Коэффициент вязкости касторового масла: Вязкость. Таблицы значений абсолютной вязкости. Пояснения.

Содержание

Вязкость. Таблицы значений абсолютной вязкости. Пояснения.


Навигация по справочнику TehTab.ru:  главная страница  / / Техническая информация / / Физический справочник / / Вязкость, Число Рейнольдса (Re). Гидравлический диаметр. Ламинарный и турбулентный потоки.  / / Вязкость. Таблицы значений абсолютной вязкости. Пояснения.
Вязкость. Таблицы значений вязкости. Пояснения. Абсолютная и кинематическая вязкость.

Кинематическая вязкость — мера потока имеющей сопротивление жидкости под влиянием силы тяжести. Когда две жидкости равного объема помещены в идентичные капиллярные вискозиметры и двигаются самотеком, вязкой жидкости требуется больше времени для протекания через капилляр. Если одной жидкости требуется для вытекания 200 секунд,а другой — 400 секунд, вторая жидкость в два раза более вязкая, чем первая по шкале кинематической вязкости.

Размерность кинематической вязкости — L2/T, где L — длина, и T — время. Обычно используется сантистокс (cSt). ЕДИНИЦА СИ кинематической вязкости — mm2/s, что равно 1 cSt.

Абсолютная вязкость, иногда называемая динамической или простой вязкостью, является произведением кинематической вязкости и плотности жидкости:

Абсолютная вязкость = Кинематическая вязкость * Плотность

Абсолютная вязкость выражается в сантипуазах (сПуаз). ЕДИНИЦА СИ абсолютной вязкости — миллипаскаль-секунда (mPa-s), где 1 сПуаз = 1 mPa-s.

Вязкость газов при атмосферном давлении:
η, 10 -6 Па· с 150 К 200 К 250 К 300 К 400 К
Азот 10. 0 12.9 15.5 17.9 22.1
Аммиак 6.89 8.53 10.3 13.9
Аргон 12.3 16.0 19.5 22.7 28.5
Ацетилен 10.3 13.5
Бромметан 13.2 15.8 20.2
Водород 5.57 6.78 7.90 8.94 10.9
Водяной пар 9. 13 13.2
Воздух 10.3 13.2 16.0 18.5 23.0
Гелий 12.3 15.0 17.5 19.9 24.3
Кислород 11.3 14.6 17.8 20.7 25.9
Метан 7.76 9.53 11.2 14.2
Неон 19.4 23.9 28.0 31.7 38.4
Оксид азота (II) 10.5 13.6 16.6 19.3 24.1
Оксид углерода (II) 9. 84 12.7 15.4 17.8 22.1
Оксид углерода (IV) 10.2 12.6 15.0 19.5
Пропан 7.1 8.3 9.5
Этан 6.43 7.96 9.45 12.2
Этилен 7.1 8.8 10.4 13.5
Вязкость жидкостей при атмосферном давлении:

η, 10 -3 Па· с

0°C 20°C 50°C 70°C 100°C
Ацетон = 0. 32 0.25 =
=
Бензин 0.73 0.52 0.37 0.26 0.22
Бензол = 0.65 0.44 0.35 =
Вода 1.80 1.01 0.55 0.41 0.28
Глицерин 12100 1480 180 59 13
Керосин 2.2 1.5 0.
95
0.75 0.54
Кислота уксусная = 1.2 0.62 0.50 0.38
Масло касторовое = 987 129 49 =
Пентан 0.28 0.24 = = =
Ртуть = 1.54 1.40 = 1.24
Спирт метиловый 0.82 0.58
0.4
0. 3 0.2
Спирт этиловый (96%) 1.8 1.2 0.7 0.5 0.3
Толуол = 0.61 0.45 0.37 0.29
Вязкость расплавов:
  t°, °C η, 10 -3 Па· с
Алюминий 700 2.90
Висмут 305 1.65
Калий 100 0. 46
Натрий 105 0.69
Олово 240 1.91
Свинец 440 2.11
Цинк 430 3.3
Бромид ртути 250 3.0
Бромид свинца 380 10.2
Бромид серебра 610
1.86
Гидроксид калия 400 2.3
Гидроксид натрия 350 4.0
Хлорид калия 790 1.4
Хлорид натрия 320 2.83
Хлорид серебра 600 1.61
Вязкость воды:
t°, °C η, 10 -6 Па· с
0 1797
10 1307
20 1004
30 803
40 655
50 551
60 470
70 407
80 357
90 317
100 284
110 256
120 232
130 212
140 196
150 184

 

Динамическая вязкость воздуха:

η, 10 -6 Па· с

температура воздуха

давление 0°C 25°C 100°C
1 атм 17.20 18.37 21.80
20 атм 17.53 18.65 22.02
50 атм 18.15 19.22 22.40
100 атм 19.70 20.60 23.35
200 атм 23.70 23.95 25.30



Нашли ошибку? Есть дополнения? Напишите нам об этом, указав ссылку на страницу.
TehTab.ru

Реклама, сотрудничество: [email protected]

Обращаем ваше внимание на то, что данный интернет-сайт носит исключительно информационный характер. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Все риски за использование информаци с сайта посетители берут на себя. Проект TehTab.ru является некоммерческим, не поддерживается никакими политическими партиями и иностранными организациями.

ЛАБОРАТОРНАЯ РАБОТА 1-9

ЛАБОРАТОРНАЯ РАБОТА 1-9

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ЖИДКОСТИ

МЕТОДОМ СТОКСА

1.ЦЕЛЬ РАБОТЫ: определить коэффициент внутреннего трения вязких жидкостей (глицерин, касторовое масло).

2.ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ: стеклянный сосуд с жидкостью, металлические шарики, микрометр, секундомер, масштабная линейка, штангенциркуль, воронка для спуска шариков в сосуд.

3.МЕТОД ИЗМЕРЕНИЙ: определение скорости движения шарика в жидкости позволяет по методу Стокса вычислить ее динамическую вязкость.

4.ВВЕДЕНИЕ.

Вязкостью или внутренним трением называется устройство всех веществ оказывать сопротивление деформации сдвига, пропорциональное градиенту скорости.

Возникновение сопротивления, обусловленного вязкостью жидкости, объясняется следующим образом.

Представим себе две пластинки, разделенные плоскопараллельным слоем жидкости (рис.1).

Рис. 1

Рассмотрим, что произойдет, если перемещать верхнюю пластинку относительно нижней в направлении вектора скорости v. Мысленно разобьем жидкость на слои. Молекулы жидкости, ближайшие к верхней пластинке, прилипают к ней и в силу этого начинают перемещаться вместе с пластинкой с той же скоростью. Эти молекулы в свою очередь увлекают молекулы следующего слоя и т.д. Слой молекул, непосредственно прилегающих к нижней неподвижной пластинке, остается в покое, а остальные слои перемещаются, скользя друг по другу со скоростями тем большими, чем больше их расстояние от нижнего слоя. Вязкость жидкости проявляется в возникновении силы, препятствующей относительному сдвигу соприкасающихся слоев жидкости, а следовательно, и сдвигу пластинок относительно друг друга.

Величина сопротивления, обусловленного вязкостью жидкости, зависит от разности скоростей между ее слоями и расстояния между ними.

Чем больше меняется скорость жидкости при переходе от слоя к слою, тем больше величина вязкого сопротивления.

Чтобы охарактеризовать величину изменения скорости вводят понятие градиента скорости

При ламинарном течении (т.е. без завихрений) сила внутреннего трения пропорциональна градиенту скорости:

F =  S(формула Ньютона)

или

 =  , (1.9.1)

где F – сила внутреннего трения;

S – площадь поверхности скользящих друг по другу слоев;

 = F/S – касательное напряжение;

 — множитель пропорциональности, зависящий от природы жидкости, называемый коэффициентом внутреннего трения или динамической вязкостью, а часто и просто вязкостью.

Из (1.9.1) следует, что коэффициент внутреннего трения равен касательному напряжению при градиенте скорости, равным единице.

Вязкость жидкости зависит от температуры; она резко уменьшается с повышением температуры.

На шарик, свободно падающий в жидкости (рис. 2) действуют силы тяжести (P), выталкивающая (Q) и вязкого сопротивления (F):

Рис.2

P = mшg = 4/3r3pшg

Q = mжg = 4/3r3gж

F = 6rv

где mш, mж – масса шарика и масса жидкости;

ш, ж – их плотности;

r – радиус;

v – скорость падения шарика;

g – ускорение свободного падения;

 — коэффициент вязкости.

Движение шарика, падающего в вязкой жидкости, лишь в первое время будет ускоренным. С возрастанием скорости увеличивается сила вязкого сопротивления и с некоторого момента движение будет равномерным, в связи с выполнением равенства

или

6rv = 4/3r3g(ш — ж)

откуда

 = (ш — ж) (1.9.2)

Для части сосуда, ограниченной рисками A и B (рис.2), где движение равномерное, скорость равна

v = l/t,

где l – расстояние;

t – время падения шарика между рисками A и B.

Подставляя значения скорости в (1.9.2), получим

 = (ш — ж) (1.9.3)

Это уравнение справедливо лишь тогда, когда шарик падает в безграничной среде. Если шарик падает вдоль оси трубки радиуса R, то приходится учитывать влияние боковых стенок. С учетом этого влияние формула (1.9.3 ) имеет вид:

 =  (1.9.4)

5. ПРОВЕДЕНИЕ ЭКСПЕРИМЕНТА И ОБРАБОТКА ОПЫТНЫХ ДАННЫХ.

Для определения вязкости  по формуле (1.9.4) в опытах с падающим в жидкости шариком нужно измерить величины r, R, l и t.

5.1. Измерить микрометром диаметр шарика (2r), а штангенциркулем внутренний диаметр цилиндрического сосуда (2R).

5.2. Измерить масштабной линейкой расстояние между рисками A и B.

5.3. Измерить время падения шарика между рисками A и B.

5.4. Рассчитать вязкость жидкости по формуле (1.9.4).

Плотность остальных шариков ш = 7,7103 кг/м3, свинцовых ш = 11,3103 кг/м3; плотность глицерина ж = 1,26103 кг/м3; касторового масла ж = 0,97103 кг/м3.

Все результаты пяти измерений и расчетов занести в таблицу 1.

Таблица 1

опы-

та

r

м

R

м

l

м

t

с

v=l/t

м/с

i

Пас

Пас

Пас

Пас

1

2

3

4

5

5.5. Определить погрешность косвенного измерения.

Суммарная относительная погрешность

 = (1.9.5)

Относительная систематическая погрешность 
c косвенного измерения нужно найти по формуле

c = ,

где — r, t, l – абсолютные погрешности радиуса шарика, времени его движения расстояния между рисками.

Относительная случайная погрешность равна

= ,

где абсолютная случайная погрешность  берется из таблицы 1.

Если и c одного порядка, то в этом случае нужно воспользоваться формулой (1.9.5), если c  8, то в этом случае доверительный интервал значения вязкости определяется формулой

g = 2,8 

 =   2,8 

6. КОНТРОЛЬНЫЕ ВОПРОСЫ.

6.1. Что такое вязкость?

6.2. От каких параметров жидкости зависит ее вязкость?

6.3. В чем заключается различие между вязкостью жидкости и вязкостью газа?

7. ЛИТЕРАТУРА.

7.1. Зисман Г.А., Тодес О.М. Курс общей физики. Т.1.Механика. Молекулярная физика. Колебания и волны. М.: Наука. 1964. – 340 с.§ 45.

7.2. Савельев И.В. Курс общей физики. Т.1. Механика. Молекулярная физика. М.: Наука. 1982. – 482 с. § 128, 129, 132.

7.3. Сивухин Д.В. Общий курс физики. Т.2. Термодинамика и молекулярная физика. М.: Наука. 1990. – 592 с. § 86, 89.

ГОУ ВПО ДВГУПС — Определение коэффициента вязкости жидкости по методу Стокса

приобрести
Определение коэффициента вязкости жидкости по методу Стокса
скачать (185 kb.)
Доступные файлы (1):

n1.doc

ГОУ ВПО

ДВГУПС
Кафедра “Физика”
Лабораторная работа
На тему: “Определение коэффициента вязкости жидкости по методу Стокса”.

21040165 09М 911

Шифр Номер работы Группа
Выполнил

Черных Д. С.

Проверил:
Старший преподаватель
кафедры “Оптические
системы связи”

Бодров Е. А.

Хабаровск 2006 г.

Цель работы:

Определение коэффициента вязкости касторового масла; вычисление числа Рейнольдса; определение времени релаксации.
Приборы и оборудование:


  1. Стеклянный цилиндрический сосуд с касторовым маслом

  2. Электрический секундомер

  3. Стальные или свинцовые шарики

  4. Микрометр и масштабная линейка

Краткая теория:

Жидкость является агрегатным состоянием вещества, промежуточным между газообразным и твердым, поэтому она обладает свойством как газообразных, так и твердых тел. Жидкости, подобно твердым телам, обладают определенным объемом, а также принимают форму сосуда, в котором находятся, подобно газам. Молекулы газа занимают предоставленный им объем, так как практически отсутствуют силы межмолекулярного взаимодействия и средняя кинетическая энергия теплового движения молекул газа гораздо больше средней потенциальной энергии, обусловленной силами притяжения между ними. Вследствие этого молекулы газа разлетаются, и газ занимает предоставленный ему объем сосуда. В твердых и жидких телах силы притяжения между молекулами уже существенны и удерживают молекулы на определенном расстоянии друг от друга. Средняя кинетическая энергия теплового движения молекул меньше средней потенциальной энергии обусловленной силами межмолекулярного взаимодействия, поэтому ее недостаточно для преодоления сил притяжения между молекулами, в результате чего твердые тела и жидкости имеют определенный объем.

Следует отметить, что в газах молекулы двигаются хаотично и не имеют четко определенного местоположения, в твердых телах существует так называемый дальний порядок (упорядоченность в расположении молекул, повторяющаяся на больших расстояниях), что касается жидкостей, то в них дальний порядок нарушается, но молекулы движутся не полностью хаотично, а в ближнем порядке (упорядоченность в расположении молекул, повторяющаяся на расстояниях, сравнимых с межмолекулярными).

Кроме того, по теории Френкеля, тепловое движение в жидкости объясняется тем, что каждая молекула в течение некоторого времени колеблется на одном месте, после чего скачком переходят в новое положение, находящееся приблизительно на одно межмолекулярное расстояние от прежнего. Таким образом, молекулы жидкости довольно медленно перемещаются по ее массе. С повышением температуры частота колебательного движения резко увеличивается, возрастает подвижность молекул.

В жидкостях, подобно газам, наблюдаются явления переноса: диффузия, теплопроводность и вязкость. Остановимся на последнем. Вязкость жидкости – это перенос импульса от слоя к слою, текущей, например, по трубе жидкости.

При течении жидкости по трубе различные слои имеют разные скорости. Наибольшая скорость наблюдается у центрального слоя. Если перпендикулярно векторам скорости провести ось Х, то можно пронаблюдать градиент скорости, образованный этими векторами.

Перенос импульса вызывает движение слоев, т. е. начинает действовать сила, равная , где — коэффициент вязкости.

Характерным для жидкостей является сильная зависимость от температуры и от давления. С повышением температуры вязкость быстро падает; при нормальном атмосферном давлении почти не зависит от него, но при давлениях в десятки тысяч атмосфер. Кроме того, коэффициент вязкости зависит от природы жидкости.

В жидкостях наблюдается два вида течений: ламинарное и турбулентное. При ламинарном течении жидкость течет слоями, которые скользят друг относительно друга и при этом не перемешиваются. Такое течение считается стационарным. Если же увеличивать скорость или поперечные размеры потока жидкости возникает ее перемешивание. Скорость молекул в любом месте все время беспорядочно меняется, то течение считается нестационарным и называется турбулентным.

Ученый Рейнольдс установил, что характер течение жидкости зависит от безразмерной величины . , где — плотность жидкости; — средняя скорость потока; — характерный для поперечного сечения сосуда размер; — коэффициент вязкости жидкости. Эта величина называедся числом Рейнольдса. При его малых значениях наблюдается ламинарное течение, при больших – турбулентное.
Расчетные формулы:

— средний диаметр шариков

— средний радиус шариков

— скорость установившегося движения шарика

— коэффициент вязкости жидкости

— средний коэффициент вязкости

— число Рейнольдса

— время релаксации

Проведем соответствующие расчеты и измерения:





Систематизируем результаты в виде таблицы:


№ шаров



























1

3,85

3,85

1,925

0,019

7800

1200

0,15

0,74

0,2

0,214

0,207

2,16

0,03

3,92

3,79

2

3,95

3,87

1,935

0,14

0,6

0,23

0,186

2,87

0,035

3,85

3,8

3

3,85

3,82

1,91

0,13

0,69

0,19

0,222

1,96

0,029

3,87

3,74

Вывод:

Выполнив данную лабораторную работу, я провел эксперимент, состоящий из трех опытов, в ходе которых я определил для каждого опыта: коэффициент вязкости жидкости (касторового масла) по методу Стокса, рассчитал число Рейнольдса и время релаксации.

Я ознакомился с принципами, по которым можно определить коэффициент вязкости жидкости и число Рейнольдса, а именно с разновидностями внутренних течений и зависимостью вышеназванных величин от них.

Отмечу, что в данной работе я наблюдал исключительно ламинарные течения – об этом говорит число Рейнольдса варьирующее от 1,96 до 2,87.

В качестве измерительных приборов и оборудования мною были использованы: микрометр, линейка, секундомер, стальные шарики, цилиндр с одной подвижной и одной неподвижной меткой наполненный касторовым маслом.


ГОУ ВПО ДВГУПС

Вязкость жидкостей, водных растворов, паров и газов (Таблица)

Вязкость жидкостей

Динамическая вязкость, или коэффициент динамической вязкости ƞ (ньютоновской), определяется формулой:

η = r / (dv/dr),

где r – сила вязкого сопротивления (на единицу площади) между двумя соседними слоями жидкости, направленная вдоль их поверхности, а dv/dr– градиент их относительной скорости, взятый по направлению, перпендикулярному к направлению движения. Размеренность динамической вязкости ML-1T-1, ее единицей в системе СГС служит пуаз (пз) = 1г/см*сек=1дин*сек/см2=100 сантипуазам (спз)

Кинематическая вязкость определяется отношением динамической вязкости ƞ к плотности жидкости p. Размерность кинематической вязкости L2T-1, ее единицей в системе СГС служит стокс (ст) = 1 см2/сек=100 сантистоксам (сст).

Текучесть φ является величиной, обратной динамической вязкости. Последняя для жидкостей уменьшается с понижением температуры приблизительно по закону φ=А+В/Т, где А и В являются характеристическими постоянными, а Т обозначает абсолютную температуру. Величины А и В для большого количества жидкостей были даны Бэррером. 

Таблица вязкость воды

Данные Бингхема и Джексона, выверенные по национальному стандарту в США и Великобритании на 1 июля 1953 года,  ƞ при 200С=1,0019 сантипуаза.

Температура, 0С

Ƞ, спз

Температура, 0С

Ƞ, спз

0

1,7865

50

0,5477

5

1,5138

60

0,4674

10

1,3037

70

0,4048

15

1,1369

80

0,3554

20

1,0019

90

0,3155

25

0,8909

100

0,2829

30

0,7982

125

0,220

40

0,6540

150

0,183

Таблица вязкость различных жидкостей Ƞ, спз

Жидкость

00С

100С

200С

300С

400С

500С

600С

700С

1000С

Анилин

6,53

4,39

3,18

2,40

1,91

1,56

1,29

0,76

Ацетон

0,397

0,358

0,324

0,295

0,272

0,251

Бензол

0,757

0,647

0,560

0,491

0,436

0,389

0,350

Бромбензол

1,556

1,325

1,148

1,007

0,889

0,792

0,718

0,654

0,514

Кислота муравьиная

2,241

1,779

1,456

1,215

1,033

0,889

0,778

0,547

Кислота серная

56

49

27

20

14,5

11,0

8,2

6,2

Кислота уксусная

1,219

1,037

0,902

0,794

0,703

0,629

0,464

Масло касторовое

2420

986

451

231

125

74

43

16,9

Масло прованское

138

84

52

36

24,5

17

12,4

Н-Октан

0,710

0,618

0,545

0,485

0,436

0,394

0,358

0,326

0,255

Н-Пентан

0,278

0,254

0,234

0,215

0,198

0,184

0,172

0,161

0,130

Ртуть

1,681

1,661

1,552

1,499

1,450

1,407

1,367

1,327

1,232

Сероуглерод

0,436

0,404

0,375

0,351

0,329

Спирт метиловый

0,814

0,688

0,594

0,518

0,456

0,402

0,356

Спирт этиловый

1,767

1,447

1,197

1,000

0,830

0,700

0,594

0,502

Толуол

0,771

0,668

0,585

0,519

0,464

0,418

0,379

0,345

0,268

Углекислота (жидкая)

0,099

0,085

0,071

0,053

Углерод четыреххлористый

1,348

1,135

0,972

0,845

0,744

0,660

0,591

0,533

0,400

Хлороформ

0,704

0,631

0,569

0,518

0,473

0,434

0,399

Этилацетат

0,581

0,510

0,454

0,406

0,366

0,332

0,304

0,278

Этилформиат

0,508

0,453

0,408

0,368

0,335

0,307

Эфир этиловый

0,294

0,267

0,242

0,219

0,199

0,183

0,168

0,154

0,119

Относительная вязкость некоторых водных растворов (таблица)


Концентрация растворов предполагается нормальным, который содержит в 1л один грамм-эквивалент растворенного вещества. Вязкости даны по отношению к вязкости воды при той же температуре.

Вещество

Температура, °С

Относительная вязкость

Вещество

Температура, °С

Относительная вязкость

Аммиак

25

1,02

Кальций хлористый

20

1,31

Аммоний хлористый

17,6

0,98

Кислота серная

25

1,09

Калий йодистый

17,6

0,91

Кислота соляная

15

1,07

Калий хлористый

17,6

0,98

Натр едкий

25

1,24

Таблица вязкость водных растворов глицерина

Удельный вес 25°/25°С

Весовой процент глицерина

Т1 спз

 

200С

250С

300С

1,26201

100

1495,0

942,0

622,0

1,25945

99

1194,0

772,0

509,0

1,25685

98

971,0

627,0

423,0

1,25425

97

802,0

521,5

353,0

1,25165

96

659,0

434,0

295,8

1,24910

95

543,5

365,0

248,0

1,20925

80

61,8

45,72

34,81

1,12720

50

6,032

5,024

4,233

1,06115

25

2,089

1,805

1,586

1,02370

10

1,307

1,149

1,021

Вязкость жидкостей при высоких давлениях по Бриджмену

Таблица относительная вязкость воды при высоких давлениях

Давление кгс/см3

0°С

10,3°С

30°С

75°С

1

1,000

0,779

0,488

0,222

1000

0,921

0,743

0,514

0,239

2000

0,957

0,754

0,550

0,258

4000

1,11

0,842

0,658

0,302

6000

1,35

0,981

0,786

0,367

8000

1,15

0,923

0,445

10000

1,06

Таблица относительная вязкость различных жидкостей при высоких давлениях

Ƞ=1 при 30°С и давление 1 кгс/см2

Жидкость

Температура, °С

Давление кгс/см2

 

1000

4000

8000

12000

Ацетон

30

1,68

4,03

9,70

75

1,30

2,79

5,78

10,7

Н-Пентан

30

2,07

7,03

22,9

70,2

75

1,46

4,74

13,2

31,1

Сероуглерод

30

1,45

3,23

6,92

15,5

75

1,12

2,35

4,69

8,83

Спирт метиловый

30

1,47

2,96

5,62

9,95

75

0,857

1,61

2,80

4,52

Спирт этиловый

30

1,59

4,14

10,5

24,5

75

0,747

1,95

4,30

8,28

Эфир этиловый

30

2,11

6,20

18,2

46,8

75

1,41

3,99

9,69

20,5

Вязкость твердых тел (ПЗ)

Твердые тела

Вязкость

Венецианский скипидар при 17,3° 

1300

Смола при 0°

51*1010  при 15°; 1,3*1010

Лед (глетчерный)

12*1013

Вар сапожный при 8°

4,7*108

Натронное стекло при 575°

11*1012

Патока светлая (Лайл) при 12°

1400

Таблица вязкость газов и паров

Динамическая вязкость газов обычно выражается в микропуазах (мкпз). Согласно кинетической теории вязкость газов должна не зависеть от давления и изменяться пропорционально квадратному корню из абсолютной температуры. Первый вывод оказывается в общем правильным, исключением являются очень низкие и очень высокие давления; второй вывод требует некоторых поправок. Для изменения ƞ в зависимости от абсолютной температуры Т наиболее часто применяется формула: 

Газ или пар

00С

200С

500С

1000С

1500С

2000С

2500С

3000С

Постоянная Сёзерлэнда, С

Азот

166

174

188

208

229

246

263

280

104

Аргон

212

222

242

271

296

321

344

367

142

Бензол

70

75

81

94

108

120

Водород

84

88

93

103

113

121

130

139

72

Воздух

171

181

195

218

239

258

277

295

117

Гелий

186

194

208

229

250

270

290

307

Закись азота

137

146

160

183

204

225

246

265

260

Кислород

192

200

218

244

268

290

310

330

125

Метан

103

109

119

135

148

161

174

186

164

Неон

298

310

329

365

396

425

453

56

Пары воды

128

147

166

184

201

650

Сернистый газ

117

126

140

163

186

207

227

246

306

Спирт этиловый

109

120

136

152

Углекислота

138

146

163

186

207

229

249

267

240

Углерода окись

166

177

189

210

229

246

264

279

102

Хлор

123

132

145

169

189

210

230

250

350

Хлороформ

94

102

112

129

146

160

Этилен

97

103

112

128

141

154

166

179

226

Таблица вязкость некоторых газов при высоких давлениях (мкпз)

Газ

Температура, 0С

Давление в атмосферах

 

50

100

300

600

900

Азот

25

187

199

266

387

495

Азот

50

197

208

267

370

470

Азот

75

207

217

268

361

442

Углекислота

40

181

483

Этилен

40

134

288



лабораторная работа 204

Лабораторная    работа № 204

ОПРЕДЕЛЕНИЕ ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА

Цель работы: изучить метод Стокса, определить коэффициент динамической вязкости глицерина.

Приборы и принадлежности:

стеклянный цилиндрический сосуд с глицерином,

измерительный микроскоп,

измерительная линейка,

секундомер,

шарики.

 

1. ВЯЗКОСТЬ ЖИДКОСТИ. ЗАКОН СТОКСА

 

В жидкостях и газах при перемещении одних слоев относительно других возникают силы внутреннего трения, или вязкости, которые определяются законом Ньютона:

                                                                                            (1)

где h — коэффициент внутреннего трения, или коэффициент динамической вязкости, или просто вязкость; модуль градиента скорости, равный изменению скорости слоев жидкости на единицу длины в направлении нормали (в нашем случае вдоль оси y) к поверхности S  соприкасающихся слоев (рис. 1).

 

 

 

 

 

 

Рис. 1.

Согласно уравнению (1) коэффициент вязкости h в СИ измеряется в Па×с или в кг/(м×с).

Механизм внутреннего трения в жидкостях и газах неодинаков, т.к. в них различен характер теплового движения молекул. Подробное изложение вязкости жидкости рассмотрено в работе № 203, вязкости газов – в работе № 205.

Вязкость жидкости обусловлена молекулярным взаимодействием, ограничивающим движение молекул. Каждая молекула жидкости находится в потенциальной яме, создаваемой соседними молекулами. Поэтому молекулы жидкости совершают колебательные движения около положения равновесия, то есть внутри потенциальной ямы. Глубина потенциальной ямы незначительно превышает среднюю кинетическую энергию, поэтому, получив дополнительную энергию при столкновении с другими молекулами, она может перескочить в новое положение равновесия. Энергия, которую должна получить молекула, чтобы из одного положения перейти в другое, называется энергией активации W, а время нахождения молекулы в положении равновесия – временем «оседлой жизни» t. Перескок молекул между соседними положениями равновесия является случайным процессом. Вероятность того, что такой перескок произойдет за время одного периода t0, в соответствии с законом Больцмана, составляет

                                                                                   (2)

Величина, обратная вероятности перехода молекулы  определяет среднее число колебаний, которое должна совершить молекула, чтобы покинуть положение равновесия. Среднее время «оседлой жизни» молекулы . Тогда

                                                                              (3)

где k – постоянная Больцмана; средний период колебаний молекулы около положения равновесия.

Коэффициент динамической вязкости зависит от : чем реже молекулы меняют положение равновесия, тем больше вязкость. Используя модель скачков молекул, советский физик Я.И.Френкель показал, что вязкость изменяется по экспоненциальному закону:

                                                                                      (4)

где А – константа, определяемая свойствами жидкости.

Формула (4) является приближенной, но она достаточно хорошо описывает вязкость жидкости, например, воды в интервале температур от 5 до 100 °С, глицерина – от 0 до 200 °С.

Из формулы (4) видно, что с уменьшением температуры вязкость жидкости возрастает. В ряде случаев она становится настолько большой, что жидкость затвердевает без образования кристаллической решетки. В этом заключается механизм образования аморфных тел.

При малых скоростях движения тела в жидкости слой жидкости, непосредственно прилегающий к телу, прилипает к нему и движется со скоростью тела. По мере удаления от поверхности тела скорость слоев жидкости будет уменьшаться, но они будут двигаться параллельно. Такое слоистое движение жидкости называется ламинарным. При больших скоростях движения жидкости ламинарное движение жидкости становится неустойчивым и сменяется турбулентным, при котором частицы жидкости движутся по сложным траекториям со скоростями, изменяющимися беспорядочным образом. В результате происходит перемешивание жидкости и образуются вихри.

Характер движения жидкости определяется безразмерной величиной Re, называемой числом Рейнольдса. Это число зависит от формы тела и свойств жидкости. При движении шарика радиусом R со скоростью U в жидкости плотностью rж

                                                                                          (5)

При малых Re (<10), когда шарик радиусом 1-2 мм движется со скоростью 5-10 см/c в вязкой жидкости, например в глицерине, движение жидкости будет ламинарным. В этом случае на тело будет действовать сила сопротивления, пропорциональная скорости

                                                                                                  (6)

где r – коэффициент сопротивления. Для тела сферической формы

                                                    

Сила сопротивления шарика радиусом R примет вид:

                                                                                          (7)

Формула (7) называется законом Стокса.

 

2. ОПИСАНИЕ РАБОЧЕЙ УСТАНОВКИ И МЕТОДА

ИЗМЕРЕНИЙ

Одним из существующих методов определения коэффициента динамической вязкости является метод Стокса. Суть метода заключается в следующем. Если в сосуд с жидкостью бросить шарик плотностью большей, чем плотность жидкости (r >rж), то он будет падать (рис. 2). На движущийся в жидкости шарик действует сила внутреннего трения (сила сопротивления) , тормозящая его движение и направленная вверх. Если считать, что стенки сосуда находятся на значительном расстоянии от движущегося шарика, то величину силы внутреннего трения можно определить по закону Стокса (6).

 

 

 

 

 

 

 

 

 

 

 

Рис. 2.

 

Кроме того, на падающий шарик действует сила тяжести, направленная вниз  и выталкивающая сила , направленная вверх. Запишем уравнение движения шарика в проекциях на направление движения:

                                                                                (8)

Решение уравнения (8) описывает характер движения шарика на всех участках падения. В начале движения скорость шарика U мала и силой Fc можно пренебречь, т.е. на начальном этапе шарик движется с ускорением

                                               

По мере увеличения скорости возрастает сила сопротивления и ускорение уменьшается. При большом времени движения сила сопротивления уравновешивается равнодействующей сил  и , и шарик будет двигаться равномерно с установившейся скоростью. Уравнение движения (8) в этом случае примет вид

                                                                                        (9)

Сила тяжести равна

                                                                      (10)

где r — плотность вещества шарика.

Выталкивающая сила определяется по закону Архимеда:

                                                             (11)

Подставив (10), (11) и (7) в уравнение (9), получим

                                

Отсюда находим

                                             (12)

Установка представляет собой широкий стеклянный цилиндрический сосуд 1, наполненный исследуемой жидкостью (рис. 3). На сосуд надеты два резиновых кольца 2, расположенных друг от друга на расстоянии l. Если время движения шарика 3 между кольцами t, то скорость шарика при равномерном движении

                                               

и формула (12) для определения коэффициента динамической вязкости запишется:

                                                                            (13)     

При этом верхнее кольцо должно располагаться ниже уровня жидкости в сосуде, т.к. только на некоторой глубине силы, действующие на шарик, уравновешивают друг друга, шарик движется равномерно и формула (13) становится справедливой.

В сосуд через отверстие 4 опускают поочередно пять небольших шариков 3, плотность которых r больше плотности исследуемой жидкости rж.

В опыте измеряют диаметры шариков, расстояние между кольцами и время движения каждого шарика на этом участке.

3. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ И ОБРАБОТКА

РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

1.      Измерить диаметр шарика D с помощью микроскопа.

  1. С помощью линейки измерить расстояние l между кольцами.

3.      Через отверстие 4  в крышке сосуда опустить шарик.

4.      В момент прохождения шариком верхнего кольца включить секундомер и измерить время t прохождения шариком расстояния l между кольцами.

5.      Опыт повторить с пятью шариками. Шарики имеют одинаковый диаметр и двигаются в жидкости примерно с одинаковой скоростью. Поэтому время прохождения шариками одного и того же расстояния l можно усреднить и, выразив радиус шариков через их диаметр , формула (13) примет вид:

                                                                   (14)

где среднее арифметическое значение времени.

6.      По формуле (14) определить значение . Плотность исследуемой жидкости (глицерина) rж = 1,26×103кг/м3, плотность материала шарика (свинца) r = 11,34×103кг/м3.

7.      Методом расчета погрешностей косвенных измерений находят относительную Е и абсолютную Dh погрешность результата:

,    ,

где — абсолютные погрешности табличных величин r, rж и g; — абсолютные погрешности прямых однократных измерений  диаметра шарика D и расстояния l; абсолютная погрешность прямых многократных измерений времени.

8.   Данные результатов измерений и вычислений занесите в таблицу.

Таблица результатов

п/п

D

l

t

r

rж

g

Е

м

м

c

c

кг/м3

кг/м3

м/c2

Па×с

Па×с

%

 

 

 

 

 

 

 

 

 

 

 

 

 

Сравните полученный результат с табличным значением коэффициента динамической вязкости глицерина при соответствующей температуре. Температуру воздуха (а соответственно и глицерина) посмотрите на термометре, находящемся в лаборатории.

 

Коэффициенты динамической вязкости глицерина

при различных температурах

t, °C

18

19

20

21

22

23

24

25

26

27

h,Па×с

1,74

1,62

1,48

1,35

1,23

1,124

1,024

0,934

0,85

0,78

4. ВОПРОСЫ ДЛЯ ДОПУСКА К РАБОТЕ

  1. Сформулируйте цель работы.

2.      Запишите формулу Ньютона для силы внутреннего трения и поясните величины, входящие в эту формулу.

3.      Опишите рабочую установку и порядок выполнения работы.

4.      Какие силы действуют на шарик, падающий в жидкости?

5.      Запишите рабочую формулу и поясните ее.

5. ВОПРОСЫ ДЛЯ ЗАЩИТЫ РАБОТЫ

1.      Объясните молекулярно-кинетический механизм внутреннего трения (вязкости) жидкости.

2.      Дайте понятие энергии активации.

3.      Как зависит вязкость жидкости от температуры?

4.      При каких условиях движение жидкости будет ламинарным?

5.      Запишите уравнение движения шарика в глицерине и выведите рабочую формулу.

6.      Можно ли верхнее кольцо располагать на уровне поверхности жидкости в сосуде?

7.      Получите формулу для расчета относительной погрешности Е.

 

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВНУТРЕННЕГО ТРЕНИЯ ЖИДКОСТИ ПО МЕТОДУ СТОКСА

Цель работы: познакомиться с одним из методов определения вязкости и измерить коэффициент вязкости касторового масла и глицерина.

Приборы и принадлежности: стеклянный цилиндр, наполненный одной из исследуемых жидкостей, секундомер, измерительная линейка, микрометр, набор шариков из свинца и железа.

ВВЕДЕНИЕ

Во всех реальных жидкостях при перемещении одних слоев относительно других возникают силы трения. Эти силы трения называют силами внутреннего трения. Они всегда направлены по касательной к поверхности слоев. Ньютон показал, что сила внутреннего трения — F пропорциональна величине поверхности — S соприкасающихся слоев и градиенту скорости – т.е.

(1)

где η — коэффициент пропорциональности, называемый коэффициентом вязкости или коэффициентом внутреннего трения; S — площадь соприкасающихся слоев;

изменение скорости в направлении, перпендикулярном к направлению, в котором отсчитывается расстояние между слоями. Эту величину называют градиентом скорости. Она показывает как быстро меняется скорость при переходе от слоя к слою.

dZ- расстояние между соприкасающимися слоями, текущими со скоростями: V и V+dV.

Рисунок 1.

Единицей измерения коэффициента вязкости в системе СИ служит паскаль в секунду, сокращенное обозначение – Па∙с.

Это вязкость такой жидкости, в которой между соприкасающимися слоями площадью 1м возникает сила трения в 1H, если в направлении, перпендикулярном скорости движения слоев в жидкости, их скорость изменяется на 1 м/с на каждый метр.

При малых скоростях и удобообтекаемой форме тела не возникает вихрей. В этом случае сила сопротивления пропорциональна линейным размерам тела, скорости его движения и коэффициенту трения жидкости. Этот закон впервые был получен Стоксом и в случае движения шара в вязкой жидкости имеет вид:

(2)

Здесь r радиус шара, V- его скорость.

Уравнение (2) может быть использовано для определения коэффициента вязкости жидкости, если измерить экспериментально силу трения и скорость тела. При движении шара в жидкости, на него действуют три силы:

Р — сила тяжести, FA — Архимедова сила, F — сила вязкости.

Они показаны на рис.2.

Если тело движется равномерно, то в соответствии с первым законом Ньютона, действие всех сил скомпенсировано, т.е.

(3)

Подставим в уравнение (3) значение всех сил, выраженных через параметры тела, движущегося в жидкости.

Известно, что .

Здесь m — масса шарика, g — ускорение силы тяжести.

Зная плотность материала шарика — ρш и объем шарика — где r — радиус шарика, получим

(4)

Сила Архимеда равна весу жидкости в объеме погруженного тела, т.е.

(5)

Получим (6.)

Решим это уравнение относительно η

(7)

А так как шарик движется равномерно, то (8)

здесь l — путь, пройденный шариком, t время падения шарика.

Подставив уравнение (8) в уравнение (7), окончательно получим:

(9)

Таким образом, коэффициент вязкости жидкости может быть определен по уравнении (9), если измерить радиус шара, длину пути, время падения шарика, знать плотность материала шара и плотность жидкости, в которой он движется и вязкость которой необходимо определить.

ОПИСАНИЕ УСТАНОВКИ

Прибор представляет собой (рис. 2) стеклянный цилиндр диаметром 3-5 см и высотой 50-100см. Цилиндр устанавливают вертикально и заполняют исследуемой жидкостью. На цилиндре имеются две горизонтальные отметки, между которыми шар в исследуемой жидкости движется равномерно. Шары, за движением которых наблюдают в процессе работы, должны быть полированными и малого радиуса, порядка 1-2 мм. Диаметр шариков измеряется с помощью микрометра, а расстояние между отметками на цилиндре l — с помощью линейки.

Рисунок 2.

Порядок выполнения работы:

1. Измерьте расстояние l между горизонтальными отметками на цилиндре.

2. Измерьте радиусы шариков, за движением которых вы будете наблюдать.

3. Опустите по очереди в жидкость шарики, измерьте время движения каждого шарика в цилиндре между горизонтальными отметками.

4. Все результаты занесите в таблицу.

5. Вычислите вязкость исследуемой жидкости по уравнению (9).

6. Найдите относительную и абсолютную ошибки измерения.

Таблица 1.Определение коэффициента вязкости жидкостей по методу Стокса

Жидкость № п/п l, м ∆l, м r, мм ∆r,мм t, с ∆t, с ρ, кг/м3 ∆ρ, кг/м3 g, м/с η, Па·с ∆η,Пас ∆εη,%
Касторовое масло                          
                         
                         
среднее знач.                          
Глицерин                          
                         
                         
среднее знач.                          

 

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Что называется коэффициентом внутреннего трения?

2. Какова единица измерения коэффициента вязкости в системе СИ?

3. В чем сущность метода Стокса определения коэффициента вязкости?

4. Влияет ли температура жидкости на коэффициент вязкости?

5. Зависит ли от размера шарика коэффициент вязкости жидкости?


ЛАБОРАТОРНАЯ РАБОТА №6

В каких единицах измеряется вязкость масла


что означают цифры, таблица вязкости по температуре, кинематическая вязкость

Выбор моторного масла – серьезная задача для каждого автолюбителя. И главный параметр, по которому должен осуществляться подбор — это вязкость масла. Вязкость масла характеризует степень густоты моторной жидкости и ее способность сохранять свои свойства при температурных перепадах.

Попробуем разобраться, в каких единицах должна измеряться вязкость, какие функции она выполняет и почему она играет огромную роль в работе всей двигательной системы.

Для чего используется масло?

Работа двигателя внутреннего сгорания предполагает непрерывное взаимодействие его конструктивных элементов. Представим на секунду, что мотор работает «на сухую». Что с ним произойдет? Во-первых, сила трения повысит температуру внутри устройства. Во-вторых, произойдет деформация и износ деталей. И, наконец, все это приведет к полной остановке ДВС и невозможности его дальнейшего использования.  Правильно подобранное моторное масло выполняет следующие функции:

Работа моторного масла

  • защищает мотор от перегрева,
  • предотвращает быстрый износ механизмов,
  • препятствует образованию коррозии,
  • выводит нагар, сажу и продукты сгорания топлива за пределы двигательной системы,
  • способствует увеличению ресурса силового агрегата.

Таким образом, нормальное функционирование моторного отдела без смазывающей жидкости невозможно.

Важно! Заливать в мотор транспортного средства нужно только то масло, вязкость которого соответствует требованиям автопроизводителей. В этом случае коэффициент полезного действия будет максимальным, а износ рабочих узлов – минимальным. Доверять мнениям продавцов-консультантов, друзей и специалистов автосервисов, если они расходятся с инструкцией к автомобилю, не стоит. Ведь только производитель может знать наверняка, чем стоит заправлять мотор.

Индекс вязкости масла

Понятие вязкости масел подразумевает способность жидкости к тягучести. Определяется она с помощью индекса вязкости. Индекс вязкости масла – это величина, показывающая степень тягучести масляной жидкости при температурных изменениях. Смазки, имеющих высокую степень вязкости, обладают следующими свойствами:

Вязкость масла

  • при холодном запуске двигателя защитная пленка имеет сильную текучесть, что обеспечивает быстрое и равномерное распределение смазки по всей рабочей поверхности;
  • нагрев двигателя вызывает увеличение вязкости пленки. Такое свойство позволяет удерживать защитную пленку на поверхностях движущихся деталей.

Т.е. масла с высоким значением индекса вязкости легко адаптируются под температурные перегрузки, в то время как низкий индекс вязкости моторного масла свидетельствует о меньших способностях. Такие вещества имеют более жидкое состояние и образуют на деталях тонкую защитную пленку. В условиях отрицательных температур моторная жидкость с низким индексом вязкости затруднит пуск силового агрегата, а при высокотемпературных режимах не сможет предотвратить большую силу трения.

Расчет индекса вязкости осуществляется по ГОСТу 25371-82. Рассчитать его можно с помощью онлайн-сервисов сети Интернет.

Кинематическая и динамическая вязкости

Степень тягучести моторного материала определяется двумя показателями — кинематической и динамической вязкостями.

Моторное масло

Кинематическая вязкость масла — показатель, отображающий его текучесть при нормальных (+40 градусов Цельсия) и высоких (+100 градусов Цельсия) температурах. Методика измерения данной величины основывается на использовании капиллярного вискозиметра. При помощи прибора измеряется время, требуемое для истечения масляной жидкостипри заданных температурах. Измеряется кинематическая вязкость в мм2/с.

Динамическая вязкость масла также вычисляется опытным путем. Она показывает силу сопротивления масляной жидкости, возникающий во время движения двух слоев масла, удаленных друг от друга на расстоянии 1 сантиметра и движущихся со скоростью 1 см/с. Единицы измерения данной величины — Паскаль-секунды.

Определение вязкости масла должно проходить в разных температурных условиях, т.к. жидкость не стабильна и изменяет свои свойства при низких и высоких температурах.

Таблица вязкости моторных масел по температуре представлена ниже.

Таблица вязкости моторных масел по температуре

Расшифровка обозначения моторного масла

Как отмечалось ранее, вязкость — это основной параметр защитной жидкости, характеризующий ее способность обеспечивать работоспособность автомобиля в различных климатических условиях.

Согласно международной системе классификации SAE, моторные смазки могут быть трех видов: зимние, летние и всесезонные.

Схема изучения этикетки автомасла

Масло, предназначенное для зимнего использования, маркируется цифрой и буквой W, например, 5W, 10W, 15W. Первый символ маркировки указывает на диапазон отрицательных рабочих температур. Буква W — от английского слова «Winter» — зима — информирует покупателя о возможности использования смазки в суровых низкотемпературных условиях. Она имеет большую текучесть, чем летний аналог, для того, чтобы обеспечить легкий запуск при низких температурах. Жидкая пленка мгновенно обволакивает холодные элементы и облегчает их прокрутку.

Предел отрицательных температур, при которых масло сохраняет работоспособность следующий: для 0W — (-40) градусов Цельсия, для 5W — (-35) градусов, для 10W — (-25) градусов, для 15W — (-35) градусов.

Летняя жидкость имеет высокую вязкость, позволяющую пленке крепче «держаться» на рабочих элементах. В условиях слишком высоких температур такое масло равномерно растекается по рабочей поверхности деталей и защищает их от сильного износа. Обозначается такое масло цифрами, например, 20,30,40 и т.д. Данная цифра характеризует высокотемпературный предел, в котором жидкость сохраняет свои свойства.

Важно! Что означают цифры? Цифры летнего параметра ни в коем случае не означают максимальную температуру, при которой возможна работа автомобиля. Они  — условные, и к градусной шкале отношения не имеют.

Масло с вязкостью 30 нормально функционирует при температуре окружающей среды до +30 градусов по Цельсию, 40 — до +45 градусов, 50 — до +50 градусов.

Распознать универсальное масло просто: его маркировка включает две цифры и букву W между ними, например, 5w30. Его использование подразумевает любые климатические условиях, будь то суровая зима или жаркое лето. В обоих случаях, масло будет подстраиваться под изменения и сохранять работоспособность всей двигательной системы.

Кстати, климатический диапазон универсального масла определяется просто. Например, для 5W30 он варьируются в пределах от минус 35 до +30 градусов Цельсия.

Всесезонные масла удобны в использовании, поэтому на прилавках автомагазинов они встречаются чаще летних и зимних вариантов.

Для того чтобы иметь более полное представление о том, какая вязкость моторного масла уместна в вашем регионе, ниже представлена таблица, показывающая диапазон рабочих температур для каждого типа смазывающей жидкости.

Усредненные диапазоны работоспособности масел

Стандарт API

Разобравшись, что означают цифры в вязкости масла перейдем к следующему стандарту. Классификация моторного масла по вязкости затрагивает также стандарт API. В зависимости от типа двигателя, обозначение API начинается с буквы S или C. S подразумевает бензиновые моторы, С — дизельные. Вторая буква классификации указывает на класс качества моторного масла. И чем дальше эта буква находится от начала алфавита, тем лучше качество защитной жидкости.

Для бензиновых двигательных систем существую следующие обозначения:

Стандарт API

  • SC –год выпуска до 1964 г.
  • SD –год выпуска с 1964 по 1968 гг.
  • SE –год выпуска с 1969 по 1972 гг.
  • SF –год выпуска с 1973 по 1988 гг.
  • SG –год выпуска с 1989 по 1994 гг.
  • SH –год выпуска с 1995 по 1996 гг.
  • SJ –год выпуска с 1997 по 2000 гг.
  • SL –год выпуска с 2001 по 2003 г.
  • SM –год выпуска после 2004 г.
  • SN –авто, оборудованные современной системой нейтрализации выхлопных газов.

Для дизельных:

  • CB –год выпуска до 1961 г.
  • CC –год выпускадо 1983 г.
  • CD –год выпускадо 1990 г.
  • CE –год выпускадо 1990 г., (турбированный мотор).
  • CF –год выпускас 1990 г., (турбированный мотор).
  • CG-4 –год выпускас 1994 г., (турбированный мотор).
  • CH-4 –год выпускас 1998 г.
  • CI-4 – современные авто (турбированный мотор).
  • CI-4 plus – значительно выше класс.

Что одному двигателю хорошо, то другому грозит ремонтом

Моторное масло

Многие автовладельцы уверены, что выбирать стоит более вязкие масла, ведь они — залог долговечной работы двигателя. Это серьезное заблуждение. Да, специалисты заливают под капоты гоночных болидов масло с большой степенью тягучести для достижения максимального ресурса силового агрегата. Но обычные легковые машины оборудованы другой системой, которая попросту захлебнется при чрезмерной густоте защитной пленки.

О том, какую вязкость масла допустимо использовать в двигателе той или иной машины, описано в любом руководстве по эксплуатации.

Ведь до запуска массовых продаж моделей, автопроизводители проводили большое количество тестов, учитывая возможные режимы езды и эксплуатацию технического средства в различных климатических условиях. Благодаря анализу поведения мотора и его способности поддерживать стабильную работу в тех или иных условиях, инженеры устанавливали допустимые параметры моторной смазки. Отклонение от них может спровоцировать снижение мощности двигательной системы, ее перегрев, увеличение расхода топлива и многое другое.

Моторное масло в двигателе

Почему класс вязкости так важен в работе механизмов? Представьте на минуту мотор изнутри: между цилиндрами и поршнем есть зазор, величина которого должна допускать возможное расширение деталей от высокотемпературных перепадов. Но для максимального коэффициента полезного действия этот зазор должен иметь минимальное значение, предотвращая попадание в двигательную систему выхлопных газов, образующихся во время горения топливной смеси. Для того, чтобы корпус поршня не нагревался от соприкосновения с цилиндрами, и используется моторная смазка.

Уровень вязкости масла должен обеспечивать работоспособность каждого элемента двигательной системы. Производители силовых агрегатов должны добиться оптимального соотношения минимального зазора между трущимися деталями и масляной пленой, предотвращая преждевременный износ элементов и повышая рабочий ресурс двигателя. Согласитесь, доверять официальным представителям автомобильной марки безопаснее, зная, каким путем эти знания были получены, чем верить «опытным» автомобилистам, полагающимся на интуицию.

Что происходит в момент запуска двигателя?

Если ваш «железный друг» простоял всю ночь на морозе, то наутро показатель вязкости залитого в него масла будет в несколько раз выше расчетной рабочей величины. Соответственно, толщина защитной пленки будет превышать зазоры между элементами. В момент запуска холодного мотора происходит падение его мощности и повышение температуры внутри него. Таким образом, возникает прогрев мотора.

Важно! Во время прогрева нельзя давать ему повышенную нагрузку. Слишком густой смазочный состав затруднит движение основных механизмов и приведет к сокращению срока эксплуатации автомобиля.

Вязкость моторного масла в рабочих температурах

После того, как двигатель прогрелся, активируется система охлаждения. Один цикл работы двигателя выглядит следующим образом:

  1. Нажим на педаль газа повышает обороты мотора и увеличивает нагрузку на него, в результате чего увеличивается сила трения деталей (т.к. слишком вяжущая жидкость еще не успела попасть в междетальные зазоры),
  2. температура масла повышается,
  3. степень его вязкости снижается (увеличивается текучесть),
  4. толщина масляного слоя уменьшается (просачивается в междетальные зазоры),
  5. сила трения снижается,
  6. температура масляной пленки снижается (частично с помощью охлаждающей системы).

По такому принципу работает любая двигательная система.

Вязкость моторных масел при температуре — 20 градусов

Зависимость вязкости масла от рабочей температуры очевидна. Так же, как очевидно то, что высокий уровень защиты мотора не должен снижаться в течение всего периода эксплуатации. Малейшее отклонение от нормы может привести к исчезновению моторной пленки, что в свою очередь негативно отразится на «беззащитной» детали.

Каждый двигатель внутреннего сгорания, хоть и имеет схожую конструкцию, но обладает уникальным набором потребительских свойств: мощностью, экономичностью, экологичностью и величиной крутящего момента. Объясняются эти различия разницей моторных зазоров и рабочих температур.

Для того, чтобы максимально точно подобрать масло для транспортного средства, были разработаны международные классификации моторных жидкостей.

Предусмотренная стандартом SAE классификация информирует автовладельцев об усредненном диапазоне рабочих температур. Более четкие представления о возможности использования смазочной жидкости в определенных автомобилях дают классификации API, ACEA и т.д.

Последствия заливки масла повышенной вязкости

Бывают случаи, когда автовладельцы, не знают, как определить требуемую вязкость моторного масла для своего автомобиля, и заливают то, которое советуют продавцы. Что случится, если тягучесть окажется выше требуемой?

Сравнение вязкости моторных масел

Если в хорошо прогретом двигателе «плещется» масло с завышенной тягучестью, то для мотора опасности не возникает (при нормальных оборотах). В этом случае, просто повысится температура внутри агрегата, что приведет к снижению вязкости смазки. Т.е. ситуация придет в норму. Но! Регулярное повторение данной схемы заметно снизит моторесурс.

Если резко «дать газу», вызвав увеличение оборотов, степень вязкости жидкости не будет соответствовать температуре. Это приведет к превышению максимально допустимой температуры в моторном отсеке. Перегрев вызовет повышение силы трения и снижение износостойкости деталей. Кстати, само масло также потеряет свои свойства за достаточно короткий промежуток времени.

О том, что вязкость масла не подошла транспортному средству, моментально узнать вы не сможете.

Первые «симптомы» появятся лишь через 100-150 тысяч км пробега. И главным показателем станет увеличение зазоров между деталями. Однако, определенно связать завышенную вязкость и быстрое снижение ресурса мотора не смогут даже опытные специалисты. Именно по этой причине официальные автомастерские зачастую пренебрегают требованиями производителей транспортных средств. К тому же им выгодно производить ремонт силовых агрегатов автомобилей, у которых уже закончился срок гарантийного обслуживания. Вот почему выбор степени вязкости масла — сложная задача для каждого автолюбителя.

Слишком низкая вязкость: опасна ли она?

Моторное масло

Погубить бензиновые и дизельные двигатели может низкая степень вязкости. Этот факт объясняется тем, что при повышенных рабочих температурах и нагрузках на мотор текучесть обволакивающей пленки повышается, в результате чего не без того жидкая защита попросту «обнажает» детали. Результат: повышение силы трения, увеличение расхода ГСМ, деформация механизмов. Долгая эксплуатация автомобиля с залитой низковязкостной жидкостью невозможна — его заклинит практически сразу.

Некоторые современные модели моторов предполагают использование так называемых «энергосберегающих» масел, имеющих пониженную вязкость. Но использовать их можно только если имеются специальные допуски автопроизводителей: ACEA A1, B1 и ACEA A5, B5.

Стабилизаторы густоты масла

Из-за постоянных температурных перегрузок вязкость масла постепенно начинает уменьшается. И помочь восстановить ее могут специальные стабилизаторы. Их допустимо использовать в двигателях любого типа, износ которых достиг среднего или высокого уровня.

Стабилизаторы позволяют:

Стабилизаторы

  • увеличивать вязкость защитной пленки,
  • снижать количество нагара и отложений на цилиндрах мотора,
  • сокращать выброс вредных веществ в атмосферу,
  • восстанавливать защитный масляный слой,
  • достигать «бесшумности» в работе двигателя,
  • предотвращать процессы окисления внутри корпуса мотора.

Использование стабилизаторов позволяет не только увеличить срок между «масляными» заменами, но и восстановить утраченные полезные свойства защитного слоя.

Разновидности специальных смазок, применяемых на производствах

Смазка веретенного машинного вида обладает низковязкостными свойствами. Использование такой защиты рационально на моторах, имеющих слабую нагрузку и работающих на больших скоростях. Чаще всего, применяется такая смазка в текстильном производстве.

Турбинная смазка. Ее главная особенность заключается защите всех работающих механизмов от окисления и преждевременного износа. Оптимальная вязкость турбинного масла позволяет использовать его в турбокомпрессорных приводах, газовых, паровых и гидравлических турбинах.

Гидравлический насос

ВМГЗ или всесезонное гидравлическое загущенное масло. Такая жидкость идеально подходит для техники, используемой в районах Сибири, Крайнего Севера и Дальнего Востока. Предназначено такое масло двигателям внутреннего сгорания, оборудованным гидравлическими приводами. ВМГЗ не подразделяется на летние и зимние масла, потому что его применение подразумевает только низкотемпературный климат.

В качестве сырья для гидромасла выступают маловязкие компоненты, содержащие минеральную основу. Для того, чтобы масло достигло нужной консистенции, в него добавляют специальные присадки.

Вязкость гидравлического масла представлена в таблице ниже.

Таблица вязкости гидравлических масел

ОйлРайт — еще одна смазка, применяемая для консервации и обработки механизмов. Она имеет водостойкую графитовую основу и сохраняет свои свойства в диапазоне температур от минус 20 градусов Цельсия до плюс 70 градусов Цельсия.

Выводы

Однозначного ответа на вопрос: «какая вязкость моторного масла самая хорошая?» нет и не может быть. Все дело в том, что нужная степень тягучести для каждого механизма — будь то ткацкий станок или мотор гоночного болида — своя, и определить ее «наобум» нельзя. Требуемые параметры смазывающих жидкостей вычисляются производителями опытным путем, поэтому при выборе жидкости для своего транспортного средства в первую очередь руководствуетесь указаниями разработчика. А уже после этого вы можете обратиться к таблице вязкости моторных масел по температуре.

Вязкость масла — PetroWiki

Абсолютная вязкость является мерой внутреннего сопротивления жидкости потоку. Для жидкостей вязкость соответствует неформальному понятию «толщина». Например, мед имеет более высокую вязкость, чем вода.

Для любых расчетов движения жидкостей требуется значение вязкости. Этот параметр необходим для условий от наземных систем сбора до резервуара. Можно ожидать, что корреляции для расчета вязкости позволят оценить вязкость в диапазоне температур от 35 до 300 ° F.

Ньютоновские жидкости

Жидкости, вязкость которых не зависит от скорости сдвига, описываются как ньютоновские жидкости. Корреляции вязкости, обсуждаемые на этой странице, применимы к ньютоновским жидкостям.

Факторы, влияющие на вязкость

Основными факторами, влияющими на вязкость, являются:

  • Состав масла
  • Температура
  • Растворенный газ
  • Давление

Состав масла

Обычно состав нефти описывается только плотностью API.Использование плотности в градусах API и характеристического фактора Ватсона обеспечивает более полное описание нефти. Таблица 1 показывает пример масла с плотностью 35 ° API, который указывает на взаимосвязь вязкости и химического состава, напоминая, что характеристический фактор 12,5 отражает высокопарафиновые масла, а значение 11,0 указывает на нафтеновое масло. Очевидно, что химический состав, помимо плотности в градусах API, играет роль в поведении вязкости сырой нефти. На рис. 1 показано влияние характеристического фактора сырой нефти на вязкость мертвой нефти. В целом характеристики вязкости предсказуемы. Вязкость увеличивается с уменьшением удельного веса по API сырой нефти (при условии постоянного характеристического коэффициента Уотсона) и с понижением температуры. Воздействие растворенного газа заключается в снижении вязкости. Выше давления насыщения вязкость увеличивается почти линейно с давлением. На рис. 2 представлена ​​типичная форма вязкости пластовой нефти при постоянной температуре.

  • Рис. 1 — Вязкость мертвого масла в зависимости от плотности в градусах API и характеристического коэффициента Ватсона.

  • Рис. 2 — Типичная кривая вязкости масла.

Расчет вязкости

Для расчетов вязкости живых пластовых масел требуется многоступенчатый процесс, включающий отдельные корреляции для каждого этапа процесса. Вязкость мертвой или безгазовой нефти определяется как функция плотности и температуры сырой нефти по API.Вязкость насыщенной газом нефти определяется как функция вязкости мертвой нефти и газового фактора раствора (ГФ). Вязкость ненасыщенной нефти определяется как функция вязкости газонасыщенной нефти и давления выше давления насыщения.

Фиг. 3 и 4 суммируют все корреляции вязкости мертвого масла, описанные в таблицах 2, и 3 . [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] ) [21] [22] [23] [24] [25] Результаты, предоставленные Рис.4 показывают, что метод, предложенный в Стандарте [23] , не подходит для сырой нефти с плотностью менее 28 ° API. Аль-Кафаджи и др. Метод [10] не подходит для нефти с плотностью менее 15 ° API, в то время как метод Беннисона [21] , разработанный в основном для нефти Северного моря с низкой плотностью API, не подходит для нефти с плотностью выше 30 ° API. .

  • Рис. 3 — Зависимость вязкости мертвого масла от температуры.

  • Фиг.4 — Вязкость мертвого масла в зависимости от плотности в градусах API.

Сравнение различных методов

На рис. 5 представлен аннотированный список наиболее часто используемых методов корреляции для расчета вязкости. Результаты иллюстрируют тенденцию изменения вязкости и температуры мертвого масла. При понижении температуры вязкость увеличивается. При температурах ниже 75 ° F метод Беггса и Робинсона [5] значительно переоценивает вязкость, в то время как метод Стэндинга фактически показывает уменьшение вязкости.Эти тенденции делают эти методы непригодными для использования в диапазоне температур, связанном с трубопроводами. Метод Била [3] [4] был разработан на основе наблюдений за вязкостью мертвого масла при 100 и 200 ° F и имеет тенденцию недооценивать вязкость при высокой температуре. Корреляции вязкости мертвой нефти несколько неточны, потому что они не учитывают химическую природу сырой нефти. Только методы, разработанные Стэндингом [23] и Фитцджеральдом [18] [19] [20] , учитывают химическую природу сырой нефти за счет использования характеристического фактора Ватсона.Метод Фитцджеральда был разработан для широкого диапазона условий, как подробно описано в таблицах 2, и 3 , и является наиболее универсальным методом, подходящим для общего использования корреляций, перечисленных в этой таблице. Глава 11 Справочника технических данных API — Переработка нефти [19] включает график, показывающий область применимости метода Фитцджеральда.

Метод Андраде [1] [2] основан на наблюдении, что логарифм вязкости в зависимости от обратной абсолютной температуры образует линейную зависимость от точки, немного превышающей нормальную точку кипения, до точки, близкой к точке замерзания масла, как показано на рис. 6 . Метод Андраде применяется посредством использования измеренных точек данных вязкости мертвого масла, полученных при низком давлении и двух или более температурах. Данные следует получать при температурах в интересующем диапазоне.Этот метод рекомендуется при наличии данных о вязкости мертвого масла.

Методы определения вязкости масла до точки пузыря

Таблицы 4 и 5 [5] [7] [8] [10] [11] [12] [13] [14] [15] [16] [17] [22] [23] [24] [25] [26] [27] [28] ) [29] предоставляют полное описание методов определения вязкости нефти до точки кипения.

Корреляции для вязкости масла при температуре кипения обычно принимают форму, предложенную Chew and Connally. [26] Этот метод формирует корреляцию с вязкостью мертвого масла и газовым фактором раствора, где A и B определяются как функции газового фактора раствора.

……………….. (1)

Фиг. 7 и 8 показаны корреляции для параметров A и B, разработанные разными авторами. Фиг.9 показывает влияние параметров корреляции A и B на прогноз вязкости. Этот график был разработан для вязкости мертвого масла 1,0 сП, чтобы можно было изучить влияние газового фактора раствора. Корреляции, предложенные Labedi, [7] [8] Khan et al. , [28] и Almehaideb [29] специально не используют вязкость мертвого масла и газовый фактор раствора и не были включены в этот график.

  • Фиг.7– Параметр корреляции вязкости при температуре пузыря A.

  • Рис. 8 — Параметр корреляции вязкости при температуре пузыря B.

  • Рис. 9 — Вязкость масла до точки пузыря в зависимости от газового фактора раствора.

Корреляция для недонасыщенного масла

Когда давление увеличивается выше точки кипения, масло становится недонасыщенным. В этой области вязкость масла увеличивается почти линейно с увеличением давления. Таблицы 6 и 7 [3] [4] [7] [8] [11] [12] [13] [14] [ 15] [16] [17] [19] [22] [25] [29] [30] [31] [32] [ 33] предоставляют корреляции для моделирования вязкости ненасыщенной нефти. Рис. 10 представляет собой визуальное сравнение методов.

Номенклатура

μ ob = Вязкость масла при температуре кипения, м / л, сП
мкм од = Вязкость мертвого масла, м / л, сП

Список литературы

  1. 1.0 1,1 Andrade, E.N. да C. 1930. Вязкость жидкостей. Природа 125: 309–310. http://dx.doi.org/10.1038/125309b0
  2. 2,0 2,1 Reid, R.C., Prausnitz, J.M., and Sherwood, T.K. 1977. Свойства газов и жидкостей, третье издание, 435–439. Нью-Йорк: Высшее образование Макгроу-Хилла.
  3. 3,0 3,1 3,2 Бил, К. 1970. Вязкость воздуха, воды, природного газа, сырой нефти и ее попутных газов при температурах и давлениях нефтяного месторождения, No.3, 114–127. Ричардсон, Техас: Серия репринтов (Оценка нефтегазовой собственности и оценка запасов), SPE. Ошибка цитирования: недопустимый тег ; имя «r3» определено несколько раз с разным содержанием Ошибка цитирования: недопустимый тег ; имя «r3» определено несколько раз с разным содержанием
  4. 4,0 4,1 4,2 Стоя, М. 1981. Объемное и фазовое поведение углеводородных систем нефтяных месторождений, девятое издание. Ричардсон, Техас: Общество инженеров-нефтяников AIME
  5. 5.0 5,1 5,2 Beggs, H.D. и Робинсон, Дж. Р. 1975. Оценка вязкости нефтяных систем. J Pet Technol 27 (9): 1140-1141. SPE-5434-PA. http://dx.doi.org/10.2118/5434-PA
  6. ↑ Glasø, Ø. 1980. Обобщенные корреляции давления, объема и температуры. J Pet Technol 32 (5): 785-795. SPE-8016-PA. http://dx.doi.org/10.2118/8016-PA
  7. 7,0 7,1 7,2 7,3 Лабеди Р. 1982. PVT-корреляции африканской сырой нефти.Кандидатская диссертация. 1982 г. Докторская диссертация, Колорадская горная школа, Ледвилл, Колорадо (май 1982 г.).
  8. 8,0 8,1 8,2 8,3 Лабеди, Р. 1992. Улучшенные корреляции для прогнозирования вязкости легкой нефти. J. Pet. Sci. Англ. 8 (3): 221-234. http://dx.doi.org/10.1016/0920-4105(92)
  9. -Y
  10. ↑ Нг, J.T.H. и Эгбогах, Э. 1983. Улучшенная корреляция вязкости и температуры для сырой нефти. Представлено на ежегодном техническом совещании, Банф, Канада, 10–13 мая.PETSOC-83-34-32. http://dx.doi.org/10.2118/83-34-32
  11. 10,0 10,1 10,2 Аль-Хафаджи, А.Х., Абдул-Маджид, Г.Х. и Хассун, С.Ф. 1987. Корреляция вязкости для мертвой, живой и ненасыщенной сырой нефти. J. Pet. Res. (Декабрь): 1–16.
  12. 11,0 11,1 11,2 Петроски Г. Jr. 1990. PVT-корреляции для сырой нефти Мексиканского залива. Магистерская диссертация. 1990 г. Докторская диссертация, Университет Юго-Западной Луизианы, Лафайет, Луизиана.
  13. 12,0 12,1 12,2 Петроски Г. Младший и Фаршад, Ф.Ф. 1995. Корреляции вязкости для сырой нефти Мексиканского залива. Представлено на симпозиуме SPE по производственным операциям, Оклахома-Сити, Оклахома, США, 2-4 апреля. SPE-29468-MS. http://dx.doi.org/10.2118/29468-MS
  14. 13,0 13,1 13,2 Kartoatmodjo, R.S.T. 1990. Новые соотношения для оценки свойств жидких углеводородов. Диссертация на степень магистра, Университет Талсы, Талса, Оклахома.
  15. 14,0 14,1 14,2 Kartoatmodjo, T.R.S. и Шмидт, З. 1991. Новые корреляции физических свойств сырой нефти, Общество инженеров-нефтяников, незапрошенная статья 23556-MS.
  16. 15,0 15,1 15,2 Картоатмоджо, Т. и З., С. 1994. Большой банк данных улучшает грубые корреляции физических свойств. Oil Gas J. 92 (27): 51–55.
  17. 16,0 16,1 16,2 Де Гетто, Г.и Вилла, М. 1994. Анализ надежности корреляций PVT. Представлено на Европейской нефтяной конференции, Лондон, Великобритания, 25-27 октября. SPE-28904-MS. http://dx.doi.org/10.2118/28904-MS
  18. 17,0 17,1 17,2 Де Гетто, Г., Паоне, Ф. и Вилла, М., 1995. Корреляция давления-объема-температуры для тяжелых и сверхтяжелых масел. Представлено на Международном симпозиуме по тяжелой нефти SPE, Калгари, 19-21 июня. SPE-30316-MS. http://dx.doi.org/10.2118/30316-MS
  19. 18,0 18,1 Фитцджеральд, Д.Дж. 1994. Метод прогнозирования для оценки вязкости неопределенных углеводородных жидких смесей. Докторская диссертация, Государственный университет Пенсильвании, Государственный колледж, Пенсильвания.
  20. 19,0 19,1 19,2 19,3 Daubert, T.E. и Даннер, Р. П. 1997. Книга технических данных API — Переработка нефти, 6-е издание, гл. 11. Вашингтон, округ Колумбия: Американский институт нефти (API).
  21. 20.0 20,1 Саттон, Р.П. и Фаршад, Ф. 1990. Оценка эмпирически полученных свойств PVT для сырой нефти Мексиканского залива. SPE Res Eng 5 (1): 79-86. SPE-13172-PA. http://dx.doi.org/10.2118/13172-PA
  22. 21,0 21,1 Беннисон Т. 1998. Прогноз вязкости тяжелой нефти. Представлено на конференции IBC по разработке месторождений тяжелой нефти, Лондон, 2–4 декабря.
  23. 22,0 22,1 22,2 Эльшаркави, А. и Алихан А.A. 1999. Модели для прогнозирования вязкости ближневосточной сырой нефти. Топливо 78 (8): 891–903. http://dx.doi.org/10.1016/S0016-2361(99)00019-8
  24. 23,0 23,1 23,2 23,3 Whitson, C.H. и Брюле, М.Р. 2000. Фазовое поведение, № 20, гл. 3. Ричардсон, Техас: Серия монографий Генри Л. Доэрти, Общество инженеров-нефтяников.
  25. 24,0 24,1 Бергман Д.Ф. 2004. Не забывайте вязкость. Представлено на 2-м ежегодном симпозиуме по разработке месторождений Совета по передаче нефтяных технологий, Лафайет, Луизиана, 28 июля.
  26. 25,0 25,1 25,2 Диндорук Б. и Кристман П.Г. 2001. PVT-свойства и корреляции вязкости нефтей Мексиканского залива. Представлено на Ежегодной технической конференции и выставке SPE, Новый Орлеан, 30 сентября — 3 октября. SPE-71633-MS. http://dx.doi.org/10.2118/71633-MS
  27. 26,0 26,1 Chew, J. and Connally, C.A. Jr. 1959. Корреляция вязкости для газонасыщенной сырой нефти. В трудах Американского института инженеров горной, металлургической и нефтяной промышленности, Vol.216, 23. Даллас, Техас: Общество инженеров-нефтяников AIME.
  28. ↑ Азиз, К. и Говье, Г.В. 1972. Падение давления в скважинах, добывающих нефть и газ. J Can Pet Technol 11 (3): 38. PETSOC-72-03-04. http://dx.doi.org/10.2118/72-03-04
  29. 28,0 28,1 Хан, С.А., Аль-Мархун, М.А., Даффуаа, С.О. и другие. 1987. Корреляции вязкости для сырой нефти Саудовской Аравии. Представлен на выставке Middle East Oil Show, Бахрейн, 7-10 марта. SPE-15720-MS. http://dx.doi.org/10.2118/15720-МС
  30. 29,0 29,1 29,2 Almehaideb, R.A. 1997. Улучшенная корреляция PVT для сырой нефти ОАЭ. Представлено на выставке и конференции Middle East Oil Show, Бахрейн, 15-18 марта. SPE-37691-MS. http://dx.doi.org/10.2118/37691-MS Ошибка цитирования: недопустимый тег ; имя «r29» определено несколько раз с разным содержанием Ошибка цитирования: недопустимый тег ; имя «r29» определено несколько раз с разным содержанием
  31. ↑ Кузель, Б.1965. Как давление влияет на вязкость жидкости. Hydrocarb. Процесс. (Март 1965 г.): 120.
  32. ↑ Васкес М.Э. 1976. Корреляции для предсказания физических свойств жидкости. Диссертация на степень магистра, Университет Талсы, Талса, Оклахома.
  33. ↑ Васкес, М. и Беггс, Х.Д. 1980. Корреляции для предсказания физических свойств жидкости. J Pet Technol 32 (6): 968-970. SPE-6719-PA. http://dx.doi.org/10.2118/6719-PA
  34. ↑ Абдул-Маджид, Г.Х., Кларк, К.К. и Салман, Н.Х. 1990. Новая корреляция для оценки вязкости ненасыщенной сырой нефти.J Can Pet Technol 29 (3): 80. PETSOC-90-03-10. http://dx.doi.org/10.2118/90-03-10

Интересные статьи в OnePetro

Используйте этот раздел, чтобы перечислить статьи в OnePetro, которые читатель, желающий узнать больше, обязательно должен прочитать

Внешние ссылки

Используйте этот раздел для предоставления ссылок на соответствующие материалы на других веб-сайтах, кроме PetroWiki и OnePetro.

См. Также

Вязкость газа

Трение жидкости

Плотность масла

Свойства нефтяной жидкости

PEH: Масло_Система_Взаимосвязи

.

единиц вязкости | Hydramotion

перейти к Конвертер единиц вязкости | Сравнительная таблица вязкости

ЕДИНИЦ ВЯЗКОСТИ


ДИНАМИЧЕСКАЯ ВЯЗКОСТЬ
Пуаз (символ: P) + сантипуаз (символ: сП)

Назван в честь французского врача Жана Луи Мари Пуазейля (1799 г. — 1869 г.) единица вязкости CGS, эквивалентная дин-секунде на квадратный сантиметр. Это вязкость жидкости, в которой тангенциальная сила в 1 дин на квадратный сантиметр поддерживает разницу в скорости в 1 сантиметр в секунду между двумя параллельными плоскостями, расположенными на расстоянии 1 сантиметра.

Даже применительно к жидкостям с высокой вязкостью эта единица измерения чаще всего встречается как сантипуаз (сП), что составляет 0,01 пуаз. Многие повседневные жидкости имеют вязкость от 0,5 до 1000 сП.

НЕКОТОРЫЕ ТИПИЧНЫЕ ДИНАМИЧЕСКИЕ ВЯЗКОСТИ (сП при 20 ° C)
воздух 0,02 моторное масло SAE 20 125
ацетон 0.3 моторное масло SAE 50 540
метанол 0,6 касторовое масло 986
вода 1 глицерин 1490
этанол 1,2 блинный сироп 2500
ртуть 1,5 кленовый сироп 3200
льняное масло (сырое) 28 патока 20,000
кукурузное масло 72 арахисовое масло 250,000
оливковое масло 84 замазка для окон 100000000
Паскаль-секунда (символ: Pa.с) + миллиПаскаль-секунда (обозначение: мПа.с)

Это единица вязкости в системе СИ, эквивалентная ньютон-секунде на квадратный метр (Н · с · м – 2). Иногда его называют пуазейлем (символ Pl).

Одно равновесие точно 0,1 Па · с. Один пуазейль равен 10 пуазам или 1000 сП, а 1 сП = 1 мПа · с (один миллипаскаль-секунда).

ТАБЛИЦА ЭКВИВАЛЕНТОВ
Динамическая вязкость
Symbol
сП Эквивалент
сила на 1 килограмм метр кв. кгс · м-2 9 806.6501248
1 фунт-секунда на квадратный фут пдл · с · фут-2 1 488,164435
1 фунт на фут · час фунт (фут · ч) -1 0,4133789
1 фунт на фут в секунду фунт (фут · с) -1 1 488,1639328
1 фунт-сила секунда на квадратный фут фунт-сила · С ft-2 47 880.2595148
1 фунт-сила-секунда на квадратный дюйм (рейн) фунт-сила · с-дюйм-2 6 894 757
1 пуля на фут-секунду пуля ( фут · с) -1 47 880,25898
КИНЕМАТИЧЕСКАЯ ВЯЗКОСТЬ
Стокса (символ: St) + сантистокс (символ: сСт)

Это единица СГС, эквивалентная квадратным сантиметрам в секунду (см2 · с – 1). Один стокс равен вязкости в пуазах, деленной на плотность жидкости в граммах на кубический сантиметр (г · см – 3).Чаще всего встречается в сантистоксах (сСт), равных 0,01 стокса.

Saybolt Seconds Universal (SSU)

Это время, в течение которого 60 миллилитров (мл) жидкости проходят через калиброванное отверстие вискозиметра Saybolt Universal при заданной температуре, как предписано методом испытаний ASTM D 88. Для более высоких вязкостей используется SSF (Saybolt Seconds Furol). . «Фурол» происходит от «топлива и мазута».

Степень Энглера

Это отношение времени истечения 200 мл жидкости к времени истечения 200 мл воды при той же температуре в стандартизованном измерителе вязкости Энглера.

ТАБЛИЦА ЭКВИВАЛЕНТОВ
Кинематическая вязкость
Символ

39 сСт Эквивалент

39 сСт Эквивалент

39 сСт Экв. второй

см2 с-1 100
1 квадратный метр в секунду м2 с-1 1000000
1 квадратный фут в секунду фут2 с-1 92 903.04
1 квадратный дюйм в секунду дюйм2 с-1 645,16

Просмотреть PDF-версию этой страницы можно здесь

.

Абсолютная, динамическая и кинематическая вязкость

Вязкость — важное свойство жидкости при анализе поведения жидкости и ее движения вблизи твердых границ. Вязкость жидкости — это мера ее сопротивления постепенной деформации под действием напряжения сдвига или напряжения растяжения. Сопротивление сдвигу в жидкости вызывается межмолекулярным трением, возникающим, когда слои жидкости пытаются скользить друг относительно друга.

  • Вязкость — это мера сопротивления жидкости течению
  • меласса высоковязкая
  • вода средней вязкости
  • газ низковязкая

Есть два связанных показателя вязкости жидкости

  • 20004 9000 динамическая ( или абсолютная )
  • кинематическая
  • Динамическая (абсолютная) вязкость

    Абсолютная вязкость — коэффициент абсолютной вязкости — является мерой внутреннего сопротивления.Динамическая (абсолютная) вязкость — это тангенциальная сила на единицу площади, необходимая для перемещения одной горизонтальной плоскости относительно другой плоскости — с единичной скоростью — при сохранении единичного расстояния друг от друга в жидкости.

    Напряжение сдвига между слоями нетурбулентной жидкости, движущихся по прямым параллельным линиям, может быть определено для ньютоновской жидкости как

    Напряжение сдвига можно выразить

    τ = μ dc / dy

    = μ γ (1)

    где

    τ = напряжение сдвига в жидкости (Н / м 2 )

    μ = динамическая вязкость жидкости (Н · с / м 2 )

    dc = единичная скорость (м / с)

    dy = единичное расстояние между слоями (м)

    γ = dc / dy = скорость сдвига (с — 1 )

    Уравнение (1) известно как закон трения Ньютона.

    (1) можно преобразовать, чтобы выразить Динамическая вязкость как

    μ = τ dy / dc

    = τ / γ (1b)

    В системе СИ единицы измерения динамической вязкости: Н с / м 2 , Па с или кг / (мс) — где

    • 1 Па с = 1 Н с / м 2 = 1 кг / (мс) = 0.67197 фунтов м / (фут с) = 0,67197 оторочка / (фут с) = 0,02089 фунта f с / фут 2

    Динамическая вязкость также может быть выражена в метрической системе CGS (сантиметр) -грамм-секунда) система как г / (см с) , дин с / см 2 или пуаз (p) где

    • 1 пуаз = 1 дин с / см 2 = 1 г / (см · с) = 1/10 Па · с = 1/10 Н · с / м 2

    Для практического использования Poise обычно слишком велик, а его поэтому часто делится на 100 — на меньшую единицу сантипуаз (сП) — где

    • 1 P = 100 сП
    • 1 сП = 0.01 пуаз = 0,01 грамм на см секунду = 0,001 Паскаль секунды = 1 миллиПаскаль секунда = 0,001 Н · с / м 2

    Вода при 20,2 o C (68,4 o F) имеет абсолютную вязкость единиц 1 сантипуаз .

    Жидкость Абсолютная вязкость *)
    ( Н с / м 2 , Па с)
    Воздух 1.983 10 -5
    Вода 10 -3
    Оливковое масло 10 -1
    Глицерин 10 0 Мед Жидкость 10 1
    Golden Syrup 10 2
    Стекло 10 40

    *) при комнатной температуре

    Кинематическая вязкость

    кинематическая вязкость соответствует соотношению кинематической вязкости — абсолютная (или динамическая) вязкость до плотности — величина, при которой никакая сила не задействована.Кинематическая вязкость может быть получена путем деления абсолютной вязкости жидкости на ее массовую плотность, например

    ν = μ / ρ (2)

    , где

    ν = кинематическая вязкость (м 2 / с)

    μ = абсолютная или динамическая вязкость (Н · с / м 2 )

    ρ = плотность (кг / м 3 )

    В системе SI теоретическая единица кинематической вязкости — м 2 / с — или обычно используемый Сток (St) , где

    • 1 St (Стокса) = 10 -4 м 2 / s = 1 см 2 / с

    Сток происходит от системы единиц CGS (сантиметр грамм-секунда).

    Поскольку Stoke является большим блоком, его часто делят на 100 на меньший блок сантисток (сСт) — где

    • 1 St = 100 сСт
    • 1 сСт (сантистокс ) = 10 -6 м 2 / с = 1 мм 2 / с
    • 1 м 2 / с = 10 6 сантистокс

    Удельный вес воды при 20,2 o C (68.4 o F) составляет почти единиц, и кинематическая вязкость воды при 20,2 o C (68,4 o F) для практических целей 1,0 мм 2 / с ( cStokes). Более точная кинематическая вязкость воды при 20,2 o C (68,4 o F) составляет 1,0038 мм 2 / с (сСт).

    Преобразование абсолютной вязкости в кинематическую в британских единицах измерения может быть выражено как

    ν = 6.7197 10 -4 μ / γ (2a)

    где

    ν = кинематическая вязкость (футы 2 / с)

    μ = абсолютная или динамическая вязкость (сП)

    γ = удельный вес (фунт / фут 3 )

    Вязкость и эталонная температура

    Вязкость жидкости сильно зависит от температуры — и для динамической или кинематической вязкости значение эталонной температуры Необходимо указать .В ISO 8217 эталонная температура остаточной жидкости составляет 100 o C . Для дистиллятной жидкости эталонная температура составляет 40 o C .

    • для жидкости — кинематическая вязкость уменьшается при более высокой температуре
    • для газа — кинематическая вязкость увеличивается при более высокой температуре
    Связанные мобильные приложения из Engineering ToolBox

    Это бесплатное приложение, которое может использоваться в автономном режиме на мобильных устройствах.

    Другие единицы измерения вязкости
    Универсальные секунды Сейболта (или
    SUS, SSU )

    Универсальные секунды Сейболта (или SUS ) являются альтернативной единицей измерения вязкости. Время истечения составляет универсальные секунды Сейболта ( SUS ), необходимое для протекания 60 миллилитров нефтепродукта через калиброванное отверстие вискозиметра Saybolt Universal — при тщательно контролируемой температуре и в соответствии с методом испытаний ASTM D 88. Этот метод имеет в значительной степени заменен методом кинематической вязкости.Saybolt Universal Seconds также называют номером SSU (Seconds Saybolt Universal) или номером SSF (Saybolt Seconds Furol) .

    Кинематическая вязкость в SSU в зависимости от динамической или абсолютной вязкости может быть выражена как

    ν SSU = B μ / SG

    = B ν сантистокс (3)

    7 где

    7

    ν SSU = кинематическая вязкость (SSU)

    B = 4.632 для температуры 100 o F (37,8 o C)

    B = 4,664 для температуры 210 o F (98,9 o C)

    μ = динамический или абсолютный вязкость (сП)
    SG = удельный вес
    ν сантистокс = кинематическая вязкость (сантистокс)
    градус Энглера

    градус Энглера используется в Великобритании в качестве шкалы Энглера . измерить кинематическую вязкость.В отличие от весов Saybolt и Redwood , шкала Engler основана на сравнении потока тестируемого вещества с потоком другого вещества — воды. Вязкость по Энглеру градусов — это отношение времени истечения 200 кубических сантиметров жидкости, вязкость которой измеряется, ко времени истечения 200 кубических сантиметров воды при той же температуре (обычно 20 o C , но иногда 50 o C или 100 o C ) в стандартизированном измерителе вязкости Engler .

    Ньютоновские жидкости

    Жидкость, в которой напряжение сдвига линейно связано со скоростью сдвиговой деформации, обозначается как ньютоновская жидкость .

    Ньютоновский материал называется настоящей жидкостью, поскольку на вязкость или консистенцию не влияет сдвиг, такой как перемешивание или перекачивание при постоянной температуре. Наиболее распространенные жидкости — как жидкости, так и газы — представляют собой ньютоновские жидкости. Вода и масла — примеры ньютоновских жидкостей.

    Разжижающие при сдвиге или Псевдопластические жидкости

    Разжижающие при сдвиге или псевдопластические жидкости — это жидкости, вязкость которых уменьшается с увеличением скорости сдвига.Структура не зависит от времени.

    Тиксотропные жидкости

    Тиксотропные жидкости имеют временную структуру. Вязкость тиксотропной жидкости уменьшается с увеличением времени — при постоянной скорости сдвига.

    Кетчуп и майонез являются примерами тиксотропных материалов. Они кажутся густыми или вязкими, но их можно довольно легко перекачивать.

    Дилатантные жидкости

    Сгущающая жидкость при сдвиге — или дилатантная жидкость — увеличивает вязкость при перемешивании или деформации сдвига.Дилатантные жидкости известны как неньютоновские жидкости.

    Некоторые дилатантные жидкости могут почти затвердеть в насосе или трубопроводе. При взбалтывании сливки превращаются в составы масла и конфет. Глиняная суспензия и подобные сильно наполненные жидкости делают то же самое.

    Bingham Plastic Fluids

    Пластиковая жидкость Bingham имеет предел текучести, который необходимо превысить, прежде чем она начнет течь как жидкость. С этого момента вязкость уменьшается с увеличением перемешивания. Зубная паста, майонез и томатный кетчуп — примеры таких продуктов.

    Пример — воздух, преобразование кинематической и абсолютной вязкости

    Кинематическая вязкость воздуха при 1 бар (1 10 5 Па, Н / м 2 ) и 40 o C составляет 16,97 сСт (16,97 10 -6 м 2 / с) .

    Плотность воздуха можно оценить с помощью закона идеального газа

    ρ = p / (RT)

    = (1 10 5 Н / м 2 ) / ((287 Дж / (кг · К)) ((273 o C) + (33 o C)))

    = 1.113 (кг / м 3 )

    где

    ρ = плотность (кг / м 3 )

    p = абсолютное давление (Па, Н / м 2 )

    R = индивидуальная газовая постоянная (Дж / (кг K))

    T = абсолютная температура (K)

    Абсолютная вязкость может быть рассчитана как

    μ = 1,113 (кг / м ) 3 ) 16,97 10 -6 2 / с)

    = 1.88 10 -5 (кг / (мс), Н с / м 2 )

    Вязкость некоторых обычных жидкостей
    200 9024 9024 Масло картера 9024 440 902 98
    сантистокс
    (сСт, 10 -6 м 2 / с, мм 2 / с )
    Секунда Сейболта
    Универсальная
    (SSU, SUS)
    Типичная жидкость
    0,1 Меркурий
    31 Вода (20 o C)
    4.3 40 Молоко
    SAE 20 Масло картера
    SAE 75 Трансмиссионное масло
    15,7 80 Мазут № 4
    20,6 100 Сливки Масло растительное
    110 500 Масло картера SAE 30
    SAE 85 Трансмиссионное масло
    220 1000 Томатный сок
    SAE 50 Масло картера
    2000 SAE 140 Gear Oil
    1100 5000 Глицерин (20 o C)
    SAE 250 Gear Oil
    2200 10000 Мед 28000 Майонез
    19000 86000 Сметана

    Кинематическая вязкость может быть преобразована из SSU в сантистоксов с

    ν сантистоксов = 0.226 ν SSU — 195/ ν SSU (4)

    где

    ν 10048

    10048 SSU ν Сантистокс = 0,220 ν SSU — 135/ ν SSU

    где

    ν 900 Вязкость > и температура

    Кинематическая вязкость жидкостей, таких как вода, ртуть, масла SAE 10 и масла №.3 — и такие газы, как воздух, водород и гелий, показаны на схеме ниже. Обратите внимание, что

    • для жидкостей — вязкость уменьшается с температурой
    • для газов — вязкость увеличивается с температурой

    Измерение вязкости

    Для измерения вязкости используются три типа устройств

    • капиллярный вискозиметр
    • Вискозиметр Сейболта
    • Вискозиметр вращающийся
    .

    Вязкость сырой нефти как функция силы тяжести

    Поиск в Engineering ToolBox

    поиск — самый эффективный способ навигации по Engineering ToolBox!

    Перевести эту страницу на

    О Engineering ToolBox!

    Мы не собираем информацию от наших пользователей. В нашем архиве хранятся только письма и ответы. Файлы cookie используются в браузере только для улучшения взаимодействия с пользователем.

    Некоторые из наших калькуляторов и приложений позволяют сохранять данные приложений на локальном компьютере.Эти приложения — из-за ограничений браузера — будут отправлять данные между вашим браузером и нашим сервером. Мы не сохраняем эти данные.

    Google использует файлы cookie для показа нашей рекламы и обработки статистики посетителей. Пожалуйста, прочтите Условия использования Google для получения дополнительной информации о том, как вы можете контролировать показ рекламы и собираемую информацию.

    AddThis использует файлы cookie для обработки ссылок на социальные сети. Пожалуйста, прочтите AddThis Privacy для получения дополнительной информации.

    Цитирование

    Эту страницу можно цитировать как

    • Engineering ToolBox, (2017). Вязкость сырой нефти как функция силы тяжести . [онлайн] Доступно по адресу: https://www.engineeringtoolbox.com/crude-oil-petroleum-visacity-gravity-de density-d_1959.html [день доступа, понедельник, год].

    Изменить дату доступа.

    . .

    закрыть

    .

    Касторовое масло — обзор

    4.5.2 Сополимеризация

    Касторовое масло химически модифицируется путем привитой сополимеризации с метил- и бутилметакрилатами. Внешняя прочность, устойчивость к атмосферным воздействиям, высыхание и механические свойства этих смол значительно улучшаются. Ненасыщенность жирнокислотных групп полиэфиров делает возможной интерполимеризацию с различными реакционноспособными виниловыми мономерами, такими как стирол, α-метилстирол, винилтолуол, метилметакрилат, бутилметакрилат, этилакрилат и акрилонитрил.Модификация полиэфирных смол на основе хлопкового, льняного, соевого и подсолнечного масел винилтолуолом для улучшения прозрачности также описана в литературе. Пост-стиролирование (до 50%) полиэфирных смол на основе льняного масла улучшило время высыхания, стойкость к царапинам и устойчивость к растворителям и химическим веществам. Значительное улучшение характеристик времени высыхания и устойчивости к атмосферным воздействиям полиэфирной смолы на основе обезвоженного касторового масла было достигнуто путем привитой сополимеризации с метилметакрилатом и бутилметакрилатом.Сополимеры соевого масла и мономеров на основе касторового масла, полученные малеинированием продуктов алкоголиза масел различными полиолами, такими как пентаэритрит, глицерин и пропоксилат бисфенола-А со стиролом, проявляли широкий спектр свойств в зависимости от их химической структуры. . 19 Модули упругости при изгибе 0,8–2,5 ГПа, прочность на изгиб 32–112 МПа, температуры стеклования ( T г ) 72–152 °C и поверхностная твердость 77–90 по Шору D сополимеров. .

    Эти результаты показывают, что полимеры, полученные из касторового масла, обладают значительно улучшенными модулем, прочностью и T g по сравнению с сополимерами на основе соевого масла. Эти полимеры показали свойства, сравнимые со свойствами высокоэффективных ненасыщенных полиэфирных смол на основе нефтепродуктов. Модификация полиэстера средней жирности Albizia benth путем акрилирования демонстрирует превосходные свойства при высыхании, гибкости, устойчивости к царапинам и ударам, а также химической стойкости по сравнению с немодифицированным полиэфиром. 20 Использование N , N -амида дигидроксиэтилакриловой кислоты в качестве частичной замены глицерина при приготовлении полиэфирной смолы со средним содержанием масла уменьшило потребность в антикоррозионных пигментах в составе грунтовки. 21 Водоразбавляемая акрило-полиэфирная смола, полученная путем этерификации моноглицерида на основе пальмового масла и карбоксифункционального акрилового сополимера, показала превосходную водо- и кислотостойкость и хорошую щелочестойкость. 22 Пена на основе малеинированного касторового масла со стиролом была получена методом свободнорадикальной полимеризации с использованием NaHCO 3 в качестве пенообразователя, ко-нафтаната в качестве промотора и перекиси бензоила (BPO) в качестве инициатора свободных радикалов.Продукт также демонстрирует приемлемую биоразлагаемость. 23 Алкидно-акриловые гибридные латексы, полученные мини-эмульсионной полимеризацией, характеризуются степенью прививки смолы и акрила, прореагировавшими двойными связями в алкиде, содержанием геля и молекулярно-массовым распределением зольной части методом эксклюзии по размерам хроматография и метод йодометрического титрования. 24

    Многофункциональные экологически чистые добавки на основе касторового масла для смазочного масла

    Название: Многофункциональные экологически чистые добавки на основе касторового масла для смазочного масла

    Объем: 4 Выпуск: 3

    Автор(ы): Пранаб Гош*, Майнул Хок, Гобинда Кармакар и Султана Ясмин

    Принадлежность:

    • Лаборатория химии натуральных продуктов и полимеров, химический факультет, Университет Северной Бенгалии, Дарджилинг, 734013, Индия , биоразлагаемость.

      Abstract: Цель: В статье исследуются характеристики гомополимера касторового масла и его четырех сополимеры с метилметакрилатом (ММА), додецилакрилатом (ДДА), 1-деценом (1-Д) и стиролом (ST) в качестве биоразлагаемой многофункциональной добавки в рецептуру экологически чистой смазки.

      Метод: Гомополимер касторового масла (СО) и его сополимеры с 10% (масс./масс.) каждого из сомономеров. были синтезированы с использованием азобисизобутиронитрила (ДАК) в качестве инициатора.Полимеры были охарактеризованы спектральными методами (ИК-Фурье и ЯМР-спектроскопия). Молекулярная масса всех приготовленных полимеров определяли с помощью гель-проникающей хроматографии (ГПХ).

      Результат: Термическую стабильность полимеров определяли термогравиметрическим анализом (ТГА). Оценка эффективности всех приготовленных полимеров в двух разных минеральных базовых маслах по вязкости присадку, улучшающую индекс (VII), депрессорную присадку (PPD) и противоизносную, выполняли в соответствии со стандартом. Методы ASTM.Биоразлагаемость всех образцов была проверена методом испытания на заглубление в почву (SBT).

      динамические вязкости жидкости

      абсолютные или динамические вязкости для некоторых общих жидкостей при температуре 300 K указаны ниже:

      6 1 Уксусная кислота0011555 54 0,74
    • 6.0 Четыреххлористый углерод
      Хлороформ
      Диэтиловый эфир
      • Этанол
        Этилацетат
        Этилформиат
        N-гексан
        н-гексадекан .
        Ртуть
        Метанол
        Нитробензол
        Н-октан
        Масло касторовое
        Масло оливковое
        Н-пентан
        Н-пропан
        Серная кислота
        Толуол

      0 0 Ошибка пользователя

      Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


      Настройка браузера на прием файлов cookie

      Существует множество причин, по которым файл cookie не может быть установлен правильно.Ниже приведены наиболее распространенные причины:

      • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки браузера, чтобы принять файлы cookie, или спросить вас, хотите ли вы принимать файлы cookie.
      • Ваш браузер спрашивает, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файл cookie.
      • Ваш браузер не поддерживает файлы cookie. Попробуйте другой браузер, если вы подозреваете это.
      • Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы это исправить, установите правильное время и дату на своем компьютере.
      • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

      Почему этому сайту требуются файлы cookie?

      Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Предоставить доступ без файлов cookie потребует от сайта создания нового сеанса для каждой посещаемой вами страницы, что замедляет работу системы до неприемлемого уровня.


      Что сохраняется в файле cookie?

      Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в файле cookie; никакая другая информация не фиксируется.

      Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, если вы не решите ввести его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступ к остальной части вашего компьютера, и только сайт, создавший файл cookie, может его прочитать.

      Шкала вязкости

      Говоря простым языком, вязкость определяет сопротивление жидкости течению. Чем выше вязкость жидкости, тем она гуще и тем больше сопротивление течению. Температура влияет на вязкость большинства материалов.

      Что для вас значит вязкость при выборе формовочной резины? Если вы используете формовочную резину с высокой вязкостью, есть вероятность, что резина затвердеет с пузырьками воздуха, которые затем могут отразиться на готовой отливке. Если смешанная вязкость формовочной резины, которую вы используете, выше 15 000 сантипуаз, вы можете рассмотреть возможность вакуумной дегазации жидкой формовочной резины.

      Что для вас значит вязкость при выборе литьевой смолы? Если вы используете литьевую смолу с высокой вязкостью, есть вероятность, что литье захватит воздух.Затем пузырьки воздуха могут отражаться в готовой отливке. Это особенно верно, если смола имеет высокую вязкость и короткую жизнеспособность. Если смешанная вязкость литейной смолы, которую вы используете, выше 7500 сантипуаз, вы можете рассмотреть возможность вакуумной дегазации или литья смолы под давлением.

      ТОВАРЫ ПОВСЕДНЕВНОГО ПОТРЕБЛЕНИЯ В ОТНОШЕНИИ ОБЩЕЙ ВЯЗКОСТИ ПРОДУКТА В Сантипуазах (сП)

      жидкость абсолютная вязкость
      (N S / m 2 , PA S ) (сантипуаз, сП) (10 -4 lb/s ft)
      1.155 70106 5 70078
      Acetone 0.000316 0.316 0.316 212
      120083
      0,001095 6 0,001095 1.095 7.36
      Спирт, метил (метанол) 0,00056 0.56 0.56 3.76
      Спирт, пропил 0,00192 1.92 12.9
      Benzene 0.000601 0,601 4,04
      Кровь 0,003 — 0,004
      Бром 0,00095 0,95 6,38
      сероуглерод 0,00036 0,36 2,42
      Углерод тетрахлорид 0.00091 0.91 6.11
      Castor Oil 0.650 650 6
      Chloroform 0.00053 0,53 3,56
      Декан 0,000859 0,859 5,77
      додекана 0,00134 1,374 9,23
      Эфир 0,000223 0,223 1,50
      Этиленгликоль 0,0162 16,2 109
      Хладагент трихлорфторметан R-1100042 0,42 2,82
      Глицерин 0,950 950 6380
      гептана 0,000376 0,376 2,53
      Гексан 0,000297 0,297 2,00
      Керосин 0,00164 1,64 11,0
      Масло льняное 0,0336 3010101 222
      Ртуть 0,0015 1,53 10,3
      Молоко 0,003
      Октан 0,00051 0,51 3,43
      Фенол 0,0080 8.0 54
      Пропан 0,00011 0,00011 0,11
      Пропилен 0.00009 0,09 0,60
      Пропиленгликоль 0,042 42
      Толуол 0,000550 0,550 3,70
      Скипидар 0,001375 1,375 9,24
      Вода, свежий
      0,00089 0,00089 0,00089 0,89 6,0
      Вода при 70°F / 21°C 1 сантипуаз (сП)
      Кровь или керосин 10 сантипуаз (сП)
      Этиленгликоль или антифриз 15 сантипуаз (сП)
      Моторное масло (SAE 10) 50 сантипуаз (сП)
      Кукурузное масло 65 сантипуаз (сП)
      Жесткая уретановая смола без наполнителя 80 — 120 сантипуаз (сП)
      Кленовый сироп или моторное масло (SAE 30) 150 — 200 сантипуаз (сП)
      Касторовое масло или моторное масло (SAE 40) 250 — 500 сантипуаз (сП)
      Глицерин или моторное масло (SAE 60) 1000 — 2000 сантипуаз (сП)
      Текучие уретановые каучуки 1000 — 3000 сантипуаз (сП)
      Мед или кукурузный сироп 2 000 — 3 000 сантипуаз (сП)
      Меласса 5 000 — 10 000 сантипуаз (сП)
      Шоколадный сироп 10 000 — 25 000 сантипуаз (сП)
      Текучая силиконовая резина 14 000 — 40 000 сантипуаз (сП)
      Кетчуп или горчица 50 000 — 70 000 сантипуаз (сП)
      Силиконовая резина, наносимая кистью 100 000 — 150 000 сантипуаз (сП)
      Арахисовое масло или томатная паста 150 000 — 250 000 сантипуаз (сП)
      Уретановый каучук, наносимый кистью 200 000 — 300 000 сантипуаз (сП)
      Сало или масло Crisco Shortening 1 000 000 — 2 000 000 сантипуаз (сП)
      Герметик 5 000 000 — 10 000 000 сантипуаз (сП)
      Оконная замазка 100 000 000 сантипуаз (сП)

      Это общие средние значения, а НЕ конкретные данные, не все продукты четко вписываются в эту таблицу.Пожалуйста, ознакомьтесь с техническими бюллетенями, чтобы узнать конкретную смешанную вязкость продуктов. Температура влияет на вязкость большинства материалов, эти приблизительные значения основаны на измерениях при 73°F / 23°C

      Щелкните здесь, чтобы загрузить справочное руководство по шкале вязкости в формате pdf.

      Косметолог

       

      Название по INCI: масло семян Ricinus communis (касторовое)
      Синонимы: (R)-12-гидрокси-цис-9-октадеценовая кислота; 12-гидроксиолеиновая кислота; рицинелаидиновая кислота
      Молекулярная формула: C 18 H 34 O 3
      Молекулярная масса: 298.47 г/моль
      Название IUPAC: (9Z,12R)-12-гидроксиоктадек-9-еновая кислота
      Номер CAS: 141-22-0
      Номер ЕС: 205-470-2


      Рицинолеиновая кислота является основным компонентом касторового масла, которое получают из семян клещевины ( Ricinus communis L.). 1 Приблизительно 85-90% касторового масла состоит из рицинолеиновой кислоты. Следует отметить, что при таком высоком процентном содержании рицинолеиновой кислоты в касторовом масле, по сути, это продукт технического качества, что редко встречается в природе с растительными маслами.Индия, безусловно, является крупнейшим производителем касторового масла, за ней следуют Китай, Бразилия, Таиланд, Эфиопия и Парагвай. 2

      Рицинолеиновая кислота имеет уникальную молекулярную структуру, связанную с гидроксильной группой, расположенной в середине ненасыщенной цепи. В форме триглицерина водородные связи возникают с гидроксильными группами, что приводит к большей вязкости, чем в других маслах. По этой причине касторовое масло является превосходной смазкой по сравнению с другими растительными маслами. 1 Кроме того, гидроксильная группа, отделенная от двойной связи только метиленовой группой, придает касторовому маслу повышенную устойчивость к окислению, что обеспечивает более длительный срок хранения. 3 Кроме того, эта структурная особенность также влияет на сольватационные свойства и смешиваемость рицинолевой кислоты. В отличие от большинства жирных кислот рицинолевая кислота растворима в более полярных растворителях (например, в спиртах).

      Касторовое масло используется во многих областях, включая косметику, покрытия, моющие средства, продукты питания, медицину и технологии пластификаторов. Его традиционное использование в качестве домашнего средства уже много лет известно для лечения запоров, улучшения состояния волос и кожи, облегчения артрита и мышечных болей.В середине и начале двадцатого века в Соединенных Штатах многие родители использовали касторовое масло, чтобы удержать своих детей от плохого поведения. Было обычным делом угрожать: «Если ты не будешь себя вести, тебе придется принять свое касторовое масло». Это было даже классно показано в мультсериале «Том и Джерри» в эпизоде ​​​​1953 года. 4

      В косметике касторовое масло содержится в различных продуктах, включая средства для волос, мыло и кожные мази. Кроме того, одно из самых частых применений касторового масла в средствах личной гигиены — это средства для губной помады.На самом деле было процитировано: «Касторовое масло является одним из основных компонентов состава губной помады, поскольку при нанесении на кожу оно придает самый высокий блеск из всех натуральных масел. Он окклюзионный, водоотталкивающий, липкий и отлично защищает кожу». 5 В высоких концентрациях содержится в губной помаде. Существует также ряд производных рицинолевой кислоты, используемых в различных составах средств личной гигиены, включая цетилрицинолеат, этилрицинолеат, глицерилрицинолеат и рицинолеат цинка, а также полиэтоксилированные сложные эфиры рицинолеиновой кислоты.В целом, эти материалы считаются безопасными для использования в косметике. 6 Более чем вероятно, что широкое использование касторового масла в косметике связано с совместимостью рицинолеиновой кислоты с полярными и неполярными ингредиентами.

      Свойства Свойства
      Вязкость: 889 CS 3
      Плотность: 0,959 г / мл 3
      Теплопроводность: 4,727 Вт / м ° C 3
      Точка кипения: 245 ° C 7
      Точка плавления: — от 2 до -5 °C 3
      LogP: log Kow = 6.19 (оценка) 8
      Показатель преломления: 1,480 3
      Растворимость: спирт, ацетон, эфир, хлороформ 7

      Сноски
      1. Т.А. McKeon, «Castor (Ricinus communis L.)» в Industrial Oil Crops , Eds. Т.А. МакКеон, Д.Г. Хейс, Д.Ф. Хильдебранд и Р.Дж. Веселаке, AOCS Press: Шампейн-Урбана, Иллинойс, США, 75-112 (2016).
      2. Всемирный отчет об исследованиях в области агролесоводства (2009 г.), Jatropha Reality Check: Полевая оценка агрономической и экономической жизнеспособности ятрофы и других масличных культур в Кении.Опубликовано Deutsche Gesellschaft fur Technische Zusammernarbeit (GTZ), Эшборн, Германия.
      3. В.Р. Патель, Г.Г. Думанкас, Л.К.К. Вишванат, Р. Мэйплз и Б..Дж. Subong, Касторовое масло: свойства, использование и оптимизация параметров обработки в коммерческом производстве, Lipid Insights , 9 , 1-12 (2016). Обратите внимание, что указанные физические свойства относятся к касторовому маслу, а не к чистой рицинолеиновой кислоте.
      4. Том и Джерри , Котёнок, Эпизод 12, Режиссеры Уильям Ханна и Джозеф Барбера, продюсер Фред Куимби.Он был выпущен в кинотеатры 25 декабря 1943 года компанией Metro-Goldwyn Mayer. https://www.youtube.com/watch?v=-84n9X8nKMI.
      5. А. Двек, «Использование растительных компонентов в косметике» в Harry’s Cosmeticology , 8-е изд., изд. М.М. Ригер, Chemical Publishing: Нью-Йорк, штат Нью-Йорк, США (2000).
      6. Экспертная группа CIR, Заключительный отчет об оценке безопасности масла семян Ricinus Communis (касторового), гидрогенизированного касторового масла, глицерилрицинолеата, глицерилрицинолеата SE, рицинолеиновой кислоты, рицинолеата калия, рицинолеата натрия, рицинолеата цинка, цетилрицинолеата, этилрицинолеата , гликольрицинолеат, изопропилрицинолеат, метилрицинолеат и октилдодецилрицинолеат, Int.Дж. Токсикол. , 26 (Приложение 3), 31-77 (2007).
      7. MJ O’Neil, The Merck Index , 15-е изд., Королевское химическое общество: Кембридж, Великобритания (2013).
      8. Агентство по охране окружающей среды США; Программный интерфейс оценки (EPI) Suite. Вер. 4.0. Январь 2009 г. Доступно по состоянию на 21 мая 2010 г.: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm.

       

      Gale Apps — Технические трудности

      Технические трудности

      Приложение, к которому вы пытаетесь получить доступ, в настоящее время недоступно.Приносим свои извинения за доставленные неудобства. Повторите попытку через несколько секунд.

      Если проблемы с доступом сохраняются, обратитесь за помощью в наш отдел технической поддержки по телефону 1-800-877-4253. Еще раз спасибо, что выбрали Gale, обучающую компанию Cengage.

      org.springframework.remoting.RemoteAccessException: невозможно получить доступ к удаленной службе [authorizationService@theBLISAuthorizationService]; вложенным исключением является Ice.Неизвестное исключение unknown = «java.lang.IndexOutOfBoundsException: индекс 0 выходит за границы для длины 0 в java.base/jdk.internal.util.Preconditions.outOfBounds(Preconditions.java:64) в java.base/jdk.internal.util.Preconditions.outOfBoundsCheckIndex(Preconditions.java:70) в java.base/jdk.internal.util.Preconditions.checkIndex(Preconditions.java:248) в java.base/java.util.Objects.checkIndex(Objects.java:372) на Яве.база/java.util.ArrayList.get(ArrayList.java:458) в com.gale.blis.data.subscription.dao.LazyUserSessionDataLoaderStoredProcedure.populateSessionProperties(LazyUserSessionDataLoaderStoredProcedure.java:60) в com.gale.blis.data.subscription.dao.LazyUserSessionDataLoaderStoredProcedure.reQuery(LazyUserSessionDataLoaderStoredProcedure.java:53) в com.gale.blis.data.model.session.UserGroupEntitlementsManager.reinitializeUserGroupEntitlements(UserGroupEntitlementsManager.ява:30) в com.gale.blis.data.model.session.UserGroupSessionManager.getUserGroupEntitlements(UserGroupSessionManager.java:17) в com.gale.blis.api.authorize.contentmodulefetchers.CrossSearchProductContentModuleFetcher.getProductSubscriptionCriteria(CrossSearchProductContentModuleFetcher.java:244) на com.gale.blis.api.authorize.contentmodulefetchers.CrossSearchProductContentModuleFetcher.getSubscribedCrossSearchProductsForUser(CrossSearchProductContentModuleFetcher.ява:71) на com.gale.blis.api.authorize.contentmodulefetchers.CrossSearchProductContentModuleFetcher.getAvailableContentModulesForProduct(CrossSearchProductContentModuleFetcher.java:52) на com.gale.blis.api.authorize.strategy.productentry.strategy.AbstractProductEntryAuthorizer.getContentModules(AbstractProductEntryAuthorizer.java:130) на com.gale.blis.api.authorize.strategy.productentry.strategy.CrossSearchProductEntryAuthorizer.isAuthorized(CrossSearchProductEntryAuthorizer.ява:82) на com.gale.blis.api.authorize.strategy.productentry.strategy.CrossSearchProductEntryAuthorizer.authorizeProductEntry(CrossSearchProductEntryAuthorizer.java:44) на com.gale.blis.api.authorize.strategy.ProductEntryAuthorizer.authorize(ProductEntryAuthorizer.java:31) в com.gale.blis.api.BLISAuthorizationServiceImpl.authorize_aroundBody0(BLISAuthorizationServiceImpl.java:57) на com.gale.blis.api.BLISAuthorizationServiceImpl.authorize_aroundBody1$advice(BLISAuthorizationServiceImpl.ява: 61) на com.gale.blis.api.BLISAuthorizationServiceImpl.authorize(BLISAuthorizationServiceImpl.java:1) на com.gale.blis.auth._AuthorizationServiceDisp._iceD_authorize(_AuthorizationServiceDisp.java:141) в com.gale.blis.auth._AuthorizationServiceDisp._iceDispatch(_AuthorizationServiceDisp.java:359) в IceInternal.Incoming.invoke(Incoming.java:209) в Ice.ConnectionI.invokeAll(ConnectionI.java:2800) на льду.ConnectionI.dispatch(ConnectionI.java:1385) в Ice.ConnectionI.message(ConnectionI.java:1296) в IceInternal.ThreadPool.run(ThreadPool.java:396) в IceInternal.ThreadPool.access$500(ThreadPool.java:7) в IceInternal.ThreadPool$EventHandlerThread.run(ThreadPool.java:765) в java.base/java.lang.Thread.run(Thread.java:834) » org.springframework.remoting.ice.IceClientInterceptor.convertIceAccessException(IceClientInterceptor.java:365) org.springframework.remoting.ice.IceClientInterceptor.invoke(IceClientInterceptor.java:327) org.springframework.remoting.ice.MonitoringIceProxyFactoryBean.invoke(MonitoringIceProxyFactoryBean.java:71) org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:186) org.springframework.aop.framework.JdkDynamicAopProxy.invoke(JdkDynamicAopProxy.java:212) com.sun.proxy.$Proxy130.authorize(Неизвестный источник) com.gale.auth.service.BlisService.getAuthorizationResponse(BlisService.java:61) com.gale.apps.service.impl.MetadataResolverService.resolveMetadata(MetadataResolverService.java:65) com.gale.apps.controllers.DiscoveryController.resolveDocument(DiscoveryController.java:57) ком.gale.apps.controllers.DocumentController.redirectToDocument(DocumentController.java:22) jdk.internal.reflect.GeneratedMethodAccessor229.invoke (неизвестный источник) java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) java.base/java.lang.reflect.Method.invoke(Method.java:566) org.springframework.web.method.support.InvocableHandlerMethod.doInvoke(InvocableHandlerMethod.ява: 215) org.springframework.web.method.support.InvocableHandlerMethod.invokeForRequest(InvocableHandlerMethod.java:142) org.springframework.web.servlet.mvc.method.annotation.ServletInvocableHandlerMethod.invokeAndHandle(ServletInvocableHandlerMethod.java:102) org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter.invokeHandlerMethod (RequestMappingHandlerAdapter.java:895) org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter.handleInternal (RequestMappingHandlerAdapter.java:800) org.springframework.web.servlet.mvc.method.AbstractHandlerMethodAdapter.handle(AbstractHandlerMethodAdapter.java:87) org.springframework.web.servlet.DispatcherServlet.doDispatch(DispatcherServlet.java:1038) org.springframework.web.servlet.DispatcherServlet.doService(DispatcherServlet.java:942) орг.springframework.web.servlet.FrameworkServlet.processRequest(FrameworkServlet.java:998) org.springframework.web.servlet.FrameworkServlet.doGet(FrameworkServlet.java:890) javax.servlet.http.HttpServlet.service(HttpServlet.java:626) org.springframework.web.servlet.FrameworkServlet.service(FrameworkServlet.java:875) javax.servlet.http.HttpServlet.service(HttpServlet.java:733) орг.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:227) org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:162) org.apache.tomcat.websocket.server.WsFilter.doFilter(WsFilter.java:53) org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:189) org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.ява: 162) org.apache.catalina.filters.HttpHeaderSecurityFilter.doFilter(HttpHeaderSecurityFilter.java:126) org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:189) org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:162) org.springframework.web.servlet.resource.ResourceUrlEncodingFilter.doFilter(ResourceUrlEncodingFilter.java:63) орг.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:189) org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:162) org.springframework.web.filter.OncePerRequestFilter.doFilter(OncePerRequestFilter.java:101) org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:189) org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:162) org.springframework.web.filter.OncePerRequestFilter.doFilter(OncePerRequestFilter.java:101) org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:189) org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:162) org.springframework.web.filter.OncePerRequestFilter.doFilter(OncePerRequestFilter.java:101) орг.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:189) org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:162) org.springframework.boot.web.servlet.support.ErrorPageFilter.doFilter(ErrorPageFilter.java:130) org.springframework.boot.web.servlet.support.ErrorPageFilter.access$000(ErrorPageFilter.java:66) org.springframework.boot.web.servlet.support.ErrorPageFilter$1.doFilterInternal(ErrorPageFilter.java:105) org.springframework.web.filter.OncePerRequestFilter.doFilter(OncePerRequestFilter.java:107) org.springframework.boot.web.servlet.support.ErrorPageFilter.doFilter(ErrorPageFilter.java:123) org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:189) org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.ява: 162) org.springframework.boot.actuate.web.trace.servlet.HttpTraceFilter.doFilterInternal(HttpTraceFilter.java:90) org.springframework.web.filter.OncePerRequestFilter.doFilter(OncePerRequestFilter.java:107) org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:189) org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:162) орг.springframework.web.filter.RequestContextFilter.doFilterInternal (RequestContextFilter.java: 99) org.springframework.web.filter.OncePerRequestFilter.doFilter(OncePerRequestFilter.java:107) org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:189) org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:162) org.springframework.web.filter.FormContentFilter.doFilterInternal (FormContentFilter.java: 92) org.springframework.web.filter.OncePerRequestFilter.doFilter(OncePerRequestFilter.java:107) org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:189) org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:162) org.springframework.web.filter.HiddenHttpMethodFilter.doFilterInternal (HiddenHttpMethodFilter.ява:93) org.springframework.web.filter.OncePerRequestFilter.doFilter(OncePerRequestFilter.java:107) org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:189) org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:162) org.springframework.boot.actuate.metrics.web.servlet.WebMvcMetricsFilter.filterAndRecordMetrics(WebMvcMetricsFilter.java:154) орг.springframework.boot.actuate.metrics.web.servlet.WebMvcMetricsFilter.filterAndRecordMetrics(WebMvcMetricsFilter.java:122) org.springframework.boot.actuate.metrics.web.servlet.WebMvcMetricsFilter.doFilterInternal(WebMvcMetricsFilter.java:107) org.springframework.web.filter.OncePerRequestFilter.doFilter(OncePerRequestFilter.java:107) org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:189) орг.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:162) org.springframework.web.filter.CharacterEncodingFilter.doFilterInternal (CharacterEncodingFilter.java:200) org.springframework.web.filter.OncePerRequestFilter.doFilter(OncePerRequestFilter.java:107) org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:189) org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:162) org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:202) org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:97) org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:542) org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:143) org.apache.каталина.клапаны.ErrorReportValve.invoke(ErrorReportValve.java:92) org.apache.catalina.valves.AbstractAccessLogValve.invoke(AbstractAccessLogValve.java:687) org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:78) org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:357) org.apache.coyote.http11.Http11Processor.service(Http11Processor.java:374) орг.apache.койот.AbstractProcessorLight.process(AbstractProcessorLight.java:65) org.apache.coyote.AbstractProtocol$ConnectionHandler.process(AbstractProtocol.java:893) org.apache.tomcat.util.net.NioEndpoint$SocketProcessor.doRun(NioEndpoint.java:1707) org.apache.tomcat.util.net.SocketProcessorBase.run(SocketProcessorBase.java:49) java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128) Ява.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628) org.apache.tomcat.util.threads.TaskThread$WrappingRunnable.run(TaskThread.java:61) java.base/java.lang.Thread.run(Thread.java:834)

      .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *