Мощность двс: Основные показатели двигателя: мощность, крутящий момент, расход

Содержание

Калькулятор расчета мощности двигателя автомобиля

Рассмотрим 5 популярных способа как вычислить мощность двигателя автомобиля используя такие данные как:

  • обороты двигателя,
  • объем мотора,
  • крутящий момент,
  • эффективное давление в камере сгорания,
  • расход топлива,
  • производительность форсунок,
  • вес машины
  • время разгона до 100 км.

Каждая из формул, по которой будет производиться расчет мощности двигателя автомобиля довольно относительная и не может со 100% точностью определить реальную лошадиную силу движущую машину. Но произведя подсчеты каждым из приведенных гаражных вариантов, опираясь на те или иные показатели, можно рассчитать, по крайней мене, среднее значение будь-то стоковый или тюнингованный движок, буквально с 10-ти процентной погрешностью.

Мощность — энергия, вырабатываемая двигателем, она преобразуется в крутящий момент на выходном валу ДВС. Это не постоянная величина. Рядом со значениями максимальной мощности всегда указываются обороты, при которых можно её достигнуть. Точкой максимума достигается при наибольшем среднее эффективном давлении в цилиндре (зависит от качества наполнения свежей топливной смесью, полноты сгорания и тепловых потерь). Наибольшую мощность современные моторы выдают в среднем при 5500–6500 об/мин. В автомобильной сфере измерять мощность двигателя принято в лошадиных силах. Поэтому поскольку большинство результатов выводятся в киловаттах вам понадобится калькулятор перевода кВт в л.с.

Как рассчитать мощность через крутящий момент

Самый простой расчет мощности двигателя авто можно определить по зависимости крутящего момента и оборотов.

Крутящий момент

Сила, умноженная на плечо ее приложения, которую может выдать двигатель для преодоления тех или иных сопротивлений движению. Определяет быстроту достижения мотором максимальной мощности. Расчетная формула крутящего момента от объема двигателя:

Мкр = VHхPE/0,12566, где

  • VH – рабочий объем двигателя (л),
  • PE – среднее эффективное давление в камере сгорания (бар).
Обороты двигателя

Скорость вращения коленчатого вала.

Формула для расчета мощности двигателя внутреннего сгорания автомобиля имеет следующий вид:

P = Mкр * n/9549 [кВт], где:

  • Mкр – крутящий момент двигателя (Нм),
  • n – обороты коленчатого вала (об./мин.),
  • 9549 – коэффициент, дабы обороты подставлять именно в об/мин, а не косинусами альфа.

Поскольку по формуле, результат получим у кВт, то при надобности также можно конвертировать в лошадиные силы или попросту умножать на коэффициент 1,36.

Использование данных формул — это самый простой способ перевести крутящий момент в мощность.

А дабы не вдаваться во все эти подробности быстрый расчет мощности ДВС онлайн, можно произвести, используя наш калькулятор.

Но, к сожалению, данная формула отражает лишь эффективную мощность мотора которая не вся доходит именно до колес автомобиля. Ведь идут потери в трансмиссии, раздаточной коробке, на паразитные потребители (кондиционер, генератор, ГУР и т.п.) и это без учета таких сил как сопротивление качению, сопротивление подъему, аэродинамическое сопротивление.

Как рассчитать мощность по объему двигателя

Если же вы не знаете крутящий момент двигателя своего автомобиля, то для определения его мощности в киловаттах также можно воспользоваться формулой такого вида:

Ne = Vh * pe * n/120 (кВт), где:

  • Vh — объём двигателя, см³
  • n — частота вращения, об/мин
  • pe — среднее эффективное давление, МПа (на обычных бензиновых моторах составляет порядка 0,82 — 0,85 МПа, форсированных — 0,9 МПа, а для дизеля от 0,9 и до 2,5 МПа соответственно).

Для получения мощности движка в «лошадках», а не киловаттах, результат следует разделить на 0,735.

Расчет мощности двигателя по расходу воздуха

Такой же приблизительный расчет мощности двигателя можно определять и по расходу воздуха. Функция такого расчета доступна тем, у кого установлен бортовой компьютер, поскольку нужно зафиксировать значение расхода, когда двигатель автомобиля, на третьей передаче, раскручен до 5,5 тыс. оборотов. Полученное значение с ДМРВ делим на 3 и получаем результат.

Формула как рассчитать мощность ДВС по расходу воздуха в итоге выглядит так:

Gв [кг]/3=P[л.с.]

Такой расчет, как и предыдущий, показывает мощность брутто (стендовое испытание двигателя без учета потерь), которая выше на 10—20% от фактической. А еще стоит учесть, что показания датчика ДМРВ сильно зависят от его загрязненности и калибровок.

Расчет мощности по массе и времени разгона до сотни

Еще один интересный способ как рассчитать мощность двигателя на любом виде топлива, будь-то бензин, дизель или газ – по динамике разгона. Для этого используя вес автомобиля (включая пилота) и время разгона до 100 км. А чтобы Формула подсчета мощности была максимально приближена к истине нужно учесть также потери на пробуксовку в зависимости от типа привода и быстроту реакции разных коробок передач. Приблизительные потери при старте для переднеприводных составит 0,5 сек. и 0,3-0,4 у заднеприводных авто.

Используя этот калькулятор мощности ДВС, который поможет определить мощность двигателя исходя из динамики разгона и массы, вы сможете быстро и достаточно точно узнать мощь своего железного коня не вникая в технические характеристики.

Расчет мощности ДВС по производительности форсунок

Не менее эффективным показателем мощности автомобильного двигателя является производительность форсунок. Ранее мы рассматривали её расчет и взаимосвязь, поэтому, труда, высчитать количество лошадиных сил по формуле, не составит. Подсчет предполагаемой мощности происходит по такой схеме:

Где, коэффициент загруженности не более 75-80% (0,75…0,8) состав смеси на максимальной производительности где-то 12,5 (обогащенная), а коэффициент BSFC будет зависеть от того какой это у вас двигатель, атмосферный или турбированный (атмо — 0. 4-0.52, для турбо — 0.6-0.75).

Узнав все необходимые данные, вводите в соответствующие ячейки калькулятора показатели и по нажатию кнопки «Рассчитать» Вы сразу же получаете результат, который покажет реальную мощность двигателя вашего авто с незначительной погрешностью. Заметьте, что вам совсем не обязательно знать все представленные параметры, можно расчищать мощность ДВС отдельно взятым методом.

Ценность функционала данного калькулятора заключается не в расчете мощности стокового автомобиля, а если ваш автомобиль подвергся тюнингу и его масса и мощность притерпели некоторые изменения.

Часто задаваемые вопросы

  • Как рассчитать мощность двигателя внутреннего сгорания?

    Мощность двигателя в кВт можно рассчитать по объему двигателя и оборотах коленвала. Формула расчета мощности двигателя имеет вид:
    Ne = Vh * Pe * n / 120 (кВт), где:
    Vh — объём двигателя, см³
    n — количество оборотов коленчатого вала за минуту
    Pe — среднее эффективное давление, Мпа

  • Какой коэффициент учитывать при расчете мощности двигателя?

    Коэффициент мощности (cosϕ) для расчета мощности электродвигателя принимают равным 0,8 для маломощных двигателей (менее 5,5 кВт) или 0,9 для двигателей мощностью свыше 15 кВт.

  • Как рассчитать мощность двигателя по крутящему моменту?

    Для определения мощности двигателя в киловаттах, когда известен крутящий момент, можно по формуле такого вида: P = Mкр * n/9549, где:
    Mкр – крутящий момент (Нм),
    n – обороты коленвала (об. /мин.),
    9549 – коэффициент для перевода оборотов в об/мин.

  • Как рассчитать мощность двигателя по расходу воздуха?

    Рассчитать мощность двигателя в кВт зная его потребления воздуха (при наличии бортового компьютера) можно используя простую схему. Необходимо раскрутить двигатель на третьей передаче до 5500 об/мин (пик крутящего момента) и по показаниям, на тот момент, зафиксировать расход воздуха, а затем разделить то значение на три. В результате такого математического вычисления можно узнать приблизительную мощность двигателя с небольшой погрешностью.

почему у атмосферных моторов нет будущего :: Autonews

Наддув без вариантов: почему у атмосферных моторов нет будущего 

Летом организаторы международного конкурса «Двигатель года» (International Engine of the Year) назвали лучшие моторы 2016 года. Эксперты оценивали силовые агрегаты по нескольким параметрам: экологичность, динамические характеристики и расход топлива. При этом в тройке лидеров не оказалось ни одного атмосферного агрегата. По результатам голосования победу одержал 3,9-литровый битурбо V8, который устанавливают на Ferrari 488 GTB. На втором месте оказалась гибридная силовая установка BMW i8, в составе которой тоже есть наддувный бензиновый мотор объемом 1,5 литра. Третьим стал шестицилиндровый турбированный двигатель Porsche, которым комплектуют спорткары 911. Повальный переход на турбированные моторы в мировом автопроме происходит отнюдь не для обеспечения высоких показателей мощности.
По мнению специалистов НАМИ, все дело в экологических нормах, которые могут привести к исчезновению атмосферных моторов.

С атмосферных двигателей можно снять практически такую же удельную мощность, что и с турбированных. Самым высокопроизводительным безнаддувным мотором на текущий момент остается 4,5-литровый V8 от Ferrari 458 Speciale A, который выдает 605 лошадиных сил. Таким образом, удельная отдача агрегата составляет 134 л.с. с одного литра объема. Для сравнения, с 4,0-литрового V6 TFSI с двумя турбинами (Audi RS6) инженеры сняли 605 л.с. – 151 л.с. с одного литра объема.

В автомобильных двигателях без наддува литровая мощность выше 100 л.с. обеспечивается, в первую очередь, за счет повышения его предельных оборотов (быстроходности), пояснил директор Центра «Энергоустановки» ФГУП «НАМИ» Алексей Теренченко. В качестве примера кандидат технически наук вспомнил мотор мотоцикла Honda CBR400F (145 л.с./1 л), максимальная мощность которого достигается на 12 300 оборотах в минуту. Абсолютные рекордсмены здесь двигатели болидов Формулы-1, с которых снимают по 310 л.с. на 1 л, но уже на 19 000 оборотах.
 


Влияние на литровую мощность оказывают и другие факторы: степень сжатия, смесеобразование, сгорание. Например, в 1997 г. Alfa Romeo начала устанавливать на седаны 156 двигатели линейки Twin Spark, в которых было по две свечи на цилиндр. Моторы выдавали рекордную для европейского автопрома по тем временам удельную мощность. «Четверка» объемом 1,75 л обеспечивала 144 л.с., а 2,0-литровый мотор – 165 лошадиных сил. У японских брендов двигатели были еще производительнее. Например, в начале 1990-х Honda разработала DOHC i-VTEC объемом 1,6 л, который выдавал 160 лошадиных сил. При этом максимальная мощность достигалась практически на мотоциклетных оборотах – коленвал Honda Civic раскручивался до 8 тыс. оборотов в минуту. Позже на Honda S2000 появилась бензиновая «четверка» объемом 2,0 л с высокой степенью сжатия, которая выдавала 250 л. с. (125 л.с. на 1 л объема). В российском автопроме рекордсменом по удельной мощности является двигатель АвтоВАЗа под индексом 21127, которым комплектуется Lada Vesta (1,6 л, 106 лошадиных сил).

Представитель НАМИ, в свою очередь, пояснил, что все эти факторы, повышающие отдачу мотора, имеют второстепенное значение. «Быстроходность двигателя ограничивает процесс газообмена, для улучшения которого стремятся увеличить число цилиндров, уменьшить отношение хода поршня к диаметру цилиндра, увеличить количество клапанов на цилиндр, повысить пропускную способность выпускной и особенно впускной системы», — уточнил Теренченко.

Автопроизводители и дальше продолжили бы совершенствовать атмосферные моторы, если бы не жесткие экологические нормы, ограничивающие уровень выбросов СО2 в атмосферу. Одним из самых популярных способов для выполнения требований, помимо сокращения веса автомобилей, является уменьшение рабочего объема двигателей. «При уменьшении рабочего объема пропорционально снижается его мощность и, соответственно, ухудшаются ездовые качества автомобиля. Чтобы избежать этого, крутящий момент и мощность двигателя восстанавливают до уровня двигателя большего литража за счет применения турбонаддува», — объяснил кандидат технических наук, добавив, что в обычном режиме такой мотор работает, как малообъемный «атмосферник».

 


При этом повышение предельных оборотов мотора также позволяет восстановить мощность, однако крутящий момент в этом случае будет низким. Именно по этой причине форсирование двигателя за счет применения турбонаддува более эффективно, чем повышение быстроходности силового агрегата.

При этом, пояснил представитель НАМИ, нет прямой зависимости между форсировкой двигателя при помощи турбины и его надежностью – все зависит от условий эксплуатации. У атмосферных двигателей обратная ситуация: долговечность мотора во многом связана с его литровой мощностью. «С увеличением оборотов и, соответственно, литровой мощности, растут инерционные нагрузки, трение и износ основных деталей, поэтому надежность снижается», — рассказал Алексей Теренченко.

Например, срок службы атмосферного двигателя Формулы-1 равен 1 тыс. км, в то время как на массовых автомобилях эта цифра в среднем составляет 150 тыс. километров. НАМИ также работает над повышением удельной мощности двигателей. По прогнозам разработчиков, реально добиться цифр порядка 125-135 л.с. на 1 л объема за счет применения разных комбинаций новых и традиционных технологий. В том числе, регулируемого клапанного привода, регулируемой степени сжатия, непосредственного впрыска топлива в цилиндры, турбонаддува, гибридизации и электрификации силового агрегата. В моторе будущего флагмана проекта «Кортеж» также предусмотрен целый ряд технических инноваций, но едва ли он будет атмосферным.

Почему автомобиль со временем теряет мощность — Российская газета

В процессе эксплуатации автомобиля определенные его характеристики неизбежно меняются. Некоторые автовладельцы замечают, что со временем машина становится менее приемистой, теряет в динамике разгона и не так резво, как прежде, идет на обгон. Возможно, дело в том, что двигатель перестает работать на всю свою мощность? Рассмотрим факторы, которые влияют на отдачу мотора.

Издание aif.ru в своей публикации отмечает, что проблемы с работой двигателя автомобиля возникают, в первую очередь, из-за несвоевременного технического обслуживания.

Прежде чем говорить о причинах снижения эффективности работы мотора, стоит исключить одну из главных причин — механические повреждения его компонентов. Очевидно, что, если в моторе есть изношенные или поврежденные поршни, поршневые кольца, цилиндры, прокладки или другие детали, рассчитывать на то, что он будет работать исправно, не приходится. И не стоит забывать, что повреждение деталей двигателя оборачивается для автовладельца чаще всего дорогостоящим ремонтом или заменой компонентов.

Кроме того, на эффективность работы двигателя и на его способность выдавать заявленный максимум мощности напрямую влияет качество используемого топлива. Здесь действует простое правило: для того, чтобы двигатель работал по заявленным параметрам мощности, для его заправки необходимо использовать тип топливо, рекомендованный автопроизводителем. Например, современные турбомоторы и атмосферные двигатели предполагают применение топлива АИ-98. Манипуляции с целью адаптировать такой двигатель под более дешевое топливо — а такой маневр позволяет совершить блок управления мотором — приводят к тому, что мощность силового агрегата снижается, по меньшей мере, на 10-15%.

Для приготовления воздушно-топливной смеси в камеру сгорания двигателя поступает воздух из вне. И качество такой смеси напрямую зависит от чистоты воздуха и от его объема. Воздушный фильтр в системе двигателя ответственен за очистку воздуха. Нерегулярная замена этого компонента приводит к тому, что в камеру сгорания поступает плохо очищенный воздух и поступает он в недостаточном объеме именно из-за того, что грязный фильтр пропускает воздуха меньше, чем раньше. Все это влияет на качество топливной смеси, а значит, и на эффективность работы мотора. Чтобы избежать таких ситуаций, рекомендуется менять топливный фильтр не реже одного раза в год, а при больших пробегах — каждые 15 тыс. км.

Кислородный датчик — важный элемент системы дожига отработанный газов. Для работоспособности этого компонента качество топлива становится критичным условием. Если долгое время автомобиль работает на некачественном «горючем», катализатор загрязняется продуктами сгорания топлива и повреждается. Из-за этого кислородный датчик выдает блоку управления двигателем неправильные данные о качестве воздушно-топливной смеси. А блок управления, в свою очередь, передает двигателю неверные команды, и тот не может работать на полную мощность. Для того, чтобы исключить такие проблемы, стоит менять кислородные датчики каждые 80 тыс. км пробега.

Чистота и работоспособность компонентов топливной системы также влияют на показания работы мотора. Мощность двигателя может упасть из-за того, что топливный насос засорился или, например, забились форсунки впрыска топлива. В этом случае пропускная способность этих элементов снижается, в камеру сгорания не падает в нужном объеме топливо, в итоге из-за этого двигатель работает на 50%.

Купившим электронный ОСАГО больше не нужно возить с собой его распечатку:

Мы проверили, сколько реально мощности в Tesla Model 3

В нашей глобальной сети Motorsport Network команда проекта InsideEVs, как следует из названия, отвечает за всякие электромобильные штуки. Поэтому неудивительно, что именно эти ребята решили выполнить независимые замеры «Теслы» Model 3, загнав на беговые барабаны по очереди сразу две версии американского электромобиля — Standart Plus и двухмоторную Performance. Так ли они круты, как заявляют фирменные анонсы и посты Илона Маска в «Твиттере»? Ведь непосредственно отдачу силовых установок фирма в официальных материалах не публикует.

Киловатты и лошадиные силы

Но прежде чем запустить стенд, давайте разберемся с единицами измерения мощности. Все привыкли оценивать ее в лошадиных силах, хотя международная система предписывает фиксировать работу, произведенную за единицу времени, в ваттах (применительно к машинам — в киловаттах, кВт). И производители электрокаров все чаще следуют правильному стандарту.

Впрочем, с переводом величин вопросов возникнуть не должно. Да, лошадиные силы бывают разные — «имперские», котловые… Однако в Европе (и России) обычно ориентируются на метрические значения. И тогда получается, что

100 кВт примерно равны 136 л.с., а 1 кВт, соответственно, составляет 1,36 л.с.

Вопрос выносливости

На практике реальная отдача электромобиля зависит не только от теоретических возможностей двигателя, но также от состояния аккумуляторов и режима езды. В этом плане машины на батарейках разительно отличаются от моделей с ДВС, которые способны в течение достаточно длительного времени работать на пике возможностей без потери значений мощности. Скажем так: гонки по овалам и рекорды скорости — не самые коронные дисциплины для электрокаров.

Мощность: пиковая и постоянная

Иными словами, в случае с двигателем внутреннего сгорания реальная максимальная мощность обычно плюс-минус совпадает с теоретически заявленной производителем (если не брать в расчет износ компонентов или, допустим, увеличенные потери в трансмиссии). А на электромобиле батарея не выдерживает длительной работы на пределе — при таком насилии, интенсивном разряде, со временем происходит деградация компонентов и аккумулятор начинает умирать, теряя расчетные показатели. Вот почему европейский стандарт ЕСЕ R85 применительно к электрокарам определяет максимальную мощность как ту, что силовая установка способна развивать в течение в среднем 30 минут.

Наши результаты

Так вот, целью проведенных коллегами из InsideEVs тестов как раз и стало выяснение пиковых показателей отдачи Tesla Model 3. Сколько киловатт и ньютон-метров способна обеспечить силовая установка американского электрокара без оглядки на стандарты сертификационных испытаний?

Не хотелось бы спойлерить, но если вам лень смотреть шестиминутный ролик или есть сложности с пониманием английских субтитров, расскажем. Версия Standart Plus показала на стенде 192 кВт (261 л.с.) и 310 Нм при 6980 об/мин и 4950 об/мин соответственно, при этом к 14700 об/мин показатели плавно снижаются. Модификация Performance ожидаемо круче — 347 кВт (472 л.с.) при 6550 об/мин и 545 Нм при 5860 об/мин, однако затем с ростом оборотов отдача начинает резко падать, хотя к 14000 об/мин на колеса все равно приходит порядка 170 кВт (230 сил). Отметим, что во время испытаний батареи были заряжены примерно на 80%, поэтому с полными аккумуляторами пиковые мощность и крутящий момент могут оказаться чуть выше.

Чем определяется мощность автомобиля?

Многие люди, покупая автомобиль или задумываясь про мощность двигателя, смотрят на значение «количество лошадиных сил», а вовсе не на показатель крутящего момента и его максимальное значение. Тем не менее для дальновидных водителей эта особенность двигателя, дающая возможность радостно разгоняться и как следствие, ловко маневрировать, является тоже очень важной. Что же нужно знать об этой характеристике, от чего она зависит и автомобиль с каким крутящим моментом лучше?

По определению, момент силы – физическая величина, вычисляемое как произведение радиус-вектора, который имеет начальную точку на оси вращения, а конечную в точке приложения силы, на вектор этой силы. Это понятие, характеризующее вращательное действие силы, направленной на твёрдое тело. Крутящий момент в двигателе автомобиля определяется умножением действующей на поршень силы на расстояние от центральной оси шейки шатуна до коленчатого вала, точнее, центральной его оси. Это тяговая характеристика, момент силы, для информации, измеряется в ньютон-метрах.

Мощность машины и крутящий момент двигателя тесно связаны. Садясь в автомобиль и следуя по трассе, водитель выясняет, что способность двигателя производить хорошую динамику на наименьших оборотах имеет первостепенное значение. Конечно же, после безопасности. Скорость и динамика разгона автомобиля зависят от мощности двигателя, всем известных лошадиных сил. Мощность вычисляется умножением момента силы на частоту вращения вала. Соответственно, есть два пути ее повышения: повысить крутящий момент либо частоту вращения вала. Повысить эту частоту у поршневого двигателя нелегко: влияют силы инерции (по квадрату оборотов), нагрузки на конструкцию, трение (в десятки раз). У каждого двигателя на графике будет точка перегиба, где крутящий момент, ненадолго повысившись, падает, так как при работе на высокой мощности ухудшается наполнение цилиндров смесью топлива и воздуха. Другой путь: увеличить крутящий момент. Здесь нужен наддув для того, чтобы прокачать через мотор вдвое большее количество воздуха и горючего. Тогда крутящий момент увеличится примерно вдвое все при тех же оборотах. Но в этом случае нарастают тепловые нагрузки, отсюда другие проблемы.

Если взять средний автомобиль, то все силы будут задействованы лишь при 5000–6500 об/мин. А при обычной езде по городу, при низких оборотах, в 23 тысячи, автомобиль приводят в движение только половина лошадиных сил. И только при осуществлении скоростного маневра на трассе, при высоких оборотах проявится полная сила мотора. Притом любому ясно, что чем быстрее двигатель будет набирать обороты, тем раньше разгонится автомобиль. Крутящий момент прямо пропорционально зависит от длины шатуна. То есть чем он длиннее, тем выше крутящий момент.

Зачастую человеку кажется, что если у него столько-то лошадиных сил под капотом, то все они на него каждую секунду и работают. А вот и нет! Допустим, есть автомобиль, максимальная мощность двигателя которого будет при 5000–6500 об/мин. То есть для достаточного ускорения придется разогнать мотор увеличить обороты в минуту. Это удастся лишь через определенное время, которое может оказаться очень важным при обгоне. В случае мощного мотора с нормальным крутящим моментом, когда необходимая мощность появляется уже при 2000 оборотах, получим моментальное ускорение для любого рискованного маневра.

Разница крутящего момента у малолитражки бензинового или дизельного двигателя

Принято считать, что почти все автомобили-малолитражки с «тяговитыми» двигателями, а также авто с дизельными моторами. Водители автомобилей с дизельным двигателем особенно замечают быстрый разгон даже при низких оборотах. Они, похваляясь, чаще всего говорят, что в нем, в крутящем моменте, вся сила. Теперь ясно: крутящий момент не в меньшей степени, чем лошадиные силы, важная характеристика железного коня. На него следует смотреть в первую очередь при покупке нового автомобиля, а также при подборе подержанного.

Зависимость оборотов двигателя от крутящего момента

Вот и стало ясно, чем те же самые 200 Hм на 1700 об/мин. лучше, чем те же 200 при 4000 оборотах в мин. Теперь понятно, что именно крутящий момент влияет на маневренность и скорость разгона автомобиля. Это заметно по времени, в течение которого можно разгоняться дальше. Конечно, здорово изобрести машину, у двигателя которой значение крутящего момента на любых оборотах низких ли, средних или высоких стабильно и максимально было бы приближено к пиковому. Жаль, но такого идеального варианта пока не существует. Это уже из области фантастики.

Код ТН ВЭД 8703407095. Автомобили повышенной проходимости с рабочим объемом цилиндров двс более 3000 см3, но менее 3500 см3, поименованные в доп. примечании еаэс 6 к данной группе, у которых мощность двс больше максимальной 30-минутной мощности эл. двигателя. Товарная номенклатура внешнеэкономической деятельности ЕАЭС

Письмо 01-11/74405 от 29.12.2020 ФТС России (Ставки акцизов по ввозимым подакцизным товарам, коды вида платежа и КБК)

1418 руб/л.с. — Легковые: С ДВИГАТЕЛЕМ..более 300 кВт (400 лс)
Письмо 01-11/74405 от 29.12.2020 ФТС России (Ставки акцизов по ввозимым подакцизным товарам, коды вида платежа и КБК)

1370 руб/л.с. — Легковые: С ДВИГАТЕЛЕМ..более 225 кВт (300 лс)
Письмо 01-11/74405 от 29.12.2020 ФТС России (Ставки акцизов по ввозимым подакцизным товарам, коды вида платежа и КБК)

804 руб/л.с. — Легковые: С ДВИГАТЕЛЕМ..более 150 кВт (200 лс)
Письмо 01-11/74405 от 29.12.2020 ФТС России (Ставки акцизов по ввозимым подакцизным товарам, коды вида платежа и КБК)

491 руб/л.с. — Легковые с ДВИГАТЕЛЕМ..более 112,5кВт(150лс)
Письмо 01-11/74405 от 29.12.2020 ФТС России (Ставки акцизов по ввозимым подакцизным товарам, коды вида платежа и КБК)

51 руб/л.с. — Легковые ПРОЧИЕ,С ДВИГАТЕЛЕМ..более 67,5кВт (90лс)
Письмо 01-11/74405 от 29.12.2020 ФТС России (Ставки акцизов по ввозимым подакцизным товарам, коды вида платежа и КБК)

Не облагается- Легковые с двигателем до 67,5кВт (90лс)
Письмо 01-11/74405 от 29. 12.2020 ФТС России (Ставки акцизов по ввозимым подакцизным товарам, коды вида платежа и КБК)

Не облагается- Прочие
Письмо 01-11/74405 от 29.12.2020 ФТС России (Ставки акцизов по ввозимым подакцизным товарам, коды вида платежа и КБК)

Самый большой дизельный двигатель в мире

Сегодня дизельные двигатели используются повсеместно: на тепловозах и грузовиках, судах и тракторах, легковых автомобилях и дизельных электростанциях.

Дизельный двигатель основан на воспламенении в цилиндре распыленного топлива (воспламенение происходит от воздуха, нагретого при сжатии). Дизельный двигатель может использовать низкосортное топливо, выдает высокий вращающий момент при низких оборотах и имеет высокий КПД (40-45%), что делает его экономичнее бензиновых двигателей, где около 70% топлива сгорает, не преобразовываясь в механическую энергию.

Дизельный двигатели могут быть очень большими. Наиболее крупные размеры имеет судовые агрегаты, установленные на больших судах. Но среди этих гигантов выделяется одна модель, которая по праву занимает почетное звание самого большого дизельного двигателя в мире.

Компания Wartsila хорошо известна всем специалистам. Она специализируется на производстве судовых энергетических установок. Одна из них – RTA-96C. Это и есть линейка двигателей, поражающих воображения обывателя.

Технически RTA-96C представляет собой двухтактный турбокомпрессорный двигатель, число цилиндров может варьироваться от 6 до 14. Версия с 14 цилиндрами является крупнейшим поршневым ДВС и устанавливается на крупнотоннажные контейнеровозы. Высота этого двигателя превышает 13 метров, длина – 27 метров, вес – свыше 2,3 тыс. тонн.

Максимальная мощность, которую способен развить этот гигант, равна почти 109 тыс. лошадиных сил. Первым судном, получившим такой двигатель, стала знаменитая «Emma Maersk», которая с вместимостью 11 тыс. TEU совсем недавно была самым большим контейнеровозом в мире.

Диаметр каждого цилиндра составляет почти метр (960 мм) при ходе поршня в 2500 мм. Объем цилиндров равен 25,5 тыс. литров.

Максимальное количество оборотов традиционно небольшое – 102, но крутящий момент при этом развивается свыше 7,5 млн Нм. Удельный расход топлива составляет 3,8 л/с, в час же агрегат «съедает» 13 тыс. литров бункера при максимальной мощности.

КПД этого двигателя-гиганта является самым высоким среди всех произведенных когда-либо дизельных двигателей – более 50%.

Некоторые сравнения, чтобы оценить мощность двигателя: он может обеспечить электроэнергией небольшой город. При 102 оборотов в минуту он производит 80 млн Ватт электроэнергии. Если средняя бытовая электролампа потребляет 60 Вт, 80 миллионов Ватт вполне достаточно для 1,3 млн ламп. Если в среднестатистической квартире одновременно горит 6 осветительных ламп, двигатель будет производить достаточное количество электроэнергии, чтобы осветить 220 тыс. домовладений. Этого достаточно для обеспечения электроэнергией города с 500 тыс. населения.

Коленчатый вал

Стоимость работы двигателя

Двигатель Wartsila-Sulzer RTA96 потребляет 13 тыс. литров топлива в час. Если в барреле нефти 158,76 литра, самый большой двигатель в мире потребляется 81,1 баррелей нефти в час. Если цена на нефть составляет $67/баррель на мировых рынках нефти, то стоимость 1 часа работы двигателя с точки зрения расхода топлива будет составлять $5,4 тыс. в час.

Поршни

Мощность

против крутящего момента — x-engineer.org

В этой статье мы поймем, как создается крутящий момент двигателя , как рассчитывается мощность двигателя и что такое крутящий момент и кривая мощности . Кроме того, мы собираемся взглянуть на карты крутящего момента и мощности двигателя (поверхности).

К концу статьи читатель сможет понять разницу между крутящим моментом и мощностью, как они влияют на продольную динамику автомобиля и как интерпретировать кривые крутящего момента и мощности при полной нагрузке.

Определение крутящего момента

Крутящий момент можно рассматривать как вращающее усилие , приложенное к объекту. Крутящий момент (вектор) — это произведение между силой (вектором) и расстоянием (скаляр). Расстояние, также называемое плечом рычага , измеряется между усилием и точкой поворота. Подобно силе, крутящий момент является вектором и определяется амплитудой и направлением вращения.

Изображение: Момент затяжки на колесном болте

Представьте, что вы хотите затянуть / ослабить болты колеса.Нажатие или вытягивание рукоятки гаечного ключа, соединенного с гайкой или болтом, создает крутящий момент (усилие поворота), который ослабляет или затягивает гайку или болт.

Крутящий момент Т [Нм] является произведением силы F [Н] и длины плеча рычага a [м] .

\ [\ bbox [# FFFF9D] {T = F \ cdot a} \]

Чтобы увеличить величину крутящего момента, мы можем либо увеличить силу, либо длину плеча рычага, либо и то, и другое.

Пример : Рассчитайте крутящий момент, полученный на болте, если рычаг гаечного ключа имеет значение 0.25 м и приложенная сила 100 Н (что приблизительно эквивалентно толкающей силе 10 кг )

\ [T = 100 \ cdot 0,25 = 25 \ text {Нм} \]

Тот же крутящий момент можно было бы получить, если бы плечо рычага было 1 м и усилие всего 25 Н .

Тот же принцип применяется к двигателям внутреннего сгорания. Крутящий момент на коленчатом валу создается силой, прикладываемой к шейке шатуна через шатун.

Изображение: Крутящий момент на коленчатом валу

Крутящий момент T будет создаваться на коленчатом валу на каждой шейке шатуна каждый раз, когда поршень находится в рабочем ходе.Плечо рычага и в данном случае имеет радиус кривошипа (смещение) .

Величина силы F зависит от давления сгорания внутри цилиндра. 2} {4} = \ frac {\ pi \ cdot 0.2 \]

Во-вторых, мы вычислим силу, приложенную к поршню. Чтобы получить силу в Н, (Ньютон), мы будем использовать давление, преобразованное в Па (Паскаль).

\ [F = p \ cdot A_p = 120000 \ cdot 0,0056745 = 680.94021 \ text {N} \]

Предполагая, что вся сила в поршне передается на шатун, крутящий момент рассчитывается как:

\ [T = F \ cdot a = 680.94021 \ cdot 0.062 = 42.218293 \ text {Нм} \]

Стандартная единица измерения крутящего момента — Н · м (Ньютон-метр).В частности, в США единицей измерения крутящего момента двигателя является фунт-сила · фут (фут-фунт). Преобразование между Н · м и фунт-сила · фут :

\ [\ begin {split}
1 \ text {lbf} \ cdot \ text {ft} & = 1.355818 \ text {N} \ cdot \ text {m} \\
1 \ text {N} \ cdot \ text {m} & = 0.7375621 \ text {lbf} \ cdot \ text {ft}
\ end {split} \]

Для нашего конкретного примера крутящий момент в британских единицах (США):

\ [T = 42.218293 \ cdot 0.7375621 = 31.138615 \ text {lbf} \ cdot \ text {ft} \]

Крутящий момент T [N] также может быть выражен как функция среднее эффективное давление двигателя.

\ [T = \ frac {p_ {me} V_d} {2 \ pi n_r} \]

где:
p me [Па] — среднее эффективное давление
V d [m 3 ] — рабочий объем двигателя (объем)
n r [-] — количество оборотов коленчатого вала за полный цикл двигателя (для 4-тактного двигателя n r = 2 )

Определение мощности

В физике мощность — это работа, выполненная во времени, или, другими словами, скорость выполнения работы .В системах вращения мощность P [Вт] является произведением крутящего момента T [Нм] и угловой скорости ω [рад / с] .

\ [\ bbox [# FFFF9D] {P = T \ cdot \ omega} \]

Стандартная единица измерения мощности — Вт, (ватт) и скорости вращения — рад / с, (радиан в секунду) . Большинство производителей транспортных средств предоставляют мощность двигателя в л.с., (мощность торможения) и скорость вращения в об / мин, (оборотов в минуту).Поэтому мы будем использовать формулы преобразования как для скорости вращения, так и для мощности.

Чтобы преобразовать об / мин в рад / с , мы используем:

\ [\ omega \ text {[rad / s]} = N \ text {[rpm]} \ cdot \ frac {\ pi} { 30} \]

Чтобы преобразовать рад / с в об / мин , мы используем:

\ [N \ text {[rpm]} = \ omega \ text {[rad / s]} \ cdot \ frac {30 } {\ pi} \]

Мощность двигателя также может быть измерена в кВт вместо Вт для более компактного значения.Чтобы преобразовать кВт в л.с. и наоборот, мы используем:

\ [\ begin {split}
P \ text {[bhp]} & = 1.36 \ cdot P \ text {[кВт]} \\
P \ text {[кВт]} & = \ frac {P \ text {[bhp]}} {1.36}
\ end {split} \]

В некоторых случаях вы можете найти л.с., (мощность в лошадиных силах) вместо л.с. как единица измерения мощности.

Имея скорость вращения, измеренную в об / мин , и крутящий момент в Нм , формула для расчета мощности следующая:

\ [\ begin {split}
P \ text {[кВт]} & = \ frac {\ pi \ cdot N \ text {[об / мин]} \ cdot T \ text {[Нм]}} {30 \ cdot 1000} \\
P \ text {[HP]} & = \ frac {1.36 \ cdot \ pi \ cdot N \ text {[rpm]} \ cdot T \ text {[Nm]}} {30 \ cdot 1000}
\ end {split} \]

Пример . Рассчитайте мощность двигателя как в кВт, , так и в л.с. , если крутящий момент двигателя составляет 150 Нм, и частота вращения двигателя составляет 2800 об / мин .

\ [\ begin {split}
P & = \ frac {\ pi \ cdot 2800 \ cdot 150} {30 \ cdot 1000} = 44 \ text {kW} \\
P & = \ frac {1.36 \ cdot \ pi \ cdot 2800 \ cdot 150} {30 \ cdot 1000} = 59,8 \ text {HP}
\ end {split} \]

Динамометр двигателя

Скорость двигателя измеряется с помощью датчика на коленчатом валу (маховике). В идеале, чтобы рассчитать мощность, мы должны также измерить крутящий момент на коленчатом валу с помощью датчика. Технически это возможно, но не применяется в автомобильной промышленности. Из-за условий эксплуатации коленчатого вала (температуры, вибрации) измерение крутящего момента двигателя с помощью датчика не является надежным методом. Также довольно высока стоимость датчика крутящего момента. Следовательно, крутящий момент двигателя измеряется во всем диапазоне скорости и нагрузки с помощью динамометра (испытательный стенд) и отображается (сохраняется) в блоке управления двигателем.

Изображение: Схема динамометра двигателя

Динамометр — это в основном тормоз (механический, гидравлический или электрический), который поглощает мощность, производимую двигателем. Самым используемым и лучшим типом динамометра является электрический динамометр . Фактически это электрическая машина , которая может работать как генератор или как двигатель . Изменяя крутящий момент нагрузки генератора, двигатель может быть переведен в любую рабочую точку (скорость и крутящий момент).Кроме того, при отключенном двигателе (без впрыска топлива) генератор может работать как электродвигатель для раскрутки двигателя. Таким образом можно измерить трение двигателя и потери крутящего момента насоса.

В электрическом динамометре ротор соединен с коленчатым валом. Связь между ротором и статором электромагнитная. Статор прикреплен через плечо рычага к датчику нагрузки . Чтобы уравновесить ротор, статор будет прижиматься к датчику нагрузки. Крутящий момент T рассчитывается путем умножения силы F , измеренной в датчике нагрузки, на длину плеча a рычага.

\ [T = F \ cdot a \]

Параметры двигателя: тормозной момент, тормозная мощность (л.с.) или удельный расход топлива при торможении (BSFC) содержат ключевое слово «тормоз», потому что для их измерения используется динамометр (тормоз). .

В результате динамометрического испытания двигателя получается карт крутящего момента (поверхности), которые дают значение крутящего момента двигателя при определенных оборотах двигателя и нагрузке (стационарные рабочие точки). Нагрузка двигателя эквивалентна положению педали акселератора.

Пример карты крутящего момента для бензинового двигателя с искровым зажиганием (SI) :

900
Двигатель
крутящий момент
[Нм]
Положение педали акселератора [%]
5 10 20 30 40 50 60 100
Двигатель
оборотов

0 [об / мин]

45 90 107 109 110 111 114 116
1300 60 105 132 133 134 136 138 141
1800 35 89 133 141 1 42 144 145 149
2300 19 70 133 147 148 150 151 155
2800 3 55 133 153 159 161 163 165
3300 0 41 126 152 161 165 167 171
3800 0 33 116 150 160 167 170 175
4300 0 26 110 155 169 176 180 184
4800 9008 2 0 18 106 155 174 179 185 190
5300 0 12 96 147 167 175 181 187
5800 0 4 84 136 161 170 175 183
6300 0 0 72 120 145 153 159 171

Пример карты мощности для бензинового двигателя с искровым зажиганием (SI) :

Двигатель
мощность
[ Л. с.]
Положение педали акселератора [%]
5 10 20 9 0082 30 40 50 60 100
Двигатель
скорость
[об / мин]
800 582 1282 800 582 12 13 13 13 13
1300 11 19 24 25 25 25 26 26
1800 9 23 34 36 36 37 37 38
2300 6 23 44 48 48 49 49 51
2800 1 22 53 61 63 64 65 66
3300 0 19 59 71 76 78 78 80
3800 0 18 63 81 87 90 92 95
4300 0 16 67 95 103 108 110 113
4800 0 12 72 106 119 122 126 130
5300 0 9 72 111 126 132 137 141
5800 0 90 082 3 69 112 133 140 145 151
6300 0 0 65 108 130 137 143 153

Электронный блок управления (ЕСМ) ДВС имеет карту крутящего момента, хранящуюся в памяти. Он вычисляет (интерполирует) функцию крутящего момента двигателя от текущих оборотов двигателя и нагрузки. В блоке управления двигателем нагрузка выражается как давление во впускном коллекторе для бензиновых двигателей (искровое зажигание, SI) и время впрыска или масса топлива для дизельных двигателей (воспламенение от сжатия, CI). Стратегия расчета крутящего момента двигателя имеет поправки на основе температуры и давления всасываемого воздуха.

График данных крутящего момента и мощности, функции частоты вращения и нагрузки двигателя дает следующие поверхности:

Изображение: Поверхность крутящего момента двигателя SI

Изображение: Поверхность мощности двигателя SI

Для Для лучшей интерпретации карт крутящего момента и мощности можно построить двухмерную линию крутящего момента для фиксированного значения положения педали акселератора.

Изображение: кривые крутящего момента двигателя SI

Изображение: кривые мощности двигателя SI

Крутящий момент и мощность двигателя при полной нагрузке

Как вы видели, крутящий момент и мощность внутреннего сгорания двигатель зависит как от частоты вращения двигателя, так и от нагрузки. Обычно производители двигателей публикуют характеристики крутящего момента и кривых (кривые) при полной нагрузке (100% положение педали акселератора). Кривые крутящего момента и мощности при полной нагрузке подчеркивают максимальный крутящий момент и распределение мощности во всем диапазоне оборотов двигателя.

Изображение: параметры крутящего момента и мощности двигателя при полной нагрузке

Форма приведенных выше кривых крутящего момента и мощности не соответствует реальному двигателю, их цель — объяснить основные параметры. Тем не менее, формы аналогичны реальным характеристикам искрового зажигания (бензин), левого впрыска, атмосферного двигателя.

Частота вращения двигателя N e [об / мин] характеризуется четырьмя основными моментами:

N min — минимальная стабильная частота вращения двигателя при полной нагрузке
N Tmax — частота вращения двигателя при максимальном крутящем моменте двигателя
N Pmax — частота вращения коленчатого вала двигателя при максимальной мощности; также называется номинальная частота вращения двигателя
N max — максимальная стабильная частота вращения двигателя

На минимальной частоте вращения двигатель должен работать плавно, без колебаний и остановок.Двигатель также должен позволять работать на максимальной скорости без каких-либо повреждений конструкции.

крутящий момент двигателя при полной нагрузке кривая T e [Нм] характеризуется четырьмя точками:

T 0 — крутящий момент двигателя при минимальных оборотах двигателя
T max — максимальный двигатель крутящий момент (максимальный крутящий момент или номинальный крутящий момент )
T P — крутящий момент двигателя при максимальной мощности двигателя
T M — крутящий момент двигателя при максимальной частоте вращения двигателя

В зависимости от типа всасываемого воздуха (атмосферный или с турбонаддувом) максимальный крутящий момент может быть точечным или линейным.Для двигателей с турбонаддувом или наддувом максимальный крутящий момент может поддерживаться постоянным между двумя значениями частоты вращения двигателя.

Мощность двигателя при полной нагрузке кривая P e [л.с.] характеризуется четырьмя точками:

P 0 — мощность двигателя при минимальных оборотах двигателя
P max — максимальная мощность двигателя мощность (пиковая мощность или номинальная мощность )
P T — мощность двигателя при максимальном крутящем моменте двигателя
P M — мощность двигателя при максимальной частоте вращения двигателя

Область между минимальными оборотами двигателя N мин и максимальная частота вращения двигателя Н Tmax называется зоной нижнего конца крутящего момента. Чем выше крутящий момент в этой области, тем лучше возможности запуска / ускорения транспортного средства. Когда двигатель работает в этой области при полной нагрузке, если сопротивление дороги увеличивается, частота вращения двигателя будет уменьшаться, что приведет к падению крутящего момента двигателя и остановке двигателя . По этой причине эта область также называется областью нестабильного крутящего момента .

Область между максимальной частотой вращения двигателя N Tmax и максимальной частотой вращения двигателя N Pmax называется диапазоном мощности .Во время разгона автомобиля для достижения наилучших характеристик переключение передач (вверх) следует выполнять на максимальной мощности двигателя. В зависимости от передаточных чисел коробки передач после переключения выбранная передача снижает частоту вращения двигателя до максимального крутящего момента, что обеспечивает оптимальное ускорение. Переключение передач на максимальной мощности двигателя позволит удерживать частоту вращения двигателя в пределах диапазона мощности.

Область между максимальной частотой вращения двигателя N Pmax и максимальной частотой вращения двигателя N max называется зоной верхнего конца крутящего момента.Более высокий крутящий момент приводит к более высокой выходной мощности, что означает более высокую максимальную скорость автомобиля и лучшее ускорение на высокой скорости.

Когда частота вращения двигателя поддерживается между максимальной частотой вращения двигателя N Tmax и максимальной частотой вращения двигателя N max , если сопротивление транспортного средства увеличивается, частота вращения двигателя упадет, а выходной крутящий момент увеличится, таким образом компенсация увеличения дорожной нагрузки. По этой причине эта область называется областью стабильного крутящего момента .

Ниже вы можете найти несколько примеров кривых крутящего момента и мощности при полной нагрузке для различных типов двигателей. Обратите внимание на форму кривых в зависимости от типа двигателя (с искровым зажиганием или с компрессионным зажиганием) и типа воздухозаборника (атмосферный или с турбонаддувом).

Крутящий момент и мощность двигателя Honda 2.0 при полной нагрузке

9008 0
Архитектура цилиндров 4-рядный

Изображение: Двигатель Honda 2.0 SI — кривые крутящего момента и мощности при полной нагрузке

Топливо бензин (SI)
Объем двигателя [см 3 ] 1998
Впрыск топлива порт клапана
Воздухозаборник атмосферный
Синхронизация клапана переменная
T макс. [Нм] 190
N Tmax [об / мин] 4500
33 P Л.с.] 155
N Pmax [об / мин] 6000
N макс. [об / мин] 6800

Saab 2.Крутящий момент и мощность двигателя 0T при полной нагрузке

Архитектура цилиндров 4-рядный

Изображение: Двигатель Saab 2.0T SI — кривые крутящего момента и мощности при полной нагрузке

Топливо бензин (SI)
Объем двигателя [см 3 ] 1998
Впрыск топлива порт клапана
Воздухозаборник с турбонаддувом
Выбор фаз газораспределения фиксированный
T макс. [Нм] 265
N Tmax [об / мин] 2500
P макс [л.с. 175
N Pmax [об / мин] 5500
N 9013 2 макс. [об / мин] 6300

Audi 2.0 Крутящий момент и мощность двигателя TFSI при полной нагрузке

9 0081 N max [об / мин]
Архитектура цилиндров 4-рядный

Изображение: Двигатель Audi 2.0 TFSI SI — кривые крутящего момента и мощности при полной нагрузке

Топливо бензин (SI)
Объем двигателя [см 3 ] 1994
Впрыск топлива прямой
Воздухозаборник с турбонаддувом
Синхронизация клапана фиксированная
T max [Нм] 280
N Tmax [об / мин] 1800 — 5000
P max [ Л.с.] 200
N Pmax [об / мин] 5100 — 6000
6500

Toyota 2.0 Крутящий момент и мощность двигателя D-4D при полной нагрузке

900 Выбор фаз газораспределения
Архитектура цилиндров 4-рядный

Изображение: Двигатель Toyota 2.0 CI — кривые крутящего момента и мощности при полной нагрузке

Топливо дизель (CI)
Объем двигателя [см 3 ] 1998
Впрыск топлива прямой
Воздухозаборник с турбонаддувом
фиксированный
T макс. [Нм] 300
N Tmax [об / мин] 2000 — 2800
33 P [Л.с.] 126
N Pmax [об / мин] 3600
N макс. [об / мин] 5200

«Мерседес-Бенц» 1.8 Крутящий момент и мощность двигателя Kompressor при полной нагрузке

90 085
Архитектура цилиндров 4-рядный

Изображение: Двигатель Mercedes Benz 1.8 Kompressor SI — кривые крутящего момента и мощности при полной нагрузке

Топливо бензин
Объем двигателя [см 3 ] 1796
Впрыск топлива порт клапана
Воздухозаборник с наддувом
с наддувом
синхронизация фиксированная
T max [Нм] 230
N Tmax [об / мин] 2800 — 4600
P макс [ P макс. ] 156
N Pmax [об / мин] 5200
N макс. [об / мин] 6250

BMW 3.0 крутящий момент и мощность двигателя TwinTurbo при полной нагрузке

900 Синхронизация клапана
Архитектура цилиндров 6-рядный

Изображение: Двигатель BMW 3.0 TwinTurbo SI — кривые крутящего момента и мощности при полной нагрузке

Топливо бензин
Объем двигателя [см 3 ] 2979
Впрыск топлива прямой
Воздухозаборник двухступенчатый
с турбонаддувом
переменная
T max [Нм] 400
N Tmax [об / мин] 1300 — 5000
33 P [Л. с.] 306
Н Pmax [об / мин] 5800
N макс. [об / мин] 7000

Mazda 2.Крутящий момент и мощность роторного двигателя 6 при полной нагрузке

Архитектура цилиндров 2 Ванкеля

Изображение: Двигатель Mazda 2.6 SI — кривые крутящего момента и мощности при полной нагрузке

Топливо бензин
Объем двигателя [см 3 ] 1308 (2616)
Впрыск топлива порт клапана
Воздухозаборник атмосферный
Время работы клапана фиксированный
T макс. [Нм] 211
N Tmax [об / мин] 5500
P макс.231
Н Pmax [об / мин] 8200
N макс. [об / мин] 9500

Porsche 3.6 крутящий момент и мощность двигателя при полной нагрузке

Архитектура цилиндров 6 плоских

Изображение: двигатель Porsche 3.6 SI — кривые крутящего момента и мощности при полной нагрузке

Топливо бензин
Объем двигателя [см 3 ] 3600
Впрыск топлива порт клапана
Воздухозаборник атмосферный
Регулировка фаз газораспределения регулируемая
T макс. [Нм] 405
N Tmax [об / мин] 5500
P макс.
N Pmax [об / мин] 7600
N макс. [об / мин] 8400

Ключевые положения, которые следует учитывать в отношении мощности и крутящего момента двигателя:

крутящий момент

  • крутящий момент является составляющей мощности
  • крутящий момент может быть увеличен путем увеличения среднего эффективного давление двигателя или за счет снижения потерь крутящего момента (трение, накачивание)
  • с более низким максимальным крутящим моментом, распределенным в диапазоне скоростей двигателя, с точки зрения тяги лучше, чем с более высокой точкой максимального крутящего момента
  • с низким конечным крутящим моментом очень важен для пусковых возможностей автомобилей
  • высокий крутящий момент полезен в условиях бездорожья, когда автомобиль эксплуатируется на больших уклонах дороги, но на низкой скорости

Мощность

  • Мощность двигателя зависит как от крутящего момента, так и от скорости
  • мощность может быть увеличена за счет увеличения крутящего момента или частоты вращения двигателя
  • высокая мощность важна для высоких скоростей автомобиля eds, чем выше максимальная мощность, тем выше максимальная скорость транспортного средства.
  • Распределение мощности двигателя при полной нагрузке в диапазоне оборотов двигателя влияет на способность автомобиля к ускорению на высоких скоростях.
  • для наилучшего ускорения, транспортное средство должно работать в диапазоне мощности, между максимальным крутящим моментом двигателя и мощностью

По любым вопросам или наблюдениям относительно этого руководства, пожалуйста, используйте форму комментариев ниже.

Не забывайте ставить лайки, делиться и подписываться!

Выходная мощность двигателя электромобиля

Что означает выходная мощность двигателя автомобиля?

В физике выходная мощность относится к количеству энергии, доставленной в течение заданного периода времени. Применительно к автомобильной промышленности это означает количество механической энергии, производимой двигателем, опять же в течение заданного периода времени. Это влияет на ускорение, тяговое усилие автомобиля (вес, который он может перемещать) и его способность подниматься в гору.

Будь то двигатель внутреннего сгорания или электродвигатель, выходная мощность механической энергии определяется произведением скорости вращения (измеряется в оборотах в минуту) и крутящего момента. Выраженный в Ньютон-метрах (Нм) крутящий момент описывает тяговую мощность двигателя.

Это объясняет тот факт, что два двигателя с одинаковой выходной мощностью могут вести себя по-разному и ощущаться водителем по-разному. Спортивный автомобиль демонстрирует характеристики, которые не могут сравниться с характеристиками большого грузовика, даже если они оба одинаково мощны с точки зрения мощности двигателя!

Как рассчитывается выходная мощность двигателя электромобиля ?

Производители не могут просто заявить мощность двигателя: она измеряется в процессе тестирования, что иллюстрируется изменениями крутящего момента в зависимости от скорости вращения.Значение, используемое производителями автомобилей, обычно относится к максимальной измеренной выходной мощности. Выражается в ваттах (Вт) и, в более общем смысле, в киловаттах (кВт).

Как найти выходную мощность двигателя электромобиля

Когда мы говорим об электрической системе, такой как в электромобиле, механическая мощность, выражаемая в ваттах (Вт), киловаттах (кВт) или лошадиных силах (PS), вычисляется путем умножения скорости (об / мин) на крутящий момент, вращательное эквивалент линейной силы, измеряемой в фунт-футах (фунт-фут) или ньютон-метрах (Нм). Но прежде чем приступить к каким-либо долгим вычислениям, быстрый поиск в Интернете приведет к появлению ряда веб-сайтов, на которых вы просто вводите скорость и крутящий момент вашего электромобиля, чтобы рассчитать его выходную мощность в киловаттах. Или вы можете посмотреть руководство по эксплуатации вашего автомобиля.

Как киловатты (кВт) соотносятся с мощностью (л.с.)?

«Лошадиная сила» исторически относится к выходной мощности автомобильного двигателя и восходит к концу девятнадцатого века. Это способ выразить выходную мощность более буквально, приравняв ее к рабочей нагрузке, которую люди могут понять.Таким образом, мощность в лошадиных силах, иногда обозначаемая аббревиатурой PS (немецкое «Pferdestärke»), означает мощность, производимую лошадью, чтобы поднять 75-килограммовый груз на один метр на высоту за одну секунду. В метрической системе оно равно примерно 736 Вт.

.

Таким образом, мощность двигателя электромобиля может быть взаимозаменяемо выражена в кВт или л.с. Например, двигатель R135 в ZOE выдает мощность двигателя 100 кВт или 135 л.с. — отсюда и название! Его крутящий момент теперь улучшен до 245 Нм по сравнению с 225 Нм у двигателя ZOE R110, выпущенного в 2018 году, чтобы сделать электромобиль более динамичным в ситуациях, когда требуется ускорение, например, при проезде или выезде на шоссе.

Какие факторы определяют выходную мощность электромобиля?

Роль двигателя — создавать механическую энергию из другой формы энергии. Таким образом, его выходная мощность определяется максимальной способностью преобразования энергии. В случае электромобиля его выходная мощность зависит от размера двигателя (его объема) и мощности входящего тока.

Что такое «полезная» энергия, выделяемая электродвигателем?

Выходная мощность также является результатом урожайности, т.е.е. соотношение количества поступающей поставляемой электроэнергии к исходящей доставленной механической энергии.

Не вся энергия, вырабатываемая электросетью или зарядной станцией, в конечном итоге используется для питания двигателя. Его можно потерять из-за тепла или трения по пути. Другими словами, механическая энергия, фактически используемая двигателем, является «полезной» энергией. Разделив фактическую выходную мощность электродвигателя на идеальную выходную мощность (равную начальной потребляемой мощности), вы получите механический КПД двигателя.

Итак, для электромобиля расчет «полезной» энергии можно найти, разделив выходную мощность (скорость x крутящий момент) на входную и выразив результат в процентах. Это иначе известно как формула эффективности r = P / C, где P — количество полезной продукции («продукта»), произведенной на количество C («стоимость») потребленных ресурсов.

Цель состоит в том, чтобы уменьшить эти потери выходной мощности для достижения максимальной энергоэффективности. Таким образом, большая часть энергии, хранящейся в аккумуляторе, используется для увеличения запаса хода электромобиля.В этом отношении ZOE работает особенно хорошо. Имея запас хода по WLTP * в 395 км благодаря аккумулятору емкостью 52 кВтч, он предлагает одно из лучших соотношений на рынке электромобилей во всех сегментах вместе взятых.

Выходная мощность, потребление и диапазон

При этом максимальная выходная мощность не влияет напрямую на запас хода электромобиля, так как стиль вождения оказывает наибольшее влияние на потребление энергии двигателем. Следовательно, речь идет не о самом эффективном двигателе электромобиля, а о самом эффективном поведении при вождении.Например, резкое ускорение будет означать скачок потребления электроэнергии. Периоды высокоскоростной езды также значительно расходуют заряд аккумулятора. Чем выше скорость, тем больше энергии требуется для ее поддержания.

И наоборот, расслабленное вождение снижает мгновенный расход и делает рекуперативное торможение более эффективным. Это принцип экологического вождения, который является одним из лучших способов увеличить запас хода электромобиля.

Miller Welder Generators — Сварочные аппараты и машины с приводом от двигателя

Сварочные аппараты с приводом от двигателя

включают двигатель, работающий на бензине, дизельном топливе или пропане, соединенный с электрическим генератором для выработки энергии для сварки Stick, TIG, MIG и порошковой сваркой.Сварочные аппараты с приводом от двигателя обычно перевозятся на грузовике или трейлере для использования на открытом воздухе. Электроэнергия, вырабатываемая сварочным аппаратом с приводом от двигателя, приводит в действие вентиляторы, насосы, воздушные компрессоры или другие электрические инструменты, которые обычно встречаются на строительных площадках.

Усовершенствованный Bobcat 200 Air Pak — это бесшумное, экономичное устройство «все в одном», обеспечивающее высокую мощность при компактных размерах и малом весе, а также ведущие в отрасли надежность и производительность.

Fusion 160 обеспечивает плавную и стабильную дугу либо от двигателя, либо от электросети 120/240 В, обеспечивая уникальное сочетание универсальности и производительности в легком корпусе.

Для операторов сервисных грузовиков классов 3-5, которые хотят консолидировать или повысить надежность своего силового оборудования, Bobcat 200 Air Pak Diesel представляет собой бесшумное, экономичное устройство «все в одном», которое поддерживает возможности мощности в компактном, легком месте, которое поддерживается благодаря лучшей в отрасли надежности и производительности, которую ожидают клиенты.

Для руководителей парка рабочих самосвалов, которые хотят сократить время простоя грузовиков классов 3-5, EnPak A30 является самым тихим и наиболее экономичным многофункциональным устройством, которое поддерживает мощность с приводом от ВОМ, включая 12 В постоянного тока, в компактном, компактном корпусе. легкое решение, обеспечивающее ведущую в отрасли надежность и производительность, ожидаемую от Miller.

Надежный уличный источник питания! Отлично подходит для фермы, ранчо, технического обслуживания и любителей.

Для руководителей парка рабочих самосвалов, которые хотят сократить время простоя грузовиков классов 3-5, EnPak A30 является самым тихим и наиболее экономичным многофункциональным устройством, которое поддерживает мощность с приводом от ВОМ, включая 12 В постоянного тока, в компактном, компактном корпусе. легкое решение, обеспечивающее ведущую в отрасли надежность и производительность, ожидаемую от Miller.

Возьмите под свой контроль, снизьте уровень шума и снизьте эксплуатационные расходы с помощью дистанционного запуска / остановки, стандартного для сварочных аппаратов / генераторов Bobcat 225.С легкостью включайте и выключайте машину удаленно, чтобы она работала только тогда, когда вам это нужно. Делайте больше с каждым баком топлива, увеличивайте интервалы между техобслуживанием и работайте, не возвращаясь к своей машине. Сварочный аппарат / генератор Bobcat 225 отлично подходит для сварки штангой и генераторов. Предназначен для ферм / ранчо, операций по техническому обслуживанию и ремонту, работы с грузовиками и использования в качестве автономного генератора.

Возьмите под свой контроль, снизьте уровень шума и снизьте эксплуатационные расходы с помощью дистанционного запуска / остановки, стандартного для сварочных аппаратов / генераторов Bobcat 260.С легкостью включайте и выключайте машину удаленно, чтобы она работала только тогда, когда вам это нужно. Делайте больше с каждым баком топлива, увеличивайте интервалы между техобслуживанием и работайте, не возвращаясь к своей машине. Сварочный аппарат / генератор Bobcat 260 отлично подходит для сварки штангой и порошковой проволокой и предназначен для операций по техническому обслуживанию / ремонту, грузовых автомобилей, строительства, фермы / ранчо и использования генератора.

Возьмите под свой контроль, снизьте уровень шума и снизьте эксплуатационные расходы с помощью дистанционного запуска / остановки, стандартного для сварочных аппаратов / генераторов Bobcat 260.С легкостью включайте и выключайте машину удаленно, чтобы она работала только тогда, когда вам это нужно. Делайте больше с каждым баком топлива, увеличивайте интервалы между техобслуживанием и работайте, не возвращаясь к своей машине. Сварочный аппарат / генератор Bobcat 260 отлично подходит для сварки палкой и порошковой проволокой и предназначен для операций по техническому обслуживанию / ремонту, грузовых автомобилей, строительства, фермы / ранчо и использования генераторов.

Прочный сварочный аппарат / генератор отлично подходит для сварки палкой и порошковой проволокой и предназначен для операций по техническому обслуживанию / ремонту, строительства, фермы, ранчо и использования генераторов.

Разработан для владельцев ферм и ранчо, которым требуется одно- и трехфазное питание для работы трехфазных систем кругового орошения на 480 В или обеспечения резервного питания для дома, фермы и ранчо.

Сварочные аппараты / генераторы

Trailblazer® обеспечивают непревзойденную производительность дуги, обеспечивая самую плавную и стабильную дугу в отрасли. Эксклюзивная технология Auto-Speed ​​™ компании Trailblazer обеспечивает превосходное время работы, повышенную топливную экономичность и улучшенные характеристики сварочного аппарата / генератора.Никакая другая компактная машина в классе 300 ампер не обеспечивает большей сварочной мощности или большей вспомогательной мощности с лучшей топливной экономичностью и меньшим уровнем шума — для продуктивных, прибыльных и более тихих рабочих мест.

Сварочные аппараты / генераторы

Trailblazer® обеспечивают непревзойденную производительность дуги, обеспечивая самую плавную и стабильную дугу в отрасли. Эксклюзивные технологии Trailblazer — Auto-Speed ​​™ и дополнительная мощность Excel ™ — обеспечивают превосходное время работы, повышенную топливную экономичность и улучшенные характеристики сварочного аппарата / генератора.Никакая другая компактная машина в классе 300 ампер не обеспечивает большей сварочной мощности или большей вспомогательной мощности с лучшей топливной экономичностью и меньшим уровнем шума — для продуктивных, прибыльных и более тихих рабочих мест.

Сварочные аппараты / генераторы

Trailblazer® обеспечивают непревзойденную производительность дуги, обеспечивая самую плавную и стабильную дугу в отрасли. Эксклюзивная технология Auto-Speed ​​™ компании Trailblazer обеспечивает превосходное время работы, повышенную топливную экономичность и улучшенные характеристики сварочного аппарата / генератора.Никакая другая компактная машина в классе 300 ампер не обеспечивает большей сварочной мощности или большей вспомогательной мощности с лучшей топливной экономичностью и меньшим уровнем шума — для продуктивных, прибыльных и более тихих рабочих мест.

Мощный универсальный инструмент, предназначенный для ремонта и строительства, с непревзойденным качеством сварных швов, встроенным ротационным винтовым воздушным компрессором, мощностью генератора 13 000 Вт для инструментов и запуском от внешнего источника для зарядного устройства.

Созданный для профессионалов, Big Blue 400 Pro — лучшее решение с точки зрения простоты использования, надежности и экономии топлива.

Надежный низкооборотный дизельный сварочный аппарат / генератор нового поколения, разработанный для подрядчика по трубопроводу.

Big Blue 450 Duo CST — прочный, компактный, экономичный дизельный сварочный аппарат / генератор, который обеспечивает 2 дуги превосходного качества в одном экономичном корпусе.

Чистый, бесшумный, многопроцессорный аппарат обеспечивает сварочную мощность до 500 ампер с двигателем, соответствующим стандарту EPA Tier 4 Final, который идеально подходит для тяжелых условий эксплуатации.

Этот сварочный аппарат / генератор на 600 А, соответствующий стандарту Tier 4 Final Агентства по охране окружающей среды, выполняет тяжелые работы, требующие высокой мощности для сварки, строжки и вспомогательного питания.

Big Blue 600 Air Pak является наиболее надежным и универсальным аппаратом для полевых работ, требующих питания одного оператора для сварки, строжки угольной дугой, вспомогательного питания или запуска воздушного компрессора для выполнения критически важных функций ремонта и технического обслуживания. поддерживайте работоспособность оборудования на рабочем месте и повышайте продуктивность в течение дня.

Универсальный сварочный аппарат / генератор с несколькими процессами и несколькими операторами, который создает две независимые дуги качества трубы в одном полном комплекте. Оснащенный технологией ArcReach®, операторы могут изменять настройки сварки с устройства подачи ArcReach или удаленно. Возможности сварки RMD® и импульсной MIG-сваркой добавлены с помощью ArcReach Smart Feeder.

Наш самый мощный Air Pak обеспечивает производительность двух операторов и гибкость в многопроцессорном режиме.Чистые двигатели, соответствующие требованиям EPA T4i и T4F, снижают выбросы.

Революционная, полностью интегрированная система питания для рабочих тележек. EnPak объединяет в себе роторно-винтовой воздушный компрессор, гидравлический насос, генератор и дизельный двигатель Tier IV Final мощностью 24,8 л.с. в одном блоке и является полностью работоспособным при выключенном грузовике.

О сертифицированном источнике питания SAE J1349® — Разработка стандартов — Стандарты — SAE International — О сертифицированном источнике питания SAE J1349®

О сертификации SAE J1349® Power

Сертификация мощности и крутящего момента

дает производителю возможность заверить покупателя в том, что приобретаемый им двигатель обеспечивает заявленные характеристики.Этот стандарт SAE был написан, чтобы предоставить производителям метод сертификации мощности двигателей по SAE J1349® или SAE J1995®. Документ SAE J2723 определяет процедуру, которую должен использовать производитель для сертификации полезной мощности и номинального крутящего момента серийного двигателя в соответствии с SAE J1349® или полной мощности серийного двигателя в соответствии с SAE J1995®. Производители, рекламирующие мощность и крутящий момент своих двигателей как сертифицированные по SAE J1349® или SAE J1995®, должны следовать этой процедуре.Сертификация мощности и крутящего момента двигателя по SAE J1349® или SAE J1995® является добровольной, однако этот процесс сертификации мощности является обязательным для тех номинальных мощностей, которые рекламируются как «Сертифицировано по SAE J1349®».

Стандарт номинальных характеристик двигателя SAE предотвращает подделку цифр (статья о том, как GM будет использовать сертифицированную мощность SAE J1349®, AEI, май 2005 г., том 113, № 5, стр. 59)

General Motors стала первым производителем, сертифицировавшим мощность и крутящий момент двигателя с использованием недавно принятого стандарта SAE (J2723), заявил Джеймс Куин, вице-президент GM по глобальному проектированию, во время своего основного выступления на Всемирном конгрессе SAE. и выставка в апреле 2005 г.Крупнейший в мире автопроизводитель планирует сертифицировать все свои двигатели по добровольному стандарту и призывает своих конкурентов сделать то же самое. Двигатель LS7 для Chevrolet Corvette Z06 2006 года выпуска был сертифицирован в соответствии с новым стандартом в этом месяце. 7,0-литровый двигатель V8 выдает 505 л.с. (377 кВт) при 6300 об / мин и 470 фунтов (637 Нм) при 4800 об / мин. «Новая процедура добровольной сертификации мощности и крутящего момента SAE обеспечивает справедливые и точные оценки мощности и крутящего момента, поскольку в ней используется сторонняя сертификация», — сказала Куин.«Технические стандарты SAE уравновешивают правила игры, и эта процедура сертификации является лишь последним примером ценности, которую SAE предлагала за последнее столетие». Чтобы рекламировать мощность и крутящий момент как «сертифицированные SAE», производители двигателей должны иметь квалифицированного свидетеля, который наблюдает за всей процедурой испытаний, чтобы гарантировать, что они проводятся в соответствии со стандартом SAE J1349®. Свидетельствование третьей стороной является основным положением J2723. Существующий стандарт SAE, J1349®, разъясняет, как должны проводиться фактические испытания.J1349® был обновлен в прошлом году, чтобы устранить некоторые двусмысленности, которые позволили производителям двигателей указывать значения мощности и крутящего момента, превышающие фактические возможности двигателя. Производители двигателей могут ссылаться на данные о мощности и крутящем моменте, полученные в результате испытаний, проведенных вне рамок стандартов SAE, но они не могут утверждать, что эти цифры сертифицированы SAE. «Мы считаем, что и потребитель, и промышленность хорошо обслуживаются, имея точные, последовательные оценки всех производителей», — сказал Дэвид Ланкастер, технический сотрудник GM Powertrain и председатель комитета по кодам испытаний двигателя SAE, который обновил J1349® и написал J2723 .Данные по широкому спектру параметров (например, соотношение воздух: топливо) будут собираться во время испытаний, проводимых в соответствии со стандартами SAE. SAE создаст базу данных и предложит ее промышленности в различных пакетах и ​​по разным ценам.

Патрик Понтичел

Пониженная мощность двигателя и трансмиссионная жидкость

От вашего автомобиля, от работы до школы до дома вашего лучшего друга, вы зависите во многих отношениях.Чтобы ваш автомобиль работал бесперебойно, вся архитектура и механизм двигателя должны работать оптимально. Начнем с того, что двигатель — сердце, а также хрупкая часть автомобиля, должен быть всегда в исправном состоянии.

Что вы чувствуете, когда ставите ногу на педаль акселератора и чувствуете торможение при движении транспортного средства? Разочарование . Передача могла быть ответственна. В былые времена, когда существовали древние автомобили, простая замена свечей зажигания, свечных проводов или даже карбюратора приводила к резкому изменению «тормозного» движения.В современных транспортных средствах, в которые встроены датчики, существует множество виновников , за нежеланием вашего автомобиля ускоряться.

Вы можете быть сбиты с толку, почему трансмиссионная жидкость очень важна для двигателей автомобиля. Вот почему. Но прежде чем узнать о важности трансмиссионной жидкости, вот что означает трансмиссия. Трансмиссия относится к коробке передач, в которой используются зубчатые передачи и зубчатые передачи для обеспечения преобразования скорости и крутящего момента от вращающегося источника энергии, двигателя, к другому устройству — колесам.

Трансмиссионная жидкость, с другой стороны, используется для смазки компонентов трансмиссии автомобиля для достижения оптимальных характеристик. Если у вас неисправная трансмиссия, это повлияет на плавность работы вашего двигателя, что, в свою очередь, расстроит вас. В ситуации, когда есть утечка или низкий уровень трансмиссионной жидкости, двигатель не сможет обеспечить максимальную скорость вашего автомобиля.

Что такое мощность двигателя?

Чтобы полностью понять, как работает двигатель, важно знать, какую мощность он может производить.Мощность двигателя — это величина крутящего момента на коленчатом валу двигателя. Чем больше крутящий момент, тем больше тяговое усилие у двигателя; следовательно, сила, которую вы чувствуете при ускорении вашего автомобиля.

Измерение крутящего момента показывает, насколько быстро двигатель сможет перемещать вес вашего автомобиля. Когда вы едете, и у вас горит индикатор «мощность двигателя», в большинстве случаев это означает, что трансмиссия теряет свою жидкость. Также может загореться индикатор «Проверьте двигатель». Пока не паникуйте.Сохраняйте спокойствие, управляя автомобилем.

В идеале, когда эти огни загораются, это означает, что производительность вашего автомобиля снижена, чтобы избежать повреждения и износа двигателя. И большинство современных автомобилей оснащено серией датчиков, которые заставляют электронный блок управления запускать режим пониженной мощности после обнаружения системного сбоя в двигателе.

Что вызывает срабатывание сигнальной лампы «Пониженная мощность двигателя»?

Есть много причин, по которым горит индикатор пониженного давления двигателя, и вы можете не понимать, как его выключить.Однако одной из наиболее распространенных причин этой проблемы является неисправность вашей электронной системы привода дроссельной заслонки. Современные автомобили используют это вместо традиционного механического корпуса дроссельной заслонки. В системе управления приводом дроссельной заслонки блок управления двигателем управляет двумя датчиками положения акселератора, чтобы определить ваше желание ускориться. Устройство рассчитывает соответствующий отклик дроссельной заслонки от двух датчиков положения дроссельной заслонки.

Получив необходимую информацию от датчиков, блок управления двигателем использует приводной двигатель для маневрирования дроссельной заслонки, тем самым контролируя поток воздуха в двигатель вашего автомобиля.Любая проблема с вашей системой управления приводом дроссельной заслонки может легко вызвать срабатывание сигнальной лампы «пониженной мощности двигателя» на приборной панели вашего автомобиля. Например, проблема может быть в одном из датчиков автомобиля, в корпусе дроссельной заслонки или даже в педали акселератора.

Решения для снижения мощности двигателя Индикатор

Когда вы заводите двигатель и замечаете, что горит индикатор пониженной мощности двигателя, настоятельно рекомендуется не садиться за руль. А если вы уже едете по шоссе на максимальной скорости, от вас ждут немедленного посещения технического специалиста.Когда вы замечаете, что свет не горит, вам нужно просканировать свой автомобиль.

Иногда коды ошибок и возникающие неисправности сохраняются в системах вашего автомобиля, даже если сканирование происходит после того, как свет погас. В былые времена старые автомобили не имели компьютерных систем, что затрудняло обнаружение неисправности. И поиск этих неисправностей тоже может оказаться очень дорогостоящим.

Как решить эту проблему; световой сигнал пониженной мощности двигателя? Прежде чем ехать к механику или технику, вы можете справиться с этим самостоятельно.Если вы управляете автомобилем с пониженной мощностью двигателя, это может вызвать больше проблем, прежде чем вы дойдете до механика, который отремонтирует ваше транспортное средство. Вот простые шаги, которые вы можете предпринять:

1. Замените датчик воздушного потока

Есть несколько способов определить, работает ли датчик воздуха в вашем автомобиле должным образом. При запуске двигателя откройте капот или капот. Попробуйте найти датчик расхода воздуха и постучать по нему несколько раз. Если двигатель немного дает сбои, воздушный поток загрязнен. В качестве альтернативы остановите двигатель и отключите датчик.

После этого запустите двигатель. Двигатель обнаружит снятие датчика расхода воздуха и перейдет в режим резервного копирования. Это простая ошибка, которую можно довольно просто исправить. Замена датчика расхода воздуха — лучшая альтернатива, когда вы обнаружите, что он загрязнен, и получите удовольствие от возврата к стандартной мощности двигателя!

2. Замена воздушного фильтра

Еще один шаг на пути к более исправному двигателю — убедиться, что у вас есть чистый воздушный фильтр в идеальном рабочем состоянии. Практически во всех современных автомобилях воздушный фильтр располагается в прямоугольном ящике.Он расположен сбоку от блока двигателя, рядом с крылом. Снимите сам фильтр и проверьте под светом.

Если не горит или проникает очень мало света, это означает, что воздушный фильтр засорен и его необходимо немедленно заменить. Когда двигатель начинает реагировать на искаженные условия, трансмиссионная жидкость является одной из основных вещей, которую необходимо немедленно заменить. Следовательно, снижение мощности двигателя, которое приведет к быстрому износу двигателя.

Мощность двигателя от солнечного тепла

В интересной статье, опубликованной в Engineering News, H.Э. Уилси сначала рассматривает различные попытки — многие смехотворные, а некоторые — нет, — которые были предприняты для решения проблемы преобразования солнечного тепла, имеющегося на поверхности Земли, в механическую энергию. Затем подробно описывается экспериментальная работа мистера Уилси и Дж. Бойла-младшего. Принят принцип «непрямого хранения». Таким образом, прерывистое солнечное тепло поглощается и собирается водой, циркулирующей под стеклом «обогревателя». Нагретая таким образом вода хранится в резервуаре, хорошо изолированном, чтобы уменьшить потери на излучение.Нагретая вода равномерно и непрерывно всасывается из накопительного бака и заставляется отдавать свое тепло путем циркуляции в бойлере, содержащем SO2. Пар, генерируемый этим теплом после работы двигателя, конденсируется и возвращается в котел для повторного использования, в то время как вода, отдавшая свое тепло S02, снова проходит через солнечный «нагреватель» для сбора большего количества тепла от солнечные лучи. Выявлено, что на параллели 34 град. около 2300 британских тепловых единиц на квадратный фут будет поглощено водой в течение июньского дня и около 1600 британских тепловых единиц в течение декабрьского дня.В конце концов, эксперименты привели к использованию двигателя на диоксиде серы мощностью 20 лошадиных сил, который иногда при давлении в котле 215 фунтов на квадратный дюйм развивал около 15 лошадиных сил. Были использованы две секции нагревателя, выставляющие площадь в 1000 квадратных футов для воздействия солнца (каждый квадратный фут поглощает около 377 британских тепловых единиц в час), и конденсатор, вода для которого откачивалась двигателем из колодца. Следующие цифры, основанные на данных Josse, приведены относительно стоимости солнечной электростанции: Нагреватель, 24-часовой, на каждую лошадиную силу… & доллар; 100.00 Хранение, 100-часовой размер, на каждую лошадиную силу. 10.00 Двигатель, насосы и т. Д., На одну лошадиную силу .. 20.00 Испаритель, на л.с. 15.00 ‘ Конденсатор, на 1 л.с. 15.00 Жидкий диоксид серы 1,25 Аварийный паровой котел 2.75 & доллар; 164,00 Ниже приводится сравнение расчетных затрат (на основе экспериментов) на 1 л.с.-час с паровыми и солнечно-электрическими установками мощностью 400 лошадиных сил: Стоимость одной электрической лошадиной силы- час, центы. Пар. Солнечная. Инженер, 40 центов в час 0.08 0,08 — Пожарный, 30 центов в час 0,06 Динамо, 40 центов в час .. 0,08 Ok Помощник, 25 центов в час 0,05 0,05 Суперинтендант 0,06 0,06 Каменный уголь 1.5 Проценты, обслуживание, амортизация электростанции 0,046 0,184 Проценты, обслуживание, амортизация электростанции 0,006 0,006 Масло, отходы, вода (или сера диоксид) 0,15 0,15 Итого, при оценке паровой установки в & доллар; 40 за лошадиную силу 2,032 центы Итого, оценка солнечной станции в & доллар; 164 за лошадиную силу 0,610 карат. Из этих цифр ясно, что для того, чтобы конкурировать с солнечной электростанцией (которая, конечно, будет использоваться только в подходящих регионах, таких как Калифорния, где авторы проводили свои эксперименты), паровая электростанция должна будет получать уголь за 66 центов за тонну, или двигатель производителя газа примерно по 2 доллара за тонну.КОЛОН, ВИДЫ С «ПАЛЬСЕВАЛЯ». ПОСМОТРЕТЬ НА ТИРОЛЕССКИЕ ГОРЫ С ПОМОЩЬЮ НАПРАВЛЯЕМОМУ ШАРИКУ НА БОРТУ ПАРСЕВАЛА.

Измерение и анализ мощности электродвигателя

Билл Гэтеридж, менеджер по продукции, Power Measuring Instruments, Yokogawa Corporation of America

Часть 1: Основные измерения электрической мощности

Электродвигатели — это электромеханические машины, преобразующие электрическую энергию в механическую. Несмотря на различия в размере и типе, все электродвигатели работают примерно одинаково: электрический ток, протекающий через катушку с проволокой в ​​магнитном поле, создает силу, которая вращает катушку, создавая крутящий момент.

Понимание выработки электроэнергии, потерь мощности и различных типов измеряемой мощности может быть пугающим, поэтому давайте начнем с обзора основных измерений электрической и механической мощности.

Что такое мощность? В самом простом виде мощность — это работа, выполняемая в течение определенного периода времени. В двигателе мощность передается на нагрузку путем преобразования электрической энергии в соответствии со следующими законами науки.

В электрических системах напряжение — это сила, необходимая для перемещения электронов.Ток — это скорость потока заряда в секунду через материал, к которому приложено определенное напряжение. Умножив напряжение на соответствующий ток, можно определить мощность.

P = V * I, где мощность (P) в ваттах, напряжение (V) в вольтах, а ток (I) в амперах

Ватт (Вт) — единица мощности, определяемая как один джоуль в секунду. Для источника постоянного тока расчет — это просто напряжение, умноженное на ток: W = V x A. Однако определение мощности в ваттах для источника переменного тока должно включать коэффициент мощности (PF), поэтому W = V x A x PF для переменного тока. системы.

Коэффициент мощности представляет собой безразмерное отношение в диапазоне от -1 до 1 и представляет собой количество реальной мощности, выполняемой при работе с нагрузкой. При коэффициенте мощности меньше единицы, что почти всегда имеет место, будут потери в реальной мощности. Это связано с тем, что напряжение и ток в цепи переменного тока имеют синусоидальную природу, а амплитуда тока и напряжения в цепи переменного тока постоянно смещается и обычно не идеально совмещена.

Поскольку мощность равна напряжению, умноженному на ток (P = V * I), мощность является максимальной, когда напряжение и ток выстраиваются вместе, так что пики и нулевые точки на сигналах напряжения и тока возникают одновременно.Это типично для простой резистивной нагрузки. В этой ситуации две формы сигналов находятся «в фазе» друг с другом, а коэффициент мощности будет равен 1. Это редкий случай, поскольку почти все нагрузки не просто обладают идеальным сопротивлением.

Говорят, что два сигнала «не в фазе» или «сдвинуты по фазе», если два сигнала не коррелируют от точки к точке. Это может быть вызвано индуктивными или нелинейными нагрузками. В этой ситуации коэффициент мощности будет меньше 1, и реальная мощность будет меньше.

Из-за возможных колебаний тока и напряжения в цепях переменного тока мощность измеряется несколькими способами.

Реальная или истинная мощность — это фактическая мощность, используемая в цепи, и измеряется в ваттах. В цифровых анализаторах мощности используются методы оцифровки сигналов входящего напряжения и тока для расчета истинной мощности в соответствии с методом, показанным на Рисунке 1.

В этом примере мгновенное напряжение умножается на мгновенный ток (I), а затем интегрируется за определенный период времени (t).Истинный расчет мощности будет работать с любым типом сигнала независимо от коэффициента мощности (рисунок 2).

Гармоники создают дополнительную сложность. Несмотря на то, что электрическая сеть номинально работает на частоте 60 Гц, существует много других частот или гармоник, которые потенциально могут существовать в цепи, а также может присутствовать составляющая постоянного или постоянного тока. Общая мощность рассчитывается путем рассмотрения и суммирования всего содержимого, включая гармоники.

Методы расчета, показанные на Рисунке 2, используются для обеспечения истинного измерения мощности и истинных измерений среднеквадратичного значения для любого типа сигнала, включая все гармонические составляющие, вплоть до полосы пропускания прибора.

Измерение мощности

Далее мы посмотрим, как на самом деле измерить мощность в данной цепи. Ваттметр — это прибор, который использует напряжение и ток для определения мощности в ваттах. Теория Блонделя утверждает, что общая мощность измеряется минимум на один ваттметр меньше, чем количество проводов. Например, однофазная двухпроводная схема будет использовать один ваттметр с одним измерением напряжения и одним измерением тока.

Однофазная трехпроводная двухфазная система часто встречается в проводке общего корпуса.Эти системы требуют двух ваттметров для измерения мощности.

В большинстве промышленных двигателей используются трехфазные трехпроводные схемы, которые измеряются двумя ваттметрами. Таким же образом потребуются три ваттметра для трехфазной четырехпроводной схемы, при этом четвертый провод является нейтралью.

На рисунке 3 показана трехфазная трехпроводная система с нагрузкой, подключенной с использованием метода измерения двух ваттметров. Измеряются два линейных напряжения и два связанных фазных тока (с помощью ваттметров Wa и Wc).Четыре измерения (линейный и фазный ток и напряжение) используются для достижения общего измерения.

Поскольку этот метод требует контроля только двух токов и двух напряжений вместо трех, установка и конфигурация проводки упрощаются. Он также может точно измерять мощность в сбалансированной или несбалансированной системе. Его гибкость и низкая стоимость установки делают его подходящим для производственных испытаний, когда требуется измерение только мощности или нескольких других параметров.

Для инженерных и научно-исследовательских работ лучше всего подходит трехфазный трехпроводной метод с тремя ваттметрами, поскольку он предоставляет дополнительную информацию, которая может использоваться для балансировки нагрузки и определения истинного коэффициента мощности. В этом методе используются все три напряжения и все три тока. Измеряются все три напряжения (от a до b, от b до c, от c до a), и контролируются все три тока.

Рис. 4. При проектировании двигателей и приводов ключевым моментом является просмотр всех трех значений напряжения и тока, что делает метод трех ваттметров на рисунке выше лучшим выбором.

Измерение коэффициента мощности

При определении коэффициента мощности для синусоидальных волн коэффициент мощности равен косинусу угла между напряжением и током (Cos Ø). Это определяется как коэффициент мощности «смещения» и подходит только для синусоидальных волн. Для всех других форм сигналов (несинусоидальных волн) коэффициент мощности определяется как активная мощность в ваттах, деленная на полную мощность в напряжении-амперах. Это называется «истинным» коэффициентом мощности и может использоваться для всех форм сигналов, как синусоидальных, так и несинусоидальных.

Однако, если нагрузка несимметрична (фазные токи разные), это может привести к ошибке при вычислении коэффициента мощности, поскольку в расчете используются только два измерения ВА. Два VA усредняются, потому что предполагается, что они равны; однако, если это не так, будет получен ошибочный результат.

Следовательно, лучше всего использовать метод трех ваттметров для несимметричных нагрузок, поскольку он обеспечит правильный расчет коэффициента мощности как для сбалансированных, так и для несимметричных нагрузок.

Анализаторы мощности

от Yokogawa и некоторых других компаний используют описанный выше метод, который называется методом подключения 3V-3A (три напряжения и три тока). Это лучший метод для инженерных и проектных работ, поскольку он обеспечивает правильные измерения общего коэффициента мощности и ВА для симметричной или несимметричной трехпроводной системы.

Основные измерения механической мощности

В электродвигателе механическая мощность определяется как скорость, умноженная на крутящий момент.Механическая мощность обычно определяется как киловатты (кВт) или лошадиные силы (л.с.), причем один ватт равен одному джоулю в секунду или одному ньютон-метру в секунду.

Лошадиная сила — это работа, выполняемая за единицу времени. Один л.с. равен 33 000 фунт-футов в минуту. Преобразование л.с. в ватт достигается с использованием этого соотношения: 1 л.с. = 745,69987 Вт. Однако преобразование часто упрощается, используя 746 Вт на л.с. (рис. 9).

Для асинхронных двигателей переменного тока фактическая скорость вращения ротора — это скорость вращения вала (ротора), обычно измеряемая с помощью тахометра.Синхронная скорость — это скорость вращения магнитного поля статора, рассчитанная как 120-кратная частота сети, деленная на количество полюсов в двигателе. Синхронная скорость — это теоретическая максимальная скорость двигателя, но ротор всегда будет вращаться немного медленнее, чем синхронная скорость из-за потерь, и эта разница скоростей определяется как скольжение.

Скольжение — это разница в скорости ротора и синхронной скорости. Для определения процента скольжения используется простой процентный расчет синхронной скорости минус скорость ротора, деленная на синхронную скорость.

КПД можно выразить в простейшей форме как отношение выходной мощности к общей входной мощности или КПД = выходная мощность / входная мощность. Для двигателя с электрическим приводом выходная мощность является механической, в то время как входная мощность является электрической, поэтому уравнение эффективности выглядит следующим образом: КПД = механическая мощность / входная электрическая мощность.

Часть 2: Выбор приборов для измерения и анализа мощности электродвигателя

Различные ассоциации разработали стандарты тестирования, которые определяют точность приборов, необходимых для соответствия их стандарту: IEEE 112 2004, NVLAP 160 и CSA C390.Все три включают стандарты для измерения входной мощности, напряжения и тока, датчиков крутящего момента, скорости двигателя и т. Д. Трансформаторы тока (CT) и трансформаторы напряжения (PT) являются одними из основных контрольно-измерительных приборов, используемых для выполнения этих измерений.

Соответствующие стандарты очень похожи, за некоторыми исключениями. Допустимые инструментальные ошибки для стандартов IEEE 112 2004 и NVLAP 150 идентичны; однако CSA C390 2006 имеет некоторые отличия в отношении температуры и показаний.

Например, требования к входной мощности для CSA C390 2006 составляют ± 0,5% от показания и должны включать ошибки CT и PT, тогда как для IEEE 112 2004 и NVLAP 150 требуется только ± 0,5% от полной шкалы.

Датчики тока

Датчики тока обычно требуются для тестирования, поскольку сильный ток не может быть подан непосредственно в измерительное оборудование. Существует множество датчиков, подходящих для конкретных приложений. Накладные датчики могут использоваться с анализаторами мощности.Также можно использовать щупы для осциллографа, но при их использовании следует соблюдать осторожность, чтобы убедиться, что прибор не подвергается воздействию высоких токов.

Для трансформаторов тока подводящий провод может быть подключен через окно (трансформаторы тока обычно имеют форму пончика или продолговатую, с отверстием или внутренней частью, называемым окном), или слаботочные соединения могут быть выполнены с клеммами в верхней части устройство. Шунты обычно используются для приложений постоянного тока, но не переменного тока или искаженных частот, хотя их можно использовать для синхронных двигателей с частотой до нескольких сотен Гц.Доступны специализированные трансформаторы тока, которые хорошо работают на высоких частотах, которые чаще встречаются в осветительных приборах, а не в двигателях и приводах.

Yokogawa вместе с LEM Instruments разработали уникальную систему трансформаторов тока, которая обеспечивает высокую точность в диапазоне от постоянного тока до кГц. Это трансформатор активного типа, который использует блок кондиционирования источника питания и обеспечивает точность приблизительно от 0,05 до 0,02% от показаний. Этот тип системы трансформатора тока обеспечивает очень высокую точность измерений, особенно для частотно-регулируемых приводов, которая может изменяться от 0 Гц до рабочей скорости подключенного двигателя.

Трансформаторы напряжения просто преобразуют напряжение с одного уровня на другой. В измерительных приложениях иногда требуются понижающие трансформаторы для снижения напряжения, подаваемого на измерительный прибор, хотя многие приборы могут работать с относительно высокими напряжениями и не требуют понижающего трансформатора.

Измерительные трансформаторы обычно представляют собой комбинацию трансформатора тока и трансформатора напряжения и могут уменьшить количество требуемых преобразователей в некоторых измерительных приложениях.

Рекомендации по выбору и меры предосторожности

При принятии решения, какое устройство использовать, первым вопросом является частотный диапазон измеряемых параметров. Для синусоидальных волн постоянного тока можно использовать шунты постоянного тока, которые обеспечивают высокую точность и простую установку. Для приложений переменного и постоянного тока можно использовать эффект Холла или измерительный трансформатор активного типа. Технология эффекта Холла имеет более низкий уровень точности, в то время как активный тип обеспечивает большую точность. Различные измерительные трансформаторы могут работать на высоких частотах 30 Гц и более, но их нельзя использовать для постоянного тока.

Следующее соображение — требуемый уровень точности. Для измерительного трансформатора это обычно указывается как точность передаточного числа витков. Фазовый сдвиг — еще один важный фактор, и он очень важен, потому что многие трансформаторы предназначены только для измерения тока и не имеют компенсации фазового сдвига.

Фазовый сдвиг в основном зависит от коэффициента мощности для измерения мощности и, таким образом, влияет на расчет мощности. Например, трансформатор тока, который имеет максимальный фазовый сдвиг 2 ° как часть его спецификации, внесет ошибку косинуса (2 °) или 0.06% ошибка. Пользователь должен решить, приемлем ли этот процент ошибок для приложения.

Источником тока является трансформатор тока. Согласно закону Ома, напряжение (E) равно току через проводник (I), умноженному на сопротивление (R) проводника в единицах Ом. Открытие вторичной обмотки трансформатора тока эффективно увеличивает сопротивление до бесконечности. Это означает, что внутренний ток насыщает катушку, напряжение также стремится к бесконечности, и устройство повреждается или разрушается.Что еще хуже, трансформатор тока со случайно разомкнутой вторичной обмоткой может серьезно травмировать рабочих.

Никогда не размыкайте вторичную обмотку трансформатора тока. Пользователи могут получить серьезные травмы, а CT может быть поврежден или разрушен.

Совместимость приборов

Для определения совместимости прибора необходимо определить выходной уровень ТТ. Клеммные и другие трансформаторы тока обычно имеют выходную мощность, указанную в милливольтах на ампер, миллиампер на ампер или в амперах.Типичный выходной ток измерительного ТТ может быть указан в диапазоне от 0 до 5 ампер.

Необходимо учитывать импеданс и нагрузку на ТТ, которые являются факторами, на которые влияет количество проводов, используемых для подключения ТТ к прибору. Эта проводка является сопротивлением или нагрузкой на прибор и, следовательно, может повлиять на измерения.

Пробники

при неправильном использовании могут создавать собственный набор проблем. Многие пробники осциллографа рассчитаны на работу с входным сопротивлением осциллографа, но диапазоны входного сопротивления анализатора мощности могут отличаться, и это необходимо учитывать.

Еще один аспект, который следует учитывать при определении совместимости прибора, — это физические требования к устройству. Размер необходимо учитывать вместе с типом трансформатора тока, например, зажимного или кольцевого типа, каждый из которых будет лучше работать в конкретной ситуации.

Пример системы с трехфазным двигателем

Теперь мы рассмотрим типичное трехфазное трехпроводное измерение мощности двигателя с использованием метода двух ваттметров. Теорема Блонделя утверждает, что количество требуемых измерительных элементов на единицу меньше количества токонесущих проводников.Это позволяет измерять мощность в трехфазной трехпроводной системе с использованием двух преобразователей при отсутствии нейтрали. Однако, когда есть нейтраль, используются три преобразователя, поскольку теперь имеется четыре проводника.

Трехфазное питание используется в основном в коммерческих и промышленных средах, особенно для питания двигателей и приводов, поскольку более экономично эксплуатировать большое оборудование с трехфазным питанием. Для расчета трехфазной мощности напряжение каждой фазы умножается на ток каждой фазы, который затем умножается на коэффициент мощности, и это значение умножается на квадратный корень из трех (квадратный корень из 3 равен равно 1.732).

Для измерения трехфазной мощности, потребляемой нагруженным двигателем, подключается анализатор мощности. На рисунке 1 показано типичное соединение с дисплеем, на котором показаны все три напряжения, все три тока, общая мощность и коэффициент мощности.

На рисунке 2 показано трехфазное трехпроводное измерение мощности, выполненное с использованием метода двух ваттметров. Перечислены все три тока и напряжения, а также общие ВА и ВАР. Эта конфигурация может отображать отдельные показания мощности фазы, но их не следует использовать напрямую, потому что для этого метода измерения только полная мощность является точным показанием.

В основном, при использовании метода двух ваттметров в трехпроводной трехфазной системе невозможно измерить мощность отдельной фазы или измерить какие-либо параметры фазы, включая коэффициенты мощности фазы. Однако можно измерить все параметры фазы.

Для трехфазного двигателя с трехпроводным соединением в треугольник можно измерять линейные напряжения и токи отдельных фаз. Поскольку нейтрали нет, измерять фазные напряжения невозможно.Эта ситуация приводит к некоторым показаниям, которые необходимо пояснить.

Глядя на отображение формы сигнала на Рисунке 3, можно увидеть линейные напряжения Vab, Vbc и Vac. Линейные напряжения, измеряемые прибором, в сбалансированной системе разнесены на 60 °. Токи — это фазные токи, которые приборы видят под углом 120 °.

Другое представление этой системы изображено на векторной диаграмме Phasor, показанной на рисунке 4. Треугольник в верхней части этого рисунка показывает измерения линейного напряжения черным цветом, значения фазного напряжения красным (но это теоретические потому что нейтрали нет), а фазные токи синим цветом.

В нижней части рисунка показаны разности фаз между напряжениями и токами. Опять же, обратите внимание, что линейные напряжения разнесены на 60 °, а фазные токи разнесены на 120 °. Еще одна деталь заключается в том, что если бы верхняя диаграмма представляла чисто резистивную нагрузку, то синие токи были бы синхронизированы с красными напряжениями. Однако при индуктивной нагрузке (например, в двигателе) синие векторы тока не совпадают по фазе с напряжениями.

Кроме того, для этого метода измерения на нижней диаграмме векторы тока всегда будут иметь дополнительный сдвиг на 30 ° от напряжений.Суть в том, что правильно настроенный анализатор мощности учтет все эти условия.

Что, если фазовая мощность и фазовый коэффициент мощности должны быть точно измерены в трехфазной трехпроводной системе, а не просто приблизительно? На рисунке 5 показан метод, позволяющий измерять фазовые параметры трехфазного трехпроводного двигателя путем создания плавающей нейтрали.

Однако у этой техники есть ограничения. Он будет хорошо работать на входе асинхронного двигателя, синхронного двигателя или аналогичного двигателя без привода с регулируемой скоростью.Следует соблюдать осторожность при использовании этого метода в системе привода с регулируемой скоростью, поскольку высокочастотные искаженные формы сигналов и гармоники могут привести к несогласованным измерениям.

Более того, метод плавающей нейтрали работает только для оборудования с сигналами синусоидального типа. С помощью привода с широтно-импульсной модуляцией (ШИМ) можно включить линейный фильтр 500 Гц (фильтр нижних частот), который затем позволит отображать показания для основной частоты, но не для общей частоты.

Трехпроводные и четырехпроводные измерения мощности

Важно понимать, что мощность будет считываться одинаково независимо от того, измерена ли она трехфазным трехпроводным или трехфазным четырехпроводным методом.Однако при трехфазном четырехпроводном соединении измеряемые значения напряжения представляют собой фазные напряжения от линии к нейтрали.

Рисунок 6 — снимок экрана анализатора мощности, который показывает, насколько близки показания мощности и коэффициента мощности для ШИМ-привода, работающего с двигателем, сравнивая трехфазный трехпроводной вход с фильтром 500 Гц с трехфазным четырехпроводным. вход с плавающей нейтралью.

В альтернативном решении используется функция измерения дельты, которая есть в анализаторах мощности Yokogawa.Функция измерения дельты использует мгновенные измерения линейного напряжения и фазного тока для получения истинного межфазного напряжения, даже если фазы не сбалансированы. Это возможно благодаря вычислению векторной амплитуды внутри процессора. Эта функция также обеспечивает измерения фазной мощности в трехпроводной цепи. Решение для измерения дельты также обеспечивает нейтральный ток.

Часть 3: Измерения электрической мощности для трехфазного двигателя переменного тока

Полное тестирование системы привода и двигателя на основе ШИМ (широтно-импульсной модуляции) представляет собой трехэтапный процесс.Шаг 1 — это точное измерение входной и выходной мощности привода с регулируемой скоростью ШИМ для определения эффективности привода и потерь мощности. Шаг 2 — это точное измерение входной мощности двигателя, а шаг 3 — точное измерение механической мощности двигателя.

Оптимальный метод — объединить все три шага с помощью одного анализатора мощности, чтобы исключить временной сдвиг. Это также обеспечивает отличные расчеты эффективности в едином программно-аппаратном решении.

Рисунок 7: Этот снимок экрана анализатора мощности показывает, как функцию измерения дельты можно использовать для получения истинных показаний и мощности фазы, даже если фазы не сбалансированы.

Некоторые анализаторы мощности имеют опцию двигателя, в которой сигналы скорости и момента могут быть интегрированы таким образом. Эти анализаторы мощности могут измерять электрическую мощность и механическую мощность и отправлять данные на ПК с запущенным программным обеспечением от оригинального производителя анализатора или заказным программным обеспечением от системного интегратора.

Измерения привода ШИМ для двигателей переменного тока

При использовании частотно-регулируемого привода с ШИМ для управления двигателем часто бывает необходимо измерить как входной, так и выходной сигнал частотно-регулируемого привода с помощью шестифазного анализатора мощности.Эта установка может не только измерять трехфазную мощность, она также может измерять мощность постоянного или однофазного тока. См. Рисунок 1.

В зависимости от анализатора режим настройки будет выполняться в нормальном или среднеквадратичном режиме. Конфигурация проводки должна соответствовать применению, например, трехфазный вход и трехфазный выход.

Любой линейный фильтр или фильтр нижних частот должны быть отключены, поскольку фильтрация затрудняет измерения. Однако фильтр пересечения нуля или частотный фильтр должен быть включен, потому что он будет фильтровать высокочастотный шум, чтобы можно было измерить основную частоту.Это измерение необходимо при отслеживании частоты привода.

На рис. 2 показан сигнал выходного напряжения ШИМ с сильно искаженным напряжением, срезанными высокими частотами и с большим количеством шумов на токовой стороне, что затрудняет измерение. Высокочастотное переключение сигнала напряжения создает сильно искаженную форму волны с высоким содержанием гармоник. Частота варьируется от 0 Гц до рабочей скорости.

Для такого зашумленного сигнала нужны специальные датчики тока для измерения.Для точных измерений мощности с ШИМ также необходимы анализаторы мощности с широкой полосой пропускания, способные измерять эти сложные сигналы.

На рисунке 3 показан пример содержания гармоник напряжения на выходе ШИМ. Присутствуют частоты биений, а содержание гармоник напряжения превышает 500 порядков (примерно 30 кГц). Большая часть гармоник приходится на нижние частоты на токовой стороне.

Проблемы измерения привода двигателя с ШИМ

Напряжение инвертора обычно измеряется одним из двух способов.Можно использовать истинное среднеквадратичное измерение, которое включает полное содержание гармоник. Однако, поскольку основная форма волны — это в первую очередь то, что способствует крутящему моменту двигателя, можно выполнить и использовать более простые измерения. В большинстве приложений требуется только измерение основной формы волны.

Существует два основных метода измерения основной амплитуды волны напряжения. Первый и самый простой — использовать фильтр нижних частот для удаления высоких частот. Если в анализаторе мощности есть этот фильтр, просто включите его.Правильная фильтрация даст среднеквадратичное значение напряжения основной частоты инвертора. Однако этот тип фильтрации не обеспечивает истинного измерения полной мощности, поэтому фильтрация — не самый требовательный метод.

Второй метод — это метод измерения выпрямленного среднего, который выдает среднеквадратичное значение напряжения основной волны без фильтрации с использованием определения среднего значения напряжения, масштабированного до среднеквадратичного напряжения. Алгоритм выпрямленного среднего среднего за цикл обеспечит эквивалент основного напряжения, который будет очень близок к среднеквадратичному значению основной волны.

С помощью этого метода можно измерить полную мощность, общий ток и напряжение основной гармоники.

Измерение амплитуды основной волны с помощью гармонического анализа

Функцию гармонического анализа можно использовать для определения истинного основного напряжения с помощью быстрого преобразования Фурье (БПФ) для определения амплитуды каждой гармонической составляющей, включая основную волну. Это дает точное измерение среднеквадратичного напряжения основной волны. Новейшие анализаторы мощности могут выполнять одновременные измерения истинных среднеквадратичных значений и гармонических составляющих.

На рисунке 4 Urms2 (среднеквадратичное значение на выходе ШИМ) является очень большим числом, а F2 (среднее значение основной гармоники) несколько ниже. Значение Urms3 (фильтрация основного) дает аналогичный результат. Наконец, U2 (1) получается из анализа гармоник или вычислений FFT основной гармоники. F2, Urms3 и U2 (1) дают очень близкие результаты, но расчет U2 (1) FFT считается наиболее точным.

Инверторный ток обычно измеряется только одним способом, и это как истинный среднеквадратичный сигнал, потому что все гармонические токи вносят вклад в повышение температуры в двигателе и ответственны за него, поэтому все должны быть измерены.

Еще одно важное измерение связано с приводом В / Гц (Вольт-на-Герц). Привод с ШИМ должен поддерживать постоянное соотношение В / Гц по сравнению с рабочей скоростью двигателя. Анализатор мощности может рассчитывать В / Гц, используя среднеквадратичное значение или значение основного напряжения. Определенная пользователем математическая функция анализатора используется для построения уравнения для этого измерения.

Измерение напряжения шины постоянного тока

Напряжение на шине постоянного тока в ШИМ может быть измерено для проверки условий повышенного и пониженного напряжения.Это измерение может быть выполнено внутри привода на клеммах конденсаторной батареи. Однако более простой способ — использовать отображение формы сигнала анализатора мощности с измерением курсора.

При отображении формы сигнала с помощью курсорного измерения необходимо убедиться, что курсор не находится прямо над небольшими выступами на дисплее. Вместо этого курсор должен находиться поперек осциллограммы, чтобы выполнить точное измерение. На рисунке 5 показано измерение напряжения ШИМ с высокоскоростным переключением.Курсор устанавливается для чтения значения, например 302,81 В.

Измерения механической мощности

Механическая мощность измеряется как скорость двигателя, умноженная на крутящий момент двигателя. На рынке существует множество различных типов датчиков скорости и крутящего момента, которые работают с различными двигателями. Хотя анализаторы Yokogawa могут взаимодействовать с большинством датчиков скорости и крутящего момента, все же целесообразно подтверждать совместимость в каждом случае. Эти датчики могут использоваться для предоставления информации о механических измерениях для расчета измерений механической мощности в анализаторе мощности.

Многие датчики поставляются с интерфейсной электроникой для правильной обработки сигнала для работы с анализаторами мощности или другим оборудованием. Условный сигнал может быть аналоговым выходом или выходом последовательной связи, который идет на ПК и его прикладное системное программное обеспечение.

Одним из вариантов измерения механической мощности является использование как датчика, так и соответствующего измерительного прибора от данного производителя. Такой подход имеет преимущества, поскольку датчики будут точно согласованы с прибором.Будут доступны показатели крутящего момента, скорости и мощности, и, вероятно, будут варианты подключения к ПК вместе с соответствующим прикладным программным обеспечением.

Более интегрированный подход изображен на рисунке 6. В этой конфигурации выходные сигналы скорости и крутящего момента от измерительных приборов датчика подключаются непосредственно к входам скорости и крутящего момента анализатора мощности. Это дает большое преимущество, заключающееся в том, что измерения электрической и механической мощности могут оцениваться одновременно, а расчеты эффективности могут выполняться непрерывно.

КПД двигателя, привода и системы

КПД инвертора в простейшей форме рассчитывается как выходная мощность, деленная на входную мощность, и выражается в процентах. Один из методов, используемых для измерения входной и выходной мощности, заключается в простом подключении измерителей мощности на входе и выходе, при этом показания двух измерителей используются для расчета эффективности.

Более комплексным методом является использование анализатора мощности с несколькими входами для одновременного измерения входа и выхода, как показано на рисунке 1.Это приводит к более точному расчету эффективности, поскольку он использует один анализатор мощности для устранения потенциальных ошибок, вызванных измерениями временного сдвига.

С помощью внутренних математических вычислений, предоставляемых анализатором, можно настроить очень простое вычисление через меню для расчета потерь привода и эффективности привода.

Какой метод мне следует использовать?

IEEE 112 — это промышленный стандарт США для тестирования двигателей, в котором описаны несколько методов.На рисунке 7 показан дисплей анализатора мощности, поддерживающий «Метод A» стандарта IEEE 112, в котором вся механическая мощность делится на общую мощность, потребляемую двигателем. Стандарт определяет многие параметры, помимо измерений тока и напряжения двигателя, и предоставляет инструкции по проведению общепринятых испытаний многофазных и асинхронных двигателей и генераторов и составлению отчетов по ним. Кроме того, стандарт содержит 11 методов испытаний, чтобы определить, как проводить измерения эффективности двигателей.

Метод испытаний A — ввод-вывод, определенный в IEEE 112: КПД рассчитывается как отношение выходной мощности измерения к измеренной входной мощности после корректировки температуры и динамометра, если применимо.Испытания проводятся при номинальной нагрузке с помощью механического тормоза или динамометра. Этот рейтинг должен быть ограничен двигателями с номинальной полной нагрузкой не более 1 кВт.

Метод испытаний B — ввод-вывод с разделением потерь: В методе B выполняются измерения как входной, так и выходной мощности, но различные потери разделяются. Большинство этих потерь просто производят тепло, которое должно рассеиваться двигателем в сборе, и представляют собой энергию, недоступную для выполнения работы. Этот метод является признанным стандартом тестирования U.S. автомобилестроение для двигателей с полной нагрузкой от 1 до 300 кВт.

Хотя оба метода A и B работают, метод B требует большого количества приборов и обычно выполняется только производителями двигателей. Поскольку большинство производителей используют метод B, а большинство пользователей предпочитают метод A, расчеты эффективности между ними могут отличаться. Данные производителей двигателей и приводов могут использовать разные скорости двигателя, испытательные нагрузки или другие условия испытаний.

Заключение

При измерении мощности электродвигателя необходимо учитывать множество факторов, например, полный и истинный коэффициент мощности.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *