требования к эксплуатации, виды неисправностей и принцип работы
В последнее время все больше людей стали использовать дизельные автомобили. И на то есть свои причины. Так, это высокая степень сжатия, малый расход топлива, хорошая тяга на низких оборотах. Одна из главных составляющих топливной системы дизельного двигателя – это насос. В его конструкцию входит плунжерная пара ТНВД. Что это за деталь и для чего она нужна? Об этом поговорим в нашей сегодняшней статье.
Характеристика
В основе топливного насоса высокого давления лежит специальная насосная секция. Она включает в себя плунжер (поршень) и цилиндр, имеющий форму небольшой втулки. Эта пара деталей изготавливается из высокопрочных сталей, поскольку она работает под большим давлением.
Плунжерная пара ТНВД выполняет функцию создания давления топлива, необходимого для дальнейшего распыления его в камере сгорания. Отметим, что данный механизм является высокоточным. Основная характеристика, которой обладает плунжерная пара ТНВД (Zexel в том числе), – это точная дозировка горючего и регуляция его давления.
Устройство
Данный узел состоит из двух канавок:
- Спиральная.
- Продольная.
Сама пара включает в себя 4 гильзы и 5 плунжеров. В первой находятся 2 канала – перепускной и подводящий. Оба соединяются между собой с камерой сгорания. Над плунжерной парой находится штуцер с посадочным конусом.
Благодаря высокой точности обработки внутреннего цилиндра плунжерная пара ТНВД может работать под давлением до 200 Мпа. Характеристики таких насосов в разы превосходят показатели обычных поршневых ТНВД.
Дозировка топлива происходит за счет ходов плунжера. Так, количество смеси может меняться в большую или меньшую сторону в зависимости от режима работы мотора. Требования к сборке данных элементов достаточно высоки – сопряжение между внутренней и внешней поверхностью цилиндра не должно превышать 3 мкм.
Плунжерная пара ТНВД имеет рейку в корпусе. Она приводит в движение зубчатый сектор. Благодаря этому управляется сама втулка (цилиндр).
Рейку перемещает регулятор вращения коленвала. Так достигается дозировка цикловой подачи без изменения хода плунжера.
Принцип работы
Алгоритм действия механизма основывается на возвратно-поступательных движениях двух основных деталей. Это поршень цилиндрической формы и втулка. Во время возвратно-поступательных движений происходит всасывание топлива в насос. Нагнетание происходит через специальные отверстия на втулке. Отметим, что главная задача работы такого механизма, как плунжер, заключается в дозировке топлива и подаче его в цилиндры. Помимо точного объема, это горючее должно поступать в цилиндры лишь в определенный момент. Чтобы работа механизма осуществлялась без сбоев, к этой паре механизмов предъявляют высокие технические требования.
Таким образом, при работе ТНВД происходит перекрытие каналов высокого давления между плунжером и топливопроводом. Так достигается снижение давления горючего, что необходимо для быстрого и точного закрытия распылителей форсунок.
Такая работа механизмов предотвращает появление капель топлива. Когда происходит такт впрыска, конус нагнетательного клапана поднимается вверх. Далее горючее под высоким давлением подается на распылитель, проходя через держатель клапана и топливопроводы. При открытии сливного канала давление в камере снижается. Пружина на нагнетательном клапане прижимает корпус плунжера к седлу. Этот процесс циклический. Он происходит до того момента, когда плунжер не начнет заново свой рабочий ход.
Требования к эксплуатации
Плунжерная пара ТНВД Bosch – это механизм, требующий особого внимания при эксплуатации. В частности, это касается качества используемого топлива. При работе плунжерной пары стоит исключить наличие воды и частиц пыли в горючем. Почему к этому механизму предъявляются такие высокие требования? Все очень просто. Когда вода попадает на рабочую поверхность плунжера и втулки, смазывающая пленка теряет свою целостность. В результате сила трения пары элементов увеличивается. Это приводит к нагреву и последующей деформации деталей.
Что касается частичек пыли, они могут вызвать клин механизма плунжерной пары. Ведь рабочий зазор между цилиндром и поршнем составляет 0,0018 миллиметра. Стоит вовремя производить диагностику деталей, чтобы предотвратить их преждевременный выход из строя. Также отметим, что плунжерная пара ТНВД 4d56 меняется комплексно. Это связано с высокой точностью изготовления деталей.
Подробно о неисправностях
Частый дефект – заедание плунжера в цилиндре. Как диагностировать механизм? Для этого проверяют ход плунжера в разных положениях при установке пары под углом 45 градусов. Наличие на рабочей поверхности следов коррозии ведет к потере герметичности. Такая неисправность устраняется перекомплектовкой механизма. Как это делают? Втулку и плунжер притирают до шероховатости в 0,1 мкм. Допустимая конусность не должна превышать 0,4 мкм, а овальность – 0,2 мкм. Далее плунжерная пара ТНВД разбивается на размерные группы с интервалом в 4 мкм. Детали подбираются по соответствующим втулкам.
После притирки механизм промывают в бензине и собирают обратно.
Следующий дефект – выкрашивание или скалывание у отверстий. Может сопровождаться царапинами, задирами и увеличением диаметра впускного окна. В данном случае измеряют износ рабочей поверхности втулки. Определяют конусообразность и овальность отверстия. Если параметр не соответствует норме, элемент подлежит замене. Выкрашивание или скалывание металла – это дефекты, которые не подлежат восстановлению.
Как проявляются неисправности плунжерной пары ТНВД? Определить это можно по снижению мощности двигателя и повышенному расходу топлива. Также наблюдается неустойчивая работа мотора на холостом ходу.
Заключение
Итак, мы выяснили, что собой представляет плунжерная пара. Это неотъемлемая деталь топливных насосов дизельных двигателей, которая работает под большим давлением и дозирует горючее с высокой точностью. Основные требования к эксплуатации – это качественное топливо. На работу плунжера губительно влияет вода и грязь, которая ускоряет коррозионные процессы и приводит к появлению задиров.
Как работает дизельный двигатель без тнвд
Содержание
- Что такое ТНВД и его роль в работе двигателя
- Что такое ТНВД и для чего он нужен?
- Устройство и принцип работы
- От механики к электронике
- Виды ТНВД
- Как понять, что ТНВД неисправен
- Мой дорогой дизель: почему ломаются ТНВД, и как их чинят
- Кратко об устройстве
- Устройство ТНВД
- Какие существуют системы подачи топлива в дизельном ДВС
- Топливная система дизельных ДВС: основные принципы
- Основные типы топливных систем дизеля
- Топливный насос высокого давления (ТНВД)
- Что такое ТНВД?
- Главные причины неисправностей
- Эволюция устройства
- Принцип работы системы
- Одноплунжерный насос с электронным управлением
- Форсунка с датчиком подъема иглы
- Насос VP-44 и система непосредственного впрыска дизельного ДВС
- Устройство ТНВД VP- 44
- Контур низкого давления
- Контур высокого давления
- Процесс распределения топлива при помощи корпуса-распределителя
- Как происходит дозирование топлива.
Электромагнитный клапан высокого давления - Процесс демпфирования волн давления при помощи нагнетательного клапана с дросселированием обратного потока
- Устройство опережения впрыска
- Работа устройства опережения впрыска
- Подведем итоги
- Видео
Что такое ТНВД и его роль в работе двигателя
Что такое ТНВД и для чего он нужен?
ТНВД — что это такое в машине? Условно можно сравнить с сердцем человека — узел, обеспечивающий бесперебойную циркуляцию крови (топлива) по организму (топливной системе). На деле назначение блока несколько шире:
Преимущество ТНВД перед карбюратором заключается именно в возможности подачи точно отмеренной порции топливно-воздушной смеси в камеры внутреннего сгорания. Это решение позволяет снизить расход топлива. Насос напрямую связан с коленчатым валом: при разгоне порции увеличиваются, при падении оборотов — уменьшаются.
Так как работа дизельных агрегатов сопряжена с высокими нагрузками, то подача солярки производится под высоким давлением, обеспечивающим полное сгорание.
Бензиновые моторы работают при значительно меньшей нагрузке. Поэтому использование топливного насоса целесообразно в системах с прямым впрыском горючего (не имеющих впускного коллектора).
Подводя промежуточный итог, можно сказать: что такое ТНВД в автомобиле — это способ увеличить КПД двигателя, снизить расход потребления топлива.
Устройство и принцип работы
Схематически устройство простого рядного ТНВД можно представить следующим образом:
Представляя устройство узла, несложно понять его принцип работы, схожий с работой двухтактного ДВС:
Конструкция насоса предусматривает подачу к форсункам не всей воздушно-топливной смеси, но только строго определенной порции. Остатки отправляются в сливные клапаны. Центробежная муфта обеспечивает подачу дизельного горючего в конкретный момент. Всережимный регулятор необходим для определения количества смеси: давление на педаль газа увеличивает объем, ослабление — уменьшает.
От механики к электронике
Механические насосы постепенно вытесняются агрегатами с электронной начинкой.
Устройство и принцип работы узлов отличается тем, что все происходящие в ТНВД процессы регулируются электроникой. Здесь обеспечение максимально точного количества смеси, моментальная реакция на малейшее изменение динамики. Механическим насосам такие параметры недоступны. Электроника позволила снизить циклы нестабильного сгорания топлива, уменьшить нестабильность работы дизеля на холостом ходу.
Следующий шаг — двухфазный впрыск топлива, обеспечивающий полноту сгорания. Следствие — уменьшение выброса в атмосферу токсичных продуктов и увеличение КПД двигателя. При этом система контролирует:
ТНВД с электронными блоками управления снабжены программами самодиагностики, значительно расширяющими возможности использования насосов. Так, при возникновении ряда отказов система будет работать, обеспечивая движение транспортного средства. Полный отказ происходит при выходе из строя микропроцессоров.
Виды ТНВД
В машиностроении используются следующие виды ТНВД:
По принципу действия ТНВД делят:
Конструкция агрегатов различна, но неизменным является основной рабочий узел — плунжерная пара.
Рядные ТНВД используются на тяжелых и средних грузовиках, активно применяются в машиностроении. Неоспоримое преимущество — способность функционировать на топливе низкого качества. Простота конструкции — это надежность и неприхотливость в обслуживании. В рядных моделях количество плунжерных пар соответствует количеству цилиндров. Недостаток — громоздкость.
Магистральные ТНВД имеют отличную от предыдущих вариантов схему. Нагнетание топлива производится плунжерами (от одного до трех), приводимыми в движение кулачковой шайбой либо валом. Дозирующий клапан отвечает за регулировку подачи топлива. Открытие и закрытие клапана обеспечивается электроникой. Агрегаты этого типа используются в топливной системе Common Rail.
Как понять, что ТНВД неисправен
Производители постоянно улучшают качество насосов, проводя испытания агрегатов в сборе и отдельных элементов. Но от возникновения неполадок никто не застрахован. Протестировать ТНВД, напичканный электроникой, без специального оборудования и программного обеспечения не представляется возможным.
Как же понять, что проблемы возникли именно с этим узлом? Общие признаки таковы:
Основная причина поломок — загрязнение плунжеров насоса (некачественное топливо, смазка и т. д.). Опасна для микронных допусков плунжера и вода, которая может содержаться в горючем.
Подводя итоги, можно сказать, что при соблюдении несложных правил эксплуатации (своевременный сервис, использование качественных ГСМ), ТНВД — надежный узел, позволяющий экономно расходовать топливо.
Источник
Мой дорогой дизель: почему ломаются ТНВД, и как их чинят
С момента окончательной прописки дизельных моторов на легковых автомобилях не только владельцы, но и мастера с небольшой опаской смотрели на это «чудо техники». Да, выигрыш на топливе и на тяге очевиден – но что будет, если мотор сломается? Особенностью всех без исключения двигателей на тяжелом топливе является прецизионность сборки самых ответственных деталей, а также величина рабочего давления – разумеется, если мы говорим о современных моторах.
Глядя на нормо-часы в сервисе, касающиеся ремонта и обслуживания топливной аппаратуры, каждый невольно задастся вопросом: «Стоит ли игра свеч?». И да, и нет.
С одной стороны, вы получаете неимоверно производительный ДВС с паровозной тягой и уменьшенным расходом, с другой – необходимость повышенного внимания к качеству топлива, более частой замене топливного фильтра и довольно большим расходам в случае необходимости ремонта или замены элементов системы. Но если первая чаша весов все же перевесила, и вы стали обладателем автомобиля «на дизеле» с системой Common Rail, то стоит посмотреть, как ремонтируются элементы этой системы. Сегодня мы выясним, как выполняется ремонт ТНВД.
Кратко об устройствеCommon Rail : это словосочетание у всех на слуху, и многие даже знают, что это такое. Говоря простым языком, это не что иное, как система впрыска дизельного топлива из общей магистрали непосредственно в цилиндр двигателя под очень высоким давлением (1 600 – 1 800 бар).
Некоторые скажут: но ведь дизтопливо уже давно впрыскивается непосредственно, в чем же особенность? Ответ лежит на поверхности, в самом названии: это «единая магистраль».
Раньше, до появления Common Rail, дизтопливо под давлением, создаваемым ТНВД (топливным насосом высокого давления) отправлялось сразу к форсунке, через которую впрыскивалось в цилиндр. В новой же системе насос нагнетает топливо в топливную рампу, которая сама по себе является аккумулятором – а уже от рампы топливо по трубкам подводится к форсункам.
Благодаря подобной схеме получается, что все форсунки имеют в своем распоряжение топливо под одинаковым давлением в любое время и в любом количестве – причем давление это довольно высокое. Оно необходимо для лучшего распыления и, следовательно, смешивания топлива с воздухом, а значит, для более полного сгорания. Все это – звенья цепи, ведущей к повышению эффективности работы ДВС.
Почему нельзя было обойтись без общей топливной рампы? Чтобы ответить себе на этот вопрос, попробуйте надуть до максимального размера воздушный шарик за один присест.
Если вы кит, то справитесь без проблем. Если же вы человек, то придется или очень постараться, или просто сделать несколько вдохов и выдохов. Так и здесь: систему питает небольшой насос высокого давления с малыми потерями на трение, но с возможностью накачать 1600 бар в трубку, называемую топливной рампой.
Следующий элемент в схеме – форсунки. В современных моторах они могут быть электромагнитными или пьезоэлектрическими. Вторые, к слову – последнее слово техники в дизелестроении.
Для завершения схематической картины работы Common Rail добавим, что топливо от рампы подается к форсункам, но не запирается в самой рампе, а отводится через сливной канал. По сути, топливо в системе постоянно циркулирует, но как только сигнал «приходит» на электромагнитный клапан, он «открывает» форсунку, и топливо распыляется в цилиндр. Кстати, именно об устройстве и работе форсунок мы поговорим в следующей статье.
Устройство ТНВДКонструктивно насосы могут быть роторными или, как в нашем случае, плунжерными.
Так как в наше поле зрения попал плунжерный насос, и на данный момент он более распространен, то и рассматривать мы будем различные вариации этой конструкции.
Принцип работы предельно прост: подпружиненный плунжер двигается внутри стакана, набирая и выталкивая из полости над ним дизтопливо. Перемещается плунжер благодаря кулачковому валу. Зачастую конструктивно в корпус установлено три плунжера. В полости над плунжером установлены односторонние клапаны на впуск и выпуск. В общем, насос устроен почти как сердце.
Если обратиться к деталям, то можно выделить три типа ТНВД.
Источник
Какие существуют системы подачи топлива в дизельном ДВС
Как мы знаем, в дизельном ДВС топливо воспламеняется не от внешнего источника (искра зажигания в бензиновом моторе), а в результате сильного сжатия и нагрева. При этом топливно-воздушная смесь подается и распыляется в цилиндрах под высоким давлением. С этой целью в дизелях используются разные типы систем подачи топлива.
Топливная система дизельных ДВС: основные принципы
Сначала воздух подается в цилиндр, затем сжимается, нагреваясь в процессе до экстремальных температур, и лишь к концу такта сжатия в цилиндр подается дизельное топливо. Подается таким образом: впрыскивается в камеру сгонария под высоким давлением (от 100 до 2000 атмосфер) и распыляется. Поэтому, вне зависимости от типа топливной системы дизеля, в ней всегда есть два компонента:
В зависимости от типа топливной системы дизельного ДВС, отличается конструкция ТНВД и устройство форсунок. Также отличаются схемы управления этими элементами и место их расположения.
Основные типы топливных систем дизеля
Наибольшее распространение получили 4 типа топливных систем дизельных моторов:
Рядный ТНВД – проверенное десятилетиями решение, которое активно применяется на грузовой и специальной технике с дизельными моторами. В основе этой системы подачи топлива находится работа плунжерной пары.
Цилиндр движется в гильзе, создавая давление и сжимая топливо до необходимых показателей. Как только они достигнуты, открывается специальный клапан, подающий топливо на форсунку, которая впрыскивает его в цилиндр. Плунжер в это время движется вниз, открывает канал для впуска горючего в пространство гильзы с помощью топливоподкачивающего насоса, и цикл повторяется.
Работа самого плунжера становится возможна благодаря кулачковому валу, который приводится от мотора. Кулачки «толкают» клапана, а мкфта опережения впрыска, соединяющая ТНВД и двигатель, корректирует работу топливной системы.
Неоспоримые достоинства системы подачи топлива с рядными ТНВД – их ремонтопригодность и доступность обслуживания.
ТНВД распределительного типа конструктивно напоминает рядный топливный насос. Отличие заключается в количестве плунжерных пар. Если в рядном ТНВД одна пара идет на один цилиндр, то в распределительном работы одной плунжерной пары достаточно, чтобы обслуживать два, три, и даже шесть цилиндров.
Это достигается через опцию вращения плунжера вокруг оси. Вращаясь, плунжер поочередно открывает выпускные клапана, подавая горючее на форсунки нескольких цилиндров.
Эволюция распределительных ТНВД привела к тому, что появились уже роторные топливные насосы: в них плунжеры помещаются в ротор и в процессе работы движутся навстречу двуг другу, пока ротор вращает их, распределяя тем самым топливо по камере сгорания.
Преимущество системы подачи топлива с распределительным ТНВД – компактность самого устройства. Недостатки – сложность настройки, применение схем электронного управления и корректировки работы.
Система подачи топлива в цилиндр с помощью насос-форсунок вообще исключает необходимость ТНВД как отдельного элемента. В этом случае, форсунка и насосная секция – это один узел в общем корпусе.
В результате достигается легкость регулировки подачи топлива в конкретный цилиндр, а при выходе из строя одной насос-форсунки, остальные продолжают работать, что облегчает ремонт.
Конструктивно, насос-форсунки приводят в действие плунжеры распредвал ГРМ в головке блока цилиндров.
Система подачи топлива насос-форсунками распространена не только на грузовых, но и на легковых автомобилях. К недостаткам ее можно отнести высокую стоимость запчастей, а также крайнюю чувствительность к качеству дизельного топлива. Мельчайшие примеси в горючем могут легко вывести из строя насос-форсунку, что отражается на стоимости эксплуатации такого решения в личном автомобиле.
Система Common Rail стала своего рода прорывом в части решения механизма подачи топлива в дизельных ДВС. Эта система позволяет экономить топливо при высоком КПД дизеля, что и сделало ее такой популярной. Common Rail придумали инженеры Bosch еще в 90-х годах. Сегодня большинство дизельного транспорта оснащается именно Коммон Реил.
Главное отличие этой системы – наличие аккумулятора высокого давления в общей магистрали. Туда топливо нагнетается отдельным ТНВД, чтобы затем под постоянным давлением подаваться на форсунки.
Именно постоянство давления дает возможность быстро и эффективно впрыскивать горючее в цилиндр. Как результат – производительная, мягкая и комфортная работа дизельного двигателя. Бонусом – упрощение конструкции самого ТНВД в системе Common Rail.
Управляется работа системы отдельным ЭБУ: группа датчиков сообщает контроллеру, сколько и как скоро нужно подать дизельное топливо в цилиндры. С другой стороны, сложность и недостаток Коммон Реил обусловлена как раз умной электроникой и принципом работы системы. Поэтому владельцам таких решений стоит выбирать качественное топливо и своевременно менять топливные фильтры.
О том, как еще продлить жизнь вашего дизельного двигателя, мы писали здесь.
Если вы в поиске качественных запчастей для своего дизельного двигателя, проверьте наш каталог
Источник
Топливный насос высокого давления (ТНВД)
В предыдущем цикле статей об устройстве топливной системы бензинового двигателя не один раз затрагивалась тема топливного насоса высокого давления для дизельного мотора и бензиновых двигателей с прямым (непосредственным) впрыском топлива.
Данная статья представляет собой отдельный материал, который описывает конструкцию дизельного топливного насоса высокого давления, его назначение, потенциальные неисправности, схему и принципы работы на примере устройства такой системы топливоподачи для данного типа ДВС. Итак, давайте перейдем сразу к делу.
Что такое ТНВД?Топливный насос высокого давления сокращенно называют ТНВД. Данное устройство является одним из наиболее сложных в конструкции дизельного двигателя. Основной задачей такого насоса становится подача дизельного топлива под высоким давлением.
Топливные насосы непосредственного действия имеют механический привод плунжера. Процессы нагнетания и впрыска топлива протекают в одно время. В каждый отдельный цилиндр дизельного ДВС определенная секция ТНВД подает нужную дозу горючего. Давление, которое необходимо для эффективного распыления, создается движением плунжера топливного насоса.
ТНВД с аккумуляторным впрыском отличается тем, что на привод рабочего плунжера воздействуют силы давления сжатых газов в цилиндре самого ДВС или воздейсвие оказывается при помощи пружин.
Встречаются топливные насосы с гидравлическим аккумулятором, которые нашли применение в мощных малооборотистых дизельных ДВС.
Стоит отметить, что системы с гидроаккумулятором характеризуются раздельными процессами нагнетания и впрыска. Горючее под высоким давлением нагнетается топливным насосом в аккумулятор, а уже затем поступает к топливным форсункам. Такой подход обеспечивает эффективное распыливание и оптимальное смесеобразование, которое подходит для всего диапазона нагрузок на дизельный агрегат. К минусам этой системы можно отнести сложность конструкции, что и стало причиной непопулярности такого насоса.
Главные причины неисправностей
ТНВД является дорогостоящим устройством, которое очень требовательно к качеству топлива и смазочных материалов. Если автомобиль эксплуатируется на горючем низкого качества, такое топливо обязательно содержит твердые частицы, пыль, молекулы воды и т.д. Все это ведет к выходу из строя плунжерных пар, которые установлены в насосе с минимальным допуском, измеряющимся в микронах.
Распространенные признаки неисправностей в работе ТНВД и форсунок представляют собой следующие отклонения от нормы:
Современные моторы с ТНВД оснащены электронной системой топливного впрыска. ЭБУ дозирует подачу топлива в цилиндры, распределяет этот процесс по времени, определяет нужное количество дизтоплива. Если владелец замечает малейшие перебои в работе двигателя, то это является безотлагательным поводом для немедленного обращения в сервис. Силовую установку и топливную систему тщательно исследуют при помощи профессионального диагностического оборудования. Во время диагностики специалисты определяют многочисленные показатели, среди которых первостепенными являются:
Эволюция устройства
Ужесточение экологических норм и требований касательно выбросов вредных веществ в атмосферу привело к тому, что механические топливные насосы высокого давления для дизельных автомобилей стали вытесняться системами с электронной регулировкой.
Механический насос попросту не смог обеспечить дозирование топлива с необходимой высокой точностью, а также не был в состоянии максимально быстро реагировать на динамично меняющиеся режимы работы двигателя.
Всемирно известные производители Bosch, Nippon Denso и другие предложили системы электронного управления подачей топлива. Указанные разработки основывались на топливном насосе VЕ. Такие системы позволяли добиться повышения точности дозирования топлива в каждый цилиндр по отдельности.
Внедрение электронных систем обеспечивало уменьшение между циклами нестабильности процесса сгорания топливно-воздушной смеси, а также снижение неравномерностей в процессе работы дизельного двигателя на холостом ходу.
Некоторые системы имели в своей конструкции клапан быстрого действия, что позволило разделить процесс впрыска топлива на две фазы. Двухфазный впрыск привел к конечному уменьшению жесткости самого процесса сгорания смеси.
Полученная точность в процессе управления системой впрыска обеспечила снижение выбросов токсичных веществ благодаря более полному сгоранию топливно-воздушной смеси, а возросшая эффективность такого сгорания повысила КПД двигателя и увеличила итоговую мощность силовой установки.
Электронные системы получили топливные насосы распределительного типа. Такие насосы оборудованы управляемыми устройствами, которые осуществляют регулировку положения дозатора. Дополнительно имеется клапан для опережения впрыска горючего.
Принцип работы системы
ЭБУ получает соответствующие сигналы от различных датчиков. Учитывается положение педали газа, частота вращения вала двигателя, температура охлаждающей жидкости и температура самого топлива. Электронный блок управления получает данные о подъеме иглы форсунок, скорости движения транспортного средства, давлении наддува воздуха и его температуре на впуске.
ЭБУ обрабатывает полученную от датчиков информацию, а затем посылает сигнал на ТНВД. Это обеспечивает подачу необходимого и оптимального количества топлива к форсункам. Дополнительно обеспечивается наилучший угол опережения впрыска с учетом конкретных условий работы двигателя. Любая дополнительная нагрузка сразу отмечается ЭБУ, на ТНВД приходит сигнал и происходит увеличение топливоподачи для компенсации возросших нагрузок.
Электронный блок управления осуществляет контроль за работой свечей накаливания. ЭБУ следит за периодом накаливания, режимом работы свечей накаливания и периодом после накаливания. Все это происходит с учетом зависимости от температуры.
Ниже приведена схема электронного регулирования одноплунжерного насоса VE от Bosch для дизельного мотора:
Ключевым элементом в данной системе выступает устройство для перемещения дозирующей муфты ТНВД (10). Управляет процессами подачи топлива блок управления (6). Информация поступает в блок от датчиков:
В памяти блока управления хранятся заданные оптимальные характеристики. Основываясь на информации от датчиков, ЭБУ посылает сигналы на механизмы управления цикловой подачей и углом опережения впрыска. Так происходит регулировка величины цикловой подачи топлива в различных режимах работы силового агрегата, а также в момент холодного запуска двигателя.
Исполнительные устройства имеют потенциометр, который посылает обратный сигнал в ЭБУ, благодаря чему определяется точное положение дозирующей муфты.
Регулировка угла опережения впрыскивания топлива происходит по аналогичному принципу.
ЭБУ отвечает за создание сигналов, которые обеспечивают регулировку многочисленных процессов. Блок управления стабилизирует частоту вращения в режиме холостого хода, регулирует рециркуляцию отработанных газов с определением показателей по сигналам датчика массового расхода воздуха. Блок сопоставляет сигналы в реальном времени от датчиков с теми значениями, которые в нем запрограммированы в виде оптимальных. Далее происходит передача выходного сигнала от ЭБУ на сервомеханизм, который обеспечивает необходимое положение дозирующей муфты. При этом достигается высокая точность регулирования.
Наиболее распространенным решением регулировки цикловой подачи для одноплунжерного насоса высокого давления распределительного типа является использование электромагнита (6). Такой магнит имеет поворотный сердечник, конец которого соединяется посредством эксцентрика с дозирующей муфтой (5). Электрический ток проходит в обмотке электромагнита, при этом угол поворота сердечника может быть от 0 до 60°.
Так происходит перемещение дозирующей муфты (5). Данная муфта в итоге регулирует цикловую подачу ТНВД.
Одноплунжерный насос с электронным управлением
Автомат опережения впрыска управляется электромагнитным клапаном (2). Данный клапан обеспечивает регулировку давления топлива, которое действует на поршень автомата. Для клапана характерна работа в импульсном режиме по принципу «открытие — закрытие». Это позволяет модулировать давление, что зависит от частоты вращения вала ДВС. В момент открытия клапана давление падает, а это влечет за собой уменьшение угла опережения впрыска. Закрытый клапан обеспечивает увеличение давления, которое перемещает поршень автомата в сторону, когда угол опережения впрыска будет увеличен.
Данные импульсы ЭМК определяются ЭБУ и зависят от режима работы и температурных показателей двигателя. Момент начала впрыска определяется при помощи того, что одна из форсунок оборудована индукционным датчиком подъема иглы.
Исполнительные механизмы, которые оказывают воздействие на элементы управления топливоподачей в ТНВД распределительного типа, являются пропорциональными электромагнитными, линейными, моментными или шаговыми электродвигателями, которые выступают в роли привода для дозатора топлива в указанных насосах.
Форсунка с датчиком подъема иглы
Электромагнитный исполнительный механизм распределительного типа состоит из датчика хода дозатора, самого исполняющего устройства, дозатора, клапана изменения угла начала впрыска, который оборудован электромагнитным приводом.
Форсунка имеет в своем корпусе встроенную катушку возбуждения (2). ЭБУ подает туда определенное опорное напряжение. Это сделано для поддержания тока в электроцепи постоянным и независимо от температурных колебаний.
Форсунка, оборудованная датчиком подъема иглы, состоит из:
Указанный ток в результате обеспечивает создание вокруг катушки магнитного поля. В момент поднятия иглы форсунки сердечник (3) осуществляет изменение магнитного поля. Это вызывает изменение напряжения и сигнала. Когда игла находится в процессе подъема, тогда импульс достигает своего пика и определяется ЭБУ, который управляет углом опережения впрыска.
Полученный импульс электронный блок управления сравнивает с данными в своей памяти, которые соответствуют различным режимам и условиям работы дизельного агрегата.
Затем ЭБУ осуществляет посылку возвратного сигнала на электромагнитный клапан. Указанный клапан соединен с рабочей камерой автомата опережения впрыскивания. Давление, воздействующее на поршень автомата, начинает изменяться. Результатом становится перемещение поршня под действием пружины. Так изменяется угол опережения впрыска.
Насос VP-44 и система непосредственного впрыска дизельного ДВС
Данная схема успешно применяется на последних моделях дизельных автомобилей от ведущих мировых концернов. К таким можно отнести BMW, Opel, Audi, Ford, и т.д. Насосы подобного типа позволяют получить показатель давления впрыска на отметке в 1000 кгс/см2.
Система непосредственного впрыска с топливным насосом VP-44, представленная на рисунке, включает в себя:
Устройство ТНВД VP- 44
Система включает в себя контур низкого давления. Топливоподкачивающий насос в ТНВД VP-44 представляет собой шиберный насос. Наблюдается зависимость давления, которое создается насосом для подкачки топлива на стороне нагнетания топлива от той частоты, с которой происходит вращение колеса насоса.
Указанное давление при увеличении частоты вращения имеет непропорциональный показатель.
Регулирующий давление клапан находится вблизи от топливоподкачивающего насоса. Он соединен с отводящим пазом через специальное отверстие для пропуска потока. Клапан отвечает за изменение давления нагнетания топливоподкачивающего насоса в зависимости от необходимого расхода горючего. Топливо, которое нагнетает топливоподкачивающий насос, поступает к ТНВД и его насосной секции, таким путем попадая в устройство опережения впрыска.
Гидравлическая схема насоса:
Контур низкого давления
Если давление топлива превысит заданную величину, тогда посредством торцевой кромки поршня (3) открываются отверстия. Указанные отверстия расположены радиально. Через них поток горючего сливается по каналам насоса к специальному подводящему пазу. В тех случаях, когда давление находится на низком уровне, тогда радиальные отверстия закрыты, так как на них воздействует сила пружины. Натяжение пружины определяет величину давления.
Охлаждение топливоподкачивающего насоса, а также удаление воздуха осуществляется путем прохождения топлива через клапан дросселирования перепуска (4), который привинчен к корпусу насоса.
При помощи данного клапана осуществляется отвод топлива по перепускному каналу (5). Клапан имеет нагруженный пружиной шарик в своем корпусе. Данная конструкция позволяет топливу вытекать только тогда, когда будет достигнуто определенное давления в самом канале.
Дроссель (6) имеет малый диаметр. Такой дроссель связан с линией отвода, которая расположена в корпусе клапана и проходит параллельно основному каналу для отвода горючего. Указанный дроссель отвечает за автоматическое удаление воздуха из топливоподкачивающего насоса. Устройство контура низкого давления ТНВД рассчитано на то, что через клапан дросселирования перепуска в топливный бак всегда возвращается то или иное количество топлива.
Контур высокого давления
Контуром высокого давления принято считать сам ТНВД, а также устройство распределения и регулировки величины и момента начала подачи.
Для этого используется только один элемент, который называется электромагнитный клапан высокого давления.
Данные системы отвечают за создание высокого давления в насосной секции ТНВД с радиальным движением плунжеров. Указанная секция создает такое давление, которое требуется для впрыска топлива под давлением около 1000 кгс/см2. В действие её приводит приводной вал, а конструкция состоит из:
На рисунке ниже приведен пример расположения плунжеров:
Система работает таким образом, что крутящий момент от приводного вала передается через соединительную шайбу и шлицевое соединение. Такой момент идет на вал-распределитель. Направляющие пазы (3) выполняют такую функцию, чтобы через башмаки (4) и находящиеся в них ролики (2) задействовать в работу нагнетающие плунжеры (5) так, чтобы это соответствовало тому внутреннему профилю, который имеет кулачковая шайба (1). Число цилиндров в дизельном ДВС равно количеству кулачков на шайбе.
Нагнетающие плунжеры в корпусе вала-распределителя расположены радиально.
По этой причине такая система и получила название ТНВД. Плунжеры осуществляют совместное выдавливание поступившего топлива на восходящем профиле кулачка. Далее топливо попадает в главную камеру высокого давления (7). В ТНВД может быть два, три и более нагнетающих плунжера, что зависит от планируемых нагрузок на мотор и количества цилиндров (а, b, c).
Процесс распределения топлива при помощи корпуса-распределителя
В основе данного устройства лежат:
На рисунке ниже мы видим сам корпус-распределитель:
Данная система состоит из:
На этапе наполнения на нисходящем профиле кулачков плунжеры (1), которые движутся радиально, перемещаются наружу и движутся к поверхности кулачковой шайбы. Запирающая игла (4) в это момент находится в свободном состоянии и открывает впускной топливный канал. Топливо проходит через камеру низкого давления (12), кольцевой канал (9) и иглу. Далее горючее направляется от топливоподкачивающего насоса по каналу (8) вала-распределителя и попадает в камеру высокого давления.
Все излишки топлива обратно вытекают через канал возвратного слива (5).
Нагнетание осуществляется при помощи плунжеров (1) и иглы (4), которая закрыта. Плунжеры начинают перемещаться на восходящем профиле кулачков к оси вала-распределителя. Так происходит повышение давления в камере высокого давления.
Топливо, будучи уже под высоким давлением, устремляется по каналу камеры высокого давления (8). Оно проходит распределительную канавку (13), которая в данной фазе соединяет вал-распределитель (2) с выпускным каналом (14), штуцер (16) с нагнетательным клапаном (15) и магистраль высокого давления с форсункой. Последним этапом становится поступление дизтоплива в камеру сгорания силовой установки.
Как происходит дозирование топлива. Электромагнитный клапан высокого давления
Электромагнитный клапан (клапан установки момента начала впрыска) состоит из таких элементов:
За цикловую подачу и дозирование топлива отвечает указанный электромагнитный клапан. Указанный клапан высокого давления встроен в контур высокого давления ТНВД.
В самом начале впрыска на катушку электромагнита (5) подается напряжение по сигналу блока управления. Якорь (4) осуществляет перемещение иглы (3) путем прижима последней к седлу (1).
Когда игла плотно прижата к седлу, тогда топливо не поступает. Давление топлива в контуре по этой причине быстро растет. Это позволяет открыть соответствующую форсунку. Когда нужное количество топлива оказалось в камере сгорания двигателя, тогда напряжение на катушке электромагнита (5) пропадает. Происходит открытие электромагнитного клапана высокого давления, что влечет за собой снижение давления в контуре. Понижение давления вызывает закрытие топливной форсунки и прекращение впрыска.
Вся та точность, с которой осуществляется данный процесс, напрямую зависит от электромагнитного клапана. Если попытаться объяснить еще подробнее, то от момента окончания работы клапана. Этот момент исключительно определяется отсутствием или наличием напряжения на катушке электромагнитного клапана.
Избытки нагнетаемого топливо, которое продолжает нагнетаться до момента прохождения роликом плунжера верхней точки профиля кулачка, осуществляют движение по особому каналу.
Окончанием пути для горючего становится пространство за аккумулирующей мембраной. В контуре низкого давления имеют место скачки от высокого давления, которые демпфирует аккумулирующая мембрана. Дополнительным является то, что данное пространство сохраняет (аккумулирует) накопленное топливо для наполнения перед следующим впрыском.
Остановка двигателя осуществляется при помощи электромагнитного клапана. Дело в том, что клапан полностью блокирует нагнетание топлива под высоким давлением. Такое решение полностью исключает необходимость в дополнительном остановочном клапане, который применяется в распределительных ТНВД, где осуществляется управление регулирующей кромкой.
Процесс демпфирования волн давления при помощи нагнетательного клапана с дросселированием обратного потока
Данный нагнетательный клапан (15) с дросселированием обратного потока после завершения впрыска порции топлива препятствует следующему открытию распылителя форсунки.
Это полностью исключает такое явление, как дополнительный впрыск, являющийся результатом волн давления или их производных. Указанное дополнительное подвпрыскивание повышает токсичность отработанных газов и является крайне нежелательным негативным явлением.
Когда начинается подача топлива, тогда конус клапана (3) открывает клапан. В этот самый момент топливо уже нагнетается через штуцер, проникает в магистраль высокого давления и направляется к форсунке. Окончание нагнетания горючего вызывает резкий спад давления. По этой причине возвратная пружина с силой прижимает конус клапана обратно к седлу клапана. При закрытии форсунки возникают обратные волны давления. Эти волны успешно погашаются дросселем нагнетательного клапана. Все эти действия предотвращают нежелательное подвпрыскивание топлива в рабочую камеру сгорания дизельного двигателя.
Устройство опережения впрыска
Данное устройство состоит из следующих элементов:
Оптимальный процесс протекания сгорания и лучшие мощностные характеристики касательно дизельного ДВС возможны только тогда, когда момент начала сгорания смеси происходит в определенном положении коленвала или поршня в цилиндре дизельного двигателя.
Устройство опережения впрыскивания выполняет одну очень важную задачу, которая заключается в том, чтобы увеличивать угол начала подачи топлива в тот момент, когда имеет место повышение частоты вращения коленвала. Данное устройство конструктивно включает в себя:
Устройство обеспечивает тот самый оптимальный момент начала впрыскивания, который идеально подходит режиму работы двигателя и нагрузке на него. Происходит компенсация временного сдвига, который определяется сокращением периода впрыска и воспламенения при увеличении частоты вращения.
Данное устройство оснащается гидравлическим приводом и встраивается в нижнюю часть корпуса ТНВД таким образом, чтобы располагаться поперек продольной оси насоса.
Работа устройства опережения впрыска
Кулачковая шайба (1) осуществляет вход шаровой цапфой (2) в поперечное отверстие плунжера (3) таким образом, что поступательное движение плунжера трансформируется в поворот кулачковой шайбы. Плунжер в центре имеет регулировочный клапан (5).
Данный клапан осуществляет открытие и перекрытие управляющего отверстия в плунжере. По оси плунжера (3) находится управляющий поршень (12), который нагружен пружиной (10). Поршень отвечает за положение регулировочного клапана.
Электромагнитный клапан установки момента начала впрыскивания (15) находится поперек оси плунжера. Электронный блок, управляющий ТНВД, осуществляет воздействие на плунжер устройства опережения впрыска посредством данного клапана. Управляющий блок подает в непрерывном режиме импульсы тока. Такие импульсы характеризуются постоянной частотой и переменной скважностью. Клапан изменяет давление, которое оказывает воздействие на управляющий поршень в конструкции устройства.
Подведем итоги
Данный материал нацелен на максимально доступное и понятное ознакомление пользователей нашего ресурса со сложным устройством топливного насоса высокого давления и обзором его основных элементов. Устройство и общий принцип работы ТНВД позволяют говорить о безотказной эксплуатации только при условии заправки дизельного агрегата качественным топливом и моторным маслом.
Если же эксплуатировать дизель бережно, строго соблюдать и даже сокращать межсервисные интервалы по замене смазочного материала, учитывать остальные важные требования и рекомендации, тогда ТНВД непременно ответит своему заботливому владельцу исключительной надежностью, экономичностью и завидной долговечностью.
Завоздушивание топливной системы дизеля: признаки неисправности и диагностика. Как самостоятельно найти место подсоса воздуха, способы решения проблемы.
Как выставить начало момента впрыска топлива на дизельном двигателе. Различные способы настройки УОВ. Советы и рекомендации при самостоятельной настройке.
Назначение топливного насоса высокого давления в системе топливного впрыска дизельного двигателя. Виды ТНВД, конструктивные особенности насосов.
Главные причины затрудненного пуска горячего дизельного двигателя. Проблемы с плунжерной парой ТНВД, перелив топлива через дизельные форсунки, датчики.
Что представляет собой плунжер на примере устройства и работы топливного насоса высокого давления дизельных двигателей.
Самостоятельная диагностика.
Источник
Видео
Принцип работы дизельного двигателя
принцип работы тнвд
Что такое Common Rail? Принцип работы, строение и особенности
ЗАПУСК МОТОРА БЕЗ МОЗГОВ. МОТОР БЕЗ ЭЛЕКТРОУПРАВЛЕНИЯ, А НА ПРЯМУЮ. ЕДИНСТВЕННОЕ ВИДЕО на ЮТУБЕ.
Как ездить на дизеле с неисправным ТНВД?! Подсос воздуха
принцип работы рядный механический тнвд
Система питания дизельного двигателя.
21) Топливный насос высокого давления (ТНВД)
ТНВД дизельных автомобилей. Практические советы по устранению неисправностей
Как быстро запустить дизель с электронным ТНВД BOSCH VE, и зачем это нужно. Sprinter 2.9D, OM602.980
Топливный насос высокого давления (ТНВД): виды, устройство, принцип работы — Autodromo
Топливный насос (сокращенно ТНВД) предназначен для выполнения следующих функций — подачи горючей смеси под высоким давлением в топливную систему ДВС, а также регулирования его впрыска в определенные моменты.
Именно поэтому топливный насос считается наиболее важным устройством для дизельных и бензиновых двигателей.
Преимущественно ТНВД применяются, конечно же, в дизельных двигателях. А в бензиновых двигателях ТНВД встречаются лишь в тех агрегатах, на которых используется система непосредственного впрыска топлива. При этом насос в бензиновом двигателе работает куда с меньшей нагрузкой, поскольку такое высокое давление, как в дизеле не требуется.
Основные конструктивные элементы топливного насоса — плунжер (поршень) и цилиндр (втулка) малого размера, которые объединяются в единую плунжерную систему (пару), изготовленную из высокопрочной стали с большой точностью.
На самом деле изготовление плунжерной пары довольно трудная задача, требующая специальных высокоточных станков. На весь Советский союз был, если не изменяет память, всего один завод, на котором изготавливались плунжерные пары.
Как делают плунжерные пары в нашей стране сегодня можно увидеть в этом видео:
Между плунжерной парой предусматривается очень маленький зазор, так называемое прецизионное сопряжение.
Это отлично показано в видео, когда плунжер очень плавно, с зависанием под действием собственного веса входит в цилиндр.
Итак, как мы уже сказали ранее, топливный насос применяется не только для своевременной подачи горючей смеси в топливную систему, но и для распределения его через форсунки в цилиндры в соответствии с типом двигателя.
Форсунки – связующее звено в этой цепи, поэтому они соединены с насосом трубопроводами. С камерой сгорания форсунки соединяются нижней распылительной частью, оснащенной небольшими отверстиями для эффективного впрыска топлива с дальнейшим его воспламенением. Определить точный момент впрыска ТС в камеру сгорания позволяет угол опережения.
Содержание
- Типы топливных насосов
- Рядный ТНВД
- Распределительный ТНВД
- Магистральный ТНВД
В зависимости от особенностей конструкции различают три основных типа ТНВД – распределительный, рядный, магистральный.
Рядный ТНВД
Этот тип топливного насоса высокого давления оснащается плунжерными парами, расположенными рядом друг с другом (потому и такое название).
Их количество строго соответствует количеству рабочих цилиндров двигателя.
Таким образом, одна плунжерная пара обеспечивает подачу топлива в один цилиндр.
Пары устанавливаются в насосном корпусе, в котором предусмотрены каналы входа и выхода. Запускается плунжер при помощи кулачкового вала, соединенного, в свою очередь, с коленвалом, от которого и передается вращение.
Кулачковый вал насоса, при вращении кулачками воздействует на толкатели плунжеров, заставляя их двигаться внутри втулок насоса. При этом поочередно открываются и закрываются впускные и выпускные отверстия. При движении плунжера вверх по втулке создается давление, необходимое для открывания нагнетательного клапана, через который топливо под давлением направляется по топливопроводу к определенной форсунке.
Момент подачи топлива и регулировка его количества, необходимого в конкретный момент времени может осуществляться либо с помощью механического устройства, либо с помощью электроники. Такая регулировка нужна для корректировки подачи топлива в цилиндры двигателя в зависимости от частоты вращения коленчатого вала (оборотов двигателя).![]()
Механическое управление обеспечивается за счет использования специальной муфты центробежного типа, которая закреплена на кулачковом валу. Принцип действия такой муфты заключен в грузиках, которые находятся внутри муфты и имеют возможность перемещаться под действием центробежной силы.
Центробежная сила изменяется с ростом (или уменьшением) величины оборотов двигателя, благодаря чему грузики либо расходятся к внешним краям муфты, либо снова сближаются к оси. Это приводит к смещению кулачкового вала относительно привода из-за чего и изменяется режим работы плунжеров и, соответственно, при увеличении частоты вращения коленвала двигателя обеспечивается ранний впрыск топлива, а поздний, как вы догадались, при снижении оборотов.
Рядные топливные насосы весьма надежны. Их смазка осуществляется моторным маслом, поступающим из системы смазки двигателя. Они совершенно не привередливы к качеству топлива. На сегодняшний день применение таких насосов из-за их громоздкости ограничено грузовыми автомобилями средней и большой грузоподъемности.
Примерно до 2000 года они применялись и на легковых дизельных моторах.
Распределительный ТНВД
В отличие от рядного насоса высокого давления, у распределительного ТНВД может быть либо один, либо два плунжера в зависимости от объема двигателя и, соответственно, необходимого объема топлива.
И эти один или два плунжера обслуживают все цилиндры двигателя, которых может быть и 4, и 6, и 8, и 12. Благодаря своей конструкции, в сравнении с рядными ТНВД, распределительный насос более компактен и меньше весит, и при этом способен обеспечить более равномерную подачу топлива.
К основному недостатку данного типа насосов можно отнести их относительную недолговечность. Распределительные насосы устанавливаются только в легковые автомобили.
Распределительный ТНВД может оснащаться различными типами приводов плунжера. Все эти типы привода являются кулачковыми и бывают: торцевыми, внутренними, внешними.
Наиболее эффективными считаются торцевые и внутренние приводы, которые лишены нагрузок, создаваемых давлением топлива на приводной вал, вследствие чего они служат несколько дольше, нежели насосы с внешним кулачковым приводом.
Кстати, стоит отметить, что импортные насосы фирм Bosch и Lucas, наиболее часто использующиеся в автомобилестроении оснащены именно торцевым и внутренним приводом, а внешний привод имеют насосы серии НД отечественного производства.
Торцевой кулачковый привод
В этом типе привода, используемом в насосах Bosch VE, основным элементом является распределительный плунжер, предназначенный для создания давления и распределения топлива в топливных цилиндрах. При этом плунжер-распределитель совершает вращательные и возвратно-поступательные перемещения при вращательных движениях кулачковой шайбы.
Возвратно-поступательное перемещение плунжера осуществляется одновременно с вращением кулачковой шайбы, которая, опираясь на ролики, перемещается вдоль неподвижного кольца по радиусу, то есть, как бы обегает его.
Воздействие шайбы на плунжер обеспечивает высокое давление топлива. Возврат плунжера в исходное состояние осуществляется благодаря пружинному механизму.
Распределение топлива в цилиндрах происходит за счет того, что приводной вал обеспечивает вращательные движения плунжера.
Величина подачи топлива может быть обеспечена с помощью электронного (электромагнитный клапан) или механического (центробежная муфта) устройства. Регулировка осуществляется за счет поворота на определенный угол неподвижного (не вращающегося), регулировочного кольца.
Цикл работы насоса состоит из следующих стадий: закачка порции топлива в надплунжерное пространство, нагнетание давления за счет сжатия и распределение топлива по цилиндрам. Затем плунжер возвращается в исходное положение и цикл повторяется заново.
Внутренний кулачковый привод
Внутренний привод применяется в распределительных ТНВД роторного типа, например, в насосах Bosch VR, Lucas DPS, Lucas DPC. В таком типе насоса подача и распределение топлива осуществляется посредством двух устройств: плунжера и распределительной головки.
Распределительный вал оснащается двумя противоположно-расположенными плунжерами, которые обеспечивают процесс нагнетания топлива, чем меньше расстояние между ними, тем выше давление топлива.
После нагнетания давления топливо устремляется к форсункам по каналам распредголовки через нагнетательные клапана.
Подачу топлива к плунжерам обеспечивает специальный подкачивающий насос, который может отличаться в зависимости от типа своей конструкции. Это может быть либо шестеренчатый насос, либо роторно-лопастной. Подкачивающий насос находится в корпусе насоса и приводится в действие приводным валом. Собственно, он прямо на этом валу и установлен.
Распределительный насос с внешним приводом рассматривать не будем, поскольку, скорее всего, их звезда близка к закату.
Магистральный ТНВД
Такой вид топливного насоса применяется системе подачи топлива Common Rail, в которой топливо перед тем, как поступить к форсункам сначала накапливается в топливной рампе. Магистральный насос способен обеспечить высокую подачу топлива — свыше 180 МПа.
Магистральный насос может быть одно-, двух- или трехплунжерным. Привод плунжера обеспечивается кулачковой шайбой или валом (тоже кулачковым, разумеется), которые в насосе совершают вращательные движения, проще говоря, крутятся.
При этом в определенном положении кулачков, под действием пружины плунжер перемещается вниз. В этот момент происходит расширение компрессионной камеры, за счет чего в ней снижается давление и образуется разряжение, которое заставляет открыться впускной клапан, через который топливо проходит в камеру.
Поднятие плунжера сопровождается увеличением внутрикамерного давления и закрытием клапана впуска. При достижении давления, на который настроен насос, открывается выпускной клапан, через который топливо нагнетается в рампу.
В магистральном насосе управление процессом подачи топлива реализуется дозирующим топливным клапаном (который приоткрывается или закрывается на необходимую величину) при помощи электроники.
Плунжерный насос как надежный насос высокого давления для промышленности
Плунжерные насосы можно найти в качестве надежных насосов высокого давления во многих промышленных применениях, например, при очистке или в технологических процессах в химической промышленности.
Поршневые насосы подходят для малых или больших расходов и достигают различных уровней давления. Они транспортируют все жидкие среды, такие как вода, масла или жидкие газы, в широком диапазоне температур. Даже абразивные среды, такие как суспензии моющих средств или угольная пульпа, могут легко перекачиваться при различных уровнях давления с помощью плунжерных насосов с осциллирующими плунжерами.
Плунжерный насос представляет собой специальную версию поршневого насоса. Термин поршень происходит от английского языка и означает шток поршня или поршень.
В отличие от поршневого насоса поршень не достигает стенки цилиндра. Сам поршневой шток представляет собой поршень. Снаружи он не имеет уплотнений, замыкающихся со стенкой цилиндра. Насос работает по принципу вытеснения.
В отличие от поршневого насоса, плунжерный насос не движется вместе с поршнем, а имеет неподвижное уплотнение в сальниковой коробке. Втягивающийся плунжер создает эффект всасывания в блоке подачи и открывает всасывающий клапан.
Среда течет в жидкостную часть. Затем поршень движется вперед. Плунжер вытесняет имеющийся объем за счет собственного объема и увеличивает давление перекачиваемой жидкости. Всасывающий клапан закрывается, а нагнетательный клапан открывает путь жидкости под давлением в рабочую зону.
Движение плунжера вперед и назад непрерывно повторяется и открывает или закрывает клапаны. В зависимости от приложения циклы повторяются до нескольких сотен раз в минуту. Для предотвращения прерывистого потока жидкости используются так называемые демпферы пульсаций со стороны всасывания и со стороны нагнетания, которые обеспечивают равномерный поток и снижение пульсаций. В одном насосе можно использовать несколько плунжеров в сочетании для увеличения расхода и более равномерного расхода. Они питают общую технологическую зону через один и тот же напорный трубопровод. Количество плунжеров в насосе зависит от конструкции и области применения.
Плунжеры приводятся в действие гидравлически или от коленчатого вала с шатунами и удлинителями крейцкопфов.
При наличии нескольких плунжеров угловые положения на коленчатом валу можно распределить таким образом, чтобы пики давления в насосе располагались в шахматном порядке.
По сути, плунжерный насос состоит из двух основных компонентов: приводной части и нагнетательной части.
Приводная часть преобразует вращательное движение приводного двигателя в колебательное движение плунжера вперед и назад. Для этого используются коленчатый вал, шатуны и крестовины. Плунжеры соединены с крейцкопфами и входят в нагнетательную часть насоса через сальниковые коробки. Приводными двигателями могут быть электродвигатели, а также двигатели внутреннего сгорания. Возможны также гидравлические приводы. Приводная часть изготовлена из прочного литого материала, подготовленного для непрерывной работы в тяжелых условиях в экстремальных условиях.
Блок подачи состоит из сальников и клапанной камеры, в которой происходит повышение давления среды.
Различные компоненты блока подачи вступают в контакт с жидкой средой и поэтому должны быть спроектированы в соответствии с требованиями. Корпус сальника, клапанный блок и клапаны изготовлены из материалов, адаптированных к применению и перекачиваемой жидкости. Это могут быть, например, простые литейные материалы, высоколегированные нержавеющие стали, такие как супердуплекс или даже титан.
В зависимости от используемого процесса уплотнительные решения, стационарно установленные в блоке подачи, могут быть оснащены вспомогательными системами, такими как системы уплотнения, впрыска или промывки.
Плунжерный насос URACA проточной части Плунжерный насос URACA Сальниковая коробка плунжерного насоса URACA Клапанный блок плунжерного насоса URACA Плунжерные насосы могут использоваться в самых разных областях. Везде, где требуется перекачка жидких сред под высоким давлением, они являются подходящим решением. Области применения варьируются от насосов для процессов очистки самого низкого класса производительности с весом в несколько килограммов до насосных систем для перерабатывающей промышленности с требованиями к производительности в несколько мегаватт и весом 40 тонн.
Благодаря продуманной конструкции, оптимизированному выбору материалов, гибкому регулированию скорости и высокой точности производства плунжерные насосы можно использовать 24 часа в сутки и прибл. 8000 часов в год без перерыва. Все среды можно перекачивать в жидком состоянии. Это может быть вода или масло при нормальной температуре, а также горячие масла и жидкие газы, такие как двуокись углерода и аммиак. Благодаря своему принципу действия плунжерные насосы также идеально подходят для сред, содержащих абразивы, таких как суспензии моющих средств или угольная пульпа.
- Приложения для очистки
- Угольный проникновение
- Технология процесса для химической и фармацевтической промышленности
- Проверка под давлением
- Производство моче и идеально подходят для надежной непрерывной работы. Они могут использоваться для различных жидких сред и достигать давления до 3000 бар.
Компания URACA обладает большим опытом разработки и производства плунжерных насосов.Если у вас есть какие-либо вопросы или вы ищете насос, подходящий для вашего применения, свяжитесь со специалистами URACA прямо сейчас.
Что такое плунжерный насос?
от Engineer Waqar
Содержание
- 1 Что такое плунжерный насос?
- 2 Работа плунжерного насоса
- 3 Плунжерный насос Строительные материалы
- 4 Типы плунжерных насосов
- 4.1 1) Симплексный насос
- 4.2 2) Дуплексный плунжерный насос Триплекс 7) 4.0038
- 4.4 4) Multiplex Pump
- 5 Components of Plunger Pump
- 6 Applications of Plunger Pumps
- 7 Advantages and Disadvantages of Plunger Pumps
- 7.1 Advantages of Plunger Pump
- 7.2 Disadvantages of Plunger Pump
- 8 Разница между поршневым насосом и плунжерным насосом
- 9 Часто задаваемые вопросы Раздел
- 9.
1 Для чего используется плунжерный насос? - 9.2 В чем разница между плунжерным насосом и поршневым насосом?
- 9.3 Какие существуют типы плунжерных насосов?
- 9.4 Какой насос является плунжерным?
- 9.
Плунжерный насос представляет собой тип поршневого насоса с фиксированным уплотнением высокого давления и гладким цилиндрическим плунжером , который скользит по уплотнению . Эти две особенности поршневого насоса отличают его от поршневого насоса. Он может производить более высокое давление, чем поршневой насос. Поэтому его можно использовать для приложений с высоким давлением.
В поршневых и плунжерных насосах используется камера, которая расширяется и сужается для всасывания и повышения давления жидкости. Поскольку это поршневые насосы, камера расширяется и сужается за счет возвратно-поступательного движения плунжера (вверх и вниз; вперед и назад) вместо кругового (вращательного) движения.

Плунжерный насос также известен как насос высокой вязкости , насос высокого давления или насос высокого давления, поскольку они обеспечивают высокое давление нагнетания. Эти насосы также могут перекачивать как твердые, так и вязкие среды. Эти поршневые насосы используются для перекачивания промышленных и коммунальных сточных вод.
Красный также: Различные типы поршневых насосов
Работа плунжерного насосаПлунжерный насос имеет стационарное уплотнение внутри сальниковой коробки вместо поршня. Шатун, коленчатый вал и плунжер являются основными компонентами плунжерного насоса.
Плунжерный насос работает следующим образом:
- Плунжер насоса соединен с коленчатым валом через шатун. Этот коленчатый вал далее соединяется с электродвигателем.
- Поскольку двигатель обеспечивает питание коленчатого вала, он преобразует вращательное движение двигателя в возвратно-поступательное движение.
Коленчатый вал дополнительно передает эту мощность на плунжер через шатун. - При возвратно-поступательном движении плунжер начинает перемещаться вверх и вниз внутри цилиндра.
- Когда поршень начинает двигаться вниз, в камере насоса создается вакуум. Из-за этого вакуума возникает разница давлений между внешним давлением жидкости и внутренним давлением жидкости в цилиндре.
- После этого плунжер всасывает жидкость в камеру. Когда он всасывает жидкость в соответствии с требованиями, всасывающий клапан закрывается, а плунжер перемещается вверх.
- По мере движения плунжера вверх объем камеры уменьшается, и давление жидкости повышается.
- Когда внутреннее давление жидкости становится выше, чем давление в нагнетательном резервуаре, открывается выпускной клапан, и жидкость поступает в нагнетательный резервуар или в другое желаемое место.
Для лучшего понимания посмотрите видео ниже:
Читайте также: Различные типы насосов
Плунжерный насос Строительные материалыМатериалы, используемые в конструкции плунжерных насосов, различаются в зависимости от области применения насоса.
Материалы цилиндра и корпуса должны быть достаточно прочными, чтобы выдерживать условия прилегающей рабочей среды. Материал, контактирующий с перекачиваемой средой, должен быть устойчив к коррозии под действием жидкости. Наиболее распространенные материалы, используемые для изготовления насоса, приведены ниже:- Чугун обладает высокой стойкостью к царапанью, ударной вязкостью и прочностью на растяжение, что соответствует высокому номинальному усилию.
- Стали и сплавы нержавеющей стали также устойчивы к окислению и химическим веществам. Эти материалы обладают превосходной прочностью на растяжение по сравнению с пластмассами, сравнимой с более высокими значениями давления.
- Пластмассовые материалы недороги и имеют широкий диапазон устойчивости к химическим воздействиям и ржавчине.
- Прочее 9Типы 0113 материалов , используемых в конструкции насоса, в основном включают никель, керамику, бронзу, латунь и алюминиевые сплавы.

Количество цилиндров определяет мощность насоса. Чем больше количество цилиндров, тем выше будет давление жидкости.
Плунжерный насос бывает следующих основных типов:
- Дуплексный насос
- Симплексный насос
- Триплексный насос
- Мультиплексный насос
Этот насос использует только один цилиндр для повышения давления жидкости. Он также имеет только один поршень, который перемещается в цилиндре. Эти насосы используются для ручных насосов, горячих масел, водоструйных насосов, паровых насосов, домкратов и т. д. жидкость. Каждый цилиндр содержит поршень. Эти насосы используются для таких применений, как бокситовый шлам, горячая нефть, угольный шлам, буровой раствор, цемент, рудный шлам и пар.
3) Тройной плунжерный насосТройной насос имеет три цилиндра для сжатия жидкости.
4) Мультиплексный насос
Он имеет три плунжера (по одному на каждый цилиндр).Имеет более трех цилиндров для повышения давления жидкости. Этот насос содержит более двух плунжеров.
Подробнее: Различные типы насосов
Компоненты плунжерного насосаA plunger pump has the following major parts:
- Plunger
- Suction Valve
- Discharge Valve
- Cylinder
- Seal
A plunger is a solid component of the насос, совершающий возвратно-поступательное движение внутри цилиндра. Он помогает насосу всасывать и нагнетать жидкость. Когда он движется вниз, он всасывает жидкость внутрь насоса и выпускает жидкость, когда движется вверх. Изготавливается из стали, нержавеющей стали или алюминия и т. д.
2) ЦилиндрЦилиндр также известен как камера сжатия.
3) Впускной клапан
Поршень перемещается вверх и вниз в цилиндре. По мере того, как поршень образует полость внутри цилиндра, внешняя жидкость начинает поступать в цилиндр. Когда поршень движется вверх, он уменьшает площадь цилиндра и создает давление жидкости.Этот клапан используется для всасывания жидкости снаружи в цилиндр. Это односторонний клапан, поэтому жидкость не может вернуться.
4) Выпускной клапанЭто также односторонний клапан. Выпускной клапан используется для слива жидкости из насоса.
5) УплотнениеЭто уплотнение высокого давления. Это стационарная часть насоса.
Применение плунжерных насосовПлунжерные насосы способны создавать высокое давление. Эти насосы способны перекачивать тяжелые вещества и высоковязкие жидкости. Благодаря этим особенностям плунжерные насосы используются в следующих областях:
- Эти насосы используются для впрыскивания химикатов.

- Эти насосы также используются для удаления запахов и туманообразования
- Они используются для впрыскивания бурового раствора
- Используются для резки водой
- Используются в добыче нефти и газа
- Плунжерные насосы также используются для осушки газа
- Они используются для подготовки поверхности
- Плунжерные насосы также используются для производства мочевины
- Они используются для очистки
- Эти насосы используются для сжижения угля
- Используются для опрессовки
- Они способны создавать большее давление, чем поршневые насосы.
- Изменения расхода и давления практически не влияют на производительность плунжерного насоса.
- Эти насосы могут перекачивать абразивы и шламы.
- Могут перемещать жидкости с высокой вязкостью и тяжелые вещества.

- Обладают способностью самовсасывания.
- Эти насосы имеют высокие эксплуатационные расходы.
- Высокие затраты на техническое обслуживание.
- Плунжерные насосы не могут обеспечивать пульсирующий свободный поток.
- Эти насосы могут работать только с жидкостями с низким расходом.
- Они громоздкие и тяжелые.
Часто задаваемые вопросы РазделПлунжерный насос Поршневой насос Плунжерный насос имеет фиксированное уплотнение высокого давления. Поршневой насос имеет уплотнение высокого давления, перемещающееся внутри цилиндра. Расчетное давление на входе от 60 до 70 фунтов на кв. дюйм . Расчетное давление на входе от 8,5 до 40 фунтов на кв.
дюйм .Создает более высокое давление, чем поршневой насос. Создает меньшее давление, чем плунжерный насос. Давление на выходе: 100-10 000 фунтов на кв. дюйм Давление на выходе: от 100 до 1200 фунтов на кв. дюйм Также обеспечивает пульсирующий поток. Обеспечивает пульсирующий поток. Этот насос может создавать давление до 200 МПа. Может создавать давление до 150 МПа. Для чего используется плунжерный насос?
Плунжерный насос используется для создания высокого давления для перекачки жидкости из одного места в другое.
В чем разница между плунжерным насосом и поршневым насосом?
Работа плунжерных насосов очень похожа на работу поршневых насосов. Основное отличие состоит в том, что в плунжерном насосе для перекачки жидкости вместо поршня используется поршень.

Какие бывают типы плунжерных насосов?
Основные типы плунжерных насосов приведены ниже:
- Дуплексный насос
- Симплексный насос
- Мультиплексный насос
Какой тип насоса является плунжерным насосом?
Плунжерный насос является одним из наиболее известных типов поршневых насосов с неподвижным уплотнением высокого давления и гладким цилиндрическим плунжером , который скользит по уплотнению .
Подробнее- Различные типы насосов
- Работа центробежного насоса и типы
- Работа конденсатного насоса и типы
- Различные типы поршневых насосов Как работает
Что такое плунжерный насос?
от Jignesh Sabhadiya
Что такое плунжерный насос?
Плунжерный насос представляет собой объемный насос, в котором уплотнение высокого давления неподвижно, а гладкий цилиндрический плунжер скользит через уплотнение.
Это отличает их от поршневых насосов и позволяет использовать их при более высоких давлениях. Этот тип насоса часто используется для перекачивания городских и промышленных сточных вод.Поршневые насосы, иногда называемые поршневыми насосами, имеют возвратно-поступательный плунжер, который перемещается вперед и назад, нагнетая жидкость через ряд клапанов. Некоторыми простыми примерами из нашей повседневной жизни могут быть велосипедный насос, пульверизатор или водяной пистолет.
В коммерческих целях плунжерные насосы обычно используются для очистки, дезинфекции, борьбы с вредителями, в сельском хозяйстве и других областях применения в электрическом оборудовании, таком как мойки высокого давления, распылители и распылители.
Изобретение плунжерного насоса приписывается Сэмюэлю Морланду на основании патента 1675 года.
Как работают плунжерные насосы?
Поршневые насосы и плунжерные насосы представляют собой поршневые насосы, в которых используется поршень или поршень для перемещения среды через цилиндрическую камеру.
Плунжер или поршень приводится в действие паровым, пневматическим, гидравлическим или электрическим приводом.Ротационно-поршневые и плунжерные насосы используют кривошипно-шатунный механизм для создания возвратно-поступательного движения вдоль оси, которое затем создает давление в цилиндре или силовом цилиндре для подачи газа или жидкости через насос. Давление в камере приводит в действие клапаны как на всасывании, так и нагнетании.
Поршневые насосы используются в устройствах с давлением от 70 до 2070 бар (от 1000 до 30000 фунтов на кв. дюйм). Поршневые насосы используются в системах с низким давлением. Объем выбрасываемой жидкости равен площади плунжера или поршня, умноженной на длину его хода.
Общая производительность поршневых и плунжерных насосов может быть рассчитана по площади поршня или плунжера, длине хода, количеству поршней или плунжеров и скорости привода. Мощность, требуемая приводом, пропорциональна давлению и производительности насоса.
Уплотнения являются неотъемлемой частью поршневых и плунжерных насосов для отделения рабочей жидкости от рабочей жидкости.
Сальник или набивка используются для герметизации соединения между контейнером, в котором перекачивается среда, и плунжером или поршнем. Сальниковая коробка может состоять из втулок, сальниковых или уплотнительных колец и сальниковых коробок.Материалы компонентов плунжерных насосов выбираются с учетом износа и контакта с типом среды. Материалы компонентов включают бронзу, латунь, сталь, нержавеющую сталь, железо, никелевый сплав или другие материалы. Например, плунжерные насосы, используемые в сфере общего обслуживания или в сфере обслуживания нефтепродуктов, часто имеют железный цилиндр и поршень.
Поршень, нагнетательные и всасывающие клапаны контактируют с перекачиваемой средой, и выбор материала зависит от перекачиваемой жидкости. В высокопроизводительных приложениях, где требуются плунжерные насосы непрерывного действия, можно использовать цельнокерамические плунжеры при контакте с водой и маслом, но они могут не подходить для использования с сильнокислотными типами сред.

Различия между насосами поршня и плунжера:
Поршневой насос Plunger Pump a High-Pressure. Плунжер скользит через уплотнение, что позволяет использовать насос при более высоком давлении. Расчетное давление на входе от 8,5 до 40 фунтов на кв. дюйм Расчетное давление на входе 60-70 фунтов на кв. дюйм Лучше всего подходит для коротких рабочих циклов, если только более крупный насос не работает медленно Подходит для непрерывной работы при медленной работе Выход давление 100-1200 psiВпускные клапаны с механическим приводом Требуется затопление всасывания или более высокое давление на входе, обеспечиваемое насосом повышения давления Выходное давление 100 — 10 000 psi Применение плунжерных насосов
Плунжерные насосы способны создавать высокое давление.
Эти насосы способны перекачивать тяжелые вещества и жидкости с высокой вязкостью. Благодаря этим особенностям плунжерные насосы используются в следующих областях:- Эти насосы используются для впрыскивания химикатов.
- Эти насосы также используются для удаления запахов и туманообразования
- Плунжерный насос используется для впрыска бурового раствора
- Используется для резки водой
- Используется в добыче нефти и газа
- Плунжерные насосы также используются для осушки газа
- Они используются для подготовка поверхности
- Плунжерные насосы также используются для производства мочевины
- Они используются для очистки
- Эти насосы используются для сжижения угля
- Используются для опрессовки
Преимущества плунжерного насоса
- Обладает самовсасывающей способностью (самовсасывающий насос) и высокой эффективностью.
- Возможно очень высокое развиваемое давление/давление нагнетания
- Линейное регулирование производительности при использовании переменной скорости
- Утечку можно уменьшить без отключения насоса, если ваша компания разрешает вам затягивать уплотнение во время работы насоса
- Имеются способность создавать большее давление, чем у поршневых насосов.


Электромагнитный клапан высокого давления
Компания URACA обладает большим опытом разработки и производства плунжерных насосов.
1 Для чего используется плунжерный насос?
Коленчатый вал дополнительно передает эту мощность на плунжер через шатун.
Материалы цилиндра и корпуса должны быть достаточно прочными, чтобы выдерживать условия прилегающей рабочей среды. Материал, контактирующий с перекачиваемой средой, должен быть устойчив к коррозии под действием жидкости. Наиболее распространенные материалы, используемые для изготовления насоса, приведены ниже:
Он имеет три плунжера (по одному на каждый цилиндр).
Поршень перемещается вверх и вниз в цилиндре. По мере того, как поршень образует полость внутри цилиндра, внешняя жидкость начинает поступать в цилиндр. Когда поршень движется вверх, он уменьшает площадь цилиндра и создает давление жидкости.

дюйм .
Плунжер или поршень приводится в действие паровым, пневматическим, гидравлическим или электрическим приводом.
Сальник или набивка используются для герметизации соединения между контейнером, в котором перекачивается среда, и плунжером или поршнем. Сальниковая коробка может состоять из втулок, сальниковых или уплотнительных колец и сальниковых коробок.
Эти насосы способны перекачивать тяжелые вещества и жидкости с высокой вязкостью. Благодаря этим особенностям плунжерные насосы используются в следующих областях: