Планетарный механизм: Планетарный механизм — это… Что такое Планетарный механизм?

Содержание

Планетарный механизм — это… Что такое Планетарный механизм?

Планетарная передача в режиме повышения скорости. Водило (зелёное) вращается внешним источником. Усилие снимается с солнечной шестерни (жёлтая), в то время как кольцевая шестерня (красная) закреплена неподвижно. Красные метки показывают вращение входного вала на 45°.

Планетарная передача — механическая система, состоящая из нескольких планетарных зубчатых колёс (шестерён), вращающихся вокруг центральной, солнечной, шестерни. Обычно, планетарные шестерни фиксируются вместе с помощью водила. Планетарная передача может также включать дополнительную внешнюю кольцевую шестерню, имеющую внутреннее зацепление с планетарными шестернями.

Передаточное отношение

Водило (зелёное) закреплено неподвижно, в то время как солнечная шестерня (жёлтая) вращается внешним источником. В данном случае передаточное отношение равно -24/16, или -3/2; каждая планетарная шестерня поворачивается на 3/2 оборота относительно солнечной шестерни, в противоположном направлении.

Передаточное отношение такой передачи визуально определить достаточно сложно, в основном, потому что система может приводиться во вращение несколькими разными способами. Основными элементами планетарной передачи можно считать следующие:

  • Солнечная шестерня: находится в центре;
  • Водило: жёстко фиксирует друг относительно друга оси нескольких планетарных шестерён (сателлитов) одинакового размера, находящихся в зацеплении с солнечной шестерней;
  • Кольцевая шестерня (эпицикл): внешнее зубчатое колесо, имеющее внутреннее зацепление с планетарными шестернями.

При использовании планетарной передачи в качестве редуктора один из трёх её основных элементов фиксируется неподвижно, другой элемент используется как ведущий, а третий – в качестве ведомого. Таким образом, передаточное отношение будет зависеть от количества зубьев каждого компонента, а также того, какой элемент закреплён.

Часто планетарные передачи используются для суммирования двух потоков мощности (например, планетарные ряды двухпоточных трансмиссий некоторых танков и др. гусеничных машин), в этом случае неподвижно зафиксированных элементов нет. Например, два потока мощности могут подводиться к солнечной шестерне и эпициклу, а результирующий поток снимается с водила.

Рассмотрим случай, когда водило зафиксировано, а мощность подводится через солнечную шестерню. В этом случае планетарные шестерни вращаются на месте со скоростью, определяемой отношением числа их зубьев относительно солнечной шестерни. Например, если мы обозначим число зубьев солнечной шестерни как S, а для планетарных шестерён примем это число как P, то передаточное отношение будет определяться формулой —S/P, то есть если у солнечной шестерни 24 зуба, а у планетарных по 16, то передаточное отношение будет -24/16, или -3/2, что означает поворот планетарных шестерён на 1,5 оборота в противоположном направлении относительно солнечной.

Далее вращение планетарных шестерён может передаваться кольцевой шестерне, с соответствующим передаточным числом. Если кольцевая шестерня имеет A зубьев, то оно будет вращаться с соотношением P/A относительно планетарных шестерён. (В данном случае перед дробью нет минуса, так как при внутреннем зацеплении шестерни вращаются в одну сторону). Например, если на кольцевой шестерне 64 зуба, то относительно приведённого выше примера это отношение будет равно 16/64, или 1/4. Таким образом, объединив оба примера, мы получим следующее:

  • Один оборот солнечной шестерни даёт —S/P оборотов планетарных шестерён;
  • Один оборот планетарной шестерни даёт P/A оборотов кольцевой.

В итоге, если водило заблокировано, общее передаточное отношение системы будет равно —S/A.

В случае, если закреплена кольцевая шестерня, а мощность подводится к водилу, передаточное отношение на солнечную шестерню будет больше единицы и составит 1+

A/S.

Всё вышесказанное можно описать следующим выражением:

,

где n – это параметр передачи, равный , то есть отношению числа зубьев солнечной и планетарных шестерён.

Если закрепить кольцевую шестерню, а мощность подводить к солнечной шестерне, то мощность должна сниматься с водила. В этом случае передаточное отношение будет равно 1/(1+A/S). Это самое маленькое передаточное число, которое может быть получено в планетарной передаче. Такие передачи используются, например, в тракторах и строительной технике, где требуется большой крутящий момент на колёсах при невысокой скорости.

Применение

Наиболее широкое применение принцип нашёл в автомобильных дифференциалах, кроме того используется в суммирующих звеньях кинематических схем металлорежущих станков.

В современных устройствах могут использоваться каскады из нескольких планетарных передач для получения большого диапазона передаточных чисел. На этом принципе работают многие автоматические коробки передач.

Во время Второй мировой войны была разработана особая конструкция планетарной передачи, которая использовалась для привода небольших радаров. Кольцевая шестерня изготавливалась из двух частей, каждая толщиной в половину толщины других компонентов. Одна из этих половинок фиксировалась неподвижно и имела на 1 зуб меньше, чем вторая. В такой конструкции при полном обороте планетарных шестерён и нескольких оборотах солнечной шестерни, подвижное кольцо поворачивалось всего на 1 зуб. Таким образом, получалось очень высокое передаточное отношение при небольших габаритах.

Cм. также

Wikimedia Foundation. 2010.

Планетарный редуктор: устройство, принцип работы, виды

Процедура механизации производственной и другой деятельности существенно повысила поставленные задачи. Довольно большое распространение получили механизмы, предназначенные для передачи вращения и распределения создаваемого усилия. Существует довольно большое количество различных редукторов, все они характеризуются своими определенными эксплуатационными характеристиками. Примером можно назвать планетарный редуктор, устройство которого имеет довольно большое количество различных особенностей. Рассмотрим подобный механизм подробнее.

Устройство и принцип работы

Рассматриваемый механизм представлен классическим сочетанием шестерен с различным диаметром, которые обеспечивают передачу вращения с изменением числа оборотов и передаваемого усилия. Особенности механизма определяют возможность применения в самых различных отраслях. Обеспечить работу можно только в случае присоединения вращающего вала к ведомой части.

Рассматривая чертеж классического устройства, следует отметить, что оно состоит из следующих элементов:

  1. Основные элементы представлены зубчатыми и червячными парами.
  2. Для установки и фиксации основных деталей проводится установка центрирующих подшипников.
  3. Для смазывания трущихся деталей корпус заполняется специальным маслом. Исключить вероятность его вытекания можно за счет уплотнений.
  4. Сальники также являются важной частью конструкции.
  5. Корпус состоит из двух составных элементов, за счет которых есть возможность разобрать конструкция при обслуживании или ремонте.

Принцип работы планетарного редуктора предусматривает то, что смазывание основных деталей происходит за счет естественного разбрызгивания масла при работе устройства.

Схема классического устройства выглядит следующим образом:

  1. В качестве источника вращения устанавливается мотор.
  2. Другая часть представлена шестерней планетарного типа. Внутри расположены другие детали, крепление стакана редуктора к мотору проводится за счет фиксирующих элементов.
  3. Далее идет вал с подшипником.

Защита конструкции обеспечивается за счет крышки редуктора. Его фиксация проводится за счет болтов. В целом можно сказать, что устройство достаточно сложное, поэтому провести его ремонт и обслуживание не всегда просто.

Принцип действия агрегата во многом зависит от кинематической схемы привода. Расчет передаточного отношения проводится при применении специальных формул, которые можно встретить в технической литературе.

Основная часть конструкции состоит из следующих деталей:

  1. Коронной шестерни.
  2. Планетарная или сателлиты.
  3. Водило и солнечная шестерня.

Принцип действия рассчитывается следующим образом:

  1. Солнечная шестерня расположена в центральной части конструкции. Зачастую именно ей передается основное вращение, для чего элемент имеет посадочное отверстие под вал.
  2. Центральный элемент постоянно находится в зацеплении с другими подобными шестернями, оси которых расположены по окружности.
  3. Сателлиты находятся в зацеплении с коронной шестерней, которая представлена зубчатым колесом большого диаметра с внутренним расположением основных деталей.
  1. Водило требуется для жесткой фиксации всех деталей относительно друг друга.

Стоит учитывать, что для работы механизма одна из частей должна быть зафиксирована относительно других. В зависимости от выбора ведомого или ведущего элемента зависит показатель передаточного числа. Рассчитать число достаточно сложно, от этого показателя также зависит удельная мощность.

Конструктивные особенности рассматриваемого механизма определили то, что он может применяться для достижения самых различных целей.

Виды планетарных редукторов

Встречается довольно большое количество разновидностей понижающих редукторов. Классификация проводится также по количеству ступеней:

  1. Одноступенчатые.
  2. Многоступенчатые.

Первый вариант исполнения намного проще, характеризуется меньшими размерами и обеспечивает более широкие возможности по передаче крутящего момента. Создание нескольких ступеней определяет существенное увеличение размеров конструкции, а диапазон передаточных чисел уменьшается.

Также классификация проводится по показателю сложности планетарного редуктора. Выделяют два основных типа:

  1. Простые.
  2. Дифференциальные.

На сегодняшний день дифференциальный редуктор получил весьма широкое распространение, так как позволяет передавать вращение требуемым образом в конкретном случае.

Выделяют виды в зависимости от формы корпуса, а также применяемым внутри элементам. Классификация выглядит следующим образом:

  1. Волновые.
  2. Конические.
  3. Червячные.
  4. Цилиндрические или колесного типа.

Их применение позволяет передавать вращение между пересекающимися, перекрещивающимися и параллельными валами. Именно поэтому планетарный редуктор получил широкое распространение.

Двухступенчатые планетарные мотор-редукторы применяются в случае, когда нужно передавать вращение с различной частотой. Некоторые варианты исполнения изготавливаются по схеме 3к, планетарные редукторы большой мощности зачастую имеют крупный размер, а при изготовлении основных частей применяется закаленная сталь, характеризующаяся высокой устойчивостью к износу.

Применение

Сегодня электродвигатель с планетарным редуктором получили весьма широкое распространение, могут применяться в самых различных случаях. Область применения во многом зависит от конструктивных особенностей устройства и его характеристик. Выделяют следующие варианты исполнения:

  1. Цилиндрические. Это связано с тем, что конструктивные особенности позволяют обеспечить КПД около 95%. Назначение редуктора с планетарной передачей заключается в передаче достаточно большого усилия между параллельными и соосным валами. Передача вращения осуществляется за счет прямозубых, косозубых и шевронных колес. Коэффициент может варьировать в пределе от 1,5 до 600. Достоинством подобного варианта исполнения можно также назвать компактные размеры, а также высокую степень защиты от воздействия окружающей среды.
  2. Конические сегодня также встречаются довольно часто. Конструктивной особенностью можно назвать то, что шестерни имеют коническую форму. За счет подобной формы обеспечивается плавность сцепки, а также высокую степень устойчивости к нагрузкам. В алы в данном случае могут располагаться вертикально или горизонтально.
  3. Могут применяться и волновые устройства. Они характеризуются тем, что имеют гибкое промежуточное число. Основными конструктивными элементами можно назвать эксцентрики и кулачки, которые обеспечивают растяжение гибкого колеса. Подобный вариант исполнения характеризуется высоким передаточным числом, плавностью хода и повышенной степенью герметичности. Выделяют несколько различных разновидностей этого механизма, к примеру, могут применяться различные типы подшипников.

Несмотря на достаточно сложную конструкцию, она получила весьма широкое распространение. Примером можно назвать машиностроительную область, станкостроение и производство различных механизмов. Примером можно назвать автомобильную коробку передач, которая предназначена для передачи вращения и изменения предаваемого усилия или скорости.

Следует уделить довольно много внимания и подбору наиболее подходящего варианта исполнения. Если установленное устройство не будет обладать требуемыми свойствами, то есть вероятность выхода конструкции их строя при ее применении.

Наиболее важными параметрами выбора можно назвать следующие показатели:

  1. Тип передачи, которая применяется для передачи вращения.
  2. Максимально допустимая осевая и консольная нагрузка. На момент эксплуатации редуктора нагрузка, возникающая на момент работы распределяется самым различным образом.
  3. Имеет значение и размер редуктора. Слишком большой показатель определяет отсутствие возможности установки в тех или иных условиях. Однако, нужно уделить внимание тому моменту, что увеличение мощности достигается исключительно за счет увеличения размеров устройства. Поэтому приходится подбирать более оптимальный вариант исполнения.
  4. Диапазон температур, при которых механизм может применяться. Тип применяемого материала при изготовлении корпуса и основных элементов определяет то, в каких условиях устройство может эксплуатироваться. Слишком высокая температура становится причиной повышения пластичности и снижения твердости поверхности, за счет чего есть вероятность деформации и износа изделия. Для обеспечения охлаждения проводится добавление масла. Не все варианты исполнения могут применяться для длительной работы, некоторые могут эксплуатироваться только периодически.
  5. Популярность производителя также имеет значение. Некоторые заводы характеризуются тем, что производят качественные и долговечные механизмы.

Все наиболее важные параметры указываются в инструкции по эксплуатации, что существенно упрощает процесс выбора подходящего варианта исполнения.

Достоинства и недостатки

Широкая область применения прежде всего связана с основными преимуществами механизма. Многие свойства такие же, как у цилиндрического варианта исполнения, так как в обоих случаях применяются шестерни. Преимущества следующие:

  1. Компактность. Многие модели характеризуются небольшими размерами, за счет чего упрощается установка. Небольшие габаритные размеры также позволяют создавать механизмы с небольшой массой. За счет этого существенно повышается эффективность рассматриваемого устройства.
  2. Сниженный уровень шума. Это свойство достигается за счет установки конических колес с косым зубом. За счет применения большого количества зубьев также обеспечивается точность хода основных элементов. Даже при большой нагрузке и скорости вращения основных элементов сильного гула не возникает, что и стало причиной широкого распространения планетарных редукторов.
  3. Малая нагрузка, оказываемая на опоры. Обычные редуктора характеризуются тем, что нагрузка оказывается на вал, который со временем может сорвать. Также нагрузка оказывает влияние на подшипники, повышая степень их износа. Со временем все приведенные выше причины приводят к необходимости выполнения обслуживания.
  4. Снижается нагрузка на зубья. Это достигается за счет ее равномерного распределения и большого количества задействованных зубьев. Часто встречается проблема, связанная с истиранием рабочей части зубьев. За счет этого они начинают не плотно прилегать друг к другу, последствия подобного явления заключается в повышенном износе и появлении шума.
  5. Обеспечивается равномерное разбрасывание масла на момент работы. Как и при функционировании любого другого редуктора, в рассматриваемом случае большое значение имеет степень смазки рабочей поверхности.
  6. Длительный эксплуатационный срок. Особенности расположения сателлитов приводит к взаимному компенсированию оказываемой силы.
  7. Повышенной передаточное отношение. Этот показатель считается основным. Передаточное соотношение может варьировать в достаточно большом диапазоне.

В целом можно сказать, что есть довольно большое количество причин, по которым применяется именно подобный механизм для передачи вращения. КПД планетарного редуктора относительно невысокое, что можно назвать существенным недостатком подобного варианта исполнения. Кроме этого, коэффициент полезного действия существенно падает при непосредственном использовании устройства, так как со временем оно изнашивается.

Кроме этого следует уделить внимание тому, что планетарный редуктор является сложной конструкцией, при изготовлении и установке которой возникают трудности.

Незначительное отклонение в размерах становится причиной уменьшения основных свойств, а также появления серьезных неисправностей.

Обслуживание и ремонт

Сложность рассматриваемого механизма определяет то, что возникает необходимость в своевременном обслуживании и проведении ремонта. Для начала уделим внимание тому, каким образом проводится расчет планетарного редуктора. Среди особенностей этого процесса отметим следующие моменты:

  1. Определяется требуемое число передаточных ступеней. Для этого применяются специальные формулы.
  2. Определяется число зубьев и расчет сателлитов. Зубчатые колеса могут иметь самое различное число зубьев. В рассматриваемом случае их число довольно много, что является определяющим фактором.
  3. Уделяется внимание выбору наиболее подходящего материала, так как от его свойств зависят и основные эксплуатационные характеристики устройства.
  4. Определяется показатель межосевого расстояния.
  5. Делается проверочный расчет. Он позволяет исключить вероятность допущения ошибок на первоначальном этапе проектирования.
  6. Выбираются подшипники. Они предназначены для обеспечения плавного вращения основных элементов. При выборе подшипника уделяется внимание тому, на какую нагрузку они рассчитаны. Кроме этого, не рекомендуется использовать этот элемент без смазки, так как это приводит к существенному износу.
  7. Определяется оптимальная толщина колеса. Слишком большой показатель становится причиной увеличения веса конструкции, а также расходов.
  8. Проводится вычисление того, где именно должны быть расположены оси шестерен. Это проводится с учетом размеров зубчатых колес и некоторых других моментов. Как правило, в качестве основы применяется чертеж, который можно скачать из интернета. Самостоятельно разработать проект по изготовления планетарного редуктора достаточно сложно, так как нужно обладать навыками инженера для проведения соответствующих расчетов и проектирования.

Изготовить самостоятельно рассматриваемую конструкцию достаточно сложно, как и провести ремонт планетарных редукторов. Среди особенностей этой процедуры отметим следующее:

  1. Процедура достаточно сложна, так как механизм состоит из большого количества различных элементов. Примером можно назвать то, что сразу после разбора все иголки могут высыпаться практически моментально.
  2. Многие специалисты рекомендуют доверять рассматриваемую работу исключительно профессионалам, так как допущенные ошибки становятся причиной быстрого износа и выхода из строя механизма.
  3. Ремонт зачастую предусматривает замену шестерен, которые со временем изнашиваются. Примером можно истирание зубьев, изменение размеров посадочного гнезда и многие другие дефекты. Самостоятельно изготовить подобные изделия практически невозможно, так как для этого требуется специальное оборудование.

Чаще всего обслуживание предусматривает добавление масла. Смазка планетарного редуктора позволяет существенно продлить срок службы конструкции, так как соприкосновение и трение металла становится причиной его истирания. Рекомендуется смазывать механизм периодически, так как масло выступает еще в качестве охлаждения. В продаже встречаются специальные смазывающие вещества, которые характеризуются определенными эксплуатационными качествами.

Сегодня ремонтом редукторов занимаются компании, которые специализируются на предоставлении соответствующих услуг. Признаком того, что механизм начинает выходить из строя становится появление сильного шума, вибрации, рывков, нагрев и многое другое. Со временем процесс износа существенно ускоряется, так как металл, находящийся в масле попадает в зацепление шестерен. В большинстве случаев ремонт предусматривает замену всех элементов на новые.

В заключение отметим, что планетарный редуктор характеризуется весьма привлекательными свойствами. Примером можно назвать отсутствие большого количества крепежных элементов, а также равномерное распространение нагрузки. Как ранее было отмечено, редуктор применяется при создании различных узлов транспортных средств.

Планетарные редукторы серии PLF

Планетарный редуктор — это механизм, состоящий из одной или нескольких планетарных передач. Основной задачей планетарного редуктора является передача крутящего момента от двигателя к приводу с одновременным снижением скорости вращения валов и увеличением крутящего момента.

Планетарная передача состоит из следующих основных элементов:

• солнечная шестерня – расположена в центре планетарной передачи;
• сателлиты – несколько шестерней, расположенных в контакте с солнечной шестернёй;
• эпицикл (коронная шестерня) – зубчатое колесо с внутренним зубом, расположенное снаружи планетарной передачи, находится в зацеплении с сателлитами;
• водило – является соединительным элементом для сателлитов. На водиле установлены оси, на которых вращаются сателлиты.

Преимущества планетарных редукторов:

• большие передаточные числа;
• небольшой вес;
• относительная компактность;
• плавность хода;
• сниженный уровень шума;
• надежность.

Планетарные редукторы серии PLF являются высокоточным изделием, которые используются для уменьшения оборотов двигателя при одновременном увеличении момента на выходном валу.

Общие характеристики редукторов серии PLF:

• фланец от 40 мм до 160 мм;
• крутящий момент от 1.5 Н·м до 800 Н·м;
• передаточные числа от 3:1 до 100:1;
• номинальная скорость 3000 об/мин, максимальная скорость 4500 об/мин.

Планетарные редукторы серии PLF отличаются компактностью, экономичностью и удобством монтажа. Компания Purelogic R&D предлагает широкий ассортимент планетарных редукторов различных размеров для шаговых и серводвигателей.

Планетарные зубчатые передачи.

Планетарные зубчатые передачи



Общие сведения о планетарных передачах

Планетарными называют передачи, имеющие зубчатые колеса с подвижными осями. Отличительной особенностью механизмов, включающих планетарную передачу (или передачи), является наличие двух или более степеней свободы. При этом угловая скорость любого звена передачи определяется угловыми скоростями остальных звеньев.

Наибольшее распространение получила простая одинарная планетарная передача (рис. 1), которая состоит из центрального колеса 1 с наружными зубьями, неподвижного центрального колеса 3 с внутренними зубьями; сателлитов 2 – колес с наружными зубьями, зацепляющихся одновременно с колесами 1 и 3 (на рис. 1 число сателлитов с = 3), и водила Н, на котором закреплены оси сателлитов. Водило соединено с тихоходным валом. В планетарной передаче одно колесо неподвижно (соединено с корпусом). Обычно внешнее центральное колесо с внутренними зубьями называют коронным (коронная шестерня или эпицикл), а внутреннее колесо с внешними зубьями – солнечным колесом (солнечная шестерня или солнце).

При неподвижном колесе 3 вращение колеса

1 вызывает вращение сателлитов 2 относительно собственных осей, а обкатывание сателлитов по колесу 3 перемещает их оси и вращает водило Н. Сателлиты таким образом совершают вращение относительно водила и вместе с водилом вокруг центральной оси, с. е. совершают движение, подобное движению планет. Поэтому такие передачи и называют планетарными.

При неподвижном колесе 3 движение передают чаще всего от колеса 1 к водилу Н, можно передавать движение от водила Н к колесу 1.

В планетарных передачах применяют не только цилиндрические, но и конические колеса с прямым или косым зубом.

Если в планетарной передаче сделать подвижными все звенья, т. е. оба колеса и водило, то такую передачу называют дифференциальной.
С помощью дифференциального механизма можно суммировать движение двух звеньев на одном или раскладывать движение одного звена на два других. Например, в дифференциале заднего моста автомобиля движение от водила

Н передают одновременно колесам 1 и 3, что позволяет при повороте одному колесу вращаться быстрее другого.

***

Разновидности планетарных передач

Существует много различных типов и конструкций планетарных передач. Наиболее широко в машиностроении применяют однорядную планетарную передачу, схема которой показана на рисунке 1. Эта передача конструктивно проста, имеет малые габариты. Находит применение в силовых и вспомогательных приводах. КПД планетарной передачи η = 0,96…0,98 при передаточных числах u = 3…8.

Планетарные механизмы, в составе которых присутствуют одна или несколько планетарных передач подразделяются на однорядные, двухрядные и многорядные. Каждый набор из центральных зубчатых колёс и сателлитов, вращающихся в одной плоскости, образует так называемый планетарный ряд. Простой планетарный механизм с набором одновенцовых сателлитов является однорядным. Простые планетарные механизмы с двухвенцовыми сателлитами являются двухрядными. Сложные планетарные механизмы могут быть двух, трёх, четырёх и даже пятирядными.

Для получения больших передаточных чисел в силовых приводах применяют многоступенчатые планетарные передачи. На рис. 2,а планетарная передача составлена из двух последовательно соединенных однорядных планетарных передач. В этом случае суммарное передаточное число u = u1×u264, а КПД равен η = η1×η2 = 0,92…0,96.

На рисунке 2, б показана схема планетарной передачи с двухрядным (двухвенцовым) сателлитом, для которой при передаче движения от колеса 1 к водилу Н при n4 = 0 передаточное число определяется из зависимостей:

u = n1/nН = 1 + z2z4/(z1z3).

В этой передаче u = 3…19 при КПД η = 0,95…0,97.

Как упоминалось выше, планетарные передачи, у которых все звенья подвижны, называют дифференциальными или просто дифференциалами.

Неизбежные погрешности изготовления приводят к неравномерному распределению нагрузки между сателлитами. Для выравнивания нагрузки в передачах с тремя сателлитами одно из центральных колес выполняют самоустанавливающимся в радиальном направлении (не имеющим радиальных опор). Для самоустановки сателлитов по неподвижному центральному колесу применяют сферические подшипники качения.
Высокие требования предъявляются к прочности и жесткости водила, при этом его масса должна быть минимальной. Обычно водила выполняют литыми или сварными.

***

Достоинства и недостатки планетарных передач

Основными достоинствами планетарных передач являются:

  • малые габариты и масса вследствие передачи мощности по нескольким потокам, численно равным количеству сателлитов. При этом нагрузка в каждом зацеплении уменьшается в несколько раз;
  • удобство компоновки в машинах благодаря соосности ведущего и ведомого валов;
  • работа с меньшим шумом, чем в обычных зубчатых передачах, что обусловлено меньшими размерами колес и замыканием сил в механизме. При симметричном расположении сателлитов силы в передаче взаимно уравновешиваются;
  • малые нагрузки на валы и опоры, что упрощает конструкцию опор и снижает потери в них;
  • возможность получения больших передаточных чисел при небольшом числе зубчатых колес и малых габаритах передачи.

Не лишены планетарные передачи и недостатков:

  • повышенные требования к точности изготовления и монтажа передачи;
  • большее количество деталей, в т. ч. подшипников, и более сложная сборка.

***

Область применения планетарных передач

Планетарные передачи применяют как редукторы в силовых передачах и приборах, в коробках передач автомобилей и другой самоходной техники, при этом передаточное число такой КПП может изменяться путем поочередного торможения различных звеньев (например, водила или одного из колес), в дифференциалах автомобилей, тракторов и т. п.

Широкое применение планетарные передачи нашли в автоматических коробках передач автомобилей благодаря удобству управления передаточными числами (переключением передач) и компактности. Можно встретить планетарные передачи и в механизмах привода ведущих колес современных велосипедов. Часто применяют планетарную передачу, совмещенную с электродвигателем (мотор-редуктор, мотор-колесо).

***

Передаточное число планетарных передач

При определение передаточного числа планетарной передачи используют метод остановки водила (метод Виллиса).
По этому методу всей планетарной передаче мысленно сообщается дополнительное вращение с частотой вращения водила nН, но в обратном направлении. При этом водило как бы останавливается, а закрепленное колесо освобождается. Получается так называемый обращенный механизм, представляющий собой обычную непланетарную передачу, в которой геометрические оси всех колес неподвижны. Сателлиты при этом становятся промежуточными (паразитными) колесами, т. е. колесами, не влияющими на передаточное число всего механизма.
Передаточное число в обращенном механизме определяется как в духступенчатой передаче с одним внешним и вторым внутренним зацеплением.

Здесь существенное значение имеет знак передаточного числа. Передаточное число считают положительным, если в обращенном механизме ведущее и ведомое звенья вращаются в одну сторону, и отрицательным, если в разные стороны. Так, для обращенного механизма передачи по рис. 1 имеем:

u = u1×u2 = (-n1/n2)×(-n2/-n3) = (-z2/z1)×(z3/z2) = — z3/z1,

где z – числа зубьев колес.

В рассматриваемом обращенном механизме знак минус показывает, что колеса 2 и 3 вращаются в обратную сторону по отношению к колесу 1.

В качестве примера определим передаточное число для планетарной передачи, изображенной на рис. 1, при передаче движения от колеса 1 к водилу Н. Мысленная остановка водила в этой передаче равноценна вычитанию его частоты nН из частоты вращения колес.
Тогда для обращенного механизма этой передачи имеем:

u’ = (n1 – n2)/(n3 – nН) = — z3/z1,

где (n1 – nН) и (n3 – nН) – частоты вращения колес 1 и 3 относительно водила Н;
z1 и z3 – числа зубьев колес 1 и 3.

Для планетарной передачи, у которой колесо 3 закреплено в корпусе неподвижно (n3 = 0), колесо 1 является ведущим, а водило Н – ведомым.
Тогда получим передаточное число такой передачи:

(n1 – nН)/(- nН) = — z3/z1;
— n1/nН+ 1 = -z3/z1

или

u = n1/nН= 1 + z3/z1.

***



Подбор чисел зубьев планетарных передач

В отличие от обычных зубчатых передач расчет планетарных начинают с подбора чисел зубьев на колесах и сателлитах. Рассмотрим последовательность подбора чисел зубьев на примере планетарной передачи, изображенной на рис. 1.

Число зубьев z1 центральной шестерни 1 задают из условия неподрезания ножки зуба: z117. Принимают z1 = 24 при Н350 НВ; z1 = 21 при Н52 HRC и z1 = 17 при Н > 52 HRC.

Число зубьев неподвижного центрального колеса 3 определяют по заданному передаточному числу u:

z3 = z1(u – 1).

Число зубьев z2 сателлита 2 вычисляют из условия соосности, в соответствии которым межосевые расстояния aw зубчатых пар с внешним и внутренним зацеплением должны быть равны.
Из рис. 1 для немодифицированной прямозубой передачи:

aw = 0,5(d1 + d2) = 0,5(d3 – d2),        (1)

где d = mz — делительные диаметры колес.

Так как модули зацеплений планетарной передачи одинаковые, то формула (1) принимает вид:

z2 = 0,5(z3 – z1).

Полученные числа зубьев z1, z2, и z3 проверяют по условиям сборки и соседства.

Условие сборки требует, чтобы во всех зацеплениях центральных колес с сателлитами имело место совпадение зубьев со впадинами, в противном случае собрать передачу будет невозможно. Установлено, что при симметричном расположении сателлитов условие сборки удовлетворяется, когда сумма зубьев центральных колес (z1 + z3) кратна числу сателлитов с = 2…6 (обычно с = 3), т. е. должно соблюдаться условие:

(z1 + z3)/c = целое число.

Условие соседства требует, чтобы сателлиты не задевали зубьями друг друга. Для этого необходимо, чтобы сумма радиусов вершин зубьев соседних сателлитов, равная da2 = m(z2 + 2) , была меньше расстояния l между их осями (рис. 1), т. е.:

da2 < l = 2aw sin (180˚/c),        (2)

где aw = 0,5m(z1 + z2) – межосевое расстояние.

Из формулы (2) следует, что условие соседства удовлетворяется, когда

z2 + 2 (z1 + z2) sin (180˚/c).        (3)

***

Расчет на прочность планетарных передач

Расчет на прочность зубчатых передач планетарного типа ведут по методике, применяемой для обычных зубчатых передач. Основными критериями работоспособности для большинства планетарных передач (как и для всех зубчатых передач), является усталостная контактная прочность рабочих поверхностей зубьев и прочность зубьев при изгибе. При этом под контактной прочностью понимают способность контактирующих поверхностей зубьев обеспечить требуемую безопасность против прогрессирующего усталостного выкрашивания, а прочностью при изгибе – способность зубьев обеспечить требуемую безопасность против усталостного излома зуба.

Расчет выполняют для каждого зацепления. Например, в передаче, изображенной на рис. 1, необходимо рассчитать внешнее зацепление колес 1 и 2 и внутреннее – колес 2 и 3. Так как модули и силы в этих зацеплениях одинаковы, а внутреннее зацепление по своим свойствам прочнее внешнего, то при одинаковых материалах колес достаточно рассчитать только внешнее зацепление.

Расчет начинают с подбора чисел зубьев колес, как было показано выше.

При определении допускаемых напряжений коэффициенты долговечности находят по эквивалентных числам циклов нагружения. При этом число циклов перемены напряжений зубьев за весь срок службы вычисляют при вращении колес только относительно друг друга.

При определении допускаемых напряжений изгиба для зубьев сателлита вводят коэффициент YA, учитывающий двустороннее приложение нагрузки (симметричный цикл нагружения).

Межосевое расстояние планетарной прямозубой передачи для пары колес внешнего зацепления (центральной шестерни с сателлитом) определяют по формуле:

aw = 450(u’ + 13√{(КНТ1Кc)/(ψbau'[σ]Н2с)},

где u’ = z2/z1 – передаточное число рассчитываемой пары колес;
Кc = 1,05…1,15 – коэффициент неравномерности распределения нагрузки между сателлитами;
Т1 – вращающий момент на валу центральной шестерни, Нм;
с – число сателлитов;
ψba — коэффициент ширины венца колеса:
        ψba = 0,4 для Н350 НВ;
        ψba = 0,315 при 350 НВ < Н50 HRC,
        ψba = 0,25 для Н > 50 HRC.

Ширина b3 центрального колеса 3 определяется по формуле b3 = ψbaaw.
Ширину b2 венца сателлита принимают на 2…4 мм больше значения b3; ширина центральной шестерни b1 = 1,1b2.

Модуль зацепления определяют по формуле:

m = 2aw/(z2 + z1).

Получнный расчетом модуль округляют до ближайшего стандартного значения, а затем уточняют межосевое расстояние:

aw = m(z2 + z1)/2.

Окружную силу Ft в зацеплении вычисляют по формуле:

Ft = 2×103КcТ1/сd1.

Радиальную силу Fr определяют по формуле:

Fr = Ft tg αw,

где αw = 20˚ – угол зацепления.

***

Волновые передачи


Главная страница


Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

коробка, механизм, шестерня, ряд и расчет

Планетарная передача — вид зубчатой передачи, применяемой в механических и автоматических трансмиссиях. Помимо преобразования вращения «планетарка» способна суммировать и раскладывать мощности. Зная о планетарном механизме: что это такое, как работает, по каким критериям оценивают редуктор, станет понятно устройство и характеристики АКПП. В случае поломки расчёт передачи поможет выбрать надёжный и долговечный механизм.

Устройство и принцип работы

Планетарный механизм — это конструкция из зубчатых колёс, перемещающихся относительно центра. По центральной оси расположены колёса разного диаметра:

  • малое солнечное с внешними зубцами;
  • большое коронное или эпицикл с внутренними зубцами.

Между колёсами передвигаются сателлиты. Их вращение напоминает движение планет Солнечной системы. Оси сателлитов механические соединены на водиле, которое вращается относительно центральной оси.

Устройство простого планетарного блока:

  • 1 эпицикл;
  • 1 солнечное колесо;
  • 1 водило.

Планетарный механизм собирают в каскады из двух и более звеньев на одном валу для получения широкого диапазона передач. Главной кинематической характеристикой зубчатой передачи является передаточное отношение.

Принцип работы планетарной коробки заключается в блокировке одного из основных элементов и передаче вращения через ведущее колесо. Для остановки элемента применяют тормозные ленты, блокировочные муфты, конические шестерни. Передаточное отношение меняется в зависимости от схемы закрепления. Описать принцип действия планетарного механизма удобнее на примере:

  1. Корона блокируется.
  2. Вал подаёт крутящий момент на солнце.
  3. Вращение солнца заставляет планеты обкатываться вместе с ним.
  4. Водило становится ведомым, сообщая пониженную передачу.

Управляя элементами простой «планетарки», получают разные характеристики:

Передача

Как работает планетарная коробка в АКПП

1

Солнце подаёт вращение на водило, корона двигается в противоположную сторону.

2

Корона подаёт вращение на водило, солнце зафиксировано.

3

Ведущее водило передаёт вращение солнцу. Корона заблокирована.

4

Водило двигает корону. Солнце зафиксировано.

Задний ход

Водило заблокировано. Солнечное колесо вращается, планеты обкатывают и двигают корону в противоположную сторону.

Кпд η простой передачи достигает 0,97.

Планетарный ряд с одной степенью свободы становится планетарной передачей. Две степени образуют дифференциал. Дифференциал складывает моменты на ведомом колесе, поступающие от основных ведущих звеньев.

Разновидности планетарных передач

По количеству ступеней планетарные механизмы разделяют на:

  • однорядные;
  • многорядные.

Планетарная передача из одной солнечной шестерни, одновенцовых сателлитов, водила и эпицикла будет однорядной. Замена сателлитов на двухвенцовые усложняет конструкцию, делая её двухрядной.

Многоступенчатая планетарная коробка передач — это последовательно установленные однорядные блоки. Такая схема позволяет суммировать передаточные числа и получать большие значения. 4-скоростные АКПП состоят из двухрядных планетарных конструкций, 8-скоростные — из четырёхрядных.

В АКПП применяют схемы, названные в честь изобретателей:

  • Механизм Уилсона представляет собой трёхрядную конструкцию, в которой соединены корона первого, водило второго и корона третьего рядов. Количество передач — 5 прямых и 1 задняя.
  • Механизм Лепелетье состоит из 3 соосно расположенных простых планетарных передач. Количество передач — 6 прямых и 1 задняя.
  • Схема Симпсона — 2 редуктора с общей солнечной шестернёй. Водило второго ряда оборудовано тормозом. Корона первого ряда и солнце через две блокировочные муфты жёстко соединены с ведущим валом. Механизм реализует режимы: нейтраль; 1,2,3 передачи; задний ход.

По типу зубчатых конструкций планетарные редукторы делятся на:

  • цилиндрические;
  • конические;
  • волновые;
  • червячные.

Разные типы применяют для передачи момента между валами, расположенными параллельно или под углом. А также в механизмах, требующих низкой или высокой кинематической характеристики.

Характеристики основных разновидностей этого устройства

В конструкции планетарного ряда АКПП применяют различные типы зубчатых передач. Выделяют три основные наиболее распространенные: цилиндрические, конические и волновые.

Цилиндрические

Зубчатые механизмы передают момент между параллельными валами. В конструкцию цилиндрической передачи входит две и более пар колёс. Форма зубьев шестерней может быть прямой, косой или шевронной. Цилиндрическая схема простая в производстве и действии. Применяется в коробках передач, бортовых редукторах, приводах. Передаточное число ограничено размерами механизма: для одной колёсной пары достигает 12. КПД — 95%.

Конические

Колёса в конической схеме преобразуют и передают вращение между валами, расположенными под углом от 90 до 170 градусов. Зубья нагружены неравномерно, что снижает их предельный момент и прочность. Присутствие сил на осях усложняет конструкцию опор. Для плавности соединения и большей выносливости применяют круговую форму зубьев.

Производство конических передач требует высокой точности, поэтому обходится дорого. Угловые конструкции применяются в редукторах, затворах, фрезерных станках. Передаточное отношение конических механизмов для техники средней грузоподъёмности не превышает 7. КПД — 98%.

Волновые

Во волновой передаче отсутствуют солнечная и планетные шестерни. Внутри коронного колеса установлено гибкое зубчатое колесо в форме овала. Водило выступает в качестве генератора волн, и выглядит в виде овального кулачка на специальном подшипнике.

Гибкое стальное или пластмассовое колесо под действием водила деформируется. По большой геометрической оси зубья сцепляются с короной на всю рабочую высоту, по малой оси зацепление отсутствует. Движение передаётся волной, создаваемой гибким зубчатым колесом.

Во волновых механизмах КПД растёт вместе с передаточным числом, превышающим 300. Волновая передача не работает в схемах с кинематической характеристикой ниже 20. Редуктор выдает 85% КПД, мультипликатор — 65%. Конструкция применяется в промышленных роботах, манипуляторах, авиационной и космической технике.

Достоинства и недостатки планетарных передач

Планетарная передача выигрывает у простых зубчатых механизмов аналогичной мощности компактным размером и массой меньшей в 2 — 3 раза. Используя нескольких планетных шестерней, достигается зацепление зубьев на 80%. Нагрузочная способность механизма повышается, а давление на каждый зубец уменьшается.

Кинематическая характеристика планетарного механизма доходит до 1000 с малым числом зубчатых колёс без применения многорядных конструкций. Помимо передачи планетарная схема способна работать как дифференциал.

За счёт соосности валов планетарного механизма, компоновать машины проще, чем с другими редукторами.

Применение планетарного ряда в АКПП снижает уровень шума в салоне автомобиля. Сбалансированная система имеет высокую вибропрочность за счет демпфирования колебаний. Соответственно снижается вибрация кузова.

Недостатки планетарного механизма:

  • сложное производство и высокая точность сборки;
  • в сателлиты устанавливают подшипники, которые выходят из строят быстрее, чем шестерня;
  • при повышении передаточных отношений КПД падает, поэтому приходится усложнять конструкцию.

Передаточное число планетарных передач

Передаточным называют отношение частоты ведущего вала планетарной передачи к частоте ведомого. Визуально определить его значение не получится. Механизм приводится в движение разными способами, а значит передаточное число в каждом случае различно.

Для расчёта передаточного числа планетарного редуктора учитывают число зубьев и систему закрепления. Допустим, у солнечной шестерни 24 зуба, у сателлита — 12, у короны — 48. Водило закреплено. Ведущим становится солнце.

Сателлиты начнут вращаться со скоростью, передаваемой солнечной шестернёй. Передаточное отношение равно: -24/12 или -2. Результат означает, что планеты вращаются в противоположном направлении от солнца с угловой скоростью 2 оборота. Сателлиты обкатывают корону и заставляют её обернуться на 12/48 или ¼ оборота. Колёса с внутренним закреплением вращаются в одном направлении, поэтому число положительное.

Общее передаточное число равно отношению числа зубьев ведущего колеса к количеству зубьев ведомого: -24/48 или -1/2 оборота делает корона относительно солнца при зафиксированном водиле.

Если водило станет ведомым при ведущем солнце, то передаточное отношение: (1+48/24) или 3. Это самое большое число, какое способна предложить система. Самое маленькое отношение получается при фиксировании короны и подачи момента на водило: (1+/(1+48/24)) или 1/3.

Передаточные числа простой планетарной схемы: 1,25 — 8, многоступенчатой: 30 — 1000. С ростом кинематической характеристики КПД снижается.

Подбор чисел зубьев планетарных передач

Число зубьев колёс подбирают на первом этапе расчёта планетарной схемы по заранее установленному передаточному отношению. Особенность проектирования планетарного ряда заключается в соблюдении требований правильной сборки, соосности и соседства механизма:

  • зубья сателлитов должны совпадать с впадинами солнца и эпицикла;
  • планеты не должны задевать друг друга зубьями. На практике более 6 сателлитов не используют из-за трудностей равномерного распределения нагрузки;
  • оси водила, солнечного и коронного колёс должны совпадать.

Основное соотношение подбора зубьев передачи через передаточное число выглядит так:

i = 1+Zкорона/Zсолнце,

где  i — передаточное число;

Zn — количество зубьев.

Условие соосности соблюдается при равных межосевых расстояниях солнечного колеса, короны и водила. Для простой планетарной зубчатой передачи проверяют межосевые расстояния между центральными колёсами и сателлитами. Равенство должно удовлетворять формуле:

Zкорона= Zсолнце+2×Zсателлит.

Чтобы между планетами оставался зазор, сумма радиусов соседних шестерней не должна превышать осевое расстояние между ними. Условие соседства с солнечным колесом проверяют по формуле:

sin (π/c)> (Zсателлит+2)/(Zсолнце+Zсателлит),

где с — количество сателлитов.

Планетные колёса размещаются равномерно, если соотношение зубьев короны и солнца к количеству сателлитов окажется целым:

Zсолнце/с = Z;

Zкорона/с = Z,

где Z — целое число.

Расчет на прочность планетарных передач

Прочностной расчёт планетарных передач проводят как для цилиндрических зубчатых передач. Вычисляют каждое зацепление:

  • внешнее — между солнцем и планетными колёсами;
  • внутреннее — между планетами и короной.

Если колёса изготовлены из одного материала, а силы в зацеплении равны, рассчитывают наименее прочное соединение — внешнее.

Алгоритм расчёта следующий:

  1. Выбирают схему редуктора.
  2. Определяют исходные данные: передаточное число i, крутящий момент Твых и частоту вращения выходного вала Uвых.
  3. Подбирают число зубьев с проверкой условий сборки и соседства планетных шестерней.
  4. Рассчитывают угловые скорости колёс.
  5. Вычисляют КПД и моменты выходных валов.
  6. Рассчитывают прочность зацепления.

В расчёте момента учитывают количество планетных колёс и неравномерное нагружение их зубьев. Вводят поправочный коэффициент η =1,5…2, если меры выравнивания отсутствуют:

  • повышенная точность изготовления;
  • радиальная подвижность солнца, короны или водила;
  • применение упругих элементов.

Расчёт зубчатых передач выполняют по двум критериям:

  • контактная прочность, т.е. выносливость рабочих поверхностей зубьев под нагрузкой;
  • напряжение на изгиб, усталостный излом.

Расчёт контактной прочности сводится к проверке условия, что напряжение σн не превышает допустимого значения. Вычисления проводят по формуле Герца для цилиндрических поверхностей, добавляя уточняющие коэффициенты. В результате получают значение межосевого расстояния — главную геометрическую характеристику зубчатой передачи:

d=K×η×∛ (T×Kн(i±1))/(Ψ×i×[σн]^2),

где K — вспомогательный коэффициент для прямозубых колёс, МПа;

η — коэффициент неравномерности;

Т — вращающий момент, Н×мм;

Kн — коэффициент нагрузки;

Ψ — коэффициент ширины колеса равный 0,75;

i — передаточное число;

[σн] — допускаемое контактное напряжение, МПа.3)/(Ψ×d) ≤ [σн]

При расчёте на изгиб принимают условие, что вся нагрузка передаётся одной паре зубьев и приложена к его вершине. Расчётное напряжение не должно превышать допускаемое:

σf= (M/W) – (F/(b×s) ≤ [σf],

где М — изгибающий момент;

W — осевой момент сопротивления;

F — сила сжатия;

b, s — размеры зуба в сечении;

[σf] — допускаемое напряжение изгиба. Зависит от предела выносливости, шероховатости, погрешности изготовления зубьев.

Советы по подбору планетарного редуктора

Перед выбором планетарного редуктора проводят точный расчёт нагружения и режимов работы механизма. Определяют тип передачи, осевые нагрузки, температурный диапазон и типоразмеры редуктора. Для тяжёлой спецтехники, где нужен большой крутящий момент при малых скоростях, выбирают редуктор с высоким передаточным отношением.

Чтобы сбавить угловую скорость, не снижая крутящего момента, применяют привод с электродвигателем и редуктором. При выборе мотор редуктора учитывают:

  • эксплуатационную нагрузку;
  • момент вала на выходе;
  • частоту вращения входного и выходного валов;
  • мощность электродвигателя;
  • монтажное исполнение.

Область применения планетарных передач

Планетарная схема используется в:

  • редукторах;
  • автоматических и механических коробках передач;
  • в приводах летательных аппаратов;
  • дифференциалах машин, приборов;
  • ведущих мостах тяжёлой техники;
  • кинематических схемах металлорежущих станков.

Планетарную коробку передач применяют в агрегатах с переменным передаточным отношением, затормаживая водило. В гусеничной технике для сложения потоков мощности элементы в планетарном механизме не блокируют.

Заключение

Планетарные передачи в АКПП зарекомендовали себя десятилетиями эксплуатации со времён Ford T: компактными размерами, малым весом, высокими скоростями, надёжностью и выносливостью. Планетарная схема способна передавать вращение и управлять потоками мощности, поэтому нашла применение в авиации, машиностроении, промышленности.

Чтобы не ошибиться с выбором конструкции, проводят точный расчёт геометрии и прочности зубчатой передачи, сверяя с допустимыми значениями. Ошибки вычислений приводят к чрезмерной нагрузке зубчатых передач, поломке и истиранию зубьев.

классическое переключение или планетарная втулка? / Выберите свой Schwinn / Schwinn life

Выбирая велосипед с несколькими скоростями, покупатель часто сталкивается с многообразием непонятных ему терминов. В этой статье мы попробуем разобраться с вопросами переключения скоростей и «планетарной втулкой».

В настоящее время существует два вида переключения передач: классическая схема с переключателями и планетарная втулка.

ПЛАНЕТАРНАЯ ВТУЛКА

Планетарная втулка — закрытая система переключения скоростей для велосипеда, весь механизм находится внутри задней втулки. Конструкция надёжная и долговечная. В простых планетарных втулках 3 скорости, самые продвинутые модели имеют до 14 передач.

Наибольшую популярность планетарные втулки получили в первой половине 20 века, практически на каждом велосипеде стояла такая втулка (особенной популярности они пользовались в Великобритании, Голландии, Германии, Скандинавии). Однако, появившиеся позже переключатели скоростей и кассеты, вытеснили планетарные втулки, благодаря своей дешевизне и неприхотливости.

У велосипеда с планетарной втулкой отсутствует внешний переключатель — весь механизм переключения спрятан внутри задней втулки, а снаружи лишь одна звезда и цепь. Это самое главное преимущество планетарных втулок — нет лишних деталей, которые так легко повредить при падении. Вся система переключения находится внутри корпуса втулки, надёжно защищена от грязи и внешнего воздействия. Переключения можно производить как под нагрузкой, так и без, поскольку цепь всё время стоит на одних передачах, то нет вероятности её повреждения при переключении. В отличие от классической системы переключения, планетарная втулка совместима с задним ножным тормозом.

Особенность планетарных втулок – более высокая стоимость и более низкая ремонтопригодность, чем у классической системы переключения. Сложный механизм переключения внутри втулки стоит дороже классической системы переключения.

Планетарная втулка надёжна, при правильной эксплуатации ресурс – десятки тысяч километров. В приводе используются толстые цепи и звездочки, их ресурс во много раз превышает срок службы аналогичных компонентов велосипедов с классическим переключателем. Планетарная трансмиссия не требует обслуживания, единственная регулировка – подтяжка тросика в процессе эксплуатации. Однако если что-то сломается в планетарной втулке, то ремонт может обойтись дорого и делать его придется в специализированной мастерской.

Несмотря на большое количество скоростей в самых продвинутых моделях, не для всех видов катания будет достаточно скоростей планетарных втулок. Такая система переключения скоростей подойдет для неспешного, комфортного катания по городу, лесу и паркам. Но если мы говорим про езду в стиле кросс-кантри или более экстремальное катание на велосипеде, то количество скоростей и диапазона передач будет недостаточно.

Стоит отметить и намного больший вес планетарной втулки, если сравнивать с классической системой передач, развесовка велосипеда будет смещена в сторону заднего колеса.

Плюсы

+ большой ресурс при правильной эксплуатации

+ механизм переключения передач полностью закрыт в корпусе втулки, что позволяет защитить его от попадания грязи

+ совместим, как с ручными тормозами, так и с задним ножным тормозом

Минусы

— стоимость

— больший вес по сравнению с классической системой переключения

— сложный ремонт, под силу только квалифицированным специалистам по планетарным втулкам

Если Вам необходим велосипед для спокойного катания по городу и паркам, Вы не гонитесь за количеством передач и хотите иметь надёжный велосипед без лишних деталей и простой в эксплуатации, то планетарная втулка именно то, что Вам надо. 

КЛАССИЧЕСКОЕ ПЕРЕКЛЮЧЕНИЕ

Самый распространённый вариант — это классическая схема переключения с кассетой и переключателями. На задней втулке установлен набор звёздочек, называемых «кассетой», и внешний переключатель, крепящийся к раме через переходник именуемый «петух». В многоскоростных велосипедах (более 7 скоростей), есть также две или три звезды спереди и внешний передний переключатель.

Общее количество передач – это количество звёзд передней системы, умноженное на количество звёзд задней кассеты. Например: 3 передних и 9 задних передач в сумме дают 27 скоростей. Но на самом деле использовать все комбинации нельзя и даже противопоказанно, поскольку приведёт к преждевременному износу и поломке оборудования. Чтобы избежать перекосов цепи, исключив тем самым вероятность поломки, обычно рекомендуют использоваться такие сочетания как: 1х1,2,3, 2х2,3,4,5,6,7,8, 3х7,8,9.

Классическая схема с переключателями самая распространенная и доступная.  Можно подобрать подходящую систему или отдельные запасные части. Главный плюс – ее легко ремонтировать при поломке или сделать апгрейд до более продвинутой.  Но есть и несколько минусов: задний переключатель крепится с правой стороны рамы и его легко сломать, при неудачном падении велосипеда на правый бок.  Также система требовательна к чистоте, поскольку все компоненты открыты, необходимо чистить компоненты и смазывать цепь, дабы исключить её преждевременный износ. Необходимо научиться правильно, переключать передачи – ни в коем случае нельзя переключаться под нагрузкой. Всегда необходимо переключать передачи заранее и в момент переключения необходимо давить на педали не сильно, чтобы избежать разрыва цепи. Данная система переключения не совместима с задним ножным тормозом.

Если соблюдать правила переключения, держать велосипед в чистоте и своевременно делать необходимое техническое обслуживание, то классическая система переключения будет вас радовать качественной и надёжной работой.

Плюсы

+ доступность

+ большое разнообразие деталей

+ отличная ремонтопригодность (в магазинах всегда большой выбор деталей и починить переключение не составит большого труда), ремонт смогут сделать в любом велосипедном сервисе

Минусы

— возможно сломать при падении

— необходимость в чистке и уходе

— соблюдение правил переключения (использовать только определённые комбинации и переключение не под нагрузкой)

— несовместимость с задним ножным тормозом

Если Вы выбираете горный велосипед или Вам нужна отличная ремонтопригодность, то выбор один — классическая система переключения скоростей.

Строим планетарную КПП, часть 1: планетарные ряды

В предыдущих статьях о трансмиссиях я касался только двухвальных, трёхвальных и безвальных коробок передач, а планетарные обходил стороной. На сей раз я решил подробно описать работу планетарных коробкок передач фирмы Pulsgetriebe для Тигра и прототипа Леопарда. Однако я не мог уместить в один пост и объяснение принципов работы планетарных редуторов, и рассмотрение простой планетарной коробки передач, и, наконец, описание реальных КПП Pulsgetriebe. Поэтому я написал три поста: в первых двух объясняется, как работают планетарные редукторы и коробки передач, а в третьем дано описание коробок передач PP33 и PP45.

Если вы понимаете, как работают планетарные КПП, сразу переходите к третьему посту. Если нет, то прочтите этот пост и его вторую часть. В них я исхожу из того, что читатель знает, как работают двухвальные или трёхвальные коробки передач, но ничего не понимает в планетарных передачах.

ПРДПВ:


Устройство планетарной передачи
Для того, чтобы изучить, как работает простая коробка передач, нужно сперва понять, как работает простейший редуктор из пары шестерён, а затем из таких пар собрать коробку передач. Мы поступим аналогично: сперва разберёмся с планетарными редукторами, а затем посмотрим, как их можно применить. Скажу сразу: люди придумали очень много планетарных механизмов и очень много схем планетарных коробок передач, всё их многообразие мы, конечно, охватить не сможем.

Один из самых распространённых планетарных механизмов выглядит следующим образом:

Он состоит из трёх частей:


  • Солнечная шестерня, выделена жёлтым

  • Эпициклическая шестерня (или просто эпицикл) с внутренними зубьями, выделена красным

  • Шестерни-Сателлиты, связывающие солнечную шестерню с эпициклом, выделены синим

  • Зелёным цветом закрашено водило, которое связывает все сателлиты

Если эпицикл зафиксировать неподвижно и начать вращать солнечную шестерню, то сателлиты начнут её «обегать» подобно тому, как планеты вращаются вокруг солнца, поэтому подобны передачи и получили название планетарных.

У данной передачи есть три части: солнечная шестерня, эпицикл и водило. Если мы заблокируем одну из частей и начнём вращать другую, то начнёт вращаться третья. Её скорость вращения будет зависеть от чисел зубьев шестерён. Например, заблокируем серый эпицикл и начнём вращать красное водило, при этом будет вращаться и зелёный ведомый вал от солнечной шестерни:


Рассмотрим все три случая. Для того, чтобы анимация не мешала читать, я не буду вставлять сами картинки, но дам ссылки на них:

В третьем случае мы меняем направление вращения, что нам позже пригодится для реализации заднего хода.

Планетарные редукторы
Для того, чтобы использовать планетарную передачу как редуктор, нужно связать один элемент с ведущим валом, второй с ведомым, а третий заблокировать.

Вот схема редуктора с заблокированным эпициклом:

С заблокированной солнечной шестернёй:

С заблокированным водилом:

Планетарные редукторы имеют целый ряд достоинств перед обычными. Во-первых, мощность передаётся через несколько шестерён, как следствие, при прочих равных меньше нагрузка на зубья, выше надёжность и срок службы. Во-вторых, ведущий и ведомый валы соосны, часто это очень удобно с точки зрения компоновки. В-третьих, планетарная передача более компактна, чем простой редуктор с тем же передаточным числом:

Планетарный однопоточный механизм поворота
Планетарную передачу можно использовать не только как редуктор, но и в механизме поворота. На среднем танке Шерман, например, механизм поворота двойной дифференциал, а это тоже планетарный механизм. Но мы рассмотрим механизм поворота не дифференциального, а независимого типа.

На схемах выше мы жёстко блокировали один из элементов планетарного механизма, поэтому он всегда работал как редуктор, передавая мощность. Давайте уберём эту блокировку и добавим ленточный тормоз:

Представим, что двигатель связан с эпициклом, а водило с ведущими колёсами танка. Когда тормоз Т выключен происходит следующее. Двигатель вращает эпицикл, сателлиты и солнечную шестерню. Водило связано с ведущими колёсами, для того, чтобы оно вращалось нужно сдвинуть танк с места. Разумеется, намного проще вращать солнечную шестерню вхолостую, поэтому именно водило будет неподвижным. Для того, чтобы танк начал движение, нужно затянуть тормоз Т. Солнечная шестерня будет заблокирована и мощность пойдёт через водило к ведущим колёсам.

Осталось добавить остановочные тормоза и мы получим механизм поворота:

Тормоза Т2 и Т4 — остановочные, они тормозят ведущие колёса танка. Тормоза Т1 и Т3 называются опорными, они нужны для того, чтобы блокировать солнечные шестерни.

Для того, чтобы начать движение по прямой нам нужно выключить остановочные тормоза и затянуть опорные. Для поворота влево выключаем опорный тормоз Т1, а потом затягиваем остановочный тормоз Т2. Он тормозит левую гусеницу, мощность двигателя к ней не идёт. Для поворота вправо, соответственно, нужно выключить тормоз Т3 и занянуть Т4.

Планетарный механизм с внешним зацеплением
Выше мы рассмотрели планетарные механизмы с внутренним зацеплением, поскольку у их эпициклов внутренние зубья. Существуют аналогичные механизмы внешнего зацепления. В них используются эпициклы с внешними зубьями.

Всё познаётся в сравнении. Слева уже знакомый нам планетарный редуктор с заблокированным водилом и эпициклом внутреннего зацепления, а справа его аналог, тоже с заблокированным водилом, но с внешним зацеплением:

Давайте разберёмся, из каких частей он состоит и как работает.

Чёрным цветом выделена солнечная шестерня, синим — эпицикл, красным — сдвоенный сателлит, а серым помечено водило.

Если заблокировать водило и начать вращать солнечную шестерню, то она станет вращать сателлит и через него эпицикл. Если заблокировать эпицикл и вращать солнечную шестерню, то будет вращаться водило. Одним словом, принцип работы точно такой же, просто другое исполнение.

На этом пока остановимся. В следующем посте на основе этих механизмов мы сделаем простейшие двухскоростные коробки передач и реверс, а затем соберём из них планетарную коробку передач и проанализируем её работу.

Читать дальше

Что такое планетарная передача и как она работает?

Где используются планетарные передачи?

Планетарные передачи используются в приложениях с ограниченным пространством, поскольку они обычно меньше, чем другие типы редукторов. Они также составляют основу наиболее распространенного типа автоматической трансмиссии, известного как гидравлическая планетарная автоматическая трансмиссия. В большинстве современных автоматических коробок передач в автомобильной промышленности используются планетарные передачи.

В других странах планетарные передачи используются в таком оборудовании, как шнеки и ветряные турбины, а также в системах привода транспортных средств для вертолетов и авиационных двигателей.Планетарные редукторы также популярны для промышленного оборудования, где их используют управляемые роботы, станки для лазерной резки и даже больничные операционные столы. Также есть большая вероятность, что мясо для сэндвичей в вашем холодильнике было нарезано на слайсере с планетарной передачей.

В легковых автомобилях с автоматической коробкой передач используются планетарные передачи, так что бабушкин Buick использует их, как раздражающий Ford Mustang V6 1995 года выпуска.

Есть ли планетарные передачи в бесступенчатых трансмиссиях?

Там, где традиционные автоматические и ручные трансмиссии имеют фиксированное передаточное число, бесступенчатая трансмиссия (CVT) работает с двумя шкивами конической формы, соединенными ремнем.Они используются для повышения экономии топлива, поскольку вариаторы обычно предназначены для поддержания максимальной эффективности и идеальной мощности двигателя.

Однако существуют версии вариаторов, в которых используются планетарные передачи. Названные планетарными вариаторами или планетарными вариаторами, эти трансмиссии используют планетарные шестерни для передачи крутящего момента. Toyota использовала его в Prius еще в конце 1990-х годов.

Как планетарная передача соотносится с портальными осями?

Портальные мосты используются для увеличения дорожного просвета и позволяют использовать передачу, снижающую нагрузку на дифференциал.Такие автомобили, как грузовик Mercedes-AMG G63 6×6 и Mercedes-Benz Unimog, используют портальные оси. В этих приложениях используется планетарная (планетарная) ступичная коробка передач, которая позволяет полуосям вращаться быстрее, чем колеса.

Это уменьшает крутящий момент, необходимый для выработки того же уровня мощности. В случае с такими автомобилями, как Unimog и G63, большие колеса и шины уже обеспечивают большую часть необходимого дорожного просвета, поэтому портальные оси играют немного иную роль.

Часто задаваемые вопросы о планетарных передачах

У вас есть вопросы, У Drive есть ответы!

В: Как узнать, есть ли в моем автомобиле планетарные передачи?

A: Если вы водите современный автомобиль с автоматической коробкой передач, есть большая вероятность, что у него планетарные передачи. Если вы хотите это выяснить, обратитесь к руководству по техническому обслуживанию вашего автомобиля для получения информации о коробке передач, обратитесь в сервисный отдел вашего дилера или попробуйте эту всезнающую панель поиска, от которой мы все так зависим.

Q: Планетарные передачи дороже других типов?

A: В целом да. Они более дорогие, потому что они более сложные и состоят из большего числа частей, чем другие типы трансмиссий.

В: Требуется ли смазка планетарных шестерен?

A: Да. Как и любая другая передача или механический компонент в вашем автомобиле, планетарные передачи нуждаются в смазке для плавной работы и предотвращения повреждений или износа.Коробки передач, как и все другие части вашего автомобиля, нуждаются в регулярном уходе и обслуживании, которое может включать незначительные работы, такие как замена жидкости. Со временем шестерни внутри трансмиссии могут изнашиваться, что приводит к проскальзыванию или возникновению странных шумов, поэтому важно не отставать от смазки и регулярного технического обслуживания, чтобы как можно быстрее решить проблемы.

Давайте поговорим: оставьте комментарий ниже и обратитесь к руководствам и редакторам Gear!

Мы здесь, чтобы быть экспертами во всем, что связано с практическими рекомендациями.Используйте нас, хвалите нас, кричите на нас. Прокомментируйте ниже, и давайте поговорим! Вы также можете написать нам в Twitter или Instagram или связаться со всеми нами здесь: [email protected]

Основы систем планетарной передачи

На первый взгляд планетарные зубчатые передачи, также известные как планетарные зубчатые передачи, кажутся довольно сложными. Это, безусловно, правда, что для того, чтобы овладеть всеми сложными аспектами проектирования такого типа системы передач, требуется опытный инженер по зубчатым передачам. Если вы опытный инженер по передаче оборудования, этот пост не для вас.Но если вы хотите получить более общее представление о планетарных передачах, вы попали в нужное место.

Что такое планетарные передачи?

Планетарный ряд состоит из трех типов шестерен; солнечная шестерня, планетарные шестерни и коронная шестерня. Солнечная шестерня расположена в центре (желтая) и передает крутящий момент на планетарные шестерни (синие), которые обычно устанавливаются на подвижном водиле (зеленом). Планетарные шестерни вращаются вокруг солнечной шестерни и входят в зацепление с внешней кольцевой шестерней (розовой). Системы планетарных редукторов могут различаться по сложности от очень простых до сложных сложных систем, в зависимости от области применения.

Изображение предоставлено: Википедия

Где используются планетарные редукторы?

Планетарные передачи

часто используются, когда пространство и вес являются проблемой, но требуется большое снижение скорости и крутящего момента. Это требование применяется к различным отраслям промышленности, включая тракторы и строительное оборудование, где для привода колес требуется большой крутящий момент. Другие места, где вы найдете планетарные редукторы, включают турбинные двигатели, автоматические коробки передач и даже электрические отвертки.

Планетарные передачи

способны создавать большой крутящий момент, поскольку нагрузка распределяется между несколькими планетарными шестернями. Эта компоновка также создает больше контактных поверхностей и большую площадь контакта между шестернями, чем традиционная система шестерен с параллельными осями. Благодаря этому нагрузка распределяется более равномерно и, следовательно, шестерни более устойчивы к повреждениям.

Производство планетарных передач

Навыки, необходимые для изготовления планетарных шестерен, такие же, как и для любого другого типа производства прецизионных шестерен.Gear Motions — ведущий производитель прецизионных зубчатых колес, специализирующийся на поставках зубчатых колес с нарезкой и шлифовкой на заказ. У нас есть обширный портфель возможностей по производству зубчатых колес, который включает в себя возможность изготавливать все отдельные зубчатые колеса, составляющие планетарную зубчатую систему. Для получения информации о конкретных производственных возможностях, таких как минимальный и максимальный диаметр, делительный диаметр и ширина поверхности, посетите нашу страницу о возможностях производства зубчатых колес. Обратите внимание, что мы не производим редукторы.

Gear Motions также имеет большой опыт в разработке и проектировании редукторов.Независимо от того, нужно ли вам разработать систему зубчатых колес с нуля или вам нужна помощь в модернизации, мы будем работать с вами на протяжении всего процесса, чтобы гарантировать, что ваши зубчатые колеса будут спроектированы и изготовлены с точностью. Инжиниринговые услуги включают обратный инжиниринг, проектирование на предмет технологичности, прототипирование и перепроектирование.

Дополнительная информация

Для получения более подробной информации о планетарных передачах мы рекомендуем следующие ресурсы:

  • Американская ассоциация производителей шестерен (AGMA)

AGMA часто предлагает образовательные курсы, которые способствуют профессиональному развитию персонала в производстве зубчатых колес.Один из курсов, который был предложен недавно, посвящен эпициклическому дизайну передач. Посетите веб-сайт AGMA, чтобы узнать о предложениях текущих курсов.

Gear Talk with Chuck — это блог, написанный Чарльзом Д. Шульцем для Gear Technology. Если вы активно работаете в индустрии зубчатых передач, вы, вероятно, уже знакомы с этим. Gear Talk недавно опубликовали в блоге серию сообщений о планетарных передачах. Этот контент основан на многолетнем опыте работы Шульца в зубчатой ​​промышленности и содержит значительный объем технических знаний.Если вы ищете информацию о планетарных передачах с уникальной точки зрения, обязательно ознакомьтесь с серией.

У вас есть конкретные вопросы по проектированию или производству планетарной зубчатой ​​передачи? Свяжитесь с Gear Motions! Наши инженеры по продажам будут работать с вами от начала до конца, чтобы убедиться, что ваш проект соответствует вашим требованиям.

Что такое планетарный редуктор?

Вернуться к обзору

Какая техника тысячелетней давности лежит в основе многих самых инновационных технических достижений на данный момент? У робототехники, 3D-печати и новых транспортных средств есть одна общая черта: часто они приводятся в движение планетарной коробкой передач.Как поставщик планетарных редукторов, мы, конечно, знаем все до и после, но что, если вы впервые столкнетесь с этой техникой? Мы решили объяснить это понятно для всех — в этой статье мы обсудим основы планетарного редуктора.

Что такое планетарный редуктор?

Планетарный редуктор — это коробка передач с совмещенными входным и выходным валами. Планетарный редуктор используется для передачи наибольшего крутящего момента в наиболее компактной форме (известной как плотность крутящего момента).

Ускоряющая ступица велосипеда — отличный пример механизма планетарного колеса: Вы когда-нибудь задумывались, как получить такую ​​мощность и возможности в такой маленькой ступице? Для трехступенчатой ​​ступицы используется одноступенчатая планетарная передача, для пятиступенчатой ​​ступицы — двухступенчатая.Каждая планетарная передача имеет состояние редуктора, прямое соединение и режим ускорения.

С математической точки зрения, наименьшее передаточное число составляет 3: 1, наибольшее — 10: 1. При передаточном числе менее 3 солнечная шестерня становится слишком большой относительно планетарных шестерен. При передаточном числе более 10 солнечное колесо становится слишком маленьким, и крутящий момент падает. Отношения обычно абсолютные, т.е. целые числа.

Кто изобрел планетарный редуктор, неизвестно, но функционально он был описан Леонардо да Винчи в 1490 году и использовался веками.

Почему назван планетарной коробкой передач?

Планетарный редуктор получил свое название из-за того, как разные шестерни перемещаются вместе. В планетарной коробке передач мы видим солнечную (солнечную) шестерню, сателлитную (кольцевую) шестерню и две или более планетарных шестерен. Обычно солнечная шестерня приводится в движение и, таким образом, приводят в движение планетарные шестерни, заблокированные в водиле планетарной передачи, и образуют выходной вал. Шестерни сателлитов имеют фиксированное положение по отношению к внешнему миру. Это похоже на нашу планетную солнечную систему, отсюда и название.Помогло то, что древние конструкции шестерен широко использовались в астрологии для составления карт и отслеживания наших небесных тел. Так что это был не такой уж большой шаг.

На практике мы часто говорим с точки зрения использования планетарных редукторов для промышленной автоматизации. Вот почему мы называем солнечную шестерню входным валом, планетарные шестерни и водило выходного вала, а сателлитную шестерню (или коронную шестерню) — корпусом.

Возможности планетарных редукторов

С одной и той же конструкцией можно реализовать разные скорости и направления поворота.Это может быть достигнуто, например, путем реверсирования коробки передач, что дает следующие возможности:

Ведомая сторона Твердый мир Ведущая сторона Результат
Входной вал Корпус Выходной вал Редукция
Входной вал Выходной вал Корпус Обратное движение + задержка
Выходной вал Входной вал Корпус Задержка
Выходной вал Корпус Входной вал Разгон
Корпус Выходной вал Входной вал Обратное движение + ускорение
Корпус Входной вал Выходной вал Задержка
Входной и выходной валы Н.А. Корпус 1: 1

Где обычно используется планетарный редуктор (в трансмиссии)?

Где обычно используется планетарный редуктор (в трансмиссии):

  • В роботе для увеличения крутящего момента
  • В печатном станке для уменьшения скорости роликов
  • Для точного позиционирования
  • В упаковочной машине для воспроизводимых продуктов

Покупка планетарной коробки передач: на что следует обратить внимание

Каковы критерии покупки планетарной коробки передач? На этот вопрос сложно ответить, потому что он сильно зависит от того, где именно используется коробка передач.Прежде всего, должны быть правильными первичные характеристики (например: крутящий момент, люфт, передаточное отношение), но затем вторичные (например: коррозионная стойкость, уровень шума, конструкция) и третичные (например: срок поставки, цена, глобальный доступность, сервис) важны.

Поскольку Apex Dynamics работает быстрее, вы можете обращаться к нам по всем вопросам. Мы ответим быстро, часто в тот же день, с индивидуальным ответом и / или индивидуальным предложением. Таким образом, вам никогда не придется беспокоиться о задержках, мы доставляем все коробки передач, которые отсутствуют на складе, и быстрее, чем кто-либо другой.

Консистентная смазка или масло в качестве смазки в планетарной коробке передач

Даже при том, насколько точно планетарный редуктор изготовлен и собран, внутри всегда есть поверхности качения или скольжения. Вот почему каждая коробка передач содержит смазку — будь то масло, консистентная смазка или синтетический гель — для обеспечения хорошей работы шестерен и предотвращения износа. Кроме того, смазка часто также обеспечивает охлаждение и снижает шум или вибрацию. Apex Dynamics использует специальную смазку от компании Nye Lubricants, по сути, это своего рода гель.

Мы опубликовали статью на эту тему:
Смазка SMART: Без смазки нет гладкой передачи!

6 аргументов в пользу планетарного редуктора в сочетании с серводвигателем

  1. Крутящий момент разделен на 3 передачи (планетарные шестерни), и поэтому — при равных размерах — крутящий момент почти в 3 раза больше, чем у «нормальной» коробки передач.
  2. Низкий люфт.
  3. Компактный и, следовательно, с малой инерцией массы.
  4. Высокая эффективность.
  5. Закрытая система.
  6. Абсолютное соотношение от 3: 1 до 10: 1 на ступень.

Почему планетарный редуктор от Apex Dynamics

Редукторы

Apex Dynamics идеально подходят, например, для современной сервотехники благодаря сложным уплотнениям из витона, косозубым зубьям и сбалансированному валу солнечной шестерни. Мы продаем около 49 серий планетарных редукторов и предлагаем неизведанное обслуживание, поддержку и местные складские запасы. Это делает нас непревзойденным поставщиком редукторов с малым люфтом.

Пресс-релиз, Helmond 14.11.2017

Каковы недостатки использования планетарной коробки передач?

Редуктор , планетарный редуктор , соответствует всем критериям проектирования сервоприводов, обеспечивая при этом относительно длительный срок службы и низкие требования к техническому обслуживанию.Это связано с тем, что планетарные редукторы обеспечивают передачу высокого крутящего момента с хорошей жесткостью и низким уровнем шума при более компактных размерах, чем у редукторов других типов. Узнайте больше о том, почему планетарный редуктор незаменим в статье: Какой тип редуктора лучше всего подходит для сервоприводов?

Прецизионные планетарные редукторы Raptor SS от CGI Motion готовы к мойке.

Конструкция планетарного редуктора довольно проста и состоит из центральной солнечной шестерни, внешнего кольца (также называемого внутренней шестерней, потому что его зубцы обращены внутрь), планетарных шестерен и водила.Мощность, подаваемая на солнечную шестерню, заставляет ее вращаться. Планетарные шестерни входят в зацепление с солнечной шестерней, и когда солнечная шестерня вращается, планетарные шестерни вращаются вокруг своих осей. Планетарные шестерни также входят в зацепление с зубчатым венцом, которое неподвижно, в результате чего планетарные шестерни вращаются вокруг солнечной шестерни. Водило удерживает планетарные шестерни вместе и устанавливает их расстояние. Он вращается вместе с планетарными шестернями и включает выходной вал.

Спасибо U @cgi_motion за посещение! Стенд № 2059 😃 # Automate2017 # ProMat2017 @DesignWorld на #planetary #st безболезненно • @AutomateShow @SMMcCafferty pic.twitter.com/LqndEFsWgV

— Лиза Эйтель (@DW_LisaEitel) 4 апреля 2017 г.

В планетарной коробке передач сразу несколько зубьев входят в зацепление, что позволяет достичь высокого снижения скорости с относительно небольшими шестернями и меньшей инерцией, отражаемой обратно в двигатель. Наличие нескольких зубьев, разделяющих нагрузку, также позволяет планетарным шестерням передавать высокий крутящий момент. Сочетание компактных размеров, большого уменьшения скорости и передачи высокого крутящего момента делает планетарные редукторы популярным выбором для приложений с ограниченным пространством.

Планетарные передачи также называют планетарными передачами. Это видео от Neugart GmbH демонстрирует их конструкцию и работу.

Но у планетарных коробок передач есть и недостатки. Их сложность в конструкции и производстве делает их более дорогим решением, чем редукторы других типов. И точность изготовления этих коробок передач чрезвычайно важна. Если одна планетарная шестерня расположена ближе к солнечной шестерне, чем другие, может возникнуть дисбаланс планетарных шестерен, что приведет к преждевременному износу и выходу из строя.Кроме того, компактные размеры планетарных шестерен затрудняют отвод тепла, поэтому приложения, которые работают на очень высокой скорости или работают в непрерывном режиме, могут нуждаться в охлаждении.

При использовании «стандартного» (иными словами, рядного) планетарного редуктора двигатель и приводимое оборудование должны быть расположены на одной линии друг с другом, хотя производители предлагают прямоугольные конструкции, которые включают другие зубчатые передачи (часто конические шестерни с косозубыми зубьями). чтобы обеспечить смещение между входом и выходом.


Обратите внимание, что планетарные редукторы могут быть сконструированы как с цилиндрическими, так и с косозубыми шестернями. Цилиндрические зубчатые колеса имеют нулевой угол наклона спирали и, следовательно, не создают осевых сил. Таким образом, подшипники в прямозубом планетарном редукторе служат только для поддержки валов шестерен. Цилиндрические зубчатые колеса, напротив, имеют угол наклона спирали от 10 до 30 градусов, что заставляет их создавать значительные осевые силы. Подшипники, используемые в косозубой планетарной коробке передач, должны выдерживать эти осевые нагрузки. (Более высокие углы спирали приводят к более высоким осевым силам, но также обеспечивают более высокий крутящий момент, меньший шум и более плавную работу.)

Цилиндрическая шестерня (слева) и косозубая шестерня (справа).

Кроме того, в планетарной коробке передач — прямозубой или косозубой — подшипники играют активную роль в передаче крутящего момента. Но планетарное устройство оставляет ограниченное пространство внутри коробки передач для размещения подшипников. Игольчатые подшипники — хороший выбор с точки зрения размера, но они не рассчитаны на то, чтобы выдерживать значительные осевые нагрузки. Конические роликоподшипники подходят для высоких осевых нагрузок, но обычно больше игольчатых подшипников.

Неотъемлемые ограничения по размеру и типу подшипников в сочетании с двойной задачей передачи крутящего момента и поддержки осевых нагрузок означают, что номинальный крутящий момент косозубых планетарных редукторов может быть ниже, чем у аналогичных редукторов с цилиндрическими планетарными редукторами, подшипники которых испытывают только усилия, возникающие из-за на передачу крутящего момента (без осевых нагрузок). С другой стороны, цилиндрические планетарные редукторы имеют более низкий уровень шума, более плавную работу и более высокую жесткость, чем цилиндрические планетарные редукторы. Эти атрибуты делают косозубые планетарные редукторы более распространенным выбором в сервоприводах.

Эпициклические зубчатые передачи — Marples Gears

Зубчатые передачи используются для передачи движения за счет зацепления зубьев шестерни, что приводит либо к ускорению, либо к снижению скорости. Эти зубья могут применяться в различных формах, наиболее распространенной из которых является эвольвентный профиль зуба шестерни. Зубчатая передача создается, когда комбинация зубчатых колес в зацеплении используется для передачи движения. Частое применение планетарных зубчатых передач приводит к значительному снижению скорости в небольшом пространстве.

Планетарная или планетарная зубчатая передача — это один из типов зубчатой ​​передачи, используемый для передачи движения. Эпициклические зубчатые передачи состоят из двух или более шестерен, установленных таким образом, что центр одной шестерни вращается вокруг центра другой. Эпициклические зубчатые передачи, также известные как планетарные зубчатые передачи, представляют собой зубчатые передачи с относительным перемещением осей. Водило соединяет центры двух шестерен и вращается, перемещая одну шестерню, называемую планетарной шестерней, вокруг другой, называемой солнечной шестерней. Планетная и солнечная шестерни входят в зацепление, так что их начальные круги катятся без проскальзывания.Все планеты прикреплены к единому вращающемуся элементу, который называется клеткой, кронштейном, держателем. Когда водило планетарной передачи вращается, он обеспечивает низкую скорость вращения и высокий крутящий момент. В некоторых системах каждый элемент вращается, но во многих из них по крайней мере один компонент не вращается.

Существуют три основных конфигурации планетарных шестерен для различных применений:

  1. Два входа, один выход и без фиксированного элемента. Этот механизм сочетает в себе скорость двух входов.
  2. Один вход, два выхода, без фиксированного элемента.Это создает дифференциал, который разделяет входной крутящий момент на два разных выхода.
  3. Один вход, один выход и один фиксированный элемент. Это снизит скорость ввода.

Специфические проблемы, решаемые планетарной передачей, делают механизм привлекательным для инженеров в самых разных отраслях промышленности. Преимущества использования планетарной зубчатой ​​передачи — низкая вибрация, высокое передаточное отношение и низкая стоимость всей компоновки поезда. Некоторые из обычных применений планетарных зубчатых передач — это роботизированные манипуляторы, силовые трансмиссии гибридных транспортных средств и турбогенераторы.Несмотря на такие преимущества планетарных зубчатых передач, как компактная конструкция, легкий вес и высокая удельная мощность, они могут иметь относительно низкий КПД по сравнению с простыми зубчатыми передачами. Основные потери мощности в зубчатых передачах вызваны трением скольжения между входящими в зацепление поверхностями зубьев шестерен, взбалтыванием смазочного масла и трением в опорных подшипниках вала.

Планетарные шестерни, для своего размера, входят в зацепление с большим количеством зубцов при вращении солнечной шестерни; поэтому они могут легко приспособиться к многочисленным оборотам привода за каждый оборот выходного вала.Простые планетарные шестерни обычно обеспечивают редукцию до 10: 1. Составные планетные системы, которые намного более сложны, чем простые версии, могут обеспечить сокращение во много раз больше. Это уменьшение может быть связано с соотношением скоростей компонентов систем.

Поскольку планетарные шестерни входят в зацепление с солнечной шестерней и коронной шестерней в нескольких местах, больше зубьев задействовано для перемещения нагрузки по сравнению с обычной шестерней и шестерней. Таким образом, при одинаковой нагрузке планетарная передача требует меньших шестерен, чем стандартный шестеренчатый редуктор.Точно так же радиальные рычаги водила планетарной передачи передают существенный момент на выходной вал — еще одна иллюстрация эффективности концентрического расположения. При применении планетарной зубчатой ​​передачи могут использоваться различные типы, от прямозубых до спиральных, чтобы изменить влияние крутящего момента в системе. Цилиндрические шестерни могут использоваться для несущей способности помимо прямозубых шестерен, учитывая сопоставимые размеры шестерен и количество планет, потому что винтовые шестерни расположены под углом, а не с прямыми зубьями, и даже большее количество зубьев зацепляется за один раз.Но с косозубой планетарной передачей возникают осевые реакции, и они не исключаются из-за нескольких планет, как тангенциальная и разделительная передача, поэтому подшипники должны учитывать осевую нагрузку. Еще одним преимуществом наличия нескольких точек зацепления шестерни является возможность увеличения плотности крутящего момента. Через эти многочисленные точки зацепления шестерни распределяется приложенная нагрузка на планетарные шестерни. Это также увеличивает жесткость зубчатой ​​передачи на кручение в такое же количество раз, как и планетарные шестерни.Такая жесткость обеспечивает более высокую точность позиционирования и повторяемость требований. Планетарные передачи

Нагрузка, принимаемая планетами, в реальных ситуациях не сбалансирована идеально. Одна планета может случайно оказаться радиально ближе или дальше других от оси Солнца, либо ось вращения носителя может немного отклониться. По мере того, как точность изготовления падает, а количество планет увеличивается, тенденция к дисбалансу возрастает. Иногда эффект дисбаланса невелик, и операция может его принять.Некоторые конструкции будут чувствительны даже к небольшому дисбалансу и могут потребовать высокоточных компонентов и узлов; Ключевым моментом может быть точное определение правильного расположения штифтов планетарной передачи вокруг оси солнечной шестерни.

Есть недостатки в применении планетарных редукторов. Одним из недостатков использования этого типа коробки передач является потеря смазки, ведущая к отказу при работе на высоких скоростях, поскольку смазка уносится прочь. Этот недостаток можно преодолеть за счет использования систем принудительной смазки под давлением.Другое решение — использование консистентной смазки на протяжении всего срока службы коробки передач. Потери мощности, такие как механические потери на трение, увеличиваются из-за наличия нескольких ветвей планетарной передачи, что является еще одним недостатком, который необходимо учитывать при выборе планетарной передачи. Неизбежные ошибки сборки и изготовления, которые приводят к увеличению шума во время работы и снижению надежности с течением времени, оказывают гораздо большее влияние на планетарный ряд, чем на зубчатую рейку.

Расчет планетарных зубчатых передач:

R: Передаточное число

N: количество зубьев

Чтобы определить, какое количество планетарных шестерен является правильным для применения, необходимо выполнить следующее ограничение:

P: количество планетарных шестерен

Что такое планетарные передачи?

Matex Gears в партнерстве с Virteom создала мини-сериал видео, чтобы ответить на некоторые из наших часто задаваемых вопросов.Посмотрите видео выше, чтобы услышать , что такое планетарные передачи , непосредственно от президента Matex Джеймса Ван Хала. Если у вас есть вопросы, на которые вы хотите получить ответы — свяжитесь с нами сегодня!

Планетарные зубчатые передачи используются во многих различных отраслях и сферах применения. Планетарные передачи обеспечивают две вещи, к которым стремятся промышленность: снижение скорости и крутящий момент. Запатентованные системы Matex обеспечивают гибкость конструкции с множеством вариантов размера, соотношения сторон и материала.

Как используются планетарные передачи?

Обычно планетарные передачи используются в качестве редукторов .Они используются для замедления двигателей и увеличения крутящего момента . Крутящий момент — это рабочая мощность машины. Но мы видели, как наши планетарные шестерни поворачивались, чтобы их можно было использовать и в качестве ускорителей.

В каких отраслях используются планетарные редукторы?

Разнообразие и эффективность зубчатых колес Matex позволяет применять их во многих областях применения во многих отраслях промышленности. Лишь некоторые из наших приложений включают моторизованные колеса, лебедки, автоматические открыватели дверей, конвейеры, область медицины, транспортировку жидкостей, бытовые приборы, инструменты и робототехнику.Мы уверены, что у Matex есть все необходимое для ваших нужд.

Отрасли промышленности, использующие планетарные передачи:

Как можно использовать планетарную передачу?

Наши клиенты используют планетарные передачи по-разному. Особняком стоит одна ситуация, когда они использовали наши планетарные передачи для различных целей в роботе-взрывнике, работающем в опасных условиях.

Наши планетарные шестерни использовались для приведения в движение колес и рук робота. Они также простираются до когтя, что чрезвычайно важно для этого приложения, потому что коготь часто используется.Планетарные передачи чрезвычайно надежны и эффективны. Как вы понимаете, планетарные передачи можно использовать разными способами одновременно.

Запатентованная конструкция Matex гарантирует, что планеты в планетарных передачах Matex всегда разделяют равные нагрузки, что приводит к 98% эффективности при однократном понижении с минимальными тепловыми потерями и шумом. При двухступенчатом и трехступенчатом понижении КПД минимально снижается при 95% и 92% соответственно.

Подробнее о планетарных передачах:

Чтобы узнать больше о том, как можно использовать планетарные редукторы в соответствии с вашими потребностями, заполните форму ниже:

Модель трансформации системы распределения жизней планетарной передачи | Китайский журнал машиностроения

Концепция статистики минимального заказа может быть применена к созданию модели преобразования, концепция может быть описана как, n выборки извлекаются из генеральной совокупности, а затем выбирается минимальная выборка, повторяя это действие , окончательное распределение из этих минимальных выборок — это просто статистическое распределение минимального порядка для генеральной совокупности.{z — 1} f \ left (x \ right). $$

(6)

Для вероятностного прогнозирования срока службы шестерни мы рассматриваем отдельную шестерню как последовательную систему, в которой каждый зуб является компонентом системы. Если какой-либо зубец вышел из строя, шестерня не сможет выполнять свою функцию передачи мощности или движения, что приведет к выходу из строя последовательной системы. Согласно определению статистики порядка, вероятностный ресурс шестерни равен статистике минимального порядка вероятностного ресурса одиночного зуба [26].{{\ beta_ {0}}}} \ right], \; n> 0, $$

(9)

, где β 0 — геометрический параметр распределения ресурса шестерни, а θ 0 — соответствующий масштабный параметр.

Путем замены Ур. (9) в уравнение. (8), то уравнение. (10) производится, уравнение. (10) имеет то же значение, что и формула. (8): вероятностный срок службы шестерни с z зубьями преобразуется в вероятностный срок службы отдельного зуба.{{\ beta_ {0}}}} \ right], \; n> 0. $$

(10)

В системе планетарной передачи солнечная шестерня, планетарная шестерня и коронная шестерня входят в зацепление друг с другом, поэтому они имеют одинаковый модуль упругости и, следовательно, одинаковую грузоподъемность.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *