Назначение коленчатого вала дизеля: Коленчатые валы — условия работы, нагрузки

Содержание

Коленчатый вал и его подшипники

Коленчатый вал (рис. 7.4) относится к числу наиболее ответственных, напряженных и дорогостоящих деталей двигателя. Стоимость изготовления вала может достигать 30 % стоимости изготовления всего двигателя.

В процессе работы двигателя коленчатый вал нагружается силами давления газов, а также силами инерции движущихся возвратно-поступательно и вращающихся деталей. Эти силы вызывают значительные напряжения кручения, изгибные напряжения и крутильные колебания, вследствие чего шейки вала испытывают переменное давление, которое вызывает значительную работу трения и износ шеек. Поэтому коленчатый вал должен обладать высокой прочностью, жесткостью и износостойкостью трущихся поверхностей при относительно небольшой массе, составляющей не более 15 % массы двигателя. Коленчатые валы изготавливаются из качественных углеродистых или легированных сталей ковкой или штамповкой, а также литьем из высококачественного чугуна или стали.

Коленчатый вал тепловозного дизеля типа Д49 имеет 10 коренных и 8 шатунных шеек, расположенных под углом 90° одна к другой. Между 9-й и 10-й коренными шейками устанавливается шестерня привода газораспределительного механизма дизеля. К щекам вала с помощью шпилек и гаек крепятся противовесы. Полости коренных шеек соединяются каналами с шатунными шейками, по которым подводится масло. Девятая коренная шейка имеет упорные бурты, предохраняющие коленчатый вал от продольного перемещения. От температурных нагрузок коленчатый вал мо-

Рис. 7.4. Коленчатый вал дизеля 1А-5Д49: 1 — антивибратор; 2 — шестерня; 3 — сухарь; 4 — пакет пластин; 5, 6 — диски дизель-генераторной муфты; 7 — направляющие кольца; а — коренная шейка; б — шатунная шейка; в — щека; г — противовесы

жет удлиняться от 9-й коренной шейки к 1-й. Фланец отбора мощности соединяется пластинчатой муфтой с тяговым генератором; к фланцу с противоположной стороны крепится комбинированный антивибратор (рис. 7.5).

В условиях эксплуатации высокие знакопеременные нагрузки от изгиба и крутильных колебаний могут привести к излому вала. Этому также способствуют дефекты, которые нередко возникают при изготовлении вала (литейные или возникшие при механической обработке). Повышенные механические напряжения в вале могут появляться в результате нарушения его уравновешенности а также при неправильной регулировке антивибратора или износе его грузов и пальцев. Задир шеек вала может произойти в результате ухудшения подачи на их поверхность масла, его разжижения или попадания в масло воды. При неправильной укладке вала в постели блока или неправильной его центровке с валом тягового генератора происходит упругий изгиб вала. В результате неправильной шлифовки коренных шеек при ремонте, а также от действия напряжений может возникнуть остаточный изгиб.

Рис. 7.5. Комбинированный антивибратор дизеля 5Д49: 1 — ступица; 2 — палец; 3 — груз; 4 — крышка; 5 -корпус; 6 — инерционная масса

Основными неисправностями коленчатых валов являются: сверхнормативный износ шеек; трещины и изломы; выкрашивание, коррозия и износ баббитовой заливки вкладышей; износ вкладышей и потеря торцового натяга; трещины крышек коренных подшипников.

Рассмотрим объемы работ при различных ТО и ТР на примере дизеля 10Д100.

При выполнении ТО-3 открывают люки верхней крышки и картера для осмотра подшипников, крышек и их крепления (методом остукивания молотком). Ослабление подшипников, крышек, присутствие баббита вблизи вкладышей, отсутствие шплинтов свидетельствует о неисправностях и требует восстановительного ремонта. Осматривают маслопровод в картере и трубки, подводящие масло к подшипникам. Через одно ТО-3 проверяют провисание нижнего коленчатого вала, которое не должно быть более 0,05 мм для коренных шеек (с 1-й по 7-ю включительно).

При проведении ТР-1 выполняют работы, предусмотренные для ТО-3, и дополнительно:

замеряют щупом суммарные зазоры «на масло» и «по усам» в коренных подшипниках верхнего и нижнего коленчатых валов; допускается зазор «на масло» до 0,4 мм, а «по усам» — до 0,25 мм. При больших зазорах коренные подшипники разбирают для замены вкладышей;

проверяют провисание нижнего коленчатого вала;

проверяют соосность валов дизеля и якоря тягового генератора. Эту проверку выполняют с помощью индикаторного приспособления. Измерения производят через каждые 90° поворота вала и каждый раз измеряют толщину пакета муфты. Отклонение по индикатору не должно превышать 0,15 мм на полный оборот коленчатого вала.

При проведении ТР-2 выполняют работы, предусмотренные ТР-1, и дополнительно:

разбирают шатунные подшипники коленчатых валов, проверяют их состояние, при необходимости ремонтируют;

демонтируют верхний коленчатый вал.

Нерабочие вкладыши (блока) снимают только в случае необходимости ремонта, все же рабочие вкладыши снимают, освидетельствуют и при необходимости ремонтируют. Восстанавливают осевой разбег коленчатого вала. Проверяют провисание коленчатого вала и при необходимости устраняют подбором вкладышей.

Демонтированные или новые вкладыши коренных подшипников (рис. 7.6) опускают на 3. 5 мин в масло, нагретое до температуры 50.80°С, затем протирают каждый вкладыш чистой безворсовой салфеткой и покрывают меловым раствором. После высыхания раствора вкладыш обстукивают деревянным молотком по тыльной части. Дребезжащий звук указывает на отставание баб-

Рис. 7.6. Коренные подшипники: 1 — верхний вкладыш; 2 — нижний вкладыш; 3 — канавка; 4 — отверстие; 5 — замок; 1 — средний подшипник бита, а потемнение мела из-за выступившего масла — на наличие трещин.

Вкладыши подлежат замене:

при наличии трещин в бронзе независимо от места расположения;

отслаивании баббитовой заливки, коррозии рабочей части более 20 % ее поверхности, выкрашивании более 50 % баббитовой заливки;

наличии круговых задиров на поверхности баббитовой заливки глубиной более 0,5 мм и шириной более 3 мм;

повышенном зазоре «на масло».

Подгонку вкладышей по шейкам вала производят путем шабрения баббитовой заливки, добиваясь, чтобы на I см2 баббитовой поверхности приходилось не менее двух пятен от краски или светлячков. После шабровочных работ баббитовую поверхность вкладышей выравнивают гладилкой. Натяг вкладышей в постели блока проверяют на стенде, а если стенда в депо нет — непосредственно в постели блока. Для этой цели между крышкой и постелью блока ставят металлические прокладки одинаковой толщины (обычно из фольги). Суммарная толщина двух прокладок должна равняться допустимому натягу вкладышей. Крышки подшипников закрывают до меток окончательной затяжки. Натяг вкладышей считается достаточным, если при постукивании медным молотком по торцу не происходит продольное перемещение вкладыша относительно постели и щуп толщиной 0,03 мм входит между вкладышем и постелью корпуса на глубину не более 15 мм. Разрешается восстанавливать натяг нанесением пленки эластометра ГЭН-150(В) на затылочную часть нерабочих вкладышей.

⇐ | Поддизельная рама и блок цилиндров | | Устройство и ремонт тепловозов | | Вертикальная передача дизелей типа Д100 | ⇒

Коленчатый вал

Коленчатые валы дизелей работают в очень сложных и тяжелых условиях. Они испытывают значительные усилия от давления газов, передающиеся шатунно-поршневым механизмом, от сил инерции поступательно движущихся масс, а также усилия и моменты; возникающие вследствие крутильных колебаний. Поэтому валы дизелей изготовляют из стали методами ковки или штамповки либо из высокопрочного чугуна путем отливки. Стальные валы более надежны в эксплуатации, но трудоемки в изготовлении.

Коленчатый вал дизеля ПД1М (рис. 8) откован из стали 40. Кривошипы шатунных шеек повернуты один относительно другого на 120°. При этом получается, что каждые два кривошипа одинаково направлены. Коренные шейки 3 четвертого и седьмого коренных подшипников шире остальных. Четвертая шейка воспринимает инерционные силы от движущихся масс двух цилиндров — третьего и четвертого, а седьмая шейка — часть массы якоря генератора и является еще и упорной. Она заканчивается буртом, удерживающим коленчатый вал от осевых смещений.

Для подвода масла от коренных шеек к шатунным 4 выполнены наклонные каналы 9 с вставленными в них трубками. На заднем конце вала имеется фланец 7 для присоединения якоря генератора. Два резьбовых отверстия во фланце с резьбой служат для рассоединения коленчатого вала и якоря генератора отжимными болтами. Между фланцем отбора мощности и седьмой коренной шейкой установлена разъемная шестерня 8 со спиральными зубьями, передающая вращение распределительному валу, валам топливного и водяного насосов.

На переднем конце вала болтами прикреплен валоповоротный диск 7, имеющий по наружной цилиндрической поверхности двенадцать глухих отверстий, куда вставляют монтажный лом при повороте коленчатого вала вручную. Внешний торец диска имеет два выштампованных ушка 2 со сменными кулачками (на рис. не показаны), служащими води-лом поводка вала масляного насоса и шкива привода редуктора вентилятора охлаждающего устройства.

К неисправностям коленчатого вала относятся износ шеек и трещины.

При текущем ремонте проверяют микрометром овальность только наиболее изнашиваемых коренных шеек. В случае нагрева и местного прогиба какой-либо шейки вследствие аварийного выхода из строя вкладышей подшипника (расплавление баббита, проворот или разрушение вкладышей) дополнительно измеряют индикаторным приспособлением биение коренных шеек вала.

Цилиндрическую форму шеек коленчатого вала восстанавливают при заводском ремонте станочной обработкой (шлифованием с последующей полировкой) под ремонтный размер. Овальность шеек коленчатого вала в эксплуатации ограничивается 0,15 мм, допустимое биение — 0,25 мм. При этом размеры отдельных коренных и шатунных шеек одного вала не должны отличаться между собой более чем на одну ремонтную градацию (0,5 мм). Это позволяет иметь меньшее число вкладышей различных градаций на одном дизеле.

Допускается ручная опиловка шеек коленчатого вала для устранения забоин и других дефектов.

При ремонте коленчатого вала допускается оставлять:

• на поверхности каждой шатунной или коренной шейки — до двух забоин общей площадью 200 мм2. Площадь одной из забоин не должна превышать 120 мм2, а глубина 2 мм. Острые кромки и края забоин должны быть заовалены и заполированы так, чтобы обеспечивался плавный переход от наиболее глубокого места к цилиндрической поверхности шейки;

• на шатунных и коренных шейках — линейные неметаллические включения (волосовины) без выхода на галтели: не более 7 нгг. на одной шейке длиной до 8 мм при условии, что они не составляют цепочку более 3 шт. в одной линии и расположены под углом не более 45° к оси вала, а также одну группу групповых неметаллических включений диаметром 0,5-1,5 мм в количестве до 15 точек, расположенных на площади не менее 6 см

2.

При ремонте коленчатого вала запрещается:

• устанавливать на дизель коленчатый вал, на одной из шеек которого имеется групповое расположение цепочкой точечных неметаллических включений длиной свыше 40 мм, а также если на нем имеются неметаллические включения более чем на трех смежных шейках;

• производить какие-либо сварочные работы на коленчатом валу без разрешения Департамента локомотивного хозяйства.

Рис. 8. Коленчатый вал дизеля ПД1М:

1 — валоповоротный диск; 2 — ушки; 3, 4 — коренная и шатунная шейки; 5 — бугели крепления шестерни; 6 — маслоотбойный бурт; 7 — фланец; 8 — разъемная шестерня; 9 — канал для прохода масла

⇐Втулки цилиндров | Тепловоз ТЭМ2. Конструкция и ремонт | Подшипники коленчатого вала⇒

Коленчатые валы

Коленчатый вал дизеля работает в очень сложных и тяжелых условиях. Он испытывает значительные усилия от давления газов, передающиеся ша-тунно-поршневым механизмом, от сил инерции поступательно и вращатель-но движущихся масс, а также усилия и моменты, возникающие вследствие крутильных колебаний.

Учитывая сложность изготовления и большую трудоемкость при замене коленчатых валов, к материалу и качеству их изготовления предъявляют высокие требования. Коленчатые валы дизелей изготовляют из стали ковкой или штамповкой либо из высокопрочного чугуна путем отливки. Стальные валы более надежны в эксплуатации, но трудоемки в изготовлении. Поэтому на тепловозах получили распространение литые валы из высокопрочного модифицированного чугуна (дизели типов Д100, Д49). За счет уменьшения отходов на их изготовление затрачивается в три раза меньше металла, чем на изготовление стальных валов. (При изготовлении стального вала дизеля ПД1М из заготовки массой 13 т в отходы идет около 86 % металла.)

Изготовление коленчатых валов литьем позволяет с наименьшими затратами получить наиболее приемлемую форму щек кривошипов и более рациональное распределение металла за счет выполнения коренных и шатунных шеек пустотелыми, что уменьшает массу валов при сохранении относительно высокой прочности. Для повышения прочности вала на изгиб галтели шеек вала специально упрочняют накаткой роликами. Шейки коленчатого вала дизелей типа Д49 азотируют для повышения износостойкости.

Рис. 58. Коленчатый вал дизеля 1А-5Д49:

1 — антивибратор; 2 — шестерня; 3 — сухарь; 4 — пакет пластин; 5, 6 — диски дизель-генераториой муфты; 7 — направляющие кольца; а — коренная шейка; б — шатунная шейка; в — щека; г — противовесы

Коленчатые валы дизелей 10Д100 (нижний и верхний) по конструкции и размерам шеек одинаковы. Отличаются они концевыми частями. Валы имеют по двенадцать коренных и десять шатунных шеек, кривошипы которых смещены каждый друг относительно друга на 36° в соответствии с порядком работы цилиндров, что обеспечивает равномерную работу коленчатых валов. Поверхности трения шатунных шеек валов соединены с поверхностями смежных коренных шеек двумя косыми каналами, по которым масло поступает к шатунным подшипникам в двух противоположных точках, обес-

печивая надежность смазывания бес-канавочных вкладышей, а также охлаждение поршней. Одиннадцатая шатунная шейка служит для установки опорно-упорного подшипника. Упором для подшипника является фланец, на обоих валах, служащий одновременно для крепления конической шестерни вертикальной передачи. К фланцу верхнего вала на болтах укрепляется ведущий фланец со шлицами для привода торсионного вала редуктора воздухонагнетателя второй ступени.

К заднему фланцу нижнего вала прикреплен ведущий диск дизель-генераторной муфты. Направляющим

Рис. 59. Коицевые части коленчатого вала дизеля 1А-5Д49:

а _ передний конец; б — задний конец; 1 — уплотнительные кольца; 2 — шлицевая втулка; 3 — заглушка; а — упорный бурт; б — каналы для смазывания 10-й шейки; в — полость

Рис. 60. Коленчатый вал дизеля ПД1М:

1 — валоповоротный диск; 2 — ушки; 3 — коренная шейка; 4 — шатунная шейка; б — бугели крепления шестерни; в — маслоотбойный бурт; 7 — фланец; 8 — шестерня; 9 — канал для прохода масла кольцевым буртом вал центрируется в обойме на валу якоря генератора. В передней части нижнего коленчатого вала установлен антивибратрр. Шестерня, устанавливаемая на шпонке на верхнем валу, служит для привода валов топливных насосов.

Коленчатый вал дизелей типа 5Д49 (рис. 58) для уменьшения внутренних изгибающих моментов в блоке цилиндров и уменьшения нагруженно-сти коренных подшипников от сил инерции движущихся масс на первой, восьмой, девятой и шестнадцатой щеках имеют противовесы г, отлитые заодно со щеками. Девятая коренная шейка вала является одновременно упорной. Ее бурты а (рис. 59) ограничивают осевое перемещение вала. В переднем торце вала установлена втулка 2 со шлицами, которая через шлицевой вал передает вращение шестерням привода насосов. Шестерня 2 (см. рис. 58), установленная между девятой и десятой коренными шейками, приводит во вращение шестерни привода распределительного вала. Масло к шейкам шатунных подшипников поступает через отверстия в шейках вала. К десятой коренной шейке масло подходит от соседней девятой через два отверстия б (см. рис. 59), выполненные в теле вала без сообщения с полостью в. Полость в с торца вала закрыта заглушкой 3 с резиновыми уплотнительными кольцами 1.

К переднему фланцу коленчатого вала на болтах крепится антивибратор [вязкого трения у дизеля 1А-5Д49 (см. рис. 58, поз. 1) и комбинированный — у 2А-5Д49]. К заднему фланцу также на болтах укреплен зубчатый диск 5 валоповоротного механизма с дизель-генераторной муфтой.

Коленчатый вал дизеля ПД1М (рис. 60) откован из стали 40. Кривошипы шатунных шеек повернуты один относительно другого на 120°. При этом получается, что каждые два кривошипа одинаково направлены. Это значит, что вспышка топлива, например, происходит одновременно в двух цилиндрах. Коренные шейки четвертого и седьмого коренных подшипников шире остальных. Четвертая шейка воспринимает инерционные силы от движущихся масс двух цилиндров — третьего и четвертого. Седьмая же шейка воспринимает часть массы якоря генератора и является еще и упорной. Она заканчивается буртом, удерживающим коленчатый вал от осевых смещений.

Для уменьшения массы вала в шатунных шейках высверлены каналы. Коренные шейки сплошные. Для подвода масла от коренных шеек к шатунным выполнены наклонные каналы 9 с вставленными в них трубками. На заднем конце вала имеется фланец 7 для присоединения к якорю генератора. Два отверстия во фланце с резьбой служат для рассоединения коленчатого вала и якоря генератора отжимными болтами. Между фланцем отбора мощности и седьмой коренной шейкой установлена разъемная шестерня 8 со спиральными зубьями, передающая вращение распределительному валу, валам топливного и водяного насосов.

На переднем конце вала болтами прикреплен валоповоротный диск 1, имеющий по наружной цилиндрической поверхности двенадцать глухих отверстий, куда вставляют монтажный

Рис. 61. Коренные вкладыши дизеля 10Д100; а. б — рабочие бесканавочные: в — нерабочий канавочный; г — упорный лом при повороте коленчатого вала вручную. Внешний торец диска 1 имеет два выштампованных ушка 2 со сменными кулачками, служащими во-дилом поводка вала масляного насоса и шкива привода редуктора вентилятора охлаждающего устройства.

⇐ | Втулки цилиндров блока | | Тепловозы: Механическое оборудование: Устройство и ремонт | | Коренные подшипники | ⇒

Коленчатый вал судового двигателя.

Одной из наиболее ответственных и трудоемких в изготовлении деталей судового дизеля является коленчатый вал. Посредством его осуществляется связь всех кривошипно-шатунных механизмов. Назначение коленчатого вала-суммирование набегающих моментов и передача их результирующего значения потребителю энергии.

Конструкция коленчатого вала дизельного двигателя, во многом, определяется размерами дизеля и зависит от числа и расположения цилиндров, порядка вспышек и уровня неуравновешенности. В многоцилиндровом дизельном двигателе коленчатый вал состоит из колен. Дополнительно в группу коленчатого вала входят: маховик, ведущая шестерня (звездочка) привода распределительного вала, демпфер, гребень упорного подшипника, фланец отбора мощности, а также ряд мелких деталей. В свою очередь элементами колена являются: шатунная шейка, две щеки, половины соседних рамовых (коренных) шеек, противовесы. В судовых дизелях применяются исключительно полноопорные валы. Для таких валов число рамовых шеек на единицу больше числа кривошипных механизмов.

При назначении геометрических параметров элементов колена исходят из того, что они должны обеспечивать прочность, жесткость и износостойкость коленчатого вала. Последнее обстоятельство вынуждает увеличить диаметр и уменьшать длину шеек. В новых судовых дизельный двигателях диаметр шеек приближается к диаметру цилиндра, а отношение длины шейки к ее диаметру составляет 0,3-0,5. Для шатунной шейки в V — образных двигателях с рядомстоящими шатунами это отношение лежит в пределах 0,5-0,6. Рамовые и шатунные шейки обычно делают одного диаметра. С целью уменьшения центробежных сил, облегчения вала и повышения его выносливости шейки часто выполняют полыми. В результате этого снижаются напряжения в местах сопряжения шеек и щек. Если полости шеек используются в качестве магистрали подачи масла к подшипникам коленчатого вала, то они должны быть закрыты заглушками. Конструкции заглушек весьма разнообразны. Иногда полости шеек выполняют роль сепараторов масла.

В тронковых и реже в крейцкопфных дизельных двигателях масло для смазки подшипников коленчатого вала подается через сверления в шейках. Отношение диаметра смазочного отверстия к диаметру шейки составляет 0,05-0,11. Из конструктивных соображений масляный канал сверлят, как правило, под углом к оси шейки, что приводит к увеличению концентрации напряжений. По этой причине не рекомендуется делать угол наклона сверления более 30 градусов. Выходы масляных отверстий обязательно закругляют радиусом не менее 0,25 диаметра сверления и тщательно шлифуют.

Щеки коленчатого вала двигателя отличаются многообразием конструктивных форм. Наибольшее распространение получили прямоугольные, трапецеидальные, круглые щеки. Последние находят применение главным образом в валах ВОД дизельного двигателя. Часть материала щек в районе шатунной шейки обычно срезают. Благодаря этому уменьшаются неуравновешенно вращающаяся масса колена. На стадии эскизного проектирования толщиной и шириной щеки задаются. У коленчатых валов судовых дизелей ширина щеки b=(0,9-1,5)D, а толщина зависит от отношения S/D. Для длинноходных дизелях h=(0.3-0.65)D и h=(0.16-0.3)D в случае короткоходных двигателей, как правило, имеющих перекрытие шеек. Перекрытие шеек повышает жесткость коленчатого вала, а поэтому толщину щеки можно уменьшить. Здесь и ниже D- диаметр цилиндра, S — ход поршня.

Галтели (места сопряжения шеек со щеками) являются ярко выраженными концентраторами напряжений. Их следует выполнять с возможно большим радиусом закругления R. Экспериментально установлено, что при увеличении R с 5 до 7 мм предел выносливости возрастает на 30%. В судовых дизельных двигателях R=(0,05-0,1)d, где d — диаметр шейки. Вместе с тем, увеличение радиуса галтели неизбежно вызывает рост длины шейки. Сохранить длину шейки и одновременно уменьшить концентрацию напряжений можно за счет конструктивного совершенствования галтели. Рекомендуется выполнять галтели с поднутрением в шейку и щеку. Однако такие галтели ослабляют сечение в месте концентрации напряжений, в результате повысить прочность в целом не удается. Целесообразно выполнять галтель дугами нескольких радиусов. При этом длина шейки не возрастает, если большим радиусом описывать части галтели, непосредственно примыкающие щеке. Находят применение также эллиптические и параболические галтели.

Противовесы устанавливаются для разгрузки рамовых подшипников от действия центробежных сил, уравновешивания моментов сил инерции вращающихся и поступательно движущихся масс, а также для уменьшения внутренних перерезывающих сил и изгибающих моментов в остове двигателя. Чаще всего противовесы изготавливают в виде цилиндрических сегментов. Объясняется это тем, что такая форма дает наибольшее удаление центра массы противовеса от оси коленчатого вала, а поэтому требует меньшей массы. Противовесы крепят к щекам при помощи шпилек, которые растягиваются центробежной силой. Иногда для разгрузки шпилек делают зубчатое соединение противовеса со щекой. Относительное расположение колен выбирают таким образом, чтобы обеспечить равномерное чередование вспышек, естественное уравновешивание двигателя, минимальную нагрузку рамовых подшипников и умеренные амплитуды колебаний коленчатого вала. Удовлетворить перечисленным требованиям полностью не удается, поэтому задача выбора рациональной схемы заклинки коленчатого вала требует оптимизационного решения. В частности, выполнение условия равномерного чередования вспышек рядного двигателя дает угол между соседними коленами ß =720/I в четырехтактном и ß = 360/I в двухтактном судовом дизельном двигателе, здесь I — число цилиндров. Требование минимизации нагрузки рамовых подшипников вынуждает назначать такую заклинку вала, при которой вспышки следуют в цилиндрах, как можно дальше удаленных друг от друга.

В зависимости от числа колен и их размеров коленчатые валы судовых дизелей изготавливают цельными или состоящими из двух частей, которые стыкуются между собой при помощи фланцевого соединения. Заготовки валов получают ковкой или штамповкой. Так как трудоемкость этих методов прогрессирует по мере увеличения размеров поковки, в последнее время взамен их используют гибку с высадкой. При такой обработке цилиндрический вал подвергается пластической деформации изгибу и осевому сжатию в месте формирования колена. В ряде случаев гибка с высадкой отличается высокой производительностью и дает повышение прочности коленчатого вала. Перед механической обработкой поковки коленчатых валов подвергают низкому отжигу или нормализации. Цель термической обработки — устранение внутренних напряжений и уменьшение твердости стального вала для улучшения его обрабатываемости.

Коленчатые валы больших размеров чаще всего собирают из полусоставных или составных колен. В валах с полусоставными коленами шатунные шейки отковываются вместе со щеками, в которые запрессовываются рамовые шейки. В составных коленах как рамовые, так и шатунные шейки соединяют посредством запресовки. Запресовку осуществляют с натягом и предварительным нагревом соединяемых деталей до 200-300 градусов. Установка шпонок и штифтов не допускается.

Как известно, несущая способность прессового соединения определяется величиной натяга, т.е. значениями контактных напряжений. Вследствие неизбежной релаксации материалов коленчатого вала контактные напряжения уменьшаются. Этот процесс приводит к ослаблению натяга, появлению фретинг-коррозии на сопрягаемых поверхностях и, как следствие, к повышению вероятности проворачивания шеек. Уменьшение скорости релаксации достигается увеличением массы щеки в районе ее сопряжения с шейкой и в конечном итоге определяется радиальной и осевой толщиной щеки.

Для снижения массы щек прессовое соединение деталей коленчатого вала дизельных двигателей иногда заменяют сваркой. В результате такой замены удается уменьшить металлоемкость коленчатого вала на 25-30% и собирать валы с перекрытием шеек. В настоящее время существует два варианта изготовления сварных валов. По первому варианту щеки вместе с половинками шеек отковываются, нормализуются и соединяются сваркой по стыкам половины каждой шейки. Второй вариант предусматривает изготовление ковкой отдельных колен, которые затем соединяются между собой сваркой по стыкам половин рамовых шеек. В обоих вариантах сварные швы располагаются в середине шеек.

Технология сварки элементов коленчатого вала дизеля предусматривает следующие операции. Перед сваркой производится механическая обработка торцов свариваемых половин шеек для обеспечения их параллельности. Свариваемые детали устанавливаются на манипулятор таким образом, чтобы расстояние между торцами составляло 15-20 мм, и подогреваются до температуры 200 градусов. После этого соединяемые детали приводятся во вращение манипулятором с частотой 10-20 об/мин и начинается автоматический процесс электродуговой сварки под флюсом. Круговые сварные швы поочередно наносятся друг на друга, постепенно заполняя металлом торцевой зазор. После сварки производится отжиг коленчатого вала и проверка качества сварных швов. Качество сварки ультразвуковым дефектоскопом.

Коленчатые валы судовых дизельных двигателей стальные. Они изготавливаются из сталей, легированных хромом, никелем, марганцем, молибденом и алюминием. Чаще других применяются, стали 40Х, 35Г, 40Г, 40ХН2МЮА, 38Х2МЮА. Первые три марки обычно служат материалом для валов МОД.

Повышение износостойкости шеек и долговечности коленчатого вала дизельного двигателя в целом достигается поверхностным упрочнением. Благодаря ему в поверхностном слое создаются остаточные сжимающие напряжения, которые в значительной степени препятствуют зарождению усталостных трещин. Среди методов поверхностного упрочнения в судовом дизелестроении наиболее распространены: закалка током высокой частоты, азотирование и обкатка роликами. Высокочастотная закалка относится к производительному и прогрессивному способу повышения поверхностной твердости стали. Однако по причине громоздкости электрического индуктора этот метод применяется пока лишь для упрочнения валов небольших размеров. Более эффективным средством получения высокой твердости является азотирование. Процесс насыщения поверхностного слоя азотом протекает чрезвычайно медленно (примерно около 10 ч для получения слоя глубиной 0,15 мм). Обычно азотирование производят на глубину 0,3-0,6 мм и оно относится к завершающей стадии обработки коленчатого вала. После азотирования подвергают шлифованию только шейки вала. Предел выносливости коленчатого вала двигателя можно еще больше повысить, если подвергать его поверхности механическому наклепу. Весьма успешно эта цель достигается при обкатке роликами галтелей и обжатии шариком краев масляных отверстий. Шейки валов больших размеров также обкатываются роликами. При такой обработке упрочненный слой может достигать нескольких миллиметров, что способствует заметному снижению напряжений в местах их концентрации. Помимо упомянутых известны комбинированные методы поверхностного упрочнения коленчатых валов. Например, шейки и щеки вала азотируют, а галтели либо обкатывают фасонными роликами, либо подвергают обдувке дробью.

Коленчатый вал тепловоза — Устройство и ремонт дизеля — Справка 2ТЭ116

     Коленчатый вал через шатуны воспринимает усилия от поршня и передаёт их в виде вращающего момента ротору тягового генератора и вспомогательным агрегатам.

Рис. 20 – Коленчатый вал из высокопрочного чугуна

1 – демпфер вязкого трения; 2 – шестерня; 3 – сухарь; 4 –пакет пластин; 5, 6 – диски дизель-генераторной муфты; 7 – направляющие кольца; а – коренная шейка; б – шатунная шейка; в – щека; г – противовесы.

     На дизель-генераторах 1А-9ДГ исп.1 применяется литой вал из высокопрочного чугуна (рис.20). Шатунные шейки б имеют диаметр 200 мм. Для уменьшения внутренних моментов от сил инерции и разгрузки коренных подшипников на первой, восьмой, девятой и шестнадцатой щеках в коленчатого вала имеются противовесы г. У девятой коренной шейки имеются бурты, которые ограничивают осевое перемещение коленчатого вала.

     На передний фланец устанавливают демпфер вязкого трения 1, на задний фланец отбора мощности – ведущий диск муфты. В передний торец вала установлена втулка со шлицами, которая через шлицевой вал передаёт вращение шестерням привода насосов. Она крепится к коленчатому валу и стопорится штифтами. Между девятой и десятой коренными шейками коленчатый вал имеет фланец, к которому прикреплена шестерня 2, передающая вращение шестерням привода распределительного вала.

     Масло из коренных подшипников по отверстиям в коренных шейках а коленчатого вала поступает на смазывание шатунных подшипников.

К десятому коренному подшипнику масло подводится из полости, которая соединена сверлением с наружной поверхностью девятой коренной шейки. Полость закрыта заглушкой. Масло на смазывание шлицов шлицевой втулки подводится от первой коренной шейки по внутренней полости коленчатого вала.

     На дизелях 1А-5Д49 исп.2 коленчатый вал изготовлен из легированной стали (рис.21). Шейки коленчатого вала азотированы, галтели накатаны, что соответственно обеспечивает повышение износостойкости и усталостной прочности вала. Для лучшей балансировки на всех щёках коленчатого вала имеются противовесы 7, прикреплённые к валу шпильками 9, шайбами и гайками. На передний фланец 8 устанавливают комбинированный антивибратор.

Рис. 21 – Коленчатый вал из легированной стали

7 – противовесы; 8 – фланец крепления комбинированного антивибратора;

9 – шпильки крепления противовесов.

     Масло из коренных подшипников по отверстиям в коренных шейках коленчатого вала поступает к соседним шатунным шейкам (т.е. от второй коренной шейки масло по наклонным каналам в щеках подаётся к первой и второй шатунным шейкам и т.д.) на смазывание шатунных подшипников. Диаметр шатунных шеек 190 мм.

Рис. 22 – Фрагмент коленчатого вала

1 – щека; 2 – шатунная шейка; 3 – коренная шейка; 4 – масляный канал;

5 – противовес.

     В остальном конструкция стального коленчатого вала аналогична конструкции чугунного коленчатого вала.

 

Ремонт

     Основными неисправностями коленчатых валов являются: излом вала по шейкам или щекам, трещины в шейках вала (чаще по галтелям), задир шеек вала, повышенная овальность коренных или шатунных шеек, повреждение элементов соединения вала с антивибратором, приводом насосов и изгиб вала.

     При ремонте коленчатого вала полости коренных и шатунных шеек, а также отверстия подвода масла промывают дизельным топливом и проверяют на чистоту.

Обмеряют коренные шейки:

—       диаметр коренной шейки не менее 219,7–0,03 мм;

—       диаметр шатунной шейки не менее 189,7–0,03 мм;

—       овальность, конусность коренных и шатунных шеек не более 0,06 мм;

—       бочкообразность и седлообразность коренных и шатунных шеек на более 0,04 мм;

—       масса коленчатого вала 1985 кг.

      

Рис. 23 — Обмер шеек коленчатого вала       Рис. 24 — Обмер шеек коленвала

     Шейки коленчатых валов, имеющие овальность и забоины более допустимых значений, с также задиры обрабатывают шлифовкой на специальных станках с последующим их полированием. Шлифуют шейки до следующего градационного размера. Всего установлено семь градационных размеров. Смежные градации отличаются на 0,5 мм друг от друга.

     Полируют одновременно все шейки вала на станке. Направление вращения коленвала при полировке должно совпадать с рабочим направлением, в противном случае могут возникать задиры шеек вала при работе дизеля. Шероховатость поверхности шеек вала должна быть не ниже 8-го класса.

Для повышения усталостной прочности коленчатого вала галтели шеек накатывают роликами как при изготовлении валов. После ремонта коленвала проводят измерение его геометрии.

Коленчатые валы — Моряк

Коленчатый вал является наиболее ответственной дорогостоящей деталью дизеля. Он воспринимает усилия через шатуны от поршней и передает эти усилия потребителю (гребному винту). На коленчатый вал при работе двигателя действуют скручивающие и изгибающие усилия, меняющиеся по величине и направлению. В результате этого его приходится отливать, отковывать или отштамповывать из специальных сортов стали. Для изготовления коленчатых валов используют высокосортные углеродистые стали. У среднеоборотных напряженных двигателей коленчатые валы изготовляют из легированных (никелевых или хромникелевых) сталей. Иногда их выполняют из высокопрочного или модифицированного чугуна.

В зависимости от мощности и размеров двигателей коленчатые валы бывают цельноковаными или составными. Цельнокованый коленчатый вал восьмицилиндрового двигателя состоит из рамовых шеек 2, расположенных на одной оси, шатунных шеек 4 и щек 3. Рамовые шейки уложены в рамовые подшипники, на шатунные шейки навешены нижние головки-шатунов (рис. 1, а).

Рис. 1. Коленчатые валы: а – составной вал восьмицилиндрового дизеля, б – общий вид вала шестицилиндрового дизеля

Для того чтобы повысить прочность коленчатого вала, его шейки подвергают поверхностной закалке и азотированию. Поверхность шеек после токарной обработки тщательно шлифуют. На кормовом конце коленчатого вала установлен фланец 1 для крепления маховика. Носовой конец вала используют для монтажа шестерни привода навешенных на дизель насосов (масляного, водяного, топливоподкачивающего) и других вспомогательных механизмов.

Количество шатунных шеек коленчатого вала всегда равно числу цилиндров двигателя. Количество рамовых шеек обычно на 3 – 2 больше, чем цилиндров двигателя. Все рамовые шейки лежат на оси коленчатого вала. От этой оси на одинаковом расстоянии (радиус кривошипа) располагаются шатунные шейки.

Составной коленчатый вал дизеля 8ДР 43/61 состоит из двух четырехколенчатых валов 1 и 2 и упорного вала 3. Отдельные части коленчатого вала соединены между собой при помощи фланцев 6 калиброванными болтами (рис. 1, б).

 На шейке вала у кормового фланца устанавливается на шпонке 7 шестерня привода распределительного вала. К носовому фланцу вала крепятся успокоитель крутильных колебаний и ведущая часть упругой муфты привода воздуходувки. Кормовой фланец упорного вала 3 соединен с гребным валопроводом. Усилие упора гребного винта передается через гребень 5 упорного вала на упорный подшипник. На шейке у кормового фланца упорного вала проточены маслоотбойные гребни 4. Эти гребни совместно с сальниковым уплотнением в торцевой крышке корпуса упорного подшипника препятствуют утечке масла.

Конструкция коленчатого вала должна предусматривать возможность подачи масла для смазки рамовых и шатунных подшипников. Несмотря на различное конструктивное выполнение системы смазки коленчатых валов, эта схема у судовых дизелей построена по одинаковому принципу.

Масло из системы смазки дизеля по ответвлениям подается к рамовым подшипникам и смазывает их поверхность. Часть масла от рамовых шеек 8 через наклонные сверления «А» в шейках и щеках 9 подается к шатунным шейкам 10. Причем к каждой шатунной шейке подведены сверления от двух соседних рамовых шеек. В крайней носовой шейке коленчатого вала выполнено продольное сверление, по которому подводится масло к успокоителю крутильных колебаний и к упругой муфте привода воздухонагнетателя.

В тихоходных судовых двигателях, у которых радиус кривошипа более 500 мм, колена вала могут быть полусоставными или составными.

Стальные щеки полусоставного колена отковывают заодно с шатунной шейкой, а рамовые шейки изготовляют отдельно (рис. 2, а). Соединение щек с рамовыми шейками выполняется горячей посадкой. Составное колено двигателя «Бурмейстер и Вайн» получается, когда отдельно изготовленные рамовые и шатунные шейки запрессовываются в отверстия щек (рис. 2, б). В данной конструкции рамовые и шатунные шейки выполнены полыми. Полости в шейках закрыты заглушками 2 и заполнены маслом, которое в полость рамовой шейки поступает по радиальным сверлениям 1, откуда по сверлению 3 в щеке попадает в полость шатунной шейки. На смазку кривошипного подшипника масло подается через отверстие 4.

Рис. 2. Элементы коленчатых валов: а – полусоставное колено, б – составное колено, в, г, д – прямоугольная, овальная и круглая форма щёк.

Во время работы двигателя в результате вращения кривошипа и нижней головки шатуна возникает центробежная сила инерции FM, направленная всегда от центра вращения, стремящаяся оторвать кривошип и, следовательно, действующая на рамовые подшипники, увеличивая их износ.

В шести- и восьмицилиндровых двигателях эти силы оказываются уравновешенными, т. е. в любой момент на коленчатый вал действуют две силы FM (от разных кривошипов), но направлены они в противоположные стороны.

Если двигатель имеет нечетное число цилиндров или менее четырех, то центробежные силы инерции взаимно не уравновешиваются. В этом случае коленчатые валы снабжаются противовесами — массами, закрепленными на щеках колена со стороны, противоположной шатунной шейке. У двигателей «Бурмейстер и Вайн» противовесы 5 отковываются заодно со щеками колена. При вращении противовеса возникает центробежная сила Fпр, которая равна по величине силе FM, но направлена в обратную сторону. В результате сила FM уравновешивается и ее влияние нейтрализуется.

Щеки кривошипа могут иметь различную конструктивную форму. Прямоугольные щеки просты в изготовлении, однако нерациональное использование материала увеличивает центробежные силы, которые дополнительно нагружают рамовые подшипники (рис. 20, в). Для устранения этого недостатка и уменьшения общей массы вала углы щек часто срезают.

Овальные щеки являются наиболее рациональными в отношении прочности и массы, но сложны в изготовлении (рис. 2, г). Круглые щеки менее рациональны по сравнению с овальными, но проще в изготовлении (рис. 2, д).

 Фигурные щеки применяют в полусоставных и составных кривошипах. Их форма обусловлена необходимостью создания кольца для надежного обжатия шеек (см. рис. 2, а, б).

В многоцилиндровом двигателе для повышения равномерности работы необходимо, чтобы рабочие ходы поршней в отдельных цилиндрах чередовались через равные углы поворота вала или через равные промежутки времени. Чередование рабочих ходов в определенной последовательности называется порядком работы цилиндров двигателя. Порядок работы цилиндров зависит от расположения кривошипов коленчатого вала один относительно другого. Угол установки соседних кривошипов определяют числом тактов двигателя и количеством его цилиндров, который равен углу поворота вала за весь цикл, разделенному на число цилиндров.

Следовательно, кривошипы двигателя должны быть повернуты друг относительно друга на угол α=360:z — у двухтактного двигателя и α=720:z — у четырехтактного (z — число цилиндров). Так, у восьмицилиндрового двухтактного двигателя кривошипы располагаются через 360°: 8 = 45°.

Последовательность (порядок) работы цилиндров бывает различной. При ее выборе по возможности стремятся облегчить работу рамовых подшипников. Для этого нужно, чтобы рабочие ходы в стоящих рядом цилиндрах не следовали друг за другом. Это может быть, например, у двухтактного восьмицилиндрового двигателя с порядком работы 1—8—3—5—2—7—4—6 или у четырехтактного шестицилиндрового с очень распространенной последовательностью 1 —5—3—6—2—4.

При выборе порядка работы цилиндров стремятся достичь наиболее полной уравновешенности сил инерции деталей кривошипно-шатунного механизма.

Коленчатые валы дизелей конструкция — Энциклопедия по машиностроению XXL

Валы коленчатые судовых дизелей — Конструкции— Материалы 10—50, 51 -  [c.28]

Тахометры магнитоиндукционного типа, устанавливаемые для контроля частоты вращения коленчатого вала дизелей, имеют электропривод. Их конструкция аналогична конструкции спидометров с электроприводом. Отличаются они отсутствием счетного узла.  [c.197]

Влияние конструкции подшипников коленчатого вала. Рассмотренные выше факторы относятся к подаче масла через шатун рядных дизелей с подшипниками коленчатого вала канавочной конструкции, т. е. имеющие в средней части масляную канавку (см. рис. 47, б). В этом случае масло поступает из коллектора в кольцевую канавку коренного подшипника, проходит в сверление вала, затем в кольцевую канавку шатуна подшипника и из нее в шатун. При такой схеме подача масла в поршни по цилиндрам (рис. 60) практически одинаковая.  [c.110]


Тяговые характеристики комбинированного двигателя могут быть улучшены путем создания рациональной конструкции механической связи вала турбины с коленчатым валом дизеля. Достигнуть этого можно, например, путем введения в указанную связь механизма с изменяемым передаточным числом.  [c.35]

Аварийная остановка дизеля. Дизель автоматически может быть остановлен регулятором предельной частоты вращения коленчатого вала дизеля или вручную выключателем 25. Остановка дизеля как в первом, так и во втором случае производится при помощи автомата выключения топливных насосов,» конструкция которого показана на рис. 128.  [c.247]

Назначение передачи. Тепловоз, у которого коленчатый вал дизеля непосредственно соединен с осями движущих колесных пар (так называемый тепловоз непосредственного действия), практически неработоспособен. Без дополнительных устройств такой локомотив не сможет сдвинуться с места и следовать с заданной скоростью по перегону. Это объясняется тем, что давать нагрузку на дизель можно только при частоте вращения коленчатого вала, равной примерно 1/3 номинального ее значения мощность дизеля увеличивается при увеличении частоты вращения коленчатого вала, наконец, конструкция дизеля не допускает больших перегрузок.  [c.3]

Наиболее просто энергию дизеля передавать непосредственно на движущие оси тепловоза. Для этого достаточно было бы соединить коленчатый вал дизеля с колесами локомотива (тепловоз непосредственного действия). Такая простая конструкция, к сожалению, неработоспособна, и это объясняется особенностями работы дизеля.  [c.3]

Остов дизеля представляет собой опорную раму, сваренную с двумя моноблоками цилиндров. Блочная конструкция увеличивает жесткость остова дизеля. К остову крепятся все узлы и агрегаты двигателя. Блоки цилиндров расположены под углом 45° друг к другу. Опорная рама служит резервуаром для масла и называется картером. Блок-картер является несущим, так как к нему приварены постели коренных подшипников коленчатого вала. Такая конструкция остова, состоящая из одной детали — несущего блок-картера, характерна для большинства транспортных дизелей.  [c.27]

Таким образом, внешняя характеристика показывает максимальные значения мощности, которые дизель может развить при номинальной и частичных скоростях вращения его вала. Величина же мощности дизеля, которую можно использовать на тепловозе при каждом конкретном значении п, зависит от характеристик передачи. Естественно, что конструкция передачи должна быть рассчитана так, чтобы можно было использовать максимальное значение мощности дизеля Ые при Ином- Следовательно, в точке А (рис. 4.9, б) внешняя характеристика / должна совпадать с характеристикой передачи, т. е. мощность, развиваемая дизелем, должна быть равна мощности, потребляемой передачей. На частичных режимах вращения вала величина потребляемой мощности зависит от свойства и настройки передачи. При электрической передаче мощность тягового генератора примерно (если пренебречь изменением к.п.д.) пропорциональна частоте вращения якоря и, следовательно, коленчатого вала дизеля. Поэтому линия 6, называемая генераторной характеристикой, показывает величину мощности дизеля, которая реализуется на тепловозах с электрической передачей при работе дизеля на номинальной и пониженных частотах вращения его вала.  [c.77]


Возможности регулирования частоты вращения вентилятора (при неизменной частоте вращения коленчатого вала дизеля) зависят от конструкции привода вентилятора. В зависимости от типа привода (см. ниже) скорость вращения вентилятора может изменяться либо ступенчато, либо непрерывно. Изменение аэродинамических характеристик вентилятора в опытных конструкциях осуществлено путем изменения угла наклона лопастей.  [c.170]

Якорь имеет оребренный сварной остов 21 бочкообразной конструкции с фланцем 30 для сочленения (через муфту) с коленчатым валом дизеля и конусным концом вала 3 со стороны коллектора для привода от дизеля вспомогательных электромашин и механизмов тепловоза. Он опирается  [c.206]

Назначение и конструкция. Гидромеханический редуктор (рис. 81) предназначен для передачи вращающего момента от коленчатого вала дизеля на вал главного вентилятора и коленчатый вал компрессора. В редукторе, кроме зубчатых передач, используются две гидромуфты, что обеспечивает плавность передачи вращения, высокий к.п.д. и возможность автоматического управления главным вентилятором и компрессором.  [c.149]

В некоторых дизелях для прокручивания коленчатого вала применяют воздух, сжимаемый специальным компрессором, установленным на дизеле. Принцип работы такой системы состоит в том, что сжатый воздух подается компрессором в пусковые баллоны. При пуске дизеля, открывая воздушный вентиль, воздух из баллонов направляют в воздухораспределитель, который в соответствии с порядком работы цилиндров распределяет его по пусковым автоматическим клапанам, установленным в головке цилиндров. Сжатый воздух, попадая в цилиндр дизеля во время такта расширения и воздействуя на поршень, приводит в движение коленчатый вал. В зависимости от конструкции, пускового устройства воздух может подаваться в один, два, а иногда и во все цилиндры дизеля.  [c.423]

В ходе отработки конструкции и освоения производства дизелей типов 61 и 58 были успешно решены многие сложные технические и технологические проблемы освоено азотирование коленчатых валов, для чего спроектирована и изготовлена уникальная лечь, разработаны меры по предупреждению фретинг-коррозии деталей остова, внедрена гиперболическая и эксцентричная расточка вкладышей подшипников, испытано и внедрено новое отечественное смазочное масло М-20Г с многофункциональной композицией присадок и антикоррозионная присадка ВНИИ НП-117 к охлаждающей воде.  [c.496]

Основными показателями работы ДВС являются мощность и крутящий момент на коленчатом валу часовой и удельный расход топлива, характеризующие экономичность двигателя эффективный КПД, характеризующий совершенство конструкции ДВС. Удельным расходом топлива называют отношение его часового расхода к мощности на коленчатом валу. Под эффективным КПД понимают отношение указанной выше мощности к затраченной теплоте использованного топлива. Дизели обладают более высоким эффективным КПД (0,35. .. 0,45) по сравнению с карбюраторными двигателями (0,26. .. 0,32), а также более низким удельным расходом топлива — 190. .. 240 г/кВт-ч при 280. .. 320 г/кВт-ч у карбюраторных двигателей. В выхлопных газах дизелей содержится меньше токсичных веществ. К недостаткам дизелей относятся затрудненный запуск при низких температурах, высокая чувствительность к перегрузкам, а также большая масса  [c.29]

Высокопрочные чугуны применяют в различных отраслях техники, эффективно заменяя сталь во многих изделиях и конструкциях. Из них изготовляют оборудование прокатных станов (прокатные валки массой до 12 т), кузнечно-прессовое оборудование (траверса пресса, шабот ковочного молота) в турбостроении — корпус паровой турбины, лопатки направляющего аппарата в дизеле-, тракторе- и автомобилестроении — коленчатые валы, поршни и многие другие ответственные детали, работающие при высоких циклических нагрузках и в условиях изнашивания.  [c.299]


Экспериментальные работы, проведенные заводом Русский дизель , показывают, что применение описанной конструкции упругой муфты с демпфером вдвое уменьшило касательные напряжения в опасном сечении коленчатого вала. При этом были в значительной мере устранены резонансные явления (стук и т. п.) на всех резонансных частотах.  [c.96]

По конструкции их разделяют на поршневые и роторные. В поршневых двигателях расширяющиеся при сгорании топлива газы перемещают поршень, возвратно-поступательное движение которого преобразуется во вращательное движение коленчатого вала. В зависимости от способов смесеобразования и воспламенения поршневые двигатели делятся на две основные группы. К первой относятся двигатели с внешним смесеобразованием и принудительным воспламенением. Самыми распространенными двигателями первой группы являются карбюраторные, в которых смесь образуется вне цилиндров в специальном приборе — карбюраторе, а воспламеняется в цилиндре электрической искрой. Ко второй группе относятся дизели — двигатели с внутренним смесеобразованием и воспламенением от сжатия. В дизелях смесь образуется в процессе впрыскивания топлива в цилиндр, а затем самовоспламеняется под воздействием высокой температуры.  [c.12]

На скорость загрязнения масла в двигателе в значительной степени влияют его конструктивные особенности, такие как форма камеры сгорания (особенно в дизелях), конструкция маслосъемных и компрессионных поршневых колец, наличие и эффективность действия масляных фильтров, воздухоочистителя, масляного радиатора, вентиляции картера и др., а также диаметр цилиндра, удельный расход топлива и число оборотов коленчатого вала двигателя в минуту (рис. 6). Степень загрязнения масла в дизелях зависит от совершенства рабочего процесса, т. е. от количества образующихся продуктов неполного сгорания топлива, часть которых попадает в масло. Резко возрастает скорость загрязнения масла при неисправностях в топливоподающей системе (снижение давления впрыска, засорение сопловых отверстий в форсунках, подтекание форсунок и т. д.).  [c.14]

Крутящий момент от пускового двигателя на маховик дизеля передаётся через редуктор с ручным управлением сцепление автоматическое. Общее передаточное число при работе с редуктором равно 27. Соответствующее максимальное число оборотов коленчатого вала дизеля равно 82 в минуту. Конструкция редуктора позволяет осуществить непосредственную передачу крутящего момента от пускового двигателя. В этом случае передаточное число равно 8,5, а число оборотов коленчатого вала дизеля возрастает до 258 в минуту. При наличии редуктора дизель удавалось запускать при температурах, доходящих до—35° С. Общее время пуска дизеля при этих условиях не превышало 20 0 мин. В момент запуска дизель декомпрессируется.  [c.335]

При обнаружении повышенного износа шеек валов н подшнпннков н определении с помощью расчетов и соответствующих экспериментов наличия смешанного режима смазки изыскивают пути перевода на жидкостной режим смазки. В соответствии с диаграммой Герсн—Штрибека (рис. 2) образование такого режима (участок 3) возможно вследствие повышения вязкости смазки, угловой скорости и снижения давления. Смягчить условия работы трибо-системы иногда удается с помощью конструктивных изменений трущихся деталей. Например, бесканавочная конструкция подшипников коленчатого вала дизелей тепловозов позволила перевести работу таких подшипников в жидкостный режим смазки, устранить случаи задиров шеек коленчатых валов н существенно поднять долговечность трущегося узла [301.  [c.135]

Корпус 13 ротора генератора сварной, выполнен по типу корпуса якоря генератора тепловоза ТЭЗ, т. е. имеет безвальную конструкцию. С одного конца в цилиндрическую часть корпуса (бочку) вварена литая стальная втулка, на которой монтируют токосъемные кольца и подшипник, с другого вварен фланец для соединения с коленчатым валом дизеля призонными болтами. На корпусе ротора расположен несущий обод из листовой стали со штампованными пазами для крепления полюсов. Листы обода стянуты нажимными шайбами. Сердечники полюсов набраны из отдельных листов электротехнической стали толщиной 1,4 мм марки 08 кп, стянутых между собой при помощи нажимных шайб, шпилек и гаек.  [c.36]

Пусковой двигатель может быть двухтактным или четырехтакт-нЫлМ, с водяным или воздушным охлаждением. Его конструкция по возможности проста, а пуск производится от руки, иногда электрическим стартером. Механизм передачи от коленчатого вала пускового двигателя к коленчатому валу дизеля состоит из редуктора с муфтой сцепления и автоматической разъединяющей муфты. Иногда редуктор делают двухступенчатым, что позволяет в начале проворачивать коленчатый вал с меньшим числом оборотов, чем число оборотов, необходимое для пуска. Автоматическая муфта служит для отсоединения вала пускового двигателя после пуска, когда число оборотов вала дизеля начинает быстро возрастать.  [c.265]

Вентиляторное колесо. На тепловозе ТЭМ2 применено вентиляторное колесо диаметром 1600 мм с шестью пустотелыми лопастями, сваренными из тонкой листовой стали и приваренными к барабану под углом 26° к плоскости вращения. По конструкции вентиляторное колесо холодильника такое же, как и на тепловозе 2ТЭ10В (см. рис. 172). Частота вращения колеса при 750 об/мин вала дизеля 1055 об/мин, мощность, потребляемая вентилятором, 51 л. с. Производительность вентилятора 119 ООО м /ч, привод — механический от коленчатого вала дизеля через редуктор. Зазор между лопастями вентилятора и цилиндрической поверхностью диффузора должен быть равномерным 3—10 мм, разность допускается не более 5 мм. Вентиляторное колесо надевают на верхний конусный конец вала подпятника и укрепляют его гайкой. От проворота на валу колесо вентилятора удерживает шпонка. На нижний конец вала напрессован фланец, закрепленный гайкой. Фланец при помощи болтов соединен с карданным валом.  [c.322]


Синхронный генератор (рис. 3.11) — это явнополюсная машина, имеющая две трехфазные обмотки (звезды) на статоре, сдвинутые на 30°эл. Корпус ротора генератора сварной, подобен корпусу якоря генератора тепловоза ТЭЗ, т. е. имеет безвальную конструкцию, отличающуюся монолитностью и прочностью. В цилиндрическую часть корпуса ротора 13 вварена стальная втулка, на которой монтируют токосъемные кольца, с противоположного конца вварен фланец для соединения с коленчатым валом дизеля. На корпусе ротора расположен индуктор (магнитопроводное ярмо) из листовой стали со штампованными пазами для крепления полюсов. Листы обода стянуты нажимными шайбами. Сердечники полюсов набраны из отдельных листов электротехнической стали толщиной  [c.56]

Так как расстояние от оси тепловоза до оси коленчатого вала дизеля 12Д70 на 160 мм больше, чем у дизеля 2Д100, то валы гидромеханического редуктора на модернизированном тепловозе получают вращение от карданного вала при этом расположешге всех механизмов со стороны холодильника не меняется. Для привода механизмов, расположенных со стороны генератора, взамен существующего устанавливается новый редуктор измененной конструкции, вал двухмашинного агрегата приводится во вращение от карданного вала.  [c.188]

Принцип копирования упрочняемой поверхности в процессе ВТМПО, заложенный в конструкцию приведенной выше установки, развит применительно к обработке рабочих поверхностей ответственных, наиболее сложных в конструктивном отношении и трудоемких в изготовлении деталей — кулачковых и коленчатых валов дизелей гусеничных машин. Рабочие поверхности этих деталей размещены по длине вала, а также раз-166  [c.166]

Система гидропередачи состоит из двух вращающихся гидронасосов с приводом от дизеля и восьми гидромоторов, которые по четыре смонтрированы на каждой двухосной те .ежке. Гидронасосы и гидромоторы сходны по конструкции и являются взаимозаменяемыми. При заглущен-ком дизеле энергия ст осей возвргщается к коленчатому валу дизеля, и за счет этого возникает тормозная сила. Ведущий вал каждого насоса приводит во вращение диск, с которым шарнирно по окружности соединены плунжеры со штоками. Плунжеры, жестко соединенные со штоками, скользят в выфрезерованных барабанах цилиндрового блока, смонтированного на отдельном валу. Соединение с диском выполнено в виде карданного вала. Угол между осями диска и блока цилиндров может изменяться. Если оси диска и блока цилиндров расположены по одной линии, то плунжеры не получают поступательного движения. При образовании угла между осями плунжерам сообщается возвратно-поступательное движение. При этом ход плунжеров увеличивается с увеличением угла, и вследствие этого 208  [c.208]

Вследствие более высоких величин давлений в пространстве сгорания конструкция дизеля оказывается более тяжелой, чем карбюраторного двигателя. Толщина стенок картера и усилительных ребер должна быть для дизеля большей. При изготовлении коленчатого вала дизеля обязательно применение материала, обладающего высокой прочностью. Так как максимальные значения нагрузок на подшипники очень высоки (200—300 кг1см ), применение обычных вкладышей с заливкой баббитом не представляется возможным. Вместо баббита применяются свинцовистые бронзы твердостью до 100 по Бринелю. С увеличением твердости подшипникового сплава растет и износ шеек коленчатого вала. Коленчатые валы автомобильных дизелей следует поэтому подвергать закалке. Целесообразным является применение закалки пламенем газовой горелки или токами высокой частоты. Глубина закаленного слоя составляет обычно несколько миллиметров с тем, чтобы при смене подпшпников можно было еще несколько раз прошлифовывать шейки вала. Твердость закаленной щейки Н= 60.  [c.387]

Чугунные литые коленчатые валы установлены на дизелях типа ДЮО. Изготовление литых валов обеспечивает большую экономию материала и снижает затраты. Нижний и верхний коленчатые валы дизеля ДЮО (рис. 5.18) отличаются друг от друга только конструкцией концевых частей. Валы имеют по 10 шатунных I—X и по 12 коренных 1—12 шеек, выполненных для уменьшения массы пустотелыми 16. Коренные шейки валов смазываются маслом, поступающим через коренные подшипники. На шатунные шейки дизелей 2ДЮ0 масло поступает по каналам 17. На дизелях ЮДЮО масло от коренной шейки идет по двум косым каналам. Передний конец нижнего коленчатого вала имеет шпильку 19 и посадочное место 18 под антивибратор, а противоположный — фланец 14 для крепления пластинчатой муфты, соединяющей вал дизеля с валом генератора. К фланцу 15 крепится коническая шестерня, входящая в зацепление с шестерней вертикальной передачи.  [c.97]

Генератор имеет только однн роликовый подшипник. Якорь генератора крепится к коленчатому валу дизеля через упругую муфту. Своими кронштейнами генератор опирается па поддизельную раму. Одна из крышек над коллектором удалена для того, чтобы была видна конструкция отдельных деталей. Возбудитель (верхний справа) сериесно-дифференциального типа питает обмотку возбуждения главного генератора. Вспомогательный генератор (верхний слева) имеет мощность 9 кет при напряжении 75 в. Генератор вентиляторной группы подшипников не имеет и подвешен к главному генератору. Он обеспечивает пн тлние электродвигателей вентилятора холодильника и вентиляторов, охлаждающих тяговые электродвигатели  [c.129]

На рис. 80, в изображен коленчатый вал дизеля 11Д45. Внутренняя полость этого вала используется для подачи масла и уплотнена заглушками, стянутыми между собой связями, В остальном его конструкция аналогична валу дизеля типа ДЮО. В тепловозном дизелестроении для изготовления литых коленчатых валов применяют высокопрочные чугуны (ГОСТ 10167—73).  [c.152]

Мощность, развиваемая дизелем при работе на холостом ходу, расходуется внутри двигателя на преодоление механических сопротивлений Л/ с и на привод вспомогательного оборудования. Механические сопротивления возрастают при увеличении частоты вращения быстрее, чем увеличивается сама частота. Уменьшение частоты вращения коленчатого вала дизеля, снижающее потери мощности на преодоление механических сопротивлений Л/ мс и мощность вспомогательного оборудования Л етв определяет существенное снижение часового расхода топлива при минимальной частоте вращения хо-лостого хода и снижение интенсивности износа деталей дизеля. Поэтому целесообразно установление наименьшей допускаемой частоты вращения холостого хода. При выборе минимальной частоты вращения следует учитывать ограничения не только по конструкции самого дизеля, но также и по условиям работы некоторых вспомогательных узлов и агрегатов тепловоза.  [c.253]

Постройка агрегатов большой мощности ограничивается числом оборотов коленчатого вала двигателя, так как рост числа оборотов вала поршневого двигателя увеличивает силы инерции движущихся деталей (поршни, шатуны и пр.). Это приводит к утяжелению конструкции в связи с необходимостью увеличения прочности и массы частей двигателя. Поэтому скорость вращения вала крупных стационарных двигателей находится в пределах 300—600 об мин, для быстроходных (карбюраторных) двигателей она составляет 3500—6000 об1мин, а для транспортных дизелей 1500—3000 об мин.  [c.445]


Из последних отечественных конструкций следует отметить пусковой двигатель тракторного дизеля НАТИ КД-35 (N =37 л. с. при п = 1400 об/мин). Одноцилиндровый двухтактный пусковой карбюраторный двигатель развивает 9 л. с. при п — 3500 об/мин. Двигатель включается через дисковое сцепление и муфту типа Бендикс. Общее передаточное число между коленчатым валом двигателя и маховиком дизеля равно 14. Параметры пускового двигателя диаметр цилиндра 72 мм, ход поршня 85 мм, литраж 0,346 л, степень сжатия 5,75.  [c.335]

Судовые дизели 58Д мощностью 4500 э.л.с. при 643 об1мин коленчатых- валов. Конструкция и основные технические данные этих дизелей аналогичны дизелям типа 61. Срок службы составляет 2000 ч до первой переборки и 15000 ч до капитального ремонта.  [c.495]

Электрошлаковую сварку широко применяют в тяжелом машиностроении для изготовления ковано-сварных и литосварных конструкций, таких как станины и детали мощных прессов и станков, коленчатые валы судовых дизелей, роторы и валы гидротурбин, котлы высокого давления и т.п. (рис. 5.14). Толщина свариваемого металла составляет 50. .. 2000 мм.  [c.242]

Указанная схема была разработана применительно к конструкции полноопорных коленчатых валов тепловозных и судовых дизелей [5].  [c.342]

На фиг. 204—210 приведены примеры применения роликоподшипников. На фиг. 204 изображен монтаж коленчатого вала двухцилиндрового четырехтактного двигателя мотоцикла на фиг. 205— опора оси трамвайного вагона на фиг. 206 — подшипниковый узел прокатного стана на фиг. 207 — конструкция опор коленчатого вала одноцилиндрового четыре.хтактного дизеля на фнг. 208 — опоры вала ротора электродвигателя средней величииы на фиг. 209 — опоры  [c.225]

Число шатунных шеек у двигателей с однорядным расположением цилиндров равно числу цилиндров, а у У-образных двигателей, как правило, половине числа цилиндров, так как на каждой шейке таких двигателей устанавливают два шатуна. Количество коренных шеек коленчатого вала бывает различным. Чем больше опор имеет вал, тем надежнее получается конструкция двигателя . Если между двумя смежными коренными опорами размещается только одна шатунная шейка, то число коренных шеек у такого вала всегда на одну больше числа шатунных шеек. Такие коленчатые валы, называемые полноопорными, применяют в дизелях и карбюраторных двигателях, работающих с большими нагрузками на подшипники. Неполноопорные коленчатые валы имеют по две шатунные шейки между смежными коренными опорами. Их используют в однорядных карбюраторных двигателях.  [c.36]

На основании исследовательских работ и производственного опыта следует сделать вывод, что господствовавшее ранее представление о непригодности чугунных деталей для работы при знакопеременных нагрузках должно быть изменено во всяком случае по отношению к высокопрочным и модифицированным чугунам. Применение модифицированных и вы oкoJlpoчныx чугунов оказало также решающее влияние и на экономию проката, особенно в части изготовления ответственных конструкций деталей из чугуна, например крупных коленчатых валов для дизелей, по весу и стоимости составляющих 12—15% и более от веса и стоимости двигателей например, из высокопрочного магниевого чугуна изготовляются коленчатые валы с пределом прочности при растяжении не менее 55 кГ1мм , относительным удлинением не менее 3%, ударной вязкостью не менее 3,0 кГм/см н твердостью вала НВ не менее 230.  [c.42]

При У-образном расположении нижние головки шатунов выполняются одинаковыми и устанавливаются рядом на шейке коленчатого вала. Поршень из алюминиевого сплава. Дизель имеет непосредЬтвенный реверс, осуш ествляемый передвижкой распределительного вала. Наддув осуш ествляется одним газотурбонагнетате-лем для всех цилиндров, расположенным на торце двигателя. Конструкция дизеля приспособлена для удобной разборки его основных узлов.  [c.27]

Конструкции остова У-образных двигателей выполняют по различным схемам в зависимости от типа двигателя. На фиг. 14, алюминиевого сплава остов четырехтактного дизеля Д-12 с анкерами, связывающими головку, блок-цилиндры и картер. К общему блоку картер — фундаментная рама привертываются на длинных шпильках подвесные подшипники коленчатого вала. Кроме того, предусмотрены горизонтальные шпильки, стягивающие нижнюю опору коленчатого вала и боковые упоры. На фиг. 14, б показан сварной остов двухтактного тепло возного У-обрааного дизеля типа 11 Д-45. Картер составляет одно целое с блок-цилиндрами. К поперечным стенкам картера приварены верхние половины коренных опор, выполненных из стальных поковок нижние половины опор (подвесные подшипники) привертываются к картеру длинными болтами/ Крышки с привернутыми к ним наглухо втулками-  [c.245]


Судовые дизельные двигатели: роль и назначение коленчатого вала

Введение

Мы узнали о фундаменте судовых дизельных двигателей, который является опорной плитой, в предыдущей статье. Теперь мы узнаем о другом важном компоненте, а именно о коленчатом валу. Для тех из вас, кто плохо разбирается в технике, позвольте мне объяснить простым языком, что коленчатый вал — это компонент, который преобразует движение поршней цилиндра вверх и вниз в непрерывное вращательное движение, которое передается далее для перемещения карданного вала. в случае судовых дизельных двигателей (или передается на колеса в случае автомобилей).

Силы, воздействующие на коленчатый вал

Из-за характера действия существует несколько типов сил, воздействующих на коленчатый вал двигателей, используемых в судовых силовых установках. Вы получите лучшее представление об этих силах, если внимательно посмотрите на изображение, показанное ниже, на котором показаны различные силы скручивания и изгиба.

Как видно из рисунка, эти силы обусловлены множеством факторов, включая, помимо прочего, вес поршней, нагрузки при сгорании, осевую нагрузку от гребного винта, погруженного в море, сжимающие нагрузки на стенки в журналах и пр.

Большинство этих сил имеют чередующиеся схемы, которые вызывают усталость, а материалы, используемые для строительства, должны иметь значительный предел прочности на растяжение. Помимо этого, другие свойства, необходимые для материала коленчатого вала, — это износостойкость, прочность на растяжение и пластичность.

Конструкционный материал также зависит от скорости двигателя, а низкоскоростные морские дизельные двигатели имеют коленчатые валы, изготовленные из простой углеродистой стали с процентным содержанием углерода в диапазоне от 0.2 и 0,4%, в то время как легированные стали используются для двигателей, имеющих относительно более высокие обороты.

Диаграмма напряжений конкретного коленчатого вала также поможет показать напряжения в галтели перемычки коленчатого вала Sulzer RND 10 следующим образом:

Изготовление коленчатого вала

варьируются в зависимости от типа и размера рассматриваемого коленчатого вала, но было бы полезно знать некоторые вещи

  • Полностью собранные коленчатые валы — это те, в которых все различные компоненты спрессованы после отдельного изготовления

  • Полусобранные коленчатые валы — это те, в которых несколько деталей, таких как коленчатый вал и шейки, выполнены из одной детали.

  • Сварные коленчатые валы — это те, в которых коленчатый вал изготавливается путем сварки шейки кривошипа кожуха и половинных цапф.

  • Фланцевая муфта Коленчатые валы состоят из двух частей, соединенных вместе фланцевой муфтой

О коленчатых валах судовых дизельных двигателей можно узнать гораздо больше, что мы изучим в следующей статье, например, прогибы коленчатого вала.

Справочные материалы

Изображение сил на коленчатом валу — Marine Engineering Knowledge by Brian

Изображение напряжений на коленчатом валу — Sanyal, D.K. (1998) Принципы и практика морских дизельных двигателей . Мумбаи: Публикации Бхандаркара.

Повреждение коленчатого вала — дизельные двигатели гораздо более подвержены повреждениям

Повреждение коленчатого вала — дизельные двигатели гораздо более подвержены повреждениям

Таким образом, сломанный или треснувший коленчатый вал считается серьезным повреждением двигателя.

Хорошо, что поломка коленчатого вала встречается не очень часто.

Повреждение коленчатого вала, может произойти из-за дефекта литья или ковки, но это очень редко.

Современные системы контроля качества для ковки и обработки коленчатых валов соответствуют последнему слову техники. В большинстве случаев повреждение коленчатого вала происходит из-за другого отказа, а не из-за самого коленчатого вала. Вот почему вам нужно сначала выяснить, что вызвало повреждение коленчатого вала. Многие из этих проблем могут возникнуть в любом двигателе, но давайте поговорим о дизеле в этом блоге.

Повреждение коленчатого вала дизельного двигателя Broken Diesel Crankshaft Damage

Величина крутящего момента, создаваемая во время неисправности, такой как пробуксовка подшипника, может привести к поломке кривошипа.Дизельные двигатели более склонны к повреждению коленчатого вала, потому что; дизельные коленчатые валы чрезвычайно жесткие с более высокой степенью сжатия.

Термическая и нитридная обработка

Способность компонента выдерживать более высокие деформации нагрузки может быть достигнута за счет термообработки поверхностных слоев. Азотирование – это процесс, при котором на поверхность стали вводится азот при чрезвычайно высокой температуре.

Эта термообработка проводится для повышения износостойкости, улучшения усталости и получения высокой поверхностной твердости.Из-за этого процесса коленчатый вал становится чрезвычайно твердым, но также и хрупким.
Изношенная шейка кривошипа

Когда в двигателе выходит из строя подшипник, чрезмерный зазор может привести к изгибу кривошипа внутри двигателя. Коленчатый вал может изнашиваться до предела износа и подлежит замене. И, если коленчатый вал выглядит так, размер шатуна, скорее всего, не изменяется. Коленчатый вал может сильно погнуться или даже сломаться в некоторых случаях. Если коленчатый вал сломался; повреждение может быть настолько серьезным, что вам, возможно, придется заменить весь двигатель.

В случаях, когда коленчатый вал из нитрида погнут, обычно не рекомендуется пытаться выправить его. Попытки сделать это могут привести к внутренним и внешним трещинам. Что приведет к повреждению коленчатого вала во второй раз.

Итак, у вас поврежден коленвал и требуется его замена. Что теперь? Ну, вы можете просто купить новый или восстановленный комплект коленчатого вала и установить его, но это не так просто. Помните эффект изгиба внутри двигателя? Это не только приводит к повреждению коленчатого вала, но и к повреждению отверстий корпуса.

Отверстия для стопорного стержня и главного корпуса Проверка отверстия корпуса шатуна

Поскольку коленчатый вал изгибается в двигателе; коленчатый вал может стучать по отверстиям корпуса, делая их овальными. Огромный крутящий момент от изгиба коленчатого вала может; также растянуть болты и перекосить отверстия корпуса. Основные колпачки могут ослабнуть в регистрах, что приведет к смещению.

Никогда не рекомендуется просто менять коленчатый вал без надлежащей проверки этих отверстий корпуса.Наиболее точный способ проверки отверстий в корпусе — использование нутромера со стрелочным индикатором.
Циферблатный нутромером

Если у вас нет циферблатного нутромера, вам следует отнести его в местную механическую мастерскую. Они могут проверить все отверстия корпуса, чтобы убедиться, что они не круглые. Если они есть, обычно они могут их исправить. Не делая этого, вы рискуете еще одним отказом коленчатого вала. Некруглые отверстия в корпусе дадут неправильный зазор в подшипнике. Неправильный зазор подшипника может привести к: преждевременный выход из строя подшипников и, в худшем случае, повторное повреждение коленчатого вала.

Заключение

Так, недостаточная смазка может привести к выходу из строя подшипников коленчатого вала. Цилиндр с избыточным давлением возникает, когда гильза коленчатого вала имеет утечку охлаждающей жидкости. Давление заставляет коленчатый вал проскальзывать или изгибаться. В результате чаще всего возникают трещины на галтели между шейкой и перемычкой коленчатого вала.

Спасибо!

Конструкция и функция коленчатого вала, используемого в двигателе внутреннего сгорания

Коленчатый вал является одной из важнейших частей двигателя внутреннего сгорания.Основная функция коленчатого вала заключается в преобразовании линейного движения поршня во вращательное движение.

Возможно, вы много раз слышали эти слова или видели эти части. Но что именно вы знаете об этих инженерных деталях?

Если вы что-то знаете, то эта статья освежит ваши знания. Если вы ничего не знаете, то вы в правильном месте.

Приведенное ниже описание познакомит вас с коленчатым валом, используемым в двигателе внутреннего сгорания .

Вы также можете посмотреть и подписаться на наш канал YouTube с обучающими видео по инженерным наукам, нажав здесь https://goo.gl/4jeDFu  

  • Подробная информация о коленчатом вале, используемом в двигателе внутреннего сгорания

В многоцилиндровом двигателе используется более сложный коленчатый вал двигателя, в то время как в малом двигателе достаточно простой конструкции.

Кривошипная шайба или шатунная шейка, к которой прикреплен большой конец шатуна, завершает преобразование между двумя движениями.Это дополнительная опорная поверхность, ось которой смещена относительно оси кривошипа.

Маховик или шкив коленчатого вала крепится на кривошипе для накопления выработанной энергии и использования для дальнейшей работы. Маховик также уменьшит характеристику пульсации четырехтактного двигателя.

Для плавной работы двигателя без вибраций коленчатый вал установлен в коренном подшипнике. Количество подшипников двигателя зависит от различных факторов, таких как конструкция двигателя, количество цилиндров, конструкция коленчатого вала и т. д.

Но всегда используются как минимум два таких подшипника, один на приводной стороне, а другой на неприводной стороне. Если все работает нормально, возникает редкая потребность двигатель требуется замена подшипника.

В общем, коленчатый вал четырехцилиндрового двигателя имеет три коренные шейки, четыре шейки кривошипа, четыре противовеса и две щеки кривошипа.

Противовес снижает изгибающую нагрузку на коленчатый вал, а также помогает двигателю не трястись при вращении кривошипно-шатунного механизма.Балансировка коленчатого вала в основном зависит от противовесов.

Перемычка кривошипа двигателя — это часть кривошипа между шатунной шейкой и валом или между соседними шатунными шейками. Он также известен как кривошипный рычаг.

Сальник коленчатого вала предотвращает утечку смазочного масла из картера.

В двигателе можно использовать кривошипы трех разных типов».

Эти типы кривошипов используются уже давно и используются во многих дизельных и бензиновых двигателях.Как следует из названия, они изготавливаются из ковкого чугуна методом литья.

Они довольно дешевы в изготовлении и отлично работают, поэтому производители часто выбирают их.

Плоский кривошип — это кривошип, шейки которого расположены на 180 градусов друг от друга, что характерно для всех рядных четырехцилиндровых двигателей. В то время как кривошип с поперечной плоскостью, с другой стороны, нуждается в пресс-форме из нескольких частей, потому что шейки и противовесы несимметричны.

Литые кривошипы могут быть закалены пламенем для повышения износостойкости в определенных местах.

Это более прочный коленчатый вал, чем литой кривошип. Они чаще встречаются в двигателях с более высокими нагрузками и входят в стандартную комплектацию некоторых 16-вольтовых двигателей.

Кованая рукоятка делается совсем по другому. Набор штампов обрабатывается до приблизительной формы кривошипа.

Эти штампы для установки в очень большой гидравлический пресс с усилием зажима в несколько тонн. Горячий стержень из сплава высококачественной стали помещают на нижнюю матрицу и матрицу закрывают.

После закрытия штампов металл очень плотно сжимается.Затем материал уплотняется и выравнивается лучше, чем в процессе литья.

Шатуны этого типа также закалены, как и литые, но с использованием индукционной закалки.

Кривошипные шатуны

— лучший тип кривошипа, который вы можете использовать в своем двигателе, если хотите получить от него максимальную отдачу.

Сталь

4340 обычно используется для изготовления кривошипов такого типа. Он содержит никель, хром, алюминий и молибден среди других элементов.

Эти кривошипы популярны из-за минимального времени обработки коленчатого вала.Они также требуют минимальной балансировки из-за однородного состава материала.

Обычно изготавливается из углеродистой стали, никель-хромовой или другой легированной стали.

Легирующими элементами углеродистой стали являются марганец, хром, молибден, кремний, кобальт, ванадий. Иногда также используются алюминий и титан.

Если ваш выбор основан на приведенной выше информации, вам вряд ли потребуется частый ремонт или замена коленчатого вала.

Помимо этой информации, вам предлагается прочитать кое-что еще снизу инженерные книги

Итак, здесь вы найдете лучшие технические ресурсы для получения дополнительной информации

Чтобы получить более подробную информацию по теме, я также рекомендую прочитать

Если вам понравился пост, поделитесь им с друзьями, а также в социальных сетях.Нажмите на колокольчик, чтобы подписаться

Причины выхода из строя и перекоса коленчатого вала в судовых двигателях

Коленчатый вал является промежуточной частью морского двигателя, которая передает мощность рабочего цилиндра от возвратно-поступательного поршня к вращающемуся гребному винту (или генератору переменного тока в случае генератора).

Работа других компонентов двигателя зависит от правильного вращения коленчатого вала, например, распределительного вала для подачи топлива, порядка работы агрегатов и т. д.Выход из строя одной детали коленчатого вала может привести к остановке как двигателя, так и корабля.

Морской механик, работающий на корабле, должен знать различные причины, которые могут привести к выходу из строя этого важного узла.

Причины выхода из строя коленчатого вала

Усталостное разрушение:  В большинстве случаев отказ стальных коленчатых валов происходит из-за усталостного разрушения, которое может возникнуть при изменении поперечного сечения, например, на кромке смазочного отверстия, просверленного в шатунной шейке.

Отказ из-за вибрации : Если двигатель работает с сильной вибрацией, особенно с крутильными колебаниями, это может привести к трещине в шатунной шейке и шейке

Недостаточная смазка : Если смазка подшипника в коленчатом валу недостаточна, это может привести к износу подшипника и поломке коленчатого вала

Цилиндр с избыточным давлением: Может случиться так, что внутри гильзы произойдет гидрозатвор (протечка воды) и из-за чрезмерного давления коленчатый вал может пробуксовывать или даже погнуться (если предохранительный клапан этого узла не работает).

Трещины : Трещины могут образоваться на галтели между шейкой и перемычкой, особенно между положением, соответствующим 10 часам и 2 часам, когда поршень находится в ВМТ.

 

Причины перекоса коленчатого вала

Коленчатый вал судового двигателя представляет собой массивный компонент, когда он полностью собран в двигателе. Первоначально весь коленчатый вал выравнивается по прямой линии (соединение, проведенное из центра коленчатого вала, образует прямую линию), прежде чем устанавливать его на верхнюю часть коренных подшипников.

Но со временем из-за различных факторов прямая линия может отклоняться и смещаться. Степень несоосности допустима в определенных пределах, но если значение выходит за пределы, указанные изготовителем; это может привести к повреждению или даже поломке коленчатого вала.

Ниже приведены причины перекоса коленчатого вала-

  • Повреждение или износ коренного подшипника
  • Ослабление фундаментного болта двигателя, вызывающее вибрацию
  • Деформация корпуса судна
  • Трещина в седле подшипника
  • Ослабленный болт коренного подшипника, ведущий к повреждению коренного подшипника
  • Очень высокий изгибающий момент на коленчатом валу из-за чрезмерной силы от узла поршня
  • Заземление корабля
  • Взрыв или возгорание картера
  • Дефектные или изношенные подшипники дейдвудной трубы или промежуточного вала
  • Ослабленные или сломанные дроссели в фундаменте
  • Трещины в гнездах подшипников
  • Основание деформировано – поперечная балка повреждена
  • Стяжные болты ослаблены или сломаны
  • Ослабление конструкции из-за коррозии

Поэтому рекомендуется регулярно проверять картер и прогиб коленчатого вала (для проверки смещения).

 

Изображение предоставлено:

максчевый

Коленчатые валы Detroit Diesel

Каждый компонент дизельного двигателя должен работать с безупречной точностью, чтобы двигатель работал хорошо, но для всех типов двигателей наступает время, когда некоторые детали необходимо заменить. Компоненты двигателя постоянно работают в условиях интенсивных нагрузок и нагревания, что может привести к износу различных компонентов. Если сегодня вам нужно отремонтировать двигатель, возможно, вы ищете запасные коленчатые валы Detroit Diesel.Вы всегда можете легко найти именно то, что вам нужно, благодаря Diesel Pro Power.

Функция коленчатых валов в дизельных двигателях

Коленчатые валы Detroit Diesel выполняют жизненно важные функции преобразования мощности между возвратно-поступательным движением и вращением. Это деталь, которая работает вместе с шатунами, маховиком и другими компонентами двигателя, и часто работает с очень высокой скоростью. Когда эта часть каким-либо образом повреждается или изнашивается, это отрицательно сказывается на всей жизнеспособности двигателя.Хорошей новостью является то, что вы можете легко найти запасную часть для своего двигателя при совершении покупок в Интернете через наш веб-сайт. Нет необходимости бежать в местный магазин запасных частей только для того, чтобы столкнуться с вероятностью того, что нужных вам деталей нет на складе. Это пустая трата времени и энергии, и вы можете наслаждаться более простым процессом покупки, когда ищете свою деталь в Интернете. Нужны детали коленчатого вала для 12V71 ? Без проблем! Просто найдите номер детали, которую вы покупаете, через нашу форму поиска, и вы сразу же увидите результаты, которые ищете.Мы упростили для вас поиск нужных деталей двигателя для всех ваших потребностей в покупках.

Запасные части коленчатого вала Detroit Diesel Premium

Коленчатые валы и другие детали Detroit Diesel, доступные вам через наш веб-сайт, отличаются высоким качеством и продаются по конкурентоспособной цене. Более того, они могут быть отправлены в любую точку мира. Если вам нужно заказать коленчатый вал для вашего двигателя сегодня, заставьте наш сайт работать на вас.
Коленчатые валы и другие детали Detroit Diesel, доступные вам через наш веб-сайт, отличаются высоким качеством и продаются по конкурентоспособной цене.Более того, они могут быть отправлены в любую точку мира. Если вам нужно заказать коленчатый вал для вашего двигателя сегодня, заставьте наш веб-сайт работать на вас, и другие детали, доступные вам через наш веб-сайт, отличаются высоким качеством и продаются по конкурентоспособной цене. Более того, они могут быть отправлены в любую точку мира. Если вам нужно заказать коленчатый вал для вашего двигателя сегодня, заставьте наш сайт работать на вас.

Коленчатые валы 353, 453, 6V53 и 8V53 Detroit Diesel

Независимо от того, являетесь ли вы механиком-любителем, профессиональной ремонтной мастерской или отвечаете за управление и техническое обслуживание морского флота, Diesel Pro Power поможет вам найти запасные части, необходимые для ваших двигателей серии 53.У нас есть новые коленчатые валы Detroit Diesel для моделей 353, 453, 6V53 и 8V53, разработанные для обеспечения оптимальной производительности и долговечности. Наш ассортимент также включает в себя профессионально восстановленные коленчатые валы, восстановленные в соответствии со спецификациями OEM или превосходящие их.
Являясь поставщиком комплексных решений, мы предлагаем практически все необходимое для обслуживания и ремонта двигателей серии 53. От заглушек и шпонок коленчатого вала до наборов вкладышей, упорных шайб и шестерен привода масляного насоса — вы найдете запчасти премиум-класса по экономичным ценам.

Коленчатые валы Detroit Diesel Marine

Мы предоставляем доступ к полному перечню коленчатых валов Detroit Diesel для двигателей 71-й серии.Наш инвентарь включает новые компоненты для моделей 271, 371, 471, 671, 6V71, 8V71, 12V71 и 16V71. Мы также предлагаем различные восстановленные варианты, которые обеспечивают производительность как у нового по отличной цене.
Зачем бродить по проходам местного автомагазина или искать в, казалось бы, бесконечных онлайн-каталогах, если вы можете найти все необходимые детали и расходные материалы прямо здесь, в Diesel Pro Power? В дополнение к прокладкам коленчатого вала, уплотнениям и манометрам мы предлагаем топливные насосы, компоненты выхлопной системы, топливные и масляные фильтры и многие другие детали и компоненты для судовых двигателей 71-й серии с турбонаддувом и без него.

Коленчатые валы Detroit Diesel 6V92, 8V92, 12V92 и 16V92

Независимо от того, ищете ли вы новый коленчатый вал Detroit для двигателей 6V92 или 8V92 или бывшее в употреблении решение для моделей 12V92 или 16V92, мы предоставим вам все необходимое. Мы предлагаем варианты передних и задних частей коленчатого вала для универсального вращения и двигателей левого или правого вращения.
Являясь исчерпывающим поставщиком запчастей для серии 92, мы держим на складе широкий ассортимент коленчатых валов и сопутствующих товаров. У нас есть стандартные и негабаритные наборы вкладышей, заглушки, дюбели, шайбы, уплотнения и многое другое.Вы также найдете множество прокладок масляного поддона, прокладок и корпусов маховика и всех других деталей в вашем списке.

Коленчатые валы Detroit Diesel серии 60

Трудно переоценить важность функции коленчатых валов в дизельных двигателях. Вот почему мы предлагаем первоклассные сменные продукты для обслуживания двигателей промышленных грузовиков серии 60. У нас есть восстановленные 12,7-литровые детали коленчатого вала стандартного размера, которые функционируют так же, как заменяемый оригинальный компонент. Изучите наши страницы с описанием коленчатых валов Detroit Diesel, чтобы получить дополнительную информацию о нашем полном перечне деталей, доступных для серии 60.

Заказать детали коленчатого вала стало проще благодаря Diesel Pro Power

Мы приложим все усилия, чтобы вы были полностью удовлетворены своими покупками. Мы успешно обслужили более 15 000 клиентов и получили множество отличных онлайн-отзывов, обеспечив качество, ценность и выбор, которые вы ищете в онлайн-поставщике запчастей для грузовиков. Благодаря огромному ассортименту продукции на складе и круглосуточной доставке по всему миру мы позаботимся о том, чтобы коленчатые валы Detroit Diesel, которые вам нужны, всегда были на расстоянии одного звонка или щелчка мыши.

Приобретите запасные части у Diesel Pro Power уже сегодня.

(PDF) Проектирование и расчет коленчатого вала дизельного двигателя на полную деформацию и деформацию

ICEMEM-2019

IOP Conf. Серия: Материаловедение и инженерия 810 (2020) 012010

IOP Publishing

doi:10.1088/1757-899X/810/1/012010

5

[2]. Т. Сандер Селвин, Р. Кесаван, М. Рамачандран, FMECA Анализ ветряных турбин с использованием серьезности и

возникновения при сильном неопределенном ветре в Индии, Международный журнал прикладных инженерных исследований.ISSN

0973-4562 Том 10, номер 11 (2015), стр. 10250-10253.

[3]. Джоши, Джаешкумар Дж., Дипак М. Патель и Бханду ЛКИТ. «Проектирование и анализ отказов одноцилиндрового коленчатого вала

бензинового двигателя с использованием программного обеспечения ANSYS». Международный журнал инженерных наук 10549

(2017).

[4]. Беренс, Бернд-Арно, Рувен Никель и Свен Мюллер. «Безобрывная прецизионная поковка двухцилиндрового коленчатого вала

.» Технологии производства 3, вып.4-5 (2009): 381.

[5]. Фаррахи, Г. Х., Ф. Хеммати, С. Аболхассани Гангарадж и М. Сахаи. «Анализ отказов коленчатого вала четырехцилиндрового дизельного двигателя

, изготовленного из чугуна с шаровидным графитом». Журнал исследований двигателей 22 (2011).

[6]. М. Рамачандран, Бенилдус, Анализ отказа лопатки турбины с использованием вычислительной гидродинамики,

, Международный журнал прикладных инженерных исследований. ISSN 0973-4562 Том 10, номер 11 (2015), стр.

10230-10233.

[7]. Фонте М., Бин Ли, Л. Рейс и М. Фрейтас. «Анализ отказов коленчатого вала автомобиля». Анализ отказов Engineering

35 (2013): 147-152.

[8]. Гуальяно М. и Л. Вергани. «Упрощенный подход к прогнозированию роста трещин в коленчатом валу». Усталость

и разрушение инженерных материалов и конструкций 17, вып. 11 (1994): 1295-1306.

[9]. Ашиш Могра, М. Рамачандран и Хемант Кумар Мехта, Экспериментальное исследование образования капель

через Y-переход миниканала, IOP Conf.Серия: Материаловедение и инженерия 377

(2018) 012189.

[10]. Юнг, До-Хён, Хон-Джин Ким, Ён-Шик Пьюн, Алишер Гафуров, Гуэ-Чоль Чой и Чон-Мо Ан.

«Прогнозирование надежности усталостной долговечности коленчатого вала». Журнал механических наук и технологий 23,

№. 4 (2009): 1071-1074.

[11]. Вишал Фегаде, Гаджанан Джадхав, М. Рамачандран, Проектирование, моделирование и анализ наклонного транспортного средства с двигателем

человека, IOP Conf.Серия: Материаловедение и инженерия 377 (2018) 012215.

[12]. Ли, Юнг-Ли и Уильям Моррисси. «Неопределенности экспериментальной оценки усталостной прочности коленчатого вала

». Международный журнал материалов и технологий производства 16, вып. 4-5 (2001): 379-392.

[13]. Лин, Дж. Ф. и С. Дж. Юань. «Влияние внутреннего давления на гидроформовку двойных рукояток коленчатого вала».

Материаловедение и инженерия: A 499, вып. 1-2 (2009): 208-211.

[14]. Нурсой, Мустафа, Дженгиз Онер и Ибрагим Джан. «Износ подшипников скольжения коленчатого вала

, изготовленных методом порошкового напыления». Материалы и дизайн 29, вып. 10 (2008): 2047-2051.

[15]. Паранджпе, Рохит С. и Паван К. Гоенка. «Анализ подшипников коленчатого вала с использованием алгоритма сохранения массы

». Tribology Transactions 33, вып. 3 (1990): 333-344.

[16]. Пеннок, Гордон Р. и Джон Э. Бирд. «Анализ силы верхних уплотнений роторного компрессора Ванкеля

, включая влияние колебаний частоты вращения коленчатого вала.«Механизм и теория машин 32, № 3

(1997): 349-361.

[17]. Изопараметрический пластинчатый элемент с девятью узлами, Advanced Composites Letters, 25(4),

2016.

[18]. Шретер, Р.Б., К.М. Бастос и Дж.М. протяжка.» Международный журнал станков и производства 47, вып.12-13 (2007):

1884-1892.

[19]. Shu, G.Q., X.Y. Liang и X.C.Lu. «Осевая вибрация коленчатого вала высокоскоростного автомобильного двигателя».

Международный журнал автомобильного дизайна 45, вып. 4 (2007): 542-554.

[20]. Чжан, Чао, Хушэн Чжан и Цуган Цю. «Быстрый анализ подшипников коленчатого вала с базой данных

, включая истончение при сдвиге и вязкоупругие эффекты». Трибологические труды 42, вып. 4 (1999): 922-928.

[21].ЧЖАН, Ин-цзянь, Вэй-цзюнь ХУЙ и Хань Дун. «Анализ моделирования горячей штамповки и применение коленчатого вала из микролегированной стали

». Журнал исследований железа и стали, International14, вып. 5 (2007): 189-194.

[22]. Чжан, X., и С.Д.Ю. «Крутильные колебания коленчатого вала в нелинейной динамической системе двигатель — воздушный винт

». Журнал звука и вибрации 319, вып. 1-2 (2009): 491-514.

[23]. Шаджит Ядав, М. Рамачандран, Анализ отказа оптимизированной ветровой турбины с использованием вычислительной жидкости

Dynamics, Materials Today: Proceedings, 4 (2), 2017: 1788–1793.

Что такое коленчатый вал? | Как работает коленчатый вал?

Что такое коленчатый вал?

Коленчатый вал представляет собой вал, приводимый в движение кривошипно-шатунным механизмом, состоящим из ряда кривошипов и шатунов, к которым прикреплены шатуны двигателя. Это механическая часть, способная выполнять преобразование возвратно-поступательного движения во вращательное.

Основной задачей этого шатуна является поглощение возвратно-поступательного движения поршня и передача его на коленчатый вал.Когда коленчатый вал приводится в движение шатуном, он преобразует это движение во вращательное и вращает маховик, который продолжает вращать колеса автомобиля.

Без кривошипа поршневой двигатель не способен передавать возвратно-поступательное движение поршня на приводной вал. Проще говоря, поршневой двигатель не может привести в движение транспортное средство без коленчатого вала.

Различные двигатели проходят рабочий цикл с разным числом оборотов коленчатого вала. Например, двухтактный двигатель завершает рабочий цикл после одного оборота коленчатого вала, а четырехтактный двигатель завершает рабочий цикл после завершения двух оборотов коленчатого вала.

Коленчатые валы могут быть сварными, полуинтегральными или цельными. Этот компонент двигателя соединяет выходную часть двигателя с входной частью.

Кривошип действует как звено, которое обеспечивает выходную мощность в виде кинетической энергии вращения – поршень соединен с центром кривошипа через шатун. Кривошип позволяет поршню вращать коленчатый вал, создавая силу для движения автомобиля.

Как работает коленчатый вал ?

По сути, коленчатый вал выполняет простую задачу: переводить прямолинейное движение поршней во вращение.Он выполняет ту же работу, что и шатун велосипеда, который более или менее превращает движение ног вверх и вниз во вращение.

Хотя принцип прост, когда речь идет о высокопроизводительных двигателях, возникает множество сложностей. Сгорание топлива выбрасывает поршень прямо через цилиндр, и работа коленчатого вала заключается в преобразовании этого линейного движения во вращение — в основном путем раскачивания поршня вперед и назад в цилиндре.

Терминология коленчатого вала весьма специфична, поэтому начнем с наименования нескольких деталей.Шейка – это часть вала, которая вращается в подшипнике. Как видно выше, на коленчатом валу есть два типа шеек — коренные шейки образуют ось вращения коленчатого вала, а шатунные шейки крепятся к концам шатунов, которые подходят к поршням.

Для дополнительной путаницы шатунные шейки обозначаются аббревиатурой шатунные шейки, а также обычно называются шатунными шейками или шатунными шейками.Шатунные шейки соединены с основными шейками перемычками.

Расстояние между центром шейки коренного подшипника и центром шейки коленчатого вала называется радиусом кривошипа, также известным как ход кривошипа. Это измерение определяет диапазон хода поршня при вращении коленчатого вала — это расстояние сверху вниз называется ходом. Ход поршня в два раза больше радиуса кривошипа.

Задний конец коленчатого вала выходит за пределы картера и заканчивается фланцем маховика.Этот прецизионно обработанный фланец крепится болтами к маховику, большая масса которого помогает сгладить пульсацию поршней в разное время. Маховик передает вращение на колеса через коробку передач и главную передачу.

В автоматической коробке передач коленчатый вал крепится болтами к зубчатому венцу, который несет гидротрансформатор и передает привод на автоматическую коробку передач. По сути, это мощность двигателя, а энергия направляется туда, где она нужна: на гребные винты лодок и самолетов, на индукционные катушки генераторов и на опорные колеса транспортного средства.

Передний конец коленчатого вала, иногда называемый носовой частью, представляет собой вал, выходящий за пределы картера. Этот вал соединяется с шестерней, которая приводит в движение клапанный механизм через зубчатый ремень или цепь [или наборы шестерен в высокотехнологичных приложениях], и шкив, который использует приводной ремень для питания таких аксессуаров, как генератор переменного тока и водяной насос.

Части коленчатого вала

Ниже приведены основные части коленвала со своей диаграммой:

  • Crankpin
  • Главные журналы
  • Crank Web
  • Противовес
  • Упорные шайбы
  • Масляный проход и масляные уплотнения
  • Маховик монтажный фланец

1.Шатун

Шатун — это механическая часть двигателя. Это позволяет очень прочно прикрепить шатун к коленчатому валу.

Поверхность шатунной шейки цилиндрическая для передачи крутящего момента на большой конец шатуна. Они также известны как шатунные подшипники.

2. Основные шейки

Журналы крепятся к блоку цилиндров. Эти подшипники удерживают коленчатый вал и обеспечивают его вращение в блоке цилиндров.Этот подшипник представляет собой, например, подшипник скольжения или опорный подшипник. Коренные подшипники различаются от двигателя к двигателю, часто в зависимости от сил, прилагаемых двигателем.

3. Шестерня кривошипа

Шестерня кривошипа является наиболее важной частью коленчатого вала. Перемычка кривошипа соединяет коленчатый вал с шейками коренных подшипников.

4. Противовесы

Противовесы представляют собой тип груза, который прикладывает противодействующую силу, которая обеспечивает баланс и устойчивость коленчатого вала.Они монтируются на шатуне.

Причина добавления противовесов к коленчатому валу заключается в том, что они могут устранить реакцию, вызванную вращением. И очень полезно получить более высокие обороты и поддерживать легкую работу двигателя.

5. Упорные шайбы

В некоторых точках предусмотрены две или более упорных шайб, чтобы предотвратить продольное перемещение коленчатого вала. Эти упорные шайбы устанавливаются между обработанными поверхностями в перемычке и седле коленчатого вала.

С помощью упорных шайб можно легко поддерживать зазор и способствует уменьшению бокового смещения коленчатого вала. Во многих двигателях они сделаны как часть коренных подшипников, обычно в более старых типах используются отдельные шайбы.

6. Масляный канал и сальники

Масляный канал коленчатого вала пропускает масло от коренных шеек к большим концевым шейкам. Обычно отверстие просверливают в шейке кривошипа. Когда шатунная шейка находится в верхнем положении и силы сгорания толкают шатун вниз, масло может проникать между шейкой и подшипником.

Коленчатый вал немного выступает за картер с обоих концов. Это приведет к утечке масла с этих концов. Для предотвращения попадания масла в эти отверстия предусмотрены сальники. На переднем и заднем концах соединены два основных масляных уплотнения.

  • Передние сальники: Очень похожи на задние сальники. Однако их отказ менее деструктивен и более доступен. Передний сальник устанавливается за шкивом и распределительным механизмом.
  • Задние сальники: Устанавливаются в коренных шейках и маховиках.Он вставляется в отверстие между блоком двигателя и масляным поддоном. Масляное уплотнение имеет формованную кромку, которая плотно удерживается в коленчатом валу пружиной, называемой стягивающей пружиной.

7. Фланец крепления маховика

В большинстве случаев коленчатый вал крепится к маховику через фланцы. Диаметр конца колеса коленчатого вала больше, чем другой конец. Это дает поверхность фланца для установки маховика.

Строительство коленчатого вала

Следующие материалы были использованы для создания коленчатого вала:

  • чугуна
    • Chard Iron
    • Carble Electr
    • ванадий Microleyed сталь
    • кованая сталь

    Cranks можно собрать из из разных частей или выполненные в виде одной детали (монолитные).

    Монолитная версия — самая популярная рукоятка во всем мире. Однако некоторые большие и малые двигатели внутреннего сгорания имеют сборные коленчатые валы.

    Эти валы также могут быть отлиты из ковкого чугуна, модульной или ковкой стали. Сварные узлы отлиты из стали. Этот недорогой метод подходит для недорогих серийных двигателей с приемлемыми нагрузками. Процесс ковки имеет отличную прочность. Следовательно, ковка известна как предпочтительный метод изготовления коленчатых валов.

    Что такое датчики коленчатого вала

    ?

    Датчик положения коленчатого вала крепится к блоку двигателя, обращенному к синхронизирующему ротору на коленчатом валу двигателя. Датчик обнаруживает сигналы, используемые ЭБУ двигателя для расчета положения коленчатого вала и скорости вращения двигателя.

    Датчик коленчатого вала представляет собой электронное устройство, используемое в двигателе внутреннего сгорания, как бензиновом, так и дизельном, для контроля положения или скорости коленчатого вала. Эта информация используется системами управления двигателем для контроля времени впрыска топлива или зажигания, а также других параметров двигателя.

    До того, как появились электронные датчики коленвала, распределитель на бензиновых двигателях приходилось вручную устанавливать на метку ГРМ.

    Датчик коленчатого вала можно использовать в сочетании с аналогичным датчиком положения распределительного вала для контроля соотношения между поршнями и клапанами в двигателе, что особенно важно в двигателях с регулируемой фазой газораспределения.

    Этот метод также используется для «синхронизации» четырехтактного двигателя при запуске, чтобы система управления знала, когда впрыскивать топливо.Он также широко используется в качестве основного источника для измерения скорости вращения двигателя в оборотах в минуту.

    Типы датчиков положения коленчатого вала

    Существует 2 типа датчиков положения коленчатого вала.

    Тип MPU

    34 зубца, расположенные через каждые 10° угла поворота коленчатого вала (CA), плюс два отсутствующих зубца для определения верхней мертвой точки (ВМТ) расположены по внешнему диаметру синхронизирующего ротора. Таким образом, датчик выдает 34 волны переменного тока на каждый оборот коленчатого вала.

    Эти волны переменного тока преобразуются в прямоугольные сигналы схемой формирования формы сигнала в ЭБУ двигателя и используются для расчета положения коленчатого вала, ВМТ и частоты вращения двигателя.

    Тип MRE

    Из-за вращения ротора таймера направление магнитного поля (магнитного вектора), излучаемого магнитом датчика, изменяется в соответствии с положением зубца обнаружения в течение времени, когда зубец обнаружения прикреплен к Ротор таймера приближается к датчику положения распределительного вала, а затем удаляется от датчика положения распределительного вала.

    В результате значение сопротивления MRE также изменяется. Напряжение от ЭБУ двигателя подается на датчик положения распределительного вала, и изменение значения сопротивления MRE выводится как изменение напряжения.

    Выходные сигналы двух MRE дифференциально усиливаются и преобразуются в прямоугольную форму с помощью схемы усиления/формирования сигнала в датчике. Затем выходные данные MRE отправляются в блок управления двигателем.

    Примеры

    Другой тип датчика кривошипа используется на велосипедах для контроля положения кривошипа, обычно для считывания частоты педалирования велокомпьютера.Обычно это герконы, установленные на раме велосипеда с соответствующим магнитом, прикрепленным к одному из шатунов педали.

    Обычный коленчатый вал и коленчатый вал Датчик отказа Симптомы
    • Проверка двигателя Свет поставляется на
    • Двигатель не начинается
    • Плохое производительность
    • Двигатель 0
    • Увеличение расход топлива
    • Неподвижное ускорение
    • Внезапные падения в RPM

    Общие причины отказа

    Со временем любой датчик выходит из строя из-за несчастных случаев, проблем с питанием или естественного износа.Из-за отказа датчика положения коленчатого или распределительного вала двигатель может заглохнуть, заглохнуть во время движения или отказаться запускаться.

    Неисправный датчик может привести к катастрофическому отказу двигателя.

    Часто задаваемые вопросы.

    Что такое коленчатый вал?

    Коленчатый вал представляет собой вал, приводимый в движение кривошипно-шатунным механизмом, состоящим из ряда кривошипов и шатунов, к которым крепятся шатуны двигателя. Это механическая часть, способная выполнять преобразование возвратно-поступательного движения во вращательное.

    H ow коленчатый вал работает

    По сути, коленчатый вал выполняет простую задачу:  преобразовывает прямолинейное движение поршней во вращение . Он выполняет ту же работу, что и шатун велосипеда, который более или менее превращает движение ног вверх и вниз во вращение.

    Что такое датчик коленчатого вала?

    Датчик коленчатого вала — это электронное устройство, используемое в двигателе внутреннего сгорания, как бензиновом, так и дизельном, для контроля положения или скорости вращения коленчатого вала.

Добавить комментарий

Ваш адрес email не будет опубликован.