Гидравлическое сцепление: Гидравлическое сцепление автомобилей — схема, принцип работы, достоинства и недостатки

Содержание

✅ Как работает гидравлическое сцепление


Какие бывают виды приводов сцепления и их принцип работы

Привод сцепления на автомобиле предназначен для краткосрочного отсоединения коленчатого вала двигателя от коробки передач, а также для их совмещения, которые необходимы для переключения передач, а также, для того, чтобы автомобиль мог тронуться с места и начать движение.

На сегодняшний день в автомобилях применяются следующие виды приводов сцепления:

  • привод сцепления механический;
  • гидравлический привод сцепления;
  • электрогидравлический привод.

Последний из вышеназванных приводов сцепления в отличие от первых двух применяется в автомобилях крайне редко и используется в роботизированных коробках передач. Поэтому более конкретно на нем останавливаться не будем, и давайте рассмотрим первые два.

Привод сцепления механический

Данный привод, как правило, применяется в небольших легковых автомобилях. Отличается он от других приводов сцепления своей невысокой стоимостью и простотой конструкции, которая состоит из:

  • педали сцепления;
  • троса привода сцепления;
  • рычажной передаче;
  • механизма отвечающего за регулирования свободного хода педали сцепления.

Основные неисправности

Основным неисправностями приводов сцепления является выход из строя одного из элементов системы вследствие износа.

В механическом приводе сцепления чаще всего выходит из строя трос, который связывает педаль сцепления и вилку переключения. Вследствие износа трос может порваться, перекрутиться или растянуться, что приводит к ухудшению работы сцепления.

Основными причинами возникновения проблем с работой гидравлического привода сцепления может быть следующее:

  1. Не герметичность систем трубопроводов.
  2. Отсутствие или малое количество рабочей жидкости в системе.
  3. Выход из строя одного из цилиндров из-за износа манжет, перекоса штока или повреждения наружного корпуса.


В случае с электрогидравлической системой к выше приведенным неисправностям гидравлической системы можно добавить проблемы с электрикой, механизмом, который приводит в действие цилиндры, системой управления работы привода.

Привод сцепления должен всегда находиться в исправном состоянии, поэтому необходимо своевременно обращаться на специализированные сервисные центры, где опытные мастера смогут провести качественную диагностику и ремонт отдельных элементов привода.

Также на эту тему вы можете почитать:

Как выбрать зарядное устройство для автомобильного аккумулятора

Ремонт карбюратора Солекс 21083 (видео-инструкция)

Панель приборов ВАЗ 2114 (обозначения, описание и схема)

Почему современные моторы ломаются чаще старых атмосферников

Ускорительный насос карбюратора ВАЗ 2109 (Солекс) для разгона

Поделитесь в социальных сетях

Alex S 17 октября, 2013

Опубликовано в: Полезные советы и устройство авто

Метки: Как устроен автомобиль

Привод сцепления и его виды

Привод предназначен для дистанционного управления сцеплением непосредственно водителем из салона. Нажатие на педаль сцепления напрямую воздействует на нажимной диск.

Читайте также:  Электрическая схема систем отопления, звуковой сигнализации и стеклоочистки автомобилей КамАЗ-5320, 5321, 53212, 53213, 5410, 54112, 55111, 55102, 53229, 65115.

Известны следующие виды привода:

  • механический;
  • гидравлический;
  • электрогидравлический;
  • пневмогидравлический.

Наибольшее распространение получили первые два вида. На грузовиках и автобусах используется пневмогидравлический привод. Электрогидравлический устанавливают в машинах с роботизированной коробкой передач.

В некоторых автомобилях для облегчения управления применяется пневматический или вакуумный усилитель привода.

Механический привод

Механический или тросовый привод отличается простой конструкцией и невысокой ценой. Он неприхотлив в обслуживании и состоит из минимального количества элементов. Механический привод устанавливается в легковых и малотоннажных грузовых автомобилях.

Механический привод сцепления

К элементам механического привода относятся:

  • трос сцепления;
  • педаль сцепления;
  • вилка выключения сцепления;
  • выжимной подшипник;
  • механизм регулировки.

Трос сцепления, заключенный в оболочку, является основным элементом привода. Трос сцепления крепится к вилке, а также к педали, находящейся в салоне автомобиля. В момент выжимания педали водителем действие через трос передается на вилку и выжимной подшипник. В результате происходит разъединение маховика двигателя с трансмиссией и, соответственно, выключение сцепления.

В соединении троса и рычажного привода предусмотрен регулировочный механизм, обеспечивающий свободный ход педали сцепления.

Ход педали сцепления представляет собой свободное перемещение до момента срабатывания привода. Расстояние, пройденное педалью без особого усилия водителя при нажатии, и есть свободный ход.

Если переключение передач сопровождается шумом, а в начале движения наблюдаются небольшие рывки автомобиля, то необходима регулировка хода педали.

Зазор в сцеплении должен находиться в пределах 35-50 мм свободного хода педали. Нормативы этих показателей указаны в технической документации автомобиля. Регулировка хода педали осуществляется путем изменения длины тяги с помощью регулировочной гайки.

В грузовых автомобилях используется не тросовый, а рычажный механический привод.

К плюсам механического привода относятся:

  • простота устройства;
  • невысокая стоимость;
  • надежность в эксплуатации.

Главным минусом считается более низкий КПД по сравнению с гидроприводом.

Гидравлический привод сцепления

Гидропривод имеет более сложную конструкцию. К его элементам, помимо выжимного подшипника, вилки и педали, относится также гидравлическая магистраль, которая заменяет трос сцепления.

Читайте также:  ЗИЛ 130, ЗИЛ 131, ГАЗ 3307, ГАЗ 3309, ГАЗ 53, ММЗ 554, МАЗ 500


Схема гидравлического сцепления

По сути эта магистраль аналогична гидроприводу тормозной системы и состоит из следующих элементов:

  • главный цилиндр сцепления;
  • рабочий цилиндр сцепления;
  • бачок и трубопровод с тормозной жидкостью.

Устройство главного цилиндра сцепления напоминает устройство главного тормозного цилиндра. Главный цилиндр сцепления состоит из поршня с толкателем, расположенных одном в корпусе. Также к его элементам относятся резервуар для жидкости и уплотнительные манжеты.

Рабочий цилиндр сцепления, имеющий схожую с главным цилиндром конструкцию, дополнительно оснащен клапаном для удаления воздуха из системы.

Механизм действия гидропривода такой же, как и у механического, только усилие передается с помощью находящейся в трубопроводе жидкости, а не через трос.

Во время нажатия водителем на педаль усилие через шток передается на главный цилиндр сцепления. Затем за счет несжимаемого свойства жидкости в действие приводятся рабочий цилиндр сцепления и рычаг привода выжимного подшипника.

В качестве плюсов гидропривода можно выделить следующие его особенности:

  • гидравлическое сцепление позволяет передавать усилие на значительное расстояние с высоким КПД;
  • сопротивление перетеканию жидкости в элементах гидропривода способствует плавному включению сцепления.

Главный минус гидропривода – более сложный ремонт по сравнению с механическим. Течь рабочей жидкости и попадание в систему гидропривода воздуха — вот, пожалуй, наиболее распространенные поломки, которыми могут «похвастаться» главный и рабочий цилиндры сцепления.

Устройство гидравлического привода

При таком конструктивном решении усилие передаётся уже другим способом. Схема гидравлического привода не предполагает наличие троса, реализация механизма с данным типом управления немного сложнее и трос заменяет гидравлическая магистраль. Усилие передаётся посредством несжимаемой жидкости, проходящей по магистрали и поскольку гидропривод аналогичен тому, что применяется в тормозной системе, для работы используют ту же жидкость. Устройство сцепления с управлением с помощью гидравлического привода включает следующие элементы:

  • Педаль.
  • Главный цилиндр, состоящий из поршня с толкателем, резервуара для жидкости и уплотнительных манжет.
  • Рабочий цилиндр имеет похожую конструкцию.
  • Магистраль, соединяющая цилиндры.
  • Бачок с жидкостью.
  • Дополнительно цилиндры оснащаются клапанами для отвода воздуха из системы.

Принцип работы достаточно простой и схож с механическим вариантом управления, отличие только в методе передачи усилия. Когда автомобилист жмёт на ножной рычаг в салоне автомашины, поршень главного цилиндра приводится в движение, жидкость сжимается и под давлением перемещается по трубопроводу в рабочий цилиндр, толкая поршень, что задействует вилку выключения сцепления.

Гидравлический привод может быть также оборудован демпфирующим устройством с целью гашения колебаний от взаимодействия выжимного подшипника с деталями выключения сцепления. Пневматические или гидравлические усилители часто используются для грузового транспорта.

Поскольку механизм с гидравлическим приводом является более совершенным и сложным устройством, передающим усилие на дальнее расстояние с высоким КПД, стоимость его выше, при этом он отличается плавностью включения сцепления, что обусловлено сопротивлением перемещению жидкости в элементах конструкции. Среди преимуществ гидропривода также устойчивость к износу деталей, но и ремонт сложнее, чем в случае с механическим устройством.

Механический и гидравлический приводы наделены своими особенностями функционирования, плюсами и минусами применения, при этом устройства этих типов обеспечивают комфорт управления транспортным средством. В легковых машинах жёсткость диафрагменной пружины нажимного диска небольшая, так что водителю не нужно прилагать больших усилий, но на грузовиках узел габаритнее, и чтобы привести в действие корзину, от водителя потребуется большее усилие, поэтому в конструкцию вводят усилители.

По окончанию процедуры, педаль сцепления должна работать нормально, с поршнями также не должно быть проблем. Это крайне важно, так как в некоторых случаях может произойти разбухание разнообразных резиновых элементов, что очень опасно, потому что приводит к отказу всей системы.

Нюансы эксплуатации сцепления

Зачастую водители склонны связывать неравномерность и рывки при движении автомобиля с неисправностями сцепления. Эта логика в большинстве случаев ошибочна.

Например, автомобиль при переключении передач с первой на вторую, резко сбрасывает обороты. Здесь виновато не само сцепление, а датчик положения педали сцепления. Находится он за самой педалью сцепления. Неисправности датчика устраняются путем несложного ремонта, после которого сцепление будет вновь работать плавно и без рывков.

Другая ситуация: при переключении передач автомобиль немного дергается, а при трогании с места может заглохнуть. В чем может быть причина? Чаще всего в этом виноват клапан задержки сцепления. Этот клапан обеспечивает определенную скорость, при которой может схватываться маховик, независимо от того, насколько быстро была «брошена» педаль сцепления. Для начинающих водителей эта функция необходима, т.к. клапан задержки сцепления предотвращает чрезмерный износ поверхности диска сцепления.

Привод выключения сцепления гидравлический

На автомобиле применяется гидравлический привод выключения сцепления с педалью подвесной конструкции (ось качания педали расположена выше ее площадки). Такой тип привода получает все большее распространение на современных легковых автомобилях. Его преимущества по сравнению с механическим приводом сводятся в основном к следующему:

  1. Сцепление включается более плавно, что уменьшает динамические нагрузки в трансмиссии, особенно при трогании автомобиля с места, и повышает комфортабельность езды.
  2. Значительно улучшается герметизация пассажирского помещения кузова от проникновения в него пыли, грязи и влаги, поскольку (при педали тормоза также «подвесной» конструкции) в наклонном полу кузова отсутствуют люки для прохода рычагов педалей сцепления и тормоза.
  3. Не забрасываются грязью и хорошо защищены от пыли главные цилиндры гидроприводов выключения сцепления и ножного тормоза, расположенные достаточно высоко па идете кузова, и элементы механической части приводов, что облегчает техническое обслуживание этих узлов и повышает их долговечность.
  4. Нет точек смазки в приводе сцепления, что упрощает обслуживание автомобиля.
  5. Появляются значительные компоновочные возможности, так как «подвесные» педали сцепления и тормоза вместе с их главными цилиндрами можно разместить на щите передка кузова в соответствии с особенностями компоновки автомобиля.

Устройство привода выключения сцепления

Штампованная педаль сцепления 21 установлена на сварном кронштейне 12, укрепленном на кузове болтами 11 и шпильками 8 с гайками 7. Педаль сцепления качается на оси 16, которая неподвижно закреплена в кронштейне 12. Педаль фиксируется от проворачивания лыской, входящей в фигурное отверстие в одной из щек кронштейна педали.

Аксиальное перемещение оси ограничено шплинтом 13 и уступом лыски. В ступицу педали вставлены две вращающиеся на оси полиамидные втулки 17, имеющие буртики на одном из торцов.

Втулки имеют высокую износостойкость и не требуют смазки в процессе эксплуатации. На площадку педали надета резиновая накладка 31. Педаль удерживается в исходном (крайнем заднем) положении усилием оттяжной пружины 15. При этом нерегулируемый толкатель 14, шарнирно соединенный с педалью пальцем 19, упирается в ограничительную шайбу 5, зафиксированную в осевом направлении стопорным кольцом.

В исходном положении педали поршень 12 главного цилиндра сцепления под действием пружины 8 упирается торцом в шайбу 14. Между толкателем 14 и поршнем 4 предусмотрен постоянный зазор а = 0,2 — 1,0 мм, который обеспечивается в указанных пределах выбранными размерами этих деталей и ограничительной шайбы 5.

Указанный зазор обеспечивает поршню главного цилиндра возможность занять исходное положение (при включенном сцеплении), гарантирующее сообщение полости а цилиндра с наполнительным бачком 3 через компенсационное отверстие б.

В приводах сцепления и управления ножными тормозами оси педалей, полиамидные втулки, толкатели, накладки педалей и крепежные детали взаимозаменяемы. Главный цилиндр сцепления предназначен для создания давления в системе гидравлического привода сцепления. Цилиндр имеет чугунный корпус 9 внутреннего диаметра 22 мм с фигурным фланцем; во фланец ввернуты две шпильки 18, с помощью которых цилиндр и кронштейн 12 педали крепятся к щиту передней части кузова. Между фланцем корпуса цилиндра и щитом передней части кузова при сборке устанавливают до четырех (по потребности) регулировочных прокладок 6, изготовленных из листовой стали толщиной 0,5 мм каждая. Эти прокладки помогают установить исходное положение педали сцепления, которое должно обеспечивать полный ее ход L до упора в резиновый коврик пола, равный 150—155 мм.

Рис. Привод выключения сцепления: 1 — кронштейн крепления соединительной трубки; 2 — соединительная трубка; 3 — главный цилиндр сцепления в сборе; 4 — поршень главного цилиндра сцепления; 5 — ограничительная шайба; 6 — регулировочная прокладка; 7 и 28 — гайки; 8 — шпилька крепления главного цилиндра; 9 — питательный бачок главного цилиндра сцепления; 10 — гайкодержатель; 11 — болт крепления кронштейна педали сцеплении; 12 — кронштейн педали сцепления: 13 — шплинт оси педали сцепления; 14 — толкатель поршня главного цилиндра сцепления; 15 — оттяжная пружина педали сцепления; 16 — ось педалей сцепления и тормоза; 17 — втулка оси педалей сцепления и тормоза; 18 и 33 — шайбы; 19 и 23 — пальцы; 20 и 32 — шплинты; 21 — педаль сцеплении; 22 — вилка выключения сцепления; 24 — наконечник толкателя; 26 — оттяжная пружина вилки выключения сцепления; 26 — контргайка; 27 — толкатель вилки; 29 — рабочий цилиндр привода включения сцепления; 30 — шпилька крепления рабочего цилиндра; 31 — накладка педали; 34 — защитный колпак; 35 — стопорное кольцо; 36 — поршень рабочего цилиндра; 37 — уплотнительная манжета; 38 — распорный грибок; 39 — пружина; 40 — клапан выпуска воздуха; 41 — защитный колпачок клапана; 42 — скоба крепления трубки; 43 — прокладка

На верху корпуса главного цилиндра расположен бачок 3, изготовленный из полупрозрачной пластмассы. В бачке содержится определенный запас тормозной жидкости, необходимый для нормальной работы гидравлического привода сцепления. Бачок закрыт пластмассовой резьбовой крышкой 1, в которой имеется отверстие для сообщения внутренней полости бачка с атмосферой, и укреплена отражательная пластина, предупреждающая выплескивание тормозной жидкости через указанное отверстие. На торец питательного бачка опирается фланец сетчатого фильтра 2, выполняющего одновременно функции успокоителя находящейся в бачке тормозной жидкости.

Питательный бачок 3 крепится к корпусу 9 главного цилиндра резьбовым штуцером 4, имеющим на торце шлиц под отвертку. Уплотнительная прокладка 5 после затяжки штуцера гарантирует герметичность соединения бачка с корпусом цилиндра. Через отверстие в штуцере 4 тормозная жидкость из бачка 3 самотеком поступает в корпус 9 главного цилиндра.

На находящийся внутри цилиндра поршень 12 надета резиновая уплотнительная манжета 13, препятствующая вытеканию жидкости из цилиндра. Поршень отлит из цинкового сплава. В головке поршня сделано шесть сквозных отверстий г, прикрытых тонким стальным кольцом-клапаном 11 и внутренней рабочей резиновой манжетой 10. На наружной поверхности манжеты имеются одна кольцевая и шесть продольных канавок. Пружина 8 прижимает манжету к поршню 12, а поршень — к упорной шайбе 14. Другим своим концом пружина упирается в резьбовой штуцер 7, закрывающий внутреннюю полость корпуса цилиндра.

Работа главного цилиндра сцепления

Главный цилиндр сцепления работает следующим образом. При нажатии на педаль 21 толкатель 14 перемещает поршень 4, сжимая пружину 8.

Как только манжета 10 перекроет перепускное отверстие б, внутри цилиндра в полости а создается давление, и жидкость через отверстие в штуцере 7 и по соединительной трубке 2 проходит в рабочий цилиндр 29, вызывая перемещение поршня 36, толкателя 27 и связанной с ним через наконечник 24 и палец 23 вилки 22 выключения сцепления. Сцепление выключается. При том растягивается оттяжная пружина 25 вилки и сжимаются нажимные пружины 14.

Рекомендуем: Как определить, какой расход масла в двигателе считается нормальным?

При отпускании педали сцепления последняя возвращается в исходное положение пружиной 75, а поршень 12 главного цилиндра под действием возвратной пружины 8 перемещается вслед за толкателем 17 до упора в шайбу 14. При этом давление в системе падает, и нажимной диск сцепления, переменяясь под действием нажимных пружин, вновь прижимает ведомый диск к маховику. Сцепление включается. Перемещение нажимного диска до его упора в ведомый диск вызывает перемещение связанной с ним через отжимные рычажки пяты и упертого в нее подпятника.

Далее подпятник и связанная с ним вилка выключения сцепления перемещаются под действием оттяжной пружины 25, которая постоянно прижимает шток толкателя 27 к поршню 36 и передвигает последний в крайнее переднее положение. При этом поршень вытесняет жидкость из внутренней полости рабочего цилиндра 29. Жидкость по трубке 2 возвращается в полость а главного цилиндра.

При резком отпускании педали сцепления жидкость, возвращающаяся из рабочего цилиндра в главный, не успевает заполнить пространство, освобождаемое поршнем 12, и в полости а создается разрежение.

Под действием этого разрежения жидкость из полости д (куда она поступает через отверстие в) перетекает в полость а через отверстия г в головке поршня, отодвигая клапан 11 и края манжеты 10. Канавки на поверхности манжеты 10 облегчают проход жидкости из полости д в полость а. В дальнейшем избыточная жидкость но мере поступления ее из трубопровода вытесняется из полости а через компенсационное отверстие б в бачок 3. Перетекание жидкости из соединительной трубки в главный цилиндр сцепления прекращается, как только поршень рабочего цилиндра под действием нажимных пружин и оттяжной пружины вилки выключения сцепления возвратится в крайнее переднее положение.

Как правильно отрегулировать сцепление в автомобиле?

После ремонта или замены сцепления, а иногда при эксплуатации автомобиля передачи перестают переключаться четко и плавно, машина дергается, при трогании с места пробуксовывает. Это происходит из-за неотрегулированного сцепления, об этом и расскажем в нашей статье.

Регулировку сцепления можно проводить самостоятельно

Основные признаки, по которым можно понять, что пора регулировать сцепление

Примерный интервал пробега, через который рекомендуют проводить проверку и настройку работы сцепления – 10 000 километров. Стоит свериться с графиком обслуживания авто, установленным заводом-изготовителем, – здесь могут быть указаны другие цифры.

Регулировка сцепления обязательна после замены/ремонта сцепления или его элементов, например, приводящего троса. Процедура требуется даже при подозрениях на отклонение амплитуды педали от нормальных показателей:

  • авто трогается с места рывками;
  • педаль сцепления западает или “ходит”с трудом;
  • уровень жидкости в гидравлическом приводе снижается;
  • при переключении передач вы замечаете удары, шум и вибрацию.

Убедиться, что сцепление нуждается в регулировке, поможет простой тест. Заводим двигатель, плавно отпускаем педаль сцепления и медленно трогаемся. Если машина осталась на месте, когда сцепление полностью отпущено, значит, ход педали увеличен. Если машина начала движение еще до того, как вы сняли ногу с педали, её ход чересчур мал.

Что будет, если вовремя не отрегулировать сцепление?

Сцепление, которое вовремя не отрегулировали, быстро выйдет из строя, так что скоро его придется ремонтировать или полностью менять. При повышенном ходе педали сцепление выключается не до конца, его диск постоянно прижат к маховику двигателя. При малом ходе у сцепления нет возможности включить ведомый диск до конца, что ведет к пробуксовке и отсутствию крутящего момента.

Управлять автомобилем с неотрегулированным или неисправным сцеплением опасно и чревато аварией!

Отсутствие регулировки – причина быстрого выхода сцепления из строя

Можно ли самостоятельно отрегулировать сцепление?

С регулировкой сцепления можно справиться без обращения в техцентр. Но если вы не уверены в причинах проблемы, у вас нет нужных инструментов и раньше с ремонтом авто не сталкивались, доверьте работу профессионалам.

Для регулировки сцепления вам потребуются линейка, жидкая смазка, плоскогубцы и рожковые ключи двух размеров – 17х14 и 13х14.

Этапы регулировки сцепления

Чаще всего на современных автомобилях установлены сцепления двух видов:

  1. с приводом механического типа – вилка сцепления соединяется с педалью в салоне с помощью троса;
  2. с приводом гидравлического типа – педаль газа с рабочим цилиндром сцепления соединяет трубопровод, заполненный рабочей жидкостью.

Процедура регулировки зависит от типа узла.

Регулируем механическое сцепление

Для начала выясняем, ход педали уменьшается или увеличивается. Жмём на педаль до упора и замеряем, на каком расстоянии от пола она остановилась. Отпускаем педаль и снова проводим замеры.

Из второго показателя вычитаем первый. У большинства моделей нормальная амплитуда хода — в диапазоне 12 — 14 см, ее можно уточнить в технических документах. Если цифра меньше, ход педали нужно увеличить, если больше – уменьшить.

После замеров переходим к самой процедуре регулировки:

Этап 1 – открываем капот, находим около рычага трансмиссии шток, который крепит идущий от педали сцепления трос.

Этап 2 – смазываем и ослабляем гайки, которыми закреплен шток, жидкой смазкой.

Этап 3 – с помощью гаечных ключей крутим гайку, которая находился ближе к педали. Если крутить гайку по направлению к педали сцепления, свободный ход педали станет больше, если в противоположном направлении – меньше.

Этап 4 – снова замеряем амплитуду хода педали. Если он в границах нормы, закручиваем до упора вторую гайку – контрольную. Это необходимо для фиксации выполненных регулировок. Если ход все еще слишком большой или маленький, подкручиваем гайку, которая находится ближе к педали.

Проверяем работу сцепления. Педаль должна нажиматься легко, без шума и трения. Автомобиль при старте не должен буксовать или двигаться рывками. Скорости должны переключаться плавно и точно.

Регулируем гидравлическое сцепление

Сцепления с гидравлическим приводом в большинстве своем саморегулирующиеся. Но настроить их вручную тоже можно, если у толкателя на рабочем цилиндре есть резьба и контрольная гайка. Вот как это сделать:

Этап 1 – проверяем уровень рабочей жидкости в сцеплении. Он должен быть на нормальном уровне.

Этап 2 – создаем условия для работы под машиной. Можно поставить автомобиль на рампу или стояки, воспользоваться подъемником или смотровой ямой.

Этап 3 – отыскиваем толкатель рабочего цилиндра.

Этап 4 – отцепляем пружину от вилки плоскогубцами. Отжимаем вилку вперед, насколько это возможно, замеряем расстояние между ней и штоком толкателя. Отпускаем вилку, проводим такие же замеры. Получаем размер зазора сцепления, который сверяем с нормативным. Если он не вписывается в диапазон, указанный в технической документации (обычно около 5 мм), проводим регулировку.

Этап 5 – снимаем пружину, установленную на кронштейн рабочего цилиндра и вилки.

Этап 6 – ослабляем фиксирующую гайку на резьбовом соединении толкателя, крутим регулировочную гайку в направлении рабочего цилиндра для увеличения размеров зазора. Либо в обратную сторону — для их уменьшения.

Этап 7 – затягиваем контрольную гайку, когда размеры зазора станут нормальными.

В конце проводим контрольную проверку работы сцепления.

Гидравлическое сцепление, как и механическое, можно регулировать вручную

На разных марках авто регулировка производится по-разному?

Приведенные выше процедуры универсальны, они могут выполняться на машинах любых производителей. Суть процедуры всегда одна – уменьшить или увеличить ход педали путем натяжения или ослабления троса, либо регулировки гидравлического толкателя.

Но при регулировке сцепления в машинах разных марок могут быть некоторые отличия. Например:

  • нормальные показателям амплитуды хода педали или зазора сцепления;
  • порядок доступа к регулировочной и контрольной гайкам сцепления. Так, в ВАЗ-2114, 2115 придется перед началом работ снять аккумулятор, а в Лада Калина – открутить воздушный фильтр.

Перед началом работ по регулировке сцепления ознакомьтесь с технической информацией о своем автомобиле, инструкцией по эксплуатации и руководством по ремонту. Это позволит выполнить процедуру правильно.

Какой привод сцепления лучше

Одним из важнейших механизмов автомобиля является сцепление. Данная система реализована для краткосрочного разъединения коленчатого вала мотора от коробки и их мягкого соединения при переводе ручки селектора передач на механике, передачи крутящего момента и гашения нагрузок и крутильных колебаний трансмиссии.

В моделях, оборудованных механической трансмиссией, чтобы двинуться с места, следует выжать педаль сцепления, включить передачу и, плавно отпускать педаль, избегая резких движений. Кроме знакомого всем элемента управления – педали, посредством которой водитель напрямую взаимодействует с механизмом, в конструкции имеются не менее важные компоненты. Ножной рычаг является лишь видимой частью привода сцепления, позволяющий непосредственно контактировать с механизмом путём нажатия, остальные же элементы скрыты, их слаженная работа и обеспечивает функционирование узла.

Управление сцеплением в автомобилях с МКПП обусловлено приводом. С его помощью и передаётся усилие от педали на вилку выключения сцепления и далее на пружину, благодаря чему становится возможным управлять позицией дисков из салона.

Разновидности привода сцепления

Зависимо от реализации передачи усилия различают несколько видов приводов, используемых соответственно типу сцепления, компоновке авто и принятым при конструировании техническим решениям по обеспечению управления.

На сегодняшний день основными типами привода являются:

  • Механический.
  • Гидравлический.

Есть ещё электрический привод, имеющий в составе электромотор, и комбинированные варианты, но они не получили массового распространения в современном автомобилестроении, потому далее речь пойдёт именно об основных разновидностях.

При условии отсутствия усилителя, усилие на ножной рычаг не должно быть более 150 Н для легкового транспорта и 250 Н для грузовиков, полный ход педали находиться в границах 120-190 мм, при этом общее передаточное число привода имеет значение 25-50. Если же управление сцеплением требует усилий больше допустимого, для упрощения задачи в конструкции используют пневматические и вакуумные усилители.

Легковой автомобиль чаще всего оснащается механизмом с гидравлическим типом привода, нередко с серво пружиной, или механическим тросовым приводом. Для малотоннажных грузовиков или транспорта средней грузоподъёмности также применяют механический и гидравлический типы приводов, а для крупнотоннажного транспорта (автомобили-тягачи, часто используемые для формирования автопоездов) устанавливается комбинированный – механический с пневмоусилителем или гидравлический с пневмоусилителем.

Устройство механического привода

Сцепление на автотранспорте, где применена механика, не является сложным узлом. В качестве системы управления на легковушках и мотоциклах, где не требуется больших усилий, нередко применяется механический тросовый привод. Он отличается нехитрой конструкцией, надёжностью, лёгкостью обслуживания и низкой ценой, при этом в результате старения со временем фрикционных накладок изменяется положение педали (для решения этой проблемы конструкция предусматривает функцию ручной или автоматической регулировки). Механический тросовый привод сцепления имеет меньший КПД, если сравнивать с гидравлическим типом. Это обусловлено потерями энергии в результате трения составляющих компонентов.

Основные детали механического привода:

  • Педаль.
  • Трос в оболочке.
  • Рычажная передача.
  • Вилка выключения сцепления.
  • Механизм контроля свободного хода.

Трос, заключённый в гибкий кожух, объединяет вилку выключения и педаль. Так, при нажиме на педаль через него передаётся усилие на рычажную передачу, она в то же время выключает сцепление передвижением вилки, воздействующей на муфту.

В соединении троса и вилки конструкция предусматривает также механизм, используемый для регулировки свободного хода педали путём изменения длины тяги. Гайка находится на конце троса. Вопрос регулировки хода педали возникает при смене её позиции, что сопровождается такими симптомами, как шум и рывки в начале движения автомобиля. Зазор в сцеплении должен быть в пределах 3-4 мм. (35-50 мм. свободного хода), эти показатели указываются автопроизводителем в мануале авто. Зазор меньше нормы или его отсутствие ведёт к неполному включению сцепления и в результате пробуксовке, больший зазор – к увеличению хода педали и неполному выключению сцепления.

В грузовиках реализован рычажный привод, передающий усилие на дальнем расстоянии. Так, при нажиме на педаль, закреплённую на валу, поворачивается рычаг, соединённый с другим концом вала. Рычаг задействует прикреплённую к нему на оси тягу, связанную с вилкой и поворачивающую её, а вместе с тем и прижатую к вилке пружиной муфту.

Устройство гидравлического привода

При таком конструктивном решении усилие передаётся уже другим способом. Схема гидравлического привода не предполагает наличие троса, реализация механизма с данным типом управления немного сложнее и трос заменяет гидравлическая магистраль. Усилие передаётся посредством несжимаемой жидкости, проходящей по магистрали и поскольку гидропривод аналогичен тому, что применяется в тормозной системе, для работы используют ту же жидкость. Устройство сцепления с управлением с помощью гидравлического привода включает следующие элементы:

  • Педаль.
  • Главный цилиндр, состоящий из поршня с толкателем, резервуара для жидкости и уплотнительных манжет.
  • Рабочий цилиндр имеет похожую конструкцию.
  • Магистраль, соединяющая цилиндры.
  • Бачок с жидкостью.
  • Дополнительно цилиндры оснащаются клапанами для отвода воздуха из системы.

Принцип работы достаточно простой и схож с механическим вариантом управления, отличие только в методе передачи усилия. Когда автомобилист жмёт на ножной рычаг в салоне автомашины, поршень главного цилиндра приводится в движение, жидкость сжимается и под давлением перемещается по трубопроводу в рабочий цилиндр, толкая поршень, что задействует вилку выключения сцепления.

Гидравлический привод может быть также оборудован демпфирующим устройством с целью гашения колебаний от взаимодействия выжимного подшипника с деталями выключения сцепления. Пневматические или гидравлические усилители часто используются для грузового транспорта.

Поскольку механизм с гидравлическим приводом является более совершенным и сложным устройством, передающим усилие на дальнее расстояние с высоким КПД, стоимость его выше, при этом он отличается плавностью включения сцепления, что обусловлено сопротивлением перемещению жидкости в элементах конструкции. Среди преимуществ гидропривода также устойчивость к износу деталей, но и ремонт сложнее, чем в случае с механическим устройством.

Заключение

Механический и гидравлический приводы наделены своими особенностями функционирования, плюсами и минусами применения, при этом устройства этих типов обеспечивают комфорт управления транспортным средством. В легковых машинах жёсткость диафрагменной пружины нажимного диска небольшая, так что водителю не нужно прилагать больших усилий, но на грузовиках узел габаритнее, и чтобы привести в действие корзину, от водителя потребуется большее усилие, поэтому в конструкцию вводят усилители.

Освоение основ гидравлических систем сцепления

| How-To — Transmission

Подходящим определением современного автомобиля с высокими эксплуатационными характеристиками может быть только тот, который имеет превосходный контроль над каждой системой. EFI предлагает выдающееся цифровое управление подачей топлива и искрой, и можно сказать, что гидравлика предлагает аналогичный и более конкретный контроль над срабатыванием сцепления. Вы можете представить это так: еще в 30-х годах управление транспортным средством сделало гигантский скачок вперед, когда на серийных автомобилях появились гидравлические тормоза. Но, как и EFI, гидравлические системы выключения сцепления не сразу завоевали популярность у энтузиастов. На первый взгляд системы кажутся простыми, но правильное выполнение этих систем иногда может быть проблематичным. Но есть подходящие решения.

Узел гидравлического сцепления особенно полезен на ранних автомобилях с заменой двигателя LS, таких как этот Camaro 67 года с карбюраторным двигателем LS. Механическая связь будет заменена на гидравлическую систему, поскольку в блоке LS нет места для поперечного вала, необходимого для механической системы.

Это становится важным с сегодняшними схемами модернизации двигателей Pro Touring и LS, где ожидается, что правильно построенный маслкар может легко интегрировать компоненты 21-го века в листовой металл 60-х годов и работать так же, как совершенно новый Camaro или Corvette.

Механические коробки передач далеко не мертвы на улице, но шестиступенчатые повышающие передачи последних моделей часто требуют гидравлической системы выключения сцепления последних моделей, а не механической системы. В этой статье будут рассмотрены некоторые основы работы гидравлического сцепления. Система, аналогичная гидравлической тормозной системе автомобиля, использует главный гидравлический цилиндр для создания линейного давления, подключенного (обычно) к внутреннему гидравлическому выжимному подшипнику (HRB), расположенному на входном валу трансмиссии.

Почему вы хотите перейти на гидравлическое сцепление в сборе? Механические системы сцепления могут быть проблематичными при замене нестандартных двигателей, например, установка двигателя LS на Chevelle, Camaro или раннюю Nova. Двигатели LS никогда не оснащались приспособлением для крепления механического Z-образного рычажного механизма, поэтому необходимо установить или изготовить кронштейн, а рычажный механизм изменить, чтобы компенсировать разницу, создаваемую измененной монтажной поверхностью маховика двигателя LS. Другие головные боли, которые решает гидравлический привод, включают проблемы с зазором жатки и снижение усилия на педали, что делает вождение более приятным.

Это макет педального узла McLeod для Camaro 1970-82 годов. Поскольку гидравлическое крепление главного брандмауэра расположено под углом, это определяет угол наклона штока, который соединяется с педалью сцепления, чтобы он был направлен прямо к главному. Соотношение педалей и угол хода имеют решающее значение, но McLeod разработал все это в этом комплекте.

Мы поговорили с Фредом Тейлором из McLeod, который имеет многолетний опыт работы со всеми аспектами конструкции сцепления. Он подчеркнул, что многие энтузиасты считают, что гидравлическая система уменьшит усилие на педали. Если оригинальная механическая связь изношена там, где она создает избыточное трение, то лучше использовать гидравлическую систему. Но в целом, говорит Тейлор, если вам нужно более легкое сцепление, вам нужно будет заменить его на более легкий нажимной диск, потому что общие соотношения между гидравлическим и механическим сцеплением очень похожи.

Тейлор описывает это так. Если вашей нажимной пластине требуется усилие в 500 фунтов для выключения сцепления, а общее передаточное число в системе выключения составляет 10:1, то для выключения сцепления потребуется усилие на педали в 50 фунтов. Это так просто.

Заводские гидравлические системы разблокировки, такие как те, что используются в последних моделях легковых и грузовых автомобилей с механической коробкой передач, являются практически пуленепробиваемыми из-за их оригинальной конструкции. Комплекты для вторичного рынка, предлагаемые для конкретных моделей автомобилей, также очень эффективны. Проблемы возникают при попытке переоборудовать старый автомобиль, такой как Chevy 54 года, или, возможно, уникальное приложение, такое как Corvair со средним расположением двигателя, с использованием деталей, собранных из нескольких источников. Знание того, как интегрировать системы и как некоторые из более сложных аспектов установки влияют на общую производительность системы, может сделать разницу между приятным, заводским ощущением педали и системой, которая требует, чтобы обе ноги выжимали педаль сцепления.

Этот полный комплект American Powertrain включает в себя главный и гидравлический выжимной подшипник. Обратите внимание, что American использует запатентованное универсальное крепление HydraMax для главного цилиндра, чтобы идеально соответствовать углу толкателя, сходящего с педали сцепления.

Существует огромное количество информации о настройке встроенного гидравлического выжимного подшипника с надлежащим зазором на протяжении многих миль уличного движения, поэтому мы потратим на эту тему минимум усилий. Вместо этого мы сосредоточимся на вопросах позиционирования и установки главного цилиндра и геометрии педали сцепления.

Существует несколько проблем, с которыми могут столкнуться гидравлические системы выключения сцепления. Разумным шагом будет использование главного цилиндра, узла педали и гидравлического выжимного подшипника (HRB), которые предназначены для совместной работы. Но для приложений, где конкретного комплекта не существует, может быть полезно изучить, как устроены эти системы.

Есть несколько вопросов, которые необходимо учитывать потенциальным преобразованиям. Во-первых, это простая гидравлика. Мы ограничим это обсуждение встроенными гидравлическими выжимными подшипниками, поскольку они наиболее популярны.

Правильно подобранная система будет обеспечивать правильное давление без чрезмерного усилия на педали, что означает правильное усилие, создаваемое главным гидравлическим цилиндром. Энтузиасты запутались в относительном размере отверстия главного и рабочего цилиндров/HRB.

Расстояние между точкой поворота педали сцепления и накладкой педали (от А до В) делится на расстояние от точки поворота до точки крепления штока сцепления (от А до С). Мы используем педаль тормоза, чтобы продемонстрировать это, но эффект соотношения тот же. Если длина педали (от А до В) составляет 12 дюймов, а расстояние между штоками (от А до С) равно 2 дюймам, то передаточное число педали составляет 12/2 = 6 для передаточного отношения педали 6:1. Это умножает усилие, прилагаемое вашей ногой к штоку сцепления.

Другая сторона этого уравнения – объем. Давление может быть более чем достаточным для приведения в действие спусковых пальцев на прижимной пластине, но недостаточного объема. В целом, главный поршень малого диаметра будет создавать большее давление, чем поршень большего размера, но может страдать от недостаточного объема, что означает, что HRB не сдвинется достаточно далеко, чтобы выключить сцепление. И наоборот, мастер с увеличенным диаметром поршня предлагает более чем достаточный объем, но будет страдать от более низкого давления, что приводит к очень жесткой педали сцепления. Именно здесь хорошо работают полные комплекты, объединяющие все компоненты.

Среди наиболее распространенных проблем, связанных с переоборудованием гидравлического сцепления, является течь уплотнения главного цилиндра. Это происходит из-за неправильного расположения исполнительного рычага главного цилиндра на педали сцепления в случаях, когда система была получена от нескольких поставщиков. Главные цилиндры сцепления чрезвычайно чувствительны к чрезмерным углам между главным цилиндром и узлом педали. Залог успеха – правильно расположенный рычаг, сохраняющий минимальный угол между педалью сцепления и главным цилиндром. Тейлор говорит, что минимальный вертикальный ход рычага главного цилиндра достигается, когда при полупедальном ходе рычаг педали сцепления составляет 90 градусов до педали. Этого добиться труднее, чем может показаться, потому что при нажатии на педаль сцепления рычаг движется по дуге.

Одним из инновационных решений этой проблемы является крепление главного цилиндра HydraMax компании American Powertrain. Это крепление размещает брандмауэр между двумя большими пластинами из нержавеющей стали с полностью регулируемым по углу креплением.

Это серийный внешний ведомый узел, который первоначально использовался на пятиступенчатом Camaro Т-5 конца 80-х годов. Внешний ведомый болтами крепится к фланцу колокола Т-5 и приводит в действие стандартный выжимной подшипник и рычаг. Преимущество внешних ведомых состоит в том, что в случае отказа или утечки вам не нужно тянуть трансмиссию, чтобы получить доступ к гидравлическому выжимному подшипнику. К сожалению, существует очень мало внешних ведомых приложений послепродажного обслуживания, и в настоящее время их нет для автомобилей GM, кроме этой стандартной версии T-5.

Положение штока педали сцепления также рассматривалось другими компаниями, которые в настоящее время производят специально разработанные комплекты, предлагающие системы с болтовым креплением, позволяющие сборщику воспользоваться преимуществами контроля и простоты гидравлического сцепления на Chevelle середины 60-х годов. Chevy II, и даже сейчас несколько грузовиков C10 с пакетом, который предлагает ощущение, похожее на Camaro 2019 года.

Не так давно энтузиасты были вынуждены смешивать и сочетать части из других приложений для достижения своих целей. В то время как упорные все еще могут пройти долгий путь, остальной мир может воспользоваться преимуществами комплектов для переоборудования от таких компаний, как American Powertrain, Driveline Components, McLeod Racing, Modern Driveline и других. Часто это включает в себя модифицированную педаль сцепления, которая обеспечивает правильный угол наклона штока привода.

Настройка любой системы по-прежнему важна, но большинство важных деталей рассматриваются в инструкциях. Тейлор говорит, что один аспект, который многие энтузиасты не принимают во внимание, заключается в том, что по мере износа сцепления высота выжимного пальца нажимного диска увеличивается. Этот износ перемещает пальцы нажимной пластины ближе к выжимному подшипнику и требует повторной регулировки ручного рычажного механизма для поддержания надлежащего свободного хода подшипника. Гидравлические системы расцепления обеспечивают дополнительный свободный ход, поэтому дальнейшая регулировка не требуется.

В качестве примера возьмем установку для гидравлического выжимного подшипника McLeod. В случае выжимного подшипника серии 1300 его общий потенциал перемещения составляет 0,800 дюйма. Если нажимной диск требует 0,400 дюйма хода для полного выключения сцепления, и мы устанавливаем начальный зазор 0,200 дюйма, это обеспечивает общий ход выжимного подшипника 0,600 дюйма, что более чем достаточно для выключения сцепления.

Мы не будем вдаваться в подробности настройки гидравлического выжимного подшипника (HRB), так как это подробно описано в Интернете. Одна вещь, которая важна для любого HRB, это то, что обычно есть штифт или ограничитель, который предотвращает вращение корпуса на входном кольце.

Причиной 0,200-дюймового начального зазора является учет будущего износа сцепления. Этот начальный «свободный ход» фактически воспринимается главным цилиндром при первом нажатии на педаль. Но этот зазор важен, потому что по мере износа сцепления пальцы нажимного диска становятся выше, и этот зазор в 0,200 дюйма будет уменьшаться, но зазор все равно будет присутствовать. Когда поршень возвращается внутрь HRB, гидравлический контур компенсирует это, выталкивая жидкость из HRB обратно в главный цилиндр. Это также означает, что при установке главного цилиндра сцепления требуется очень небольшой зазор между штоком привода педали сцепления и задней частью поршня.

Этот зазор обеспечивает полное втягивание поршня главного цилиндра при отпускании педали сцепления. Когда поршень полностью втянут в отверстие главного цилиндра, это открывает передаточный порт, так что гидравлическая жидкость может вернуться из контура обратно в резервуар. Это позволяет HRB компенсировать износ сцепления. Несмотря на простоту в эксплуатации, вы можете видеть, насколько важно установить правильный зазор штока привода поршня при установке системы. После того, как основной стержень установлен, нет необходимости его регулировать. Никогда не используйте этот стержень для регулировки точки выключения сцепления.

Существует немало деталей, связанных с системами гидравлического сцепления, но этот обзор должен помочь лучше понять и оценить гидравлическую систему сцепления и преимущества, которые она обеспечивает. CHP

Еще одной важной деталью является точное расположение колокола для определения осевой линии. В трансмиссиях последних моделей, таких как T-56 и Magnum, используются конические роликовые подшипники для входного вала, и эти подшипники не допускают смещения колокола, вызывая проблемы с переключением передач, которые трудно диагностировать.

Механический рычаг 101
Рычаг сцепления — механический или гидравлический — использует рычаг для выполнения своей работы. Предположим, что нажимной диск с высокими рабочими характеристиками требует усилия в 500 фунтов, чтобы сжать пальцы, зажимающие сцепление. В случае механической связи рычаг начинается с передаточного числа педали. На раннем Camaro мы измерили соотношение 3:1. Z-образный стержень добавляет еще 2,1:1 вместе с передаточным числом 2:1 от выжимного рычага, который приводит в действие выжимной подшипник. Умножьте их вместе, и мы получим соотношение 12,6:1.

Если мы разделим усилие нажимного диска в 500 фунтов на общее передаточное отношение 12,6:1, то в результате для выключения сцепления потребуется усилие на педали 39,7 фунтов.

По словам Тейлора, система McLeod создает гидравлическое соотношение 2:1 между главным и гидравлическим выжимным подшипником (HRB). Таким образом, когда главный поршень сцепления перемещается на один дюйм, это перемещает HRB на 1/2 дюйма. Для этого требуется, чтобы передаточное отношение педали стало 6:1, чтобы цифры были похожи на желаемое передаточное отношение механической связи 12:1.

Если мы приложим к педали усилие в 42 фунта, умноженное на передаточное отношение педали 6:1 и умноженное на гидравлическое соотношение 2:1, мы получим следующее: 42 x 6 x 2 = 504 фунта силы на давление пластина для выключения сцепления. Это подтверждает идею о том, что при аналогичных передаточных числах гидравлическая система создает такое же усилие на педали, что и правильно работающая механическая система.

Мы установили стандартный узел диафрагменной муфты на наш сверлильный станок вместе с циферблатным индикатором для измерения хода, необходимого для выключения диафрагменной муфты. В данном конкретном случае расстояние было лишь чуть более 0,300 дюйма. Не все муфты одинаковы, поэтому нормальным диапазоном является расстояние 0,3000,500 дюйма. Если вся рычажная система имеет общее передаточное число 12:1, а педаль сцепления перемещается на 6 дюймов, то 6/12 = 0,500 дюйма хода выжимного подшипника. Это гидравлический выжимной подшипник McLeod серии 1300. Эти подшипники регулируются по высоте, а также могут быть разобраны и восстановлены с новыми уплотнениями, в отличие от заводских подшипников. McLeod также предлагает их с фитингами -4 AN или с быстроразъемными фитингами (QD) заводского типа GM. Одна линия предназначена для подачи давления, а другая — для стравливания. Это гидравлический комплект для переоборудования Modern Driveline для раннего Camaro. Это будет сочетаться с гидравлическим выжимным подшипником Modern; в сочетании комплекты очень доступны по цене. Это аналогичный комплект от Driveline Components, который позиционирует шток сцепления в правильном положении. Обратите внимание на использование кронштейна для перемещения штока сцепления к ближней стороне педали для прямого выстрела к мастеру. Этот конкретный набор для 19Камарос 67-69 гг.
Trending Pages
  • Лучшие электромобили — самые популярные модели электромобилей
  • Сколько стоит Tesla? Вот разбивка цен
  • Лучшие гибридные автомобили — самые популярные модели гибридных автомобилей
  • Каждый электрический внедорожник, который можно купить в США в 2022 году
  • Это самые экономичные пикапы, которые вы можете купить 90 6 90 6
    Это внедорожники с лучшим расходом топлива
Популярные страницы
  • Лучшие электромобили — модели электромобилей с самым высоким рейтингом
  • Сколько стоит Tesla? Вот разбивка цен
  • Лучшие гибридные автомобили — самые популярные модели гибридных автомобилей
  • Каждый электрический внедорожник, который можно купить в США в 2022 году
  • Это самые экономичные пикапы, которые вы можете купить 90 6 90 6
    Это внедорожники с лучшим расходом топлива

ДЕСЯТЬ ВЕЩЕЙ О СЕКРЕТАХ ГИДРАВЛИЧЕСКИХ СЦЕПЛЕНИЙ

(1) Что это? Гидравлическое сцепление имеет те же пластины, волокна и корзину сцепления, что и стандартное сцепление с тросовым приводом. Единственная разница заключается в системе, которая отключает диски сцепления. Когда рычаг сцепления вытягивается на гидравлическом сцеплении, жидкость сжимается по линии, разделяя диски сцепления. В стандартной тросовой муфте рычаг натягивает трос, соединенный с рычагом. рычаг, который используется для разделения дисков сцепления.

(2) Назначение. KTM изначально установила гидравлические муфты, потому что их было легче втягивать, чем муфты с тросовым приводом. Более легкая тяга позволила им использовать более жесткие пружины сцепления, что сделало сцепление более прочным и придало ему больший крутящий момент. Они также обеспечивают более стабильное ощущение, чем муфты с тросовым приводом, и в то же время упрощают производственный процесс. Вместо троса, натягивающего рычаг для приведения в действие сцепления, гидравлическая система использует рабочий цилиндр сцепления и толкатель, которые находятся внутри двигателя и защищены от повреждений.

(3) Как это работает? Рычаг сцепления соединен с бачком главного цилиндра, наполненным жидкостью. Когда рычаг нажат, жидкость сжимается, и давление увеличивается. Повышенное давление посылает импульс жидкости вниз по шлангу к ведомому блоку сцепления, где жидкость давит на поршень внутри ведомого блока сцепления, который, в свою очередь, давит на шток. Стержень проходит от левой стороны двигателя (со стороны рычага переключения передач) к правой стороне, где находится корзина сцепления. Шток вставляется в цилиндрический фитинг, который отключает сцепление, оттягивая нажимной диск от дисков.

(4) Саморегулирующийся. Когда сцепление нагревается, волокнистые пластины расширяются, что уменьшает расстояние между пластинами и изменяет точку выключения сцепления. Сцепления с тросовым приводом необходимо регулировать по мере того, как диски сцепления нагреваются и остывают. В гидравлических муфтах жидкость постоянно саморегулируется, чтобы компенсировать нагрев и износ. Это поддерживает оптимальную работу сцепления, обеспечивая при этом постоянное ощущение рычага.

(5) История.

KTM впервые представила гидравлические сцепления на своих моделях для мотокросса в 1998 году, а к 2000 году все полноразмерные мотоциклы для мотокросса использовали эту систему. Husqvarna использует гидравлические сцепления Magura с 2014 года, когда KTM купила компанию, а Kawasaki и Honda — единственные японские бренды, перешедшие на гидравлическое сцепление за последние пару лет.

(6) Как перейти на гидравлику. Если ваш велосипед не поставлялся с гидравлическим сцеплением, вы можете обновить его, используя комплект гидравлического сцепления Hymec от Magura. Hymec означает «гидравлический из механического». Если ваш мотоцикл не поставлялся с гидравлическим сцеплением OEM, на корпусах двигателя не будет главных подчиненных устройств для активации толкателя. Система Magura Hymec решает эту проблему за счет включения гидравлического ведомого цилиндра, который крепится болтами снаружи корпуса для перемещения исполнительного рычага, который тянул трос сцепления. Yamaha YZ450F 2023 года по-прежнему является устройством с тросовым приводом, но GYTR предложит ведомый блок гидравлического сцепления с болтовым креплением, а также механизм сцепления, главный цилиндр и шланги.

(7) Проблемы с ведомым сцеплением. Ведущее-ведомое устройство Magura на Husqvarna FC450 до 2019 года имело проблемы с уплотнением. Уплотнение на плунжере с гидравлическим приводом будет изнашиваться, что приведет к утечке жидкости, что приведет к падению давления внутри ведомого устройства. Когда уплотнение протекло, сцепление полностью отключалось без предупреждения. До того, как в конце 2019 года компания Magura изменила конструкцию уплотнения ведомого узла, решение заключалось в установке плунжерного поршня Brembo, который идеально подходил и имел улучшенную конструкцию уплотнения.

(8) Техническое обслуживание. Если ваш мотоцикл хочет ползти вперед, даже когда сцепление выжато, это признак того, что гидравлическая жидкость в гидравлической системе вашего сцепления либо изношена, либо в ней есть пузырьки воздуха. Эта проблема устраняется путем прокачки жидкости гидравлического сцепления и замены ее свежей жидкостью в линии между рычагом сцепления и главным рабочим цилиндром. Следуйте инструкциям в руководстве пользователя, чтобы прокачать сцепление.

(9) Минеральное масло. Имейте в виду, что для некоторых старых систем гидравлического сцепления Magura вместо тормозной жидкости в системе требуется минеральное масло. Если тормозная жидкость используется в системе, предназначенной для минерального масла, тормозная жидкость вызовет вздутие уплотнений и утечку. В зависимости от используемой жидкости требуются различные материалы уплотнения. Для комплектов Magura Hymec требуется запатентованное минеральное масло Magura Blood Hydraulic.

(10) Тормозная жидкость. Тип гидравлической жидкости, необходимой для вашей системы сцепления, указан на крышке бачка главного цилиндра сцепления. Если для вашего велосипеда требуется тормозная жидкость, мы рекомендуем жидкость Dot 4 или Dot 5. 1 с высокой температурой кипения. Сухая точка кипения, которая является более высоким числом, берется, когда жидкость находится в идеальном состоянии. Влажная точка кипения принимается, когда жидкость полностью гидратирована и находится в равновесии. Тормозные жидкости гигроскопичны, то есть притягивают воду. Когда вода загрязняет жидкость, она закипает при более низких температурах, что снижает эффективность сцепления.

BREMBOHHusqvarnaгидравлическое сцеплениекомплект сцепления hymecktmmaguraмотокроссмотоциклетное сцеплениеmxateдесят вещейдесять вещей о гидравлических сцеплениях

Гидравлическое сцепление — все, что вам нужно знать , в то время как Honda присоединилась к делу со своим последним CRF450R. Гидравлическое сцепление увеличивает стоимость, сложность и вес, но теперь, когда большинство заводских мотоциклов сбрасывают трос, это всего лишь вопрос времени.

Здесь мы объясним, как они работают, рассмотрим несколько различных конструкций, а затем расскажем вам, как ухаживать за ними и что может пойти не так. То, как они работают, довольно простое. К рычагу сцепления прикреплен резервуар, наполненный жидкостью. В этом резервуаре находится поршень, мало чем отличающийся от поршня вашего переднего тормоза, который нажимается, когда вы тянете рычаг. Поршень проталкивает жидкость по гидравлической линии в «рабочий» цилиндр, прикрепленный болтами к двигателю, часто перед звездочкой промежуточного вала. Это немного похоже на суппорт дискового тормоза. Жидкость, заполняющая рабочий цилиндр, давит на другой поршень, который давит на пакет сцепления.

ЧТО ОТЛИЧАЕТСЯ?

Основное отличие от тросовой муфты не требует пояснений; у одного есть гидравлическая линия, а у другого — кусок плетеной проволоки. Гидравлическая система использует жидкость, которая почти полностью несжимаема, тогда как механическое сцепление использует трос и рычаги для передачи энергии и управления сцеплением.

Решающим фактором является стоимость. Гидравлическая система обходится производителю дорого, так как включает в себя картер, а иногда и весь двигатель, который необходимо изменить, и он состоит из гораздо большего количества деталей. Тросовая муфта может быть дешевле в производстве, но она требует более регулярного обслуживания и может выйти из строя без предупреждения.

Гидравлическое сцепление является саморегулирующимся и требует только замены жидкости, в то время как версия с тросом требует регулярной смазки рычага и троса для обеспечения плавной работы. Нужно вручную регулировать люфт в тросе, иногда «на лету» в гонке, а трос растягивается, изнашивается и требует замены.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ГИДРАВЛИЧЕСКОГО СЦЕПЛЕНИЯ

В системах гидравлического сцепления требуется регулярная замена масла, так как жидкость может поглощать влагу. Рекомендуется менять его каждые 12 месяцев, если вы не заметите, что он загрязняется раньше, и тогда вам следует немедленно заменить его. Затем вам нужно выпустить воздух из системы после того, как вы установили свежую жидкость. Шарнир рычага сцепления по-прежнему нуждается в регулярной смазке, чтобы он оставался гладким.

Я рекомендую снимать спускной штуцер на рабочем цилиндре и смазывать резьбу противозадирным составом каждый раз при замене жидкости, так как они могут заедать и отламываться при попытке их снять. От этого выиграют и винты в крышке главного цилиндра.

БРЕНДЫ

Kawasaki и Honda (для 21 модельного года) используют гидравлические системы сцепления Nissin, в то время как европейские компании используют либо Brembo, либо Magura на своих полноразмерных мотоциклах, а Formula One — на минибайках. Все они довольно хорошие продукты, но папы мини-гонщиков знают, что системы Formula могут быть утомительными в прокачке и обслуживании.

ЧТО НЕ ТАК?

Хотя нет стального троса, который может изнашиваться или порваться, проколотая гидравлическая линия сделает сцепление неработоспособным. К счастью, на большинстве моделей гидравлические линии покрыты стальной оплеткой или имеют двойную облицовку. Хотя эту линию, безусловно, можно повредить, это не является обычным явлением. За свою жизнь я порвал гораздо больше тросов сцепления, чем порвал трубопроводы гидравлического сцепления.

На поршнях рабочего цилиндра внизу двигателя и главного цилиндра на руле имеются резиновые уплотнения. Эти уплотнения могут быть повреждены из-за износа или попадания мусора в гидравлическую жидкость. При повреждении этих уплотнений может произойти утечка жидкости из системы или попадание воздуха, и сцепление может стать «мягким» или вообще перестать работать.

Во всех системах сцепления на крышке бачка главного цилиндра написано, какая жидкость рекомендуется. Некоторые используют тормозную жидкость с рейтингом DOT 4, в то время как другие могут использовать DOT 5.1 или принимать только минеральное масло. Если добавить неправильную жидкость, это может привести к повреждению уплотнения и гидравлической линии, что в конечном итоге приведет к достаточному плачу сцепления.

Очевидно, что при аварии главный или рабочий цилиндр может быть поврежден. Повреждение рабочего цилиндра гораздо менее вероятно, но, поскольку резервуар главного цилиндра находится наверху руля и содержит рычаг сцепления, он подвержен повреждению при аварии, а его замена может быть дорогостоящей.

Дороже, если цепь главной передачи сойдет с рельсов и ударит по рабочему цилиндру. В экстремальных случаях цепь может вырвать рабочий цилиндр прямо из картера, поэтому важно установить прочный защитный кожух вокруг звездочки промежуточного вала.

Велосипеды, такие как KTM 65SX, избегают этой проблемы, работая рабочим цилиндром непосредственно на крышке сцепления, но он также может быть поврежден при падении.

ПРОКАЧКА ГИДРАВЛИЧЕСКОГО СЦЕПЛЕНИЯ

Прокачать гидравлическое сцепление можно по двум причинам. Вы должны сделать это при замене жидкости, но вам также может понадобиться сделать это, чтобы избавиться от воздуха в линии.

Замена жидкости
Простая замена жидкости — относительно легкая и простая задача.

ЭТАП 1 Наденьте кусок прозрачной трубки на спускной штуцер рабочего цилиндра и направьте ее в полупрозрачную бутылку.

ЭТАП 2 Несколько раз нажмите на рычаг сцепления, а затем ослабьте штуцер для выпуска воздуха. Вы увидите, как грязная жидкость выльется в прозрачный шланг и попадет в бутылку.

ШАГ 3 Продолжайте «качать» рычаг сцепления, пока штуцер для выпуска воздуха ослаблен, перекачивая всю грязную жидкость в прозрачную бутылку.

ШАГ 4 Прежде чем резервуар будет опорожнен, заполните его свежей жидкостью и продолжайте это делать, прокачивая свежую жидкость через систему.

ШАГ 5 Как только вы увидите, что чистая жидкость выходит через прозрачную трубку на штуцере для выпуска воздуха, затяните ниппель, заполните резервуар, установите на место крышку резервуара и смойте всю жидкость мыльной водой. Этот материал разрушает краску и прозрачные покрытия на многих главных цилиндрах.

Избавление от AIR
Если вы пытаетесь выпустить воздух из системы, выполните следующие действия:

ШАГ 1 Подсоедините прозрачную бутылку к штуцеру для выпуска воздуха, как указано выше.

ЭТАП 2 Несколько раз нажмите на рычаг сцепления, а затем ослабьте штуцер для выпуска воздуха. Вы увидите, как грязная жидкость стекает в прозрачную трубку и в бутылку. Если в жидкости есть воздух, вы сможете увидеть это в трубке. Прежде чем отпустить рычаг сцепления, затяните штуцер для выпуска воздуха.

ЭТАП 3 Продолжайте этот процесс, прокачивая рычаг сцепления и отпуская штуцер для выпуска воздуха, пока не удалите весь воздух из системы сцепления.

ШАГ 4 Не забывайте доливать в резервуар свежую жидкость. Если вы запустите резервуар всухую, в систему попадет больше воздуха, и вам придется начинать заново.

ШАГ 5 Если вы не видите пузырьков воздуха, затяните штуцер для выпуска воздуха, долейте резервуар, установите на место крышку резервуара и смойте всю жидкость мыльной водой.
Существуют шприцы или вакуумные устройства для удаления воздуха, чтобы ускорить эту работу, но это всего лишь несколько быстрых методов, позволяющих выполнить работу дома, в гараже, на тропе или на треке.

Имейте свой Clake тоже

Австралийская компания Clake производит несколько различных типов главного цилиндра сцепления.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *