Дроссельная заслонка – как и когда нужно делать ее регулировку? + видео » АвтоНоватор
Электронная дроссельная заслонка двигателя необходима для того, чтобы в двигатель поступал кислород. Принцип её работы не замысловатый, его-то мы и разберем, а также научимся регулировать положение элемента.
Как работает дроссельная заслонка?
Подачу воздуха в двигатель вы контролируете с помощью акселератора или, проще, педали газа. А она, в свою очередь, связана непосредственно с дросселем или дроссельным узлом. Именно с помощью педали газа вы регулируете частоту, с которой срабатывает дроссельная заслонка, она открывается, впуская очередную порцию кислорода. Ее управление бывает двух видов: электронное и механическое. Конечно, при электронном варианте она реже приходит в негодность, чем при механическом, ведь программа крайне редко дает сбой, да и четкость команд со стороны электроники позволяет меньше нагружать механизм, он используется рациональнее, отчего и служит дольше.
В автомобиле с автоматической коробкой передач положение дроссельной заслонки меняется реже, чем в механике.
Неисправности дроссельной заслонки – как их распознать?
Именно на заслонку приходится основной процент работы. Задумайтесь, сколько раз за время езды на автомобиле вы нажимали педаль газа! Из-за того, что она так часто участвует в подвижной работе двигателя, ее необходимо периодически регулировать. И делать это следует крайне осторожно. Если при регулировке возникают какие-то неисправности, замена дроссельной заслонки, скорее всего, неизбежна. Чтобы никаких казусов при замене у вас не возникало, сейчас подробно рассмотрим, как правильно регулировать дроссельную заслонку.
Периодически, чтобы избежать каких-то серьезных аварий или поломок, необходима регулировка, ремонт дроссельной заслонки практически невозможен, поэтому и существует лишь два варианта решать ее неисправности: регулировка или замена.
Регулировка проходит довольно-таки просто, главное соблюдать последовательность определенных действий. Также хотелось бы предупредить: если вы заметили, что на новом автомобиле скорость набирается, по вашему мнению, не очень резво, не стоит сразу лезть регулировать дроссель. Скорее всего, происходит адаптация (обучение) дроссельной заслонки, в данном варианте все просто исправит время. Но если вы чувствуете, что адаптация затянулась, то стоит принимать меры.
Мнение эксперта
Руслан Константинов
Эксперт по автомобильной тематике. Окончил ИжГТУ имени М.Т. Калашникова по специальности «Эксплуатация транспортно-технологических машин и комплексов». Опыт профессионального ремонта автомобилей более 10 лет.
Признаки, указывающие на необходимость срочной настройки дроссельной заслонки, бывают следующего характера:
- свист при резком повышении оборотов;
- нестабильная работа двигателя на холостом ходу;
- падение мощности и динамики без видимых на то причин.
Перед тем, как начинать процедуру «обучения» или адаптации дроссельной заслонки следует выполнить несколько действий. Во-первых, необходимо как следует прогреть двигатель на ходу и коробку передач. Во-вторых, нужно обеспечить полную зарядку аккумулятора и отключить все приборы, потребляющие электроэнергию бортовой сети. В-третьих, выставить рулевое колесо в среднее положение (колёса прямо) и перевести коробку передач (если она автоматическая) в режим нейтрали или парковки.
Обучение проводится перед тем, как настраивается холостой ход. Если отсоединяется датчик, отвечающий за сигнал о положении педали газа, то нужно сначала отпустить педаль, затем включить зажигание на 10 секунд, после чего выключить. Данная процедура повторяется несколько раз. Таким нехитрым способом можно обучить дроссельную заслонку. Чтобы научить дроссель закрытому положению нужно включить и выключить зажигание на 10 секунд, в это время не должно быть слышно звука перемещения рычага клапана.
youtube.com/embed/oTXnOhEfako?rel=0″ frameborder=»0″ allowfullscreen=»allowfullscreen»/>
Регулировка дроссельной заслонки – на что обратить внимание?
Первым делом выключите зажигание, тем самым вы переведете дроссельную заслонку в закрытое положение. Отключите разъем датчика, также сразу проверьте, есть ли проводимость между клеммами. Если вы точно убедились, что напряжения нет, то вам следует настроить и отрегулировать датчик.
Теперь вам необходимо воспользоваться щупом толщиной 0,4 мм, он располагается между рычагом и винтом, там также располагается прокладка корпуса дроссельной заслонки.
- Автор: Егор
- Распечатать
Оцените статью:
(2 голоса, среднее: 3 из 5)
Поделитесь с друзьями!
Adblock
detector
Дроссельная заслонка
Содержание
- Назначение, основные конструктивные элементы
- Типы узлов
- Заслонка с механическим приводом.
Конструкция, особенности
- Электромеханическая дроссельная заслонка
- Электронная заслонка
- Заслонка с механическим приводом.
На современных авто питание силовой установки осуществляется двумя системами – впрыска и впуска. Первая из них отвечает за подачу топлива, в задачу второй входит обеспечение поступления воздуха в цилиндры.
Назначение, основные конструктивные элементы
Несмотря на то, что подачей воздуха «заведует» целая система, конструктивно она очень проста и основным ее элементом выступает дроссельный узел (многие по старинке называют его дроссельной заслонкой). И даже этот элемент имеет несложную конструкцию.
Принцип работы дроссельной заслонки остался идентичным еще со времен карбюраторных двигателей. Она перекрывает основной воздушный канал, благодаря чему и регулируется количество подаваемого в цилиндры воздуха. Но если эта заслонка раннее входила в конструкцию карбюратора, то в инжекторных двигателях она является полностью отдельным узлом.
Инжекторная система ДВС
Помимо основной задачи – дозировки воздуха для нормального функционирования силового агрегата на любом режиме, эта заслонка также отвечает за поддержание требуемых оборотов коленвала на холостом ходу (ХХ), причем с разной нагрузкой на мотор. Участвует она и в функционировании усилителя тормозной системы.
Устройство дроссельной заслонки – очень простое. Основными ее конструктивными составляющими являются:
- Корпус
- Заслонка с осью
- Механизм привода
Механический дроссельный узел
Дроссели разных типов также могут включать ряд дополнительных элементов – датчики, байпасные каналы, каналы подогрева и т. д. Более подробно конструктивные особенности дроссельных заслонок, применяемых на авто, рассмотрим ниже.
Устанавливается дроссельная заслонка в воздуховоде между фильтрующим элементом и коллектором двигателя. Доступ к этому узлу ничем не затруднен, поэтому при проведении обслуживающих работ или замене добраться до него и демонтировать с авто несложно.
Типы узлов
Как уже отмечено, существуют разные виды дроссельной заслонки. Всего их три:
- С механическим приводом
- Электромеханический
- Электронный
Именно в таком порядке и развивалась конструкция этого элемента системы впуска. Каждый из существующих видов имеет свои конструктивные особенности. Примечательно, что с развитием технологий устройство узла не осложнялось, а наоборот – становилось проще, но с некоторыми нюансами.
Заслонка с механическим приводом. Конструкция, особенности
Начнем с заслонки с механическим приводом. Этот тип детали появился с началом установки инжекторной системы питания на автомобили. Основная его особенность заключается в том, что заслонкой водитель управляет самостоятельно при помощи тросового привода, соединяющего педаль акселератора с сектором газа, соединенного с осью заслонки.
Конструкция такого узла полностью позаимствована с карбюраторной системы, разница лишь в том, что заслонка – отдельный элемент.
В конструкцию этого узла дополнительно входят датчик положения (угла открытия заслонки), регулятор холостого хода (ХХ), байпасные каналы, система подогрева.
Дроссельный узел с механическим приводом
В целом, датчик положения дросселя присутствует во всех типах узлов. В его задачу входит определение угла открытия, что дает возможность электронному блоку управления инжектором определить количество подаваемого в камеры сгорания воздуха и на основе этого откорректировать подачу топлива.
Ранее использовался датчик потенциометрического типа, в котором определение угла открытия осуществлялось за счет изменения сопротивления. Сейчас обычно применяются магниторезистивные датчики, которые являются более надежными, поскольку в них отсутствуют контактные пары, подверженные износу.
Датчик положения дроссельной заслонки потенциометрического типа
Регулятор ХХ в механических дросселях представляет собой отдельный канал, идущий в обход основного. Этот канал оснащается электроклапаном, корректирующим поступление воздуха в зависимости от условий функционирования двигателя на ХХ.
Устройство регулятора холостого хода
Суть его работы такова – на ХХ заслонка полностью закрыта, но для работы мотора требуется воздух, он и подается по отдельному каналу. При этом ЭБУ определяет обороты коленвала, на основе чего регулирует степень открытия этого канала электроклапаном, чтобы поддерживать заданные обороты.
Байпасные каналы работают по тому же принципу, что и регулятор. Но в их задачу входит поддержание оборотов силовой установки при создании нагрузки на холостом ходу. К примеру, при включении климат-системы, нагрузка на мотор повышается, из-за чего обороты падают. Если регулятор не способен обеспечить мотор необходимым количеством воздуха, то задействуются байпасные каналы.
Но эти дополнительные каналы имеют существенный недостаток – сечение их небольшое, поэтому возможно их засорение и обледенение. Для борьбы с последним, дроссельная заслонка подключается к системе охлаждения. То есть, по каналам в корпусе циркулирует охлаждающая жидкость, отогревая каналы.
Компьютерная модель каналов в дроссельной заслонке
Основным недостатком механического дроссельного узла является наличие погрешности при приготовлении топливовоздушной смеси, что сказывается на экономичности двигателя и выходе мощности. Все из-за того, что ЭБУ не управляет заслонкой, на него лишь подается информация об угле открытия. Поэтому при резких изменения положения дросселя блок управления не всегда успевает «подстроиться» под изменившиеся условия, что и приводит к перерасходу топлива.
Электромеханическая дроссельная заслонка
Следующим этапом развития дроссельный заслонок стало появление электромеханического типа. Механизм управления у него остался прежний – тросовый. Но в этом узле отсутствуют какие-либо дополнительные каналы за ненадобностью. Вместо всего этого в конструкцию добавили электронный механизм частичного управления заслонкой, управляемый ЭБУ.
Конструктивно этот механизм включает в себя обычный электромотор с редуктором, который соединен с осью заслонки.
Работает этот узел так: после запуска двигателя, блок управления для установления требуемых оборотов холостого хода рассчитывает количество подаваемого воздуха и приоткрывает заслонку на нужный угол. То есть, блок управления в таком типе узла получил возможность регулировать работу двигателя на холостых оборотах. На остальных же режимах функционирования силовой установки дросселем управляет сам водитель.
Использование механизма частичного управления позволило упростить конструкцию самого дроссельного узла, но не устранило основной недостаток – погрешности в смесеобразовании. Его в заслонке такой конструкции нет только на холостом ходу.
Электронная заслонка
Последний тип – электронный, внедряется на автомобили все больше. Его основная особенность заключается в отсутствии прямого взаимодействия педали акселератора с осью заслонки. Механизм управления в такой конструкции уже полностью электрический. В нем используется все тот же электродвигатель с редуктором, связанный с осью, и управляемый ЭБУ. Но открытием заслонки блок управления «заведует» уже на всех режимах. В конструкцию дополнительно добавили еще один датчик – положения педали акселератора.
Элементы электронной дроссельной заслонки
В процессе работы блок управления использует информацию не только с датчиков положения заслонки и педали акселератора. В учет берутся также сигналы, поступающие со следящих устройств автоматических трансмиссий, тормозной системы, климатического оборудования, круиз-контроля.
Вся поступающая информация с датчиков обрабатывается блоком и на ее основе устанавливается оптимальный угол открытия заслонки. То есть, электронная система полностью контролирует работу системы впуска. Это позволило устранить погрешности в смесеобразовании. На любом режиме работы силовой установки в цилиндры будет подаваться точное количество воздуха.
Но и без недостатков у этой системы не обошлось. Причем их чуть больше, чем в других двух видах. Первая из них заключается в том, что заслонка открывается при помощи электродвигателя. Любые, даже незначительные неисправности составляющих привода, приводят к нарушению работы узла, что сказывается на функционировании двигателя. В тросовых механизмах управления такой проблемы нет.
Второй недостаток – более существенный, но касается он по большей части бюджетных автомобилей. И сводится он к тому, что из-за не очень хорошо проработанного программного обеспечения дроссель может работать с запозданием. То есть, после нажатия на педаль акселератора ЭБУ требуется некоторое время на сбор и обработку информации, после чего он подает сигнал на электродвигатель механизма управления дросселем.
Основная причина задержки от нажатия на электронную педаль газа до реакции двигателя — более дешевые электронные комплектующие и не оптимизированное программное обеспечение.
В обычных условиях этот недостаток особо не заметен, но при определенных условиях такая работа может привести к неприятным последствиям. К примеру, при начале движения на скользком участке дороги иногда возникает потребность быстрой смены режима работы мотора («поиграться педалью»), то есть, в таких условиях нужен быстрый «отклик» мотора на действия водителя. Существующая же задержка в срабатывании дросселя может привести к осложнению в управлении автомобилем, поскольку водитель «не чувствует» двигатель.
Еще одна особенность электронной дроссельной заслонки некоторых моделей авто, которая для многих является недостатком – особые заводские установки работы дросселя. В ЭБУ заложена установка, которая исключает вероятность пробуксовки колес при старте. Достигается это тем, что при начале движения блок специально не открывает заслонку для получения максимальной мощности, по сути, ЭБУ дросселем «придушивает» двигатель. В некоторых случаях эта функция сказывается негативно.
На премиумных авто проблем с «откликом» системы впуска нет из-за нормальной проработки программного обеспечения. Также на таких авто нередко можно установить режим работы силовой установки по предпочтениям. К примеру, при режиме «спорт» перенастраивается работа и системы впуска, и в этом случае ЭБУ на старте уже не «душит» двигатель, что позволяет авто «резво» начать движение.
Дроссельные клапаны и проблемы коррозии насосов
Гидравлического института
01.12.2017
В: Что такое дроссельные клапаны и как они используются для регулирования скорости потока?
A: Дроссельные клапаны — это тип клапана, который можно использовать для запуска, остановки и регулирования потока жидкости через ротодинамический насос. Когда расход насоса регулируется дроссельным клапаном, кривая системы изменяется. Рабочая точка перемещается влево на кривой насоса при уменьшении расхода.
Дроссельные клапаны — это один из способов регулирования расхода путем дросселирования потока напрямую или в обходной линии. Работа с переменной скоростью является альтернативным методом управления потоком в системе.
При использовании метода управления дроссельным клапаном насос работает непрерывно, а клапан на линии нагнетания насоса открывается или закрывается для регулировки расхода до требуемого значения. Чтобы понять, как дросселирование контролирует скорость потока, см. Рисунок 4.11. Когда клапан полностью открыт, насос работает на потоке 2. Когда клапан находится в частично открытом положении, он вносит дополнительные потери на трение в системе, что приводит к новой кривой системы, которая пересекает кривую насоса на потоке 1, т. е. новая рабочая точка.
Рисунок 4.11. Управление потоком насоса путем изменения сопротивления системы с помощью дроссельного клапана (графика предоставлена Гидравлическим институтом)
Разница напора между двумя показанными рабочими точками кривых представляет собой падение напора (давления) на дроссельном клапане.
Обычно при дроссельном управлении клапан частично закрывается даже при максимальном расчетном расходе системы для достижения управляемости. Следовательно, энергия тратится на преодоление сопротивления через клапан при любых режимах потока.
Радиальный поток (центробежные насосы) имеют снижение мощности насоса по мере уменьшения расхода, однако расход, умноженный на перепад напора на клапане, представляет собой потраченную впустую энергию, которую можно было бы восстановить, если бы в качестве альтернативы использовалось регулирование скорости. С другой стороны, использование дросселирования в насосах со смешанным или осевым потоком, где кривая мощности насоса обычно увеличивается при уменьшении потока, может привести к неприемлемому увеличению потребляемой мощности, что приводит к перегрузке привода в дополнение к потере энергии.
При оценке стоимости жизненного цикла, помимо затрат на электроэнергию, необходимо учитывать затраты на техническое обслуживание регулирующих клапанов, особенно в ситуациях негабарита, когда продолжается чрезмерное дросселирование, что приводит к кавитации на клапане.
Для получения дополнительной информации об управлении расходом в насосах см. Руководство по применению Института гидравлики для насосов с регулируемой скоростью на сайте www.pumps.org.
В: Наши насосы столкнулись с проблемами коррозии. Существуют ли различные типы коррозии, которые я должен оценить, и как коррозионная природа технологической жидкости влияет на выбор насоса?
A: Коррозия — это разрушительное воздействие на материал в результате химической или электрохимической реакции с окружающей средой. Химическую и электрохимическую коррозию можно разделить на несколько подтипов коррозии, о которых должны знать все пользователи насосов, чтобы правильно выбрать конструкционные материалы и обеспечить долговечность компонентов насоса. В следующем списке представлена общая информация о различных типах коррозии.
- Равномерная коррозия , также известная как общая агрессивная коррозия. Равномерная коррозия — это общее воздействие на металл коррозионной жидкости, что приводит к относительно равномерной потере металла на открытой поверхности. Это наиболее распространенный вид коррозии, и его можно свести к минимуму при правильном выборе коррозионно-стойкого материала. Этот вид коррозии типичен для насосов, перекачивающих химикаты.
- Гальваническая коррозия , также называемая коррозией разнородных металлов. Гальваническая коррозия возникает, когда два разнородных металла находятся вместе в электрическом контакте в электролите. Один из двух металлов становится анодом, а другой катодом. Анод — это жертвенный металл, и он подвергается коррозии быстрее, чем в одиночку, в то время как катод изнашивается медленнее, чем в противном случае.
- Межкристаллитная коррозия – это химическое или электрохимическое воздействие на границы зерен металла.
Часто это происходит из-за примесей в металле, которые имеют тенденцию присутствовать в более высоких концентрациях вблизи границ зерен.
- Точечная коррозия является локализованным типом повреждения. Это вызвано разрушением защитной пленки и приводит к быстрому образованию ямок в случайных местах на поверхности.
- Щелевая коррозия похожа на точечную коррозию. Этот тип коррозии часто связан с застойной микросредой, например, под прокладками или затертыми поверхностями. Порции жидкости захватываются и устанавливается разность потенциалов из-за разности концентраций кислорода в этих клетках.
- Коррозия под напряжением – это процесс коррозии, возникающий в результате сочетания химических, температурных и стрессовых условий.
- Эрозионная коррозия , или коррозия, связанная с потоком, возникает, когда защитный слой пленки на поверхности металла разрушается высокоскоростными жидкостями.
Этот вид коррозии может быть особенно опасен для компонентов насоса, как показано на рис. 6.8.
Рисунок 6.8. Часть сильно корродированного рабочего колеса
Для получения дополнительной информации о том, как коррозия влияет на насосные системы, см. «Надежность насосного оборудования: рекомендации по увеличению времени безотказной работы, доступности и надежности». Допуски на коррозию для различных компонентов насоса см. в документе ANSI/HI 1.3 «Ротодинамические центробежные насосы для проектирования и применения».
См. другие статьи с часто задаваемыми вопросами о насосах HI здесь.
HI Pump FAQs® производится Институтом гидравлики в качестве услуги для пользователей насосов, подрядчиков, дистрибьюторов, торговых представителей и OEM-производителей. Для получения дополнительной информации посетите www.pumps.org.
Выпуск
Ноябрь 2017 г.
Что такое дроссельная заслонка?
`;
Автомобили
Факт проверен
Лори Килчерманн
Дроссельная заслонка — это устройство, установленное на автомобильном двигателе. Поток топлива и, следовательно, мощность двигателя напрямую регулируются этим клапаном. На двигателе с карбюратором дроссельную заслонку также называют дроссельной заслонкой. Когда педаль газа нажата, дроссельная заслонка или дроссельная заслонка открывается, позволяя большему количеству воздуха и топлива поступать в камеру сгорания, что приводит к увеличению мощности. В системе впрыска топлива этот клапан регулирует поток воздуха только тогда, когда бортовой компьютер автомобиля регулирует поток топлива.
Бензиновый двигатель внутреннего сгорания на самом деле представляет собой воздушный насос. Чем больше воздуха попадает в двигатель, тем больше воздуха или мощности выходит из двигателя. Подобно тому, как дуновение на костер заставит красные угли вспыхнуть пламенем, дроссельный клапан позволяет воздуху зажечь топливо, подаваемое в камеру сгорания. Подавая больше воздуха в двигатель, можно сжечь больше бензина, что приводит к увеличению мощности и крутящего момента.
Дизельный двигатель не имеет дроссельной заслонки. Выходная мощность двигателя не зависит напрямую от количества воздуха, попадающего в систему. Выходная мощность дизельного двигателя зависит от количества топлива, попадающего в камеру сгорания. Таким образом, педаль газа в автомобиле с дизельным двигателем не открывает бабочку, а регулирует работу топливного насоса высокого давления, который регулирует скорость подачи топлива в двигатель.
Хотя в подавляющем большинстве серийных автомобилей используется один дроссельный клапан, в некоторых высокопроизводительных моделях используется независимый дроссельный клапан для каждого цилиндра двигателя. Использование нескольких дроссельных заслонок означает гораздо более быстрое ускорение и, в конечном итоге, большую выработку мощности. Подавая питание на каждый отдельный цилиндр отдельно, производительность можно повысить за счет точной настройки и настройки каждого цилиндра для работы с максимальным потенциалом. Эта индивидуальная настройка цилиндра может компенсировать плохой впускной заряд, а также различия в ограничениях выхлопа.
Средняя педаль газа управляет дроссельной заслонкой с помощью цельнометаллического рычажного стержня или троса. Достижения в конструкции транспортных средств привели к появлению технологии электропривода. В этой системе используется электронный сервопривод, который получает сигнал от передатчика, расположенного на педали газа, для управления управляемой компьютером дистанционно управляемой бабочкой. В этой системе нет прямой связи между водителем и двигателем.