Генераторы это: Электрические генераторы

Электрические генераторы

Генераторы — электрические машины производящие электроэнергию

Электрогенераторы — это электрические машины, преобразующие механическую энергию в электрическую энергию.

Действие электрических генераторов основано на принципе электромагнитной индукции: в проводе, движущемся в магнитном поле, наводится электродвижущая сила — ЭДС. 

Электрические генераторы могут производить как постоянный, так и переменный ток. Слово генератор (generator) переводится с латыни как производитель.

Известными поставщиками генераторов на мировой рынок являются такие компании как: Mecc Alte, ABB, General Electric (GE), Siemens AG.

Электрические  генераторы постоянного тока 

Долгое время электрические генераторы постоянного тока были единственными типом источника электроэнергии.

В обмотке якоря генератора постоянного тока индуктируется переменный ток, который преобразуется в постоянный ток электромеханическим выпрямителем — коллектором. Однако процесс выпрямления тока коллектором связан с повышенным износом коллектора и щеток, особенно при большой частоте вращения якоря генератора.

1– коллектор; 2 – щетки; 3 – магнитные полюса; 4 – витки; 5 – вал; 6 – якорь 

Генераторы постоянного тока различают по характеру их возбуждения — независимого возбуждения и самовозбуждением. В генераторах с электромагнитным возбуждением обмотка возбуждения, располагаемая на главных полюсах, подключается к независимому источнику питания. Генераторы с магнитоэлектрическим возбуждением возбуждаются постоянными магнитами, из которых изготовляются полюсы машины. Генераторы постоянного тока находят применение в тех отраслях промышленности, где по условиям производства предпочтительным является постоянный ток — на предприятиях металлургической и электролизной промышленности, на транспорте, судах и др. Генераторы постоянного тока используются на электростанциях в качестве возбудителей синхронных генераторов и источников постоянного тока.

Мощность генераторов постоянного тока может достигать десятка мегаватт.

Генераторы переменного тока

Генераторы переменного тока позволяют получать большие токи при достаточно высоком напряжении. В настоящее время имеется несколько типов индукционных генераторов.

Они состоят из электромагнита или постоянного магнита, создающие магнитное поле, и обмотки, в которой индуцируется переменная ЭДС. Так как ЭДС, наводимые в последовательно соединенных витках, складываются, то амплитуда ЭДС индукции в рамке пропорциональна числу витков в ней. Она пропорциональна также амплитуде переменного магнитного потока через каждый виток. Для получения большого магнитного потока в генераторах применяют специальную магнитную систему, состоящую из двух сердечников, сделанных из электротехнической стали. Обмотки, создающие магнитное поле, размещены в пазах одного из сердечников, а обмотки, в которых индуцируется ЭДС, — в пазах другого. Один из сердечников (обычно внутренний) вместе со своей обмоткой вращается вокруг горизонтальной или вертикальной оси. Поэтому он называется ротором.

Неподвижный сердечник с его обмоткой называют статором. Зазор между сердечниками статора и ротора делают как можно меньшим. Этим обеспечивается наибольшее значение потока магнитной индукции. В больших промышленных генераторах вращается электромагнит, который является ротором, в то время как обмотки, в которых наводится ЭДС, уложены в пазах статора и остаются неподвижными.

Подводить ток к ротору или отводить его из обмотки ротора во внешнюю цепь приходится при помощи скользящих контактов. Для этого ротор снабжается контактными кольцами, присоединенными к концам его обмотки. Неподвижные пластины — щетки — прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью. Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь. Поэтому генерируемый ток удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту. Этот ток вырабатывается отдельным генератором постоянного тока (возбудителем), расположенным на том же валу.

В маломощных генераторах магнитное поле создается вращающимся постоянным магнитом. В таком случае кольца и щетки вообще не нужны. Появление ЭДС в неподвижных обмотках статора объясняется возникновением в них вихревого электрического поля, порожденного изменением магнитного потока при вращении ротора.

Обмотки возбуждения синхронных генераторов бывают двух типов: с явнополюсными и неявнополюсными роторами. В генераторах с явнополюсными роторами полюса, несущие обмотки возбуждения, выступают из индуктора. Генераторы такого типа рассчитаны на сравнительно низкие частоты вращения, для работы с приводом от поршневых паровых машин, дизельных двигателей, гидротурбин. Паровые и газовые турбины используются для привода синхронных генераторов с неявнополюсными роторами. Ротор такого генератора представляет собой стальную поковку с фрезерованными продольными пазами для витков обмотки возбуждения, которые обычно выполняются в виде медных пластин. Витки закрепляются в пазах, а поверхность ротора шлифуется и полируется для снижения уровня шума и потерь мощности, связанных с сопротивлением воздуха.

Обмотки генераторов по большей части делают трехфазными — на выходных зажимах генератора вырабатываются три синусоидальных напряжения переменного тока, поочередно достигающих своего максимального амплитудного значения. В механике редко встречается подобное сочетание движущихся частей, которые могли бы порождать энергию столь же непрерывно и экономично.

Мощные синхронные генераторы охлаждаются водородом. Современный генератор электрического тока — это внушительное сооружение из медных проводов, изоляционных материалов и стальных конструкций. При размерах в несколько метров важнейшие детали генераторов изготовляются с точностью до миллиметра. 

Дополнительная тематическая информация: турбогенераторы

Все, что нужно знать о генераторе строительной техники

Все, что нужно знать о генераторе строительной техники

Из этой статьи вы узнаете:

  • Устройство генератора и принципы его работы
  • Причины и признаки выхода генератора из строя
  • О возможности добраться до СТО при вышедшем из строя генераторе

Время прочтения: 6 мин.

Эксперт: Сергей Кузьмичев

Технический тренер HCMR

Генератор — устройство, преобразующее механическую энергию в виде крутящего момента, передаваемого от двигателя на ротор генератора, в электрическую энергию, впоследствии подаваемую в электросистему машины.

Основными функциями генератора на современной технике является формирование стабильных параметров зарядного напряжения аккумуляторной батареи, которая является основным источником тока в электросистеме, и подачи тока на иные потребители для обеспечения их функционирования.

Общая конструкция

Практически все генераторы, устанавливаемые на современной спец. технике, являются генераторами переменного тока. В корпусе генератора на опорных подшипниках устанавливается ротор, который располагается внутри статора. Для формирования электромагнитного поля с требуемыми параметрами, ротор (рис.2) генератора переменного тока имеет в своей конструкции катушку возбуждения 4, на которую во время работы генератора подается ток через контактные кольца 2.

В процессе вращения ротор формирует переменное магнитное поле, которое в свою очередь приводит к образованию переменного электрического тока в катушках статора.

В связи с тем, что электросистема и все потребители рассчитаны на работу от постоянного тока, в конструкции генератора предусмотрено устройство, преобразующее переменный ток в постоянный. Данную функцию выполняет так называемый диодный мост. Диодный мост обеспечивает протекание тока только в одном направлении, формируя после себя протекание постоянного тока, подаваемого в электросистему.

Параметры напряжения, вырабатываемого генератором, зависят в основном от двух условий: силы магнитного поля ротора и его оборотов. Как мы уже выясняли, одна из основных задач генератора — формирование стабильного напряжения на выходе. Так как обороты ДВС могут периодически изменяться, а вместе с ними и обороты ротора генератора, причем в достаточно широких пределах, существует необходимость в устройстве, которое могло бы поддерживать напряжение на выходе в независимости от оборотов ротора. Для этого предназначен регулятор напряжения. Его функция заключается в том, чтобы, подавая ток на катушку возбуждения ротора через щетки и контактные кольца или прекращая подачу тока, изменять силу создаваемого ротором магнитного поля, которое, в свою очередь, будет влиять на выходное напряжение со статора. Таким образом, независимо от скорости вращения, регулятор напряжения обеспечивает его стабильное значение.

При каких условиях генератор дорожно-строительной техники может выйти из строя?

Генератор дорожно-строительной техники может прийти в негодность по нескольким причинам:

1. При несвоевременном или неправильном проведении технического обслуживания, а также установке на машину нештатного электрооборудования (магнитолы, системы слежения/автоматизации вождения, дополнительного освещения). Помимо этого, несоблюдение требований производителя по степени натяжения приводного ремня генератора может стать причиной преждевременного выхода из строя опорных подшипников ротора.

2. При накоплении пыли и грязи на корпусе генератора и их попадание внутрь между статором и ротором способно спровоцировать короткое замыкание или механический износ изоляции обмоток, однако это случается крайне редко.

3. Из-за использования пуско-зарядного устройства в режиме «пуск». Это связано с тем, что очень часто, особенно в зимний период эксплуатации, возникает необходимость применения внешних источников питания во время запуска ДВС в связи с разрядкой аккумуляторных батарей. Иногда этот процесс также связан со спешкой.

В результате, вместо установки заряженных аккумуляторов или проведения цикла заряда разряженных батарей, используют пуско-зарядные устройства в режиме «пуск», что крайне нежелательно, ибо во время стартерной прокрутки сила тока в цепи стартера может достигать нескольких сотен ампер. Так как аккумуляторные батареи разряжены, то основным источником тока служит в этот момент пуско-зарядное устройство.

После запуска ДВС начинается процесс зарядки АКБ. Так как их емкость заметно ниже нормального значения, то в начальный период работы двигателя после запуска им требуются максимально возможные значения зарядного тока по напряжению и силе для восполнения утраченного заряда. Пуско-зарядное устройство, оставаясь в режиме «пуск» на работающем ДВС, следуя «потребностям» аккумуляторных батарей, продолжает подавать в сеть машины повышенные значения напряжения и силы тока, что может быть причиной выхода из строя регулятора напряжения, диодного моста генератора, а так же электронных блоков управления, широко применяемых в электросистеме современных дорожно-строительных машин и оборудования.

Как оператор может точно определить, что причина неисправности в генераторе?

Оператор может контролировать показатели напряжения, вырабатываемого генератором, благодаря монитору в кабине. В случае отклонений от нормы как при низком зарядном напряжении, так и при высоком выдается соответствующий код ошибки. Причиной данной неисправности могут выступать и другие неполадки, не связанные с работой генератора.

Поэтому компетенции на дальнейшую проверку у операторов, как правило, нет. Эксплуатирующая организация должна обратиться к лицензированному дилеру для проведения диагностики согласно коду ошибки и последующего ремонта.

 

Способна ли техника добраться до СТО при нерабочем генераторе?

В большинстве случаев при неисправностях, связанных с низким зарядным напряжением, машина может добраться до места стоянки своим ходом. Прекратить движение и заглушить двигатель необходимо при завышенном уровне напряжения или выходе из строя опорных подшипников ротора генератора. Продолжить движение можно будет только после устранения неисправности. Если необходимо добраться до стоянки в аварийном режиме, то перед запуском ДВС нужно демонтировать ремень привода генератора. Передвижение машины с вышедшим из строя генератором возможно лишь при исправном состоянии аккумуляторных батарей.

 

Если генератор нужно менять, то можно ли подобрать аналог заводского?

На современных строительных машинах рекомендуется использовать только оригинальные или рекомендованные производителем техники генераторы.

 

Материал был подготовлен для журнала Грейдер.

 

Остались вопросы? Задайте их нам или официальному дилеру.

0 Сравнить модели

Электрический генератор | инструмент | Британика

электрогенератор

Смотреть все СМИ

Ключевые люди:
Чарльз Протеус Стейнмец Рукс Эвелин Белл Кромптон Джон Хопкинсон Сильванус Филлипс Томпсон Эдвард Уэстон
Похожие темы:
магнитогидродинамический генератор энергии термоэмиссионный преобразователь энергии генератор переменного тока возбудитель синхронный генератор

См. весь связанный контент →

электрический генератор , также называемый динамо-машиной , любая машина, которая преобразует механическую энергию в электричество для передачи и распределения по линиям электропередач бытовым, коммерческим и промышленным потребителям. Генераторы также производят электроэнергию, необходимую для автомобилей, самолетов, кораблей и поездов.

Механическая мощность для электрического генератора обычно получается от вращающегося вала и равна крутящему моменту вала, умноженному на вращательную или угловую скорость. Механическая энергия может поступать из ряда источников: гидравлические турбины на плотинах или водопадах; Ветряные турбины; паровые турбины, использующие пар, полученный с использованием тепла от сжигания ископаемого топлива или ядерного деления; газовые турбины, сжигающие газ непосредственно в турбине; или бензиновые и дизельные двигатели. Конструкция и скорость генератора могут значительно различаться в зависимости от характеристик механического первичного двигателя.

Почти все генераторы, используемые для питания электрических сетей, генерируют переменный ток, который меняет полярность с фиксированной частотой (обычно 50 или 60 циклов, или двойных перемен в секунду). Поскольку несколько генераторов подключены к электрической сети, они должны работать на одной частоте для одновременной генерации. Поэтому они известны как синхронные генераторы или, в некоторых случаях, генераторы переменного тока.

Генераторы синхронные

Основной причиной выбора переменного тока для силовых сетей является то, что его постоянное изменение во времени позволяет использовать трансформаторы. Эти устройства преобразуют электроэнергию любого напряжения и силы тока в высокое напряжение и малый ток для передачи на большие расстояния, а затем преобразуют ее в низкое напряжение, подходящее для каждого отдельного потребителя (обычно 120 или 240 вольт для бытовых нужд). Конкретной используемой формой переменного тока является синусоида, которая имеет форму, показанную на рисунке 1. Она была выбрана потому, что это единственная повторяющаяся форма, для которой две волны, смещенные друг от друга во времени, могут быть сложены или вычтены и имеют такая же форма возникает в результате. В идеале тогда все напряжения и токи имеют синусоидальную форму. Синхронный генератор предназначен для воспроизведения этой формы настолько точно, насколько это практически возможно.

Это станет очевидным, когда основные компоненты и характеристики такого генератора будут описаны ниже.

Викторина «Британника»

Энергия и ископаемое топливо

Ротор

Простейший синхронный генератор показан в разрезе на рис. 2. Центральный вал ротора соединен с механическим первичным двигателем. Магнитное поле создается проводниками или катушками, намотанными в пазах, прорезанных на поверхности цилиндрического железного ротора. Этот набор катушек, соединенных последовательно, известен как обмотка возбуждения. Положение катушек возбуждения таково, что направленная наружу или радиальная составляющая магнитного поля, создаваемая в воздушном зазоре к статору, примерно синусоидально распределяется по периферии ротора. На рисунке 2 плотность поля в воздушном зазоре максимальна снаружи вверху, максимальна внутрь внизу и равна нулю с двух сторон, что приближает синусоидальное распределение.

Статор простейшего генератора на рис. 2 состоит из цилиндрического кольца из железа, обеспечивающего свободный путь для магнитного потока. В этом случае статор содержит только одну катушку, две стороны которой размещены в пазах в железе, а концы соединены вместе изогнутыми проводниками по периферии статора. Катушка обычно состоит из нескольких витков.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.

Подписаться сейчас

При вращении ротора в обмотке статора индуцируется напряжение. В любой момент величина напряжения пропорциональна скорости, с которой магнитное поле, окружаемое катушкой, меняется со временем, т. е. скорости, с которой магнитное поле проходит две стороны катушки. Следовательно, напряжение будет максимальным в одном направлении, когда ротор повернется на 90° от положения, показанного на рисунке 2, и будет максимальным в противоположном направлении через 180° позже. Форма сигнала напряжения будет приблизительно синусоидальной, показанной на рисунке 1. 9.0003

Конструкция ротора генератора на рис. 2 имеет два полюса, один для магнитного потока, направленного наружу, и соответствующий, для потока, направленного внутрь. В катушке статора индуцируется одна полная синусоида за каждый оборот ротора. Таким образом, частота электрической мощности, измеряемая в герцах (циклах в секунду), равна скорости вращения ротора в оборотах в секунду. Например, чтобы обеспечить подачу электроэнергии с частотой 60 герц, частота вращения первичного двигателя и ротора должна составлять 60 оборотов в секунду или 3600 оборотов в минуту. Это удобная скорость для многих паровых и газовых турбин. Для очень больших турбин такая скорость может быть избыточной по причинам механического напряжения. В этом случае ротор генератора выполнен с четырьмя полюсами, разнесенными с интервалом 90°. Напряжение, индуцируемое в катушке статора, расположенной под таким же углом в 90°, будет состоять из двух полных синусоид за один оборот. Требуемая скорость ротора для частоты 60 герц составляет тогда 1800 оборотов в минуту. Для более низких скоростей, используемых в большинстве водяных турбин, можно использовать большее количество пар полюсов. Возможные значения частоты вращения ротора в оборотах в минуту равны 120 f / p , где f — частота, а p — число полюсов.

Электрический генератор | инструмент | Британика

электрогенератор

Смотреть все СМИ

Ключевые люди:
Чарльз Протеус Стейнмец Рукс Эвелин Белл Кромптон Джон Хопкинсон Сильванус Филлипс Томпсон Эдвард Уэстон
Похожие темы:
магнитогидродинамический генератор энергии термоэмиссионный преобразователь энергии генератор переменного тока возбудитель синхронный генератор

См. весь связанный контент →

электрический генератор , также называемый динамо-машиной , любая машина, которая преобразует механическую энергию в электричество для передачи и распределения по линиям электропередач бытовым, коммерческим и промышленным потребителям. Генераторы также производят электроэнергию, необходимую для автомобилей, самолетов, кораблей и поездов.

Механическая мощность для электрического генератора обычно получается от вращающегося вала и равна крутящему моменту вала, умноженному на вращательную или угловую скорость. Механическая энергия может поступать из ряда источников: гидравлические турбины на плотинах или водопадах; Ветряные турбины; паровые турбины, использующие пар, полученный с использованием тепла от сжигания ископаемого топлива или ядерного деления; газовые турбины, сжигающие газ непосредственно в турбине; или бензиновые и дизельные двигатели. Конструкция и скорость генератора могут значительно различаться в зависимости от характеристик механического первичного двигателя.

Почти все генераторы, используемые для питания электрических сетей, генерируют переменный ток, который меняет полярность с фиксированной частотой (обычно 50 или 60 циклов, или двойных перемен в секунду). Поскольку несколько генераторов подключены к электрической сети, они должны работать на одной частоте для одновременной генерации. Поэтому они известны как синхронные генераторы или, в некоторых случаях, генераторы переменного тока.

Генераторы синхронные

Основной причиной выбора переменного тока для силовых сетей является то, что его постоянное изменение во времени позволяет использовать трансформаторы. Эти устройства преобразуют электроэнергию любого напряжения и силы тока в высокое напряжение и малый ток для передачи на большие расстояния, а затем преобразуют ее в низкое напряжение, подходящее для каждого отдельного потребителя (обычно 120 или 240 вольт для бытовых нужд). Конкретной используемой формой переменного тока является синусоида, которая имеет форму, показанную на рисунке 1. Она была выбрана потому, что это единственная повторяющаяся форма, для которой две волны, смещенные друг от друга во времени, могут быть сложены или вычтены и имеют такая же форма возникает в результате. В идеале тогда все напряжения и токи имеют синусоидальную форму. Синхронный генератор предназначен для воспроизведения этой формы настолько точно, насколько это практически возможно. Это станет очевидным, когда основные компоненты и характеристики такого генератора будут описаны ниже.

Викторина «Британника»

Энергия и ископаемое топливо

Ротор

Простейший синхронный генератор показан в разрезе на рис. 2. Центральный вал ротора соединен с механическим первичным двигателем. Магнитное поле создается проводниками или катушками, намотанными в пазах, прорезанных на поверхности цилиндрического железного ротора. Этот набор катушек, соединенных последовательно, известен как обмотка возбуждения. Положение катушек возбуждения таково, что направленная наружу или радиальная составляющая магнитного поля, создаваемая в воздушном зазоре к статору, примерно синусоидально распределяется по периферии ротора. На рисунке 2 плотность поля в воздушном зазоре максимальна снаружи вверху, максимальна внутрь внизу и равна нулю с двух сторон, что приближает синусоидальное распределение.

Статор простейшего генератора на рис. 2 состоит из цилиндрического кольца из железа, обеспечивающего свободный путь для магнитного потока. В этом случае статор содержит только одну катушку, две стороны которой размещены в пазах в железе, а концы соединены вместе изогнутыми проводниками по периферии статора. Катушка обычно состоит из нескольких витков.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.

Подписаться сейчас

При вращении ротора в обмотке статора индуцируется напряжение. В любой момент величина напряжения пропорциональна скорости, с которой магнитное поле, окружаемое катушкой, меняется со временем, т. е. скорости, с которой магнитное поле проходит две стороны катушки. Следовательно, напряжение будет максимальным в одном направлении, когда ротор повернется на 90° от положения, показанного на рисунке 2, и будет максимальным в противоположном направлении через 180° позже. Форма сигнала напряжения будет приблизительно синусоидальной, показанной на рисунке 1. 9.0003

Конструкция ротора генератора на рис. 2 имеет два полюса, один для магнитного потока, направленного наружу, и соответствующий, для потока, направленного внутрь. В катушке статора индуцируется одна полная синусоида за каждый оборот ротора. Таким образом, частота электрической мощности, измеряемая в герцах (циклах в секунду), равна скорости вращения ротора в оборотах в секунду. Например, чтобы обеспечить подачу электроэнергии с частотой 60 герц, частота вращения первичного двигателя и ротора должна составлять 60 оборотов в секунду или 3600 оборотов в минуту. Это удобная скорость для многих паровых и газовых турбин. Для очень больших турбин такая скорость может быть избыточной по причинам механического напряжения. В этом случае ротор генератора выполнен с четырьмя полюсами, разнесенными с интервалом 90°. Напряжение, индуцируемое в катушке статора, расположенной под таким же углом в 90°, будет состоять из двух полных синусоид за один оборот. Требуемая скорость ротора для частоты 60 герц составляет тогда 1800 оборотов в минуту.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *