, вес — 6 кг), 40 л.с. (95 мм / 245 мм / 410 мм, 18 кг) и модуль 325л.с. (400 мм / 890 мм / 1000 мм, 100 кг). Хоффбауэр и Колетти намерены продемонстрировать электрогибридный пятиместный седан среднего класса с дизельным генератором OPOC на базе одной из массовых моделей уже в текущем году.
Средний расход солярки у этого автомобиля не превысит 2 л на сотню в комбинированном электрическом и смешанном режимах. Недавно EcoMotors открыла собственный технический центр в городке Троя, штат Мичиган, и уже подыскивает подходящее предприятие для организации серийного производства своих моторов. Несмотря на рассекреченность проекта, из недр компании поступает крайне скудная информация. По-видимому, Винод Хосла решил придержать до поры убойные козыри.
режимов DVS: что они все означают?
DVS — сокращение от «Digital Vinyl System» — является одной из старейших форм цифрового диджеинга.
Он использует специальные записи временного кода и компакт-диски (или файл временного кода, загруженный на USB-накопители) в сочетании с проигрывателями или медиаплеерами DJ для управления программным обеспечением DJ на ноутбуке.
Как только вы включите DVS в своем программном обеспечении, вы получите выбор из четырех режимов игры вместо одного режима, который вы получаете без DVS. Каждый режим работает по-своему, и изучение того, как и когда использовать каждый режим, является ключом к получению максимальной отдачи от любого DVS.
1. Абсолютный режим
Этот режим максимально приближен к винилу. Как и настоящий винил, песня начинается в самом начале записи тайм-кода, и вы можете пропустить песню, поднимая иглу и помещая ее в разные точки записи тайм-кода. Тем не менее, это означает, что если игла будет проскальзывать, песня тоже будет пропущена — точно так же, как на настоящей виниловой пластинке.
Этот режим был популярен на ранних стадиях цифрового диджеинга, когда ди-джеи переходили от использования винила к использованию компьютера.
Он разбирает DVS до самых основ, делая переход более удобным для опытных ди-джеев. Это также самый «чистый» способ использования вашего DVS, однако за эту простоту приходится платить: многие функции, которые так полюбились цифровым ди-джеям, такие как ключевые точки и зацикливание, недоступны в абсолютном режиме.
2. Относительный режим
Этот режим в основном превращает вашу деку для записи или пластину медиаплеера в джог, аналогичный джогу диджейского контроллера.
В отличие от абсолютного режима, положение вашей стрелки на виниле с таймкодом не имеет значения. Песня будет воспроизводиться до тех пор, пока воспроизводится запись тайм-кода, а это означает, что если запись будет пропущена, песня будет продолжать воспроизводиться в обычном режиме. Он не будет прыгать вперед или назад, как это сделала бы настоящая виниловая пластинка (или как если бы вы были в абсолютном режиме).
Эта функция является огромным преимуществом при игре в шумной обстановке с сильными басами, которые могут привести к пропуску иглы.
Относительный режим также позволяет использовать все современные функции, ставшие стандартными для цифрового программного обеспечения для ди-джеев. Если вы ищете тактильные ощущения, которые дает винил, но хотели бы использовать такие функции, как метки быстрого доступа, зацикливание и даже синхронизация, то относительный режим — это то, что вам нужно.
Большинство ди-джеев, использующих DVS, играют в относительном режиме из-за всех этих дополнительных преимуществ по сравнению с абсолютным режимом.
3. Внутренний режим
Внутренний режим полностью пропускает сигнал временного кода. Это позволяет вам управлять программным обеспечением с помощью мыши и клавиатуры или с помощью DJ-контроллера. Если вы используете такое программное обеспечение, как Serato DJ Pro, Traktor Pro, Virtual DJ или контроллер Rekordbox DJ, вы используете это программное обеспечение во внутреннем режиме по умолчанию.
Внутренний режим также используется с некоторыми медиаплеерами, такими как Pioneer CDJ, при доступе к режиму HID.
Режим HID фактически превращает медиаплеер в контроллер (т. е. он отправляет Midi на ваш ноутбук) вместо того, чтобы использовать его для воспроизведения тайм-кода с компакт-диска или USB-накопителя.
4. Режим Thru
В этом режиме дека становится вспомогательным каналом, позволяющим воспроизводить источник вне программного обеспечения. Например, если вы используете проигрыватели и хотите проигрывать настоящую виниловую пластинку во время сета DVS, вам необходимо перевести деку в режим Thru. Это сообщает программному обеспечению, что вы играете из внешнего источника, позволяя вам обходить виртуальные колоды.
Новые ди-джеи DVS иногда не уверены, когда и зачем использовать различные режимы, предлагаемые их DVS. Хотя большинство из них проводят большую часть своего времени с DVS, используя относительный режим, каждый режим можно эффективно использовать в определенных ситуациях. Например, обучение использованию внутреннего режима с мышью и клавиатурой при проблемах с сигналом спасло меня больше раз, чем я могу сосчитать, и если бы я не потратил время на изучение этой техники, я бы не справился со многими концертами.
.
Все четыре различных режима DVS могут быть полезны в определенных ситуациях, и чем лучше вы понимаете функции вашего цифрового программного обеспечения для ди-джеев, тем больше вы можете извлечь из него.
Вы крутите с DVS? Какой режим вы предпочитаете — относительный или абсолютный? Почему? Дайте нам знать ниже.
Цифровые виниловые системы
Цифровые виниловые системы (DVS) становятся все более и более популярными среди растущего числа цифровых ди-джеев. DVS позволит вам управлять параметрами вашего программного обеспечения с помощью физических кнопок, фейдеров, компакт-дисков и/или винила на стандартной аппаратной установке DJ. Таким образом, вы можете диджеить традиционным способом с вашей музыкальной библиотекой, хранящейся на вашем компьютере.
Системы DVS важны, потому что они позволяют ди-джеям с существующими настройками легко интегрировать свои компьютеры и цифровые музыкальные файлы. Если в настоящее время у вас есть набор проигрывателей компакт-дисков или проигрывателей и микшера, система DVS будет всем, что вам нужно для перехода на небольшие, легко управляемые цифровые файлы и потери тяжелой коллекции винила или компакт-дисков.
Они также полезны для работающих ди-джеев: войдите в любое место, где уже есть установка, имея только свой ноутбук и DVS.
Так как же они работают? Системы DVS используют компакт-диски или винил с временным кодированием, что позволяет включенной звуковой карте «читать» ваши манипуляции с треком на проигрывателе компакт-дисков или проигрывателе. Это переводится на ваш компьютер, который манипулирует цифровым файлом, а звуковой сигнал возвращается на ваш микшер через звуковую карту.
ПакетыDVS будут поставляться с правильной звуковой картой, программным обеспечением, кабелями, винилом и компакт-дисками с временным кодом. Пока ваши проигрыватели или проигрыватели компакт-дисков могут воспроизводить обычный винил или компакт-диски, они будут работать и с DVS. Вы также должны убедиться, что DVS совместим с вашим компьютером. Минимальные характеристики указаны на странице каждого продукта.
Установка включает в себя установку программного обеспечения и подключение оборудования, как показано ниже, с Denon DJ DS1, парой проигрывателей Reloop RP4000m, микшером Reloop RMX 33i и ноутбуком.


