Схема клапана: Схемы установки клапанов в системах вентиляции и противодымной защиты.

Содержание

Схемы гидросистемы — Москва, Гидропарт

Трубопроводы

Трубопроводы на гидравлических схемах показаны сплошными линиями, соединяющими элементы. Линии управления обычно показывают пунктирной линией. Направления движения жидкости, при необходимости, могут быть обозначены стрелками. Часто на гидросхемах обозначают линии — буква Р обозначает линию давления, Т — слива, Х — управления, l — дренажа.

Соединение линий показывают точкой, а если линии пересекаются на схеме, но не соединены, место пересечения обозначают дугой.

Бак

Бак в гидравлике — важный элемент, являющийся хранилищем гидравлической жидкости. Бак, соединенный с атмосферой показывается на гидравлической схеме следующим образом.

Закрытый бак, или емкость, например гидроаккумулятор, показывается в виде замкнутого контура. В машиностроительной гидравлике применяются грузовые, пружинные и газовые аккумуляторы.

Фильтр

В обозначении фильтра ромб символизирует корпус, а штриховая линия фильтровальный материал или фильтроэлемент.

Насос

На гидравлических схемах применяется несколько видов обозначений насосов, в зависимости от их типов.

Центробежные насосы, обычно изображают в виде окружности, в центр которой подведена линия всасывания, а к периметру окружности линия нагнетания:

Объемные (шестеренные, поршневые, пластинчатые и т.д) насосы обозначают окружностью, с треугольником-стрелкой, обозначающим направление потока жидкости.

Если на насосе показаны две стрелки, значит этот агрегат обратимый и может качать жидкость в обоих направлениях.

Если обозначение перечеркнуто стрелкой, значит насос регулируемый, например, может изменяться объем рабочей камеры.

Гидромотор

Обозначение гидромотора похоже на обозначение насоса, только треугольник-стрелка развернуты. В данном случае стрелка показывает направление подвода жидкости в гиромотор.

Для обозначения гидромотра действую те же правила, что и для обозначения насоса: обратимость показывается двумя треугольными стрелками, возможность регулирования диагональной стрелой.

На рисунке ниже показан регулируемый обратимый насос-мотор.

Гидравлический цилиндр

Гидроцилиндр — один из самых распространенных гидравлических двигателей, который можно прочитать практически на любой гидросхеме. Особенности конструкции гидравлического цилиндра обычно отражают на гидросхеме, рассмотрим несколько примеров.

Цилиндр двухстороннего действия имеет подводы в поршневую и штоковую полость.

Плунжерный гидроцилиндр изображают на гидравлических схемах следующим образом.

Принципиальная схема телескопического гидроцилиндра показана на рисунке.

Распределитель

Распределитель на гидросхеме показывается набором, квадратных окон, каждое из которых соответствует определенному положению золотника (позиции). Если распределитель двухпозиционный, значит на схеме он будет состоять из двух квадратных окон, трех позиционный — из трех. Внутри каждого окна показано как соединяются линии в данном положении.

Рассмотрим пример.

На рисунке показан четырех линейный (к распределителю подведено четыре линии А, В, Р, Т), трех позиционный (три окна) распределитель. На схеме показано нейтральное положение золотника распределителя, в данном случае он находится в центральном положении (линии подведены к центральному окну). Также, на схеме видно, как соединены гидравлические линии между собой, в рассматриваемом примере в нейтральном положении линии Р и Т соединены между собой, А и В — заглушены.

Как известно, распределитель, переключаясь может соединять различные линии, это и показано на гидравлической схеме.

Устройства управления

Для того, чтобы управлять элементом, например распределителем, нужно каким-либо образом оказать на него воздействие.

Ниже показаны условные обозначения: ручного, механического, гидравлического, пневматического, электромагнитного управления и пружинного возврата.

>

Эти элементы могут компоноваться различным образом.

На следующем рисунке показан четырех линейный, двухпозиционный распределитель, с электромагнитным управлением и пружинным возвратом.

Клапан

Клапаны в гидравлике, обычно показываются квадратом, в котором условно показано поведение элементов при воздействии.

Предохранительный клапан

На рисунке показано условное обозначение предохранительного клапана. На схеме видно, что как только давление в линии управления (показана пунктиром) превысит настройку регулируемой пружины — стрелка сместиться в бок, и клапан откроется.

Обратный клапан

Назначение обратного клапана — пропускать жидкость в одном направлении, и перекрывать ее движение в другом. Это отражено и на схеме. В данном случае при течении сверху вниз шарик отойдет от седла, обозначенного двумя линиями. А при подаче жидкости снизу — вверх шарик к седлу прижмется, и не допустит течения жидкости в этом направлении.

Часто на схемах обратного клапана изображают пружину под шариком, обеспечивающую предварительное поджатие.

Дроссель

Дроссель — регулируемое гидравлическое сопротивление.

Гидравлическое сопротивление или нерегулируемый дроссель на схемах изображают двумя изогнутыми линями. Возможность регулирования, как обычно, показывается добавлением стрелки, поэтому регулируемый дроссель будет обозначаться следующим образом:

Устройства измерения

В гидравлике наиболее часто используются следующие измерительные приборы: манометр(показывает рабочее давление в гидролинии), расходомер(показывает расход жидкости протекающий в гидролинии за определенное время), указатель уровня,( показывает уровень рабочей жидкости в гидробаке) обозначение этих приборов показано ниже.

Делитель потока

Зачастую в гидравлике для обеспечения синхронной работы исполнительных органов(гидроцилиндров,гидромоторов) приходится делить поток гидравлической жидкости на равные части – в этом помогает делитель потока.

Устройства охлаждения/подогрева

При длительной работе гидростанции масло начинает нагреваться, поэтому чтобы не происходило перегрева и не снижались эксплуатационные характеристики гидравлического оборудования – в схемах предусматривают маслоохладители, которые отводят тепло от проходящей через него рабочей жидкости. При работе в условиях холода, для гидростанции предусматривают подогреватель.

Реле давления

Данное устройство осуществляет переключение контакта при достижении определенного уровня давления. Этот уровень определяется настройкой пружины. Все это отражено на схеме реле давления, которая хоть и чуть сложнее, чем представленные ранее, но прочитать ее не так уж сложно.

Гидравлическая линия подводится к закрашенному треугольнику. Переключающий контакт и настраиваемая пружина, также присутствуют на схеме.

Объединения элементов

Довольно часто в гидравлике один блок или аппарат содержит несколько простых элементов, например клапан и дроссель, для удобства понимания на гидросхемеэлементы входящие в один аппарат очерчивают штрих-пунктирой линией.

Для того, чтобы правильно читать гидравлическую схему нужно знать условные обозначения элементов, разбираться в принципах работы и назначении гидравлической аппаратуры, уметь поэтапно вникать в особенности отдельных участков, и правильно объединять их в единую гидросистему.

Для правильного оформления гидросхемы нужно оформить перечень элементов согласно стандарту.

Ниже показана схема гидравлического привода, позволяющего перемещать шток гидроцилиндра, с возможностью зарядки гидроаккумулятора.

Выбор электропривода для клапана дымоудаления

Что такое клапан дымоудаления
Управление заслонкой дымовых и противопожарных клапанов
Реверсивный привод клапана дымоудаления (КДУ)
Особенности электромеханических реверсивных электроприводов
Подбор электропривода на Нормально-Закрытый ОЗК
Сравнение характеристик приводов клапанов дымоудаления
Электрическая схема подключения привода клапана дымоудаления
Автоматика управления противодымной вентиляцией
Похожие статьи:
Выбор электропривода для воздушного клапана и заслонки

Что такое клапан дымоудаления

Дымовой вентиляционный клапан – это устройство систем вентиляции, которое предназначено для удаления продуктов горения из помещений и подлежат установке непосредственно в проемах дымовых вытяжных шахт в защищаемых коридорах или холлах. В нормальном состоянии воздушная заслонка находится в закрытом положении и препятствует распространению воздушных потоков по системе дымоудаления.

Клапаны дымоудаления выпускаются «стенового» типа с одним присоединительным фланцем и внутренним размещением сервопривода, а также «канального» типа с двумя присоединительными фланцами и наружным или внутренним размещением вентиляционного сервопривода.

Корпус и заслонка дымовых клапанов изготавливаются из углеродистой холоднокатаной или оцинкованной стали, толщиной 1-1,2мм, если речь идёт об общепромышленном исполнении, в случае коррозионностойкого исполнения, корпус и заслонка изготавливаются из нержавеющей стали, остальные узлы и элементы конструкции — из углеродистой стали с антикоррозионным цинковым покрытием. Для особых условий производятся взрывозащищённые и морозостойкие клапаны (КДУ).

Каталог реверсивных сервоприводов Каталог дымовых КДУ

    Клапаны систем дымоудаления подразделяются на:
  • дымовые клапаны (КДУ)
  • противопожарные нормально-закрытые
  • двойного действия

Дымовые клапаны устанавливаются в стеновые проёмы систем вытяжной противодымной вентиляции, противопожарные нормально-закрытые клапаны устанавливаются на воздуховодах как в вытяжных системах противодымной вентиляции, так и в приточных системах, в том числе в системах компенсирующей подачи воздуха.

Противопожарные клапаны двойного действия применяют как дымоудаляющие, так и огнезадерживающие устройства, находясь в дежурном открытом положении.

К дымовым клапанам относятся такие клапаны как: UVS, DVSW, КЛАД-2, КЛАД-3, больше в разделе клапанов дымоудаления.

    Для регулирования воздушной заслонкой на клапаны противодымной вентиляции устанавливают:
  • пружинный привод с электромагнитной защелкой (электромагнитный привод)
  • электромеханические реверсивные приводы без возвратной пружины

Так же могут использоваться электромеханические приводы c возвратной пружиной.

Электропривод клапана – это механизм, подсоединяемый к заслонке, для быстрого изменения её положения из исходного в требуемое (рабочее): в открытое у дымового клапана, закрытое – у противопожарного клапана.

Управление заслонкой дымовых и противопожарных клапанов
Способы управления заслонкой клапанов дымоудаления
Способы управления заслонкойТип привода
Электромеханический привод c возвратной пружинойРеверсивный электрический приводЭлектромагнитный привод
Клапаны, на которых устанавливаются приводы
Огнезадерживающие клапаны НО и НЗ, ДымовыеОгнезадерживающие клапаны НЗ и Дымовые клапаныОгнезадерживающие клапаны НО и НЗ, Дымовые
Способ перевода заслонки:
из исходного положения в рабочее (заслонка открывается)— автоматический, по сигналам пожарной автоматики или при срабатывании ТРУ
в НО клапане;
— дистанционный с пульта управления;
— от кнопки/тумблера в месте установки клапана
— автоматический, по сигналам пожарной автоматики;
— дистанционный с пульта управления;
— от кнопки/тумблера в месте установки клапана
— автоматический, по сигналам пожарной автоматики или от теплового замка в НО клапане при температуре внутри клапана более 72°С;
— дистанционный с пульта управления;
— вручную от кнопки (или рычага) на приводе клапана (при проверке)
из рабочего положения в исходное (заслонка закрывается)— дистанционный с пульта управления— дистанционный с пульта управления— вручную
Механизм перевода заслонки:
— в рабочее положение— возвратная пружина— электродвигатель— возвратная пружина
— в исходное положение— электродвигатель— электродвигатель
Принцип срабатывания приводаотключение питающего напряжения или срабатывание ТРУподача напряжения на соответствующие клеммы питания приводаподача напряжения на электромагнит или разрыв теплового замка
Реверсивный привод клапана дымоудаления (КДУ)

На дымовых и нормально закрытых противопожарных клапанах, наряду с электромеханическими приводами с возвратной пружиной (прим. в России запрещено*), устанавливаются реверсивные электроприводы, предназначенные для работы в условиях повышенных температур окружающей среды.

Эти приводы перемещают заслонку из исходного положения (закрыта) в рабочее (открыта) и обратно при помощи электродвигателя, в зависимости от схемы подключения цепи питания к обмоткам привода. Управляющим сигналом на срабатывание клапана в данном случае является подача напряжения на соответствующие клеммы питания привода.

Преимуществом реверсивных приводов является невозможность перемещения заслонки дымовых клапанов из исходного положения в рабочее (открыта) при любых вариантах отключения напряжения на объекте, в том числе при тушении пожара подразделениями противопожарной службы. По этой причине дымовые клапаны с этими приводами рекомендуется использовать в приточно-вытяжных системах противодымной вентиляции, имеющих несколько клапанов с адресным управлением, например, в системах дымоудаления зданий повышенной этажности, в системах приточной вентиляции незадымляемых лестничных клеток типа Н3 и т. п. Время перемещения заслонки в рабочее положение не превышает 120 секунд.

*Примечание! Согласно Своду Правил 7.13130.2013 (Отопление, вентиляция и кондиционирование. Требования пожарной безопасности) на территории России, установка привода с возвратной пружиной на нормально-закрытые ОЗК запрещена.
Выдержка из П 7.19: Исполнительные механизмы противопожарных ОЗК, указанные в подпункте «в» пункта 7.11, подпункте «б» пункта 7.13 и подпункте «д» пункта 7.17, должны сохранять заданное положение заслонки клапана при отключении электропитания привода ОЗК.

Именно реверсивные электроприводы сохраняют неизменным своё положение при отключении или обрыве (при пожаре) цепи питания и соответственно на любой нормально-закрытый клапан (противопожарный или противодымный) может быть установлен только электропривод без возвратной пружины.

Особенности электромеханических реверсивных электроприводов

Электроприводы клапанов дымоудаления обладают следующими общими особенностями:

  • Управление: 2-хпозиционное (открыто/закрыто) или 3-хпозиционное
  • Напряжение питания: 24В или 230В
  • Отсутствие возвратной пружины, перемещение заслонки из исходного положения в рабочее и обратно при помощи электродвигателя
  • Встроенные вспомогательные переключатели (обеспечивают сигнализацию положения заслонки)
  • Крутящий момент: от 10Нм и до 40Нм
  • Восьмиугольное передающее звено 12х12 мм или 14х14 мм
  • В случае отсутствия электричества заслонка клапана остаётся неподвижной (в отличие от приводов с возвратной пружинной)
  • Время перемещения заслонки в рабочее положение от 30 сек. до 120 сек.
  • Возможность ручного управления
  • Степень защиты: IP54
Подбор электропривода на Нормально-Закрытый ОЗК

По большей части выбор регулирующего электропривода без пружинного возврата сводится к подбору крутящего момента, напряжению питания, цены и производителя.

Крутящий момент — это усилие сервопривода, измеряемое в Ньютонах на метр (Нм / Nm). Данный параметр характеризует мощность электромеханического устройства, от которого зависит выбор конкретной модели под конкретный размер заслонки ОЗК.

Для выбора крутящего момента в первую очередь следует руководствоваться рекомендациями производителей ОЗК. Производители сервоприводов так же в своей документации указывают максимальную площадь заслонки, но рекомендуемая величина часто завышена, так как тестирование производится вне каналов вентиляции (т.е. без учёта давления) и без учёта конструктивных особенностей конкретной модели ОЗК.

Минимальный крутящий момент для реверсивного привода равен 10Нм, что соответствует заслонке до 2м², однако следует выбирать сервопривод с запасом по мощности и отнимать 20-30% от рекомендуемой величины. То есть для сервопривода на 10Нм лучше ориентироваться на «до 1.5м²». К тому же, при выборе самых дешёвых моделей от китайских производителей, нет никакой гарантии, что указанная величина крутящего момента соответствует действительной.

Выбор напряжения питания производится из требований проектной документации, системы управления и возможностей подключения на объекте. Тут всего два варианта: 24В или 230В (220В). Все производители предлагают две модели с одинаковыми характеристиками электроприводов, которые отличаются между собой только напряжением (например Dastech FS-10N24S 24V или FS-10N220S 230V).

На что следует еще обратить внимание — передающее звено. В большинстве случаев выпускаемые модели сервоприводов для вентиляции рассчитаны на квадратный вал размером 12х12 мм, но есть исключения, например у Белимо стандартные размеры для моделей Belimo BE24 и BE230 являются 14х14 мм. Но у них же есть модификации с размером 12х12 — Belimo BE24-12 и BE230-12.

Сравнение характеристик приводов клапанов дымоудаления
Сравнение характеристик приводов Belimo, Dastech, Vilmann, Lufberg
КомпанияBelimoDastechVilmannLufberg
Серия приводаBLEFS-10NTASA-10SFS10N
Крутящий момент15Нм10Нм10Нм10Нм
Площадь клапана≤ 3м²≤ 1.5м²≤ 2м²≤ 1.5м²
Время перемещения заслонкидо 30сек.до 45сек.до 30сек.до 45сек.
Номинальное рабочее напряжение24В и 230В24В и 230В24В и 230В24В и 230В
Угол поворотаМакс. 105°Макс. 95°Макс. 95°-5°~90°
Потребляемая мощность при повороте заслонкидо 7.
5Вт
4Втдо 4.8Вт4Вт
Потребляемая мощность при удержании заслонкидо 1Вт1Втдо 2.5Вт1Вт
Расчетная мощностьдо 12ВАдо 10Втдо 5ВА
Уровень шума≤ 62 дБ≤ 50дБ≤ 45дБ≤ 50дБ
Степень защитыIP54IP54IP54IP54
Вспомогательные переключатели2хSPDT2хSPDT2хSPDT2хSPDT
Наличие модели с термодатчикомнетданетда
Масса привода1.7кг1.7кгдо 2.1кгдо 1.74кг
Электрическая схема подключения привода клапана дымоудаления

Электрическое подключение дымового привода без возвратной пружины с 3х позиционным управлением на 24В и 220В. Схема подключения вспомогательных переключателей. Схемы на примеры электроприводов Lufberg FS10N (слева) и Belimo BLE и BE

Автоматика управления противодымной вентиляцией

Для управления и контроля

противопожарной системой, включающую в себя противодымную вентиляцию с вытяжкой и подпором воздуха, используют адресно-аналоговые подсистемы и контроллеры. Высокой популярностью в России пользуются пожарные системы Болид и их контроллеры С2000.

С2000-4 — блок приемно-контрольный охранно-пожарный, используется в составе ИСО «Орион» и позволяет осуществлять контроль за охранными и неадресными извещателями, контакторами и сигнализаторами, а так же для релейного управления внешними исполнительными устройствами. С2000-4 может использоваться в автономном режиме для контроля доступа и охранной сигнализации.

Контроллеры С2000-СП4/24 и С2000-СП4/220 для управления электроприводами на 24В или 230В

С2000-СП4 — блок сигнально-пусковой адресный, применяется для управления и контроля клапанов противодымной вентиляции, огнезадерживающих клапанов общеобменной вентиляции и иных исполнительных устройств.

Блок С2000-СП4 применяется как часть составного прибора управления в системах пожарно-охранной сигнализации, поддерживающих двухпроводную линию связи, совместно с контроллером “С2000-КДЛ” (версии 2.01 и выше) или “С2000-КДЛ-2И” (версии 1.00 и выше) и пультом контроля и управления «С2000М» в составе ИСО «Орион».

    В зависимости от напряжения питания, блок управления С2000-СП4 имеет два варианта исполнения:
  • С2000-СП4/24 для рабочего напряжения от 12 до 24 Вольт (переменного или постоянного тока), применяется для подключения к реверсивным приводам на 24В.
  • С2000-СП4/220 для рабочего напряжения 220 Вольт переменного тока, подключаются к реверсивным приводам на 230В.

Все электроприводы без возвратной пружины для

нормально-закрытых клапанов имеют встроенные вспомогательные переключатели. Для этого предназначен специальный шестиконтактный провод, который подключается к блоку управления Болид — С2000-СП4 24/220. Этот контроллер сигнализирует и контролирует состояние двух концевых выключателей.

Схема соединения реверсивного привода к КДУ (на примере Belimo BLE/BE)

На панели есть два индикатора, рабочее положение — горит красным, исходное положение — горит зеленым. Когда электропривод перемещает заслонку из исходного положения в рабочее, красный индикатор мигает, доведя заслонку до крайнего положения — постоянно горит красным. Аналогичным образом работает индикация при обратном направлении вращения, только мигает уже зелёный диод. При возникновении проблем, соответствующий индикатор мигает жёлтым.

Примечание:
Для нормально-закрытого клапана, исходное положение — заслонка закрыта, рабочее положение — открыта.

Структурная схема управления противодымной вытяжной части (с клапанами дымоудаления КДУ) противопожарной системы

404 — Страница не найдена

  

Тел: +7 495 989-47-20

Обособленное подразделение «ВЕЗА-Центр»(Москва)

Главная Документы

Извините!

Страница, которую вы ищете, возможно, была удалена, переименована, или она временно недоступна. Вы можете перейти на главную страницу или воспользоваться картой сайта:

  • О компании
    • История ВЕЗЫ
    • Руководство
    • Производство
    • Исследования и разработки
    • Референции
      • История ВЕЗЫ
      • Руководство
      • Производство
      • Исследования и разработки
      • Референции
      • Новости
      • Черный список
    • Новости
    • Черный список
    • Недействующие доверенности
  • Продукция
    • Кондиционеры
    • Вентиляторы
      • Общепромышленные вентиляторы
      • Противодымная вентиляция
      • Вентиляторы индустриальные радиальные ВИР
      • Вентиляторы Морского исполнения
      • Вентагрегаты специального назначения
      • Дополнительная комплектация к вентиляторам
    • Холодильное оборудование
    • Пункты тепловые, Узлы регулирующие
    • Автоматика
    • Клапаны, люки и фонари зенитные
      • Клапаны противопожарные
      • Клапаны общепромышленного и специального назначения
      • Клапаны и арматура Морского исполнения
      • Люки дымовые, аэрационные, фонари зенитные, легкосбрасываемые и люк выхода на кровлю
      • Дополнительная комплектация
    • Отопительное оборудование
    • Канальная группа
      • Система канальной вентиляции для прямоугольных каналов
      • Система канальной вентиляции для круглых каналов
      • Система канальной вентиляции для квадратных каналов
      • Системы канальной вентиляции для кухонь
      • Системы и элементы автоматического управления
      • Компактные установки SAB
      • Воздушные завесы
      • Вентиляторы крышные радиальные
  • Решения
    • Дутьевые вентиляторы
    • Оборудование для Грибоводов
    • Крайний север
    • Все решения
  • Поддержка
    • Каталоги
    • Расчет оборудования (опросные листы)
    • Сертификаты
    • Инструкции
    • Примеры монтажа
    • Сервис
    • Типовые договоры поставки
    • Статьи
    • Программы подбора
  • Карьера
    • Карьера
    • Вакансии
    • Анкета соискателя
  • Контакты
  • BIM-модели
    • Кондиционеры
      • Модели для MagiCAD
      • Установка AEROSMART
      • Установки AEROSTART
    • Вентиляторы
      • База данных MagiCAD
      • Вентиляторы
      • Дополнительное оборудование
    • Холодильное оборудование
      • Выносные конденсаторы МАВО. К
      • Драйкулеры МАВО.Д
      • Компрессорно-конденсаторные блоки МАКК
      • Компрессорно-ресиверные агрегаты МАРК
      • Тепловые насосы МАКК-Т для вентиляционных установок
      • Чиллеры с воздушным охлаждением конденсатора АкваМАКК
    • Пункты тепловые, Узлы регулирующие
      • Узлы регулирующие ВЕКТОР
    • Клапаны, люки дымоудаления
      • База данных MagiCAD
      • Воздушные клапаны круглого сечения
      • Воздушные клапаны прямоугольного сечения
      • Дополнительное оборудование
      • Люки дымоудаления
      • Противопожарные клапаны круглого сечения
      • Противопожарные клапаны прямоугольного сечения
      • Клапаны для морских судов и морских нефтегазовых сооружений
    • Канальная группа
      • Базы данных MagiCAD
      • Канальная продукция для морских судов и морских нефтегазовых сооружений
      • Дополнительное оборудование
      • Компактная установка SAB
      • Система канальной вентиляции для круглых каналов
      • Система канальной вентиляции для прямоугольных каналов
    • Отопительное оборудование
      • Отопительные агрегаты АВО
      • Воздушная завеса AeroWall
      • Воздушная завеса AeroGuard
    • Плагины

Наверх ▲

Клапан предохранительный Z2DB6 (схема VС)

Забыли пароль?

или Зарегистрироваться

Я являюсь юридическим лицом

или Войти

В ближайшее время мы Вам перезвоним:

Забыли пароль?

Пожалуйста, введите ваш адрес электронной почты для получения нового пароля:

Замена пароля

Основные характеристики:

  • Производитель : Oleodinamica Mozioni
  • Тип : Клапан давления
  • Максимальное рабочее давление, Бар : от 301
  • Пропускная способность, л/мин : 51-70
  • Тип монтажа : Модульный
  • Диаметр условного прохода : ДУ6
  • Пропускная способность, л/мин : 10
  • Максимальное рабочее давление, Бар : 250

В наличии

Опт и розница

0 Отзывов

Гарантия 12 месяцев

2 783. 4 грн

— +

Купить Купить в 1 клик

Скачать техническую документацию

В ближайшее время мы Вам перезвоним:

Оплата

  • На расчетный счет предприятия (с НДС)
  • Наличными (при получении)
  • Приват24
  • Liqpay
  • Оплата частями

Доставка

  • Cамовывоз из магазина
  • Самовывоз из Новой почты
  • Курьер Новой почты
  • Другие транспортные компании

Возврат

  • В течении 14 дней с момента покупки

Гарантия

  • Гарантия на 12 месяцев

Основные характеристики

  • Производитель Oleodinamica Mozioni
  • Тип Клапан давления
  • Максимальное рабочее давление, Бар от 301
  • Пропускная способность, л/мин 51-70
  • Тип монтажа Модульный
  • Диаметр условного прохода ДУ6
  • Пропускная способность, л/мин 10
  • Максимальное рабочее давление, Бар 250

Отзывов пока еще нет

Оставьте Ваш отзыв

Имя пользователя

E-Mail

Практические рекомендации Sun Hydraulics.

Редукционные и редукционно-предохранительные клапаны.

11 марта 2019

Применение

Редукционные клапаны

Редукционные клапаны представляют собой нормально открытые элементы контроля давления, предназначенные для понижения давления потока, поступающего из линии 2 (вход) до заданного значения в линии 1 (выход). Давление на выходе определяется  регулировкой пружины, а также давлением в линии 3 (слив из пружинной секции).

Редукционно-предохранительные клапаны

Редукционно-предохранительные клапаны, в дополнение к понижению давления, выполняют предохранительную функцию
на участке между линией пониженного давления 1 и линией слива 3. Это позволяет поддерживать пониженное давление
относительно постоянным в условиях обратного потока.

• Типовым применением данных клапанов является подконтрольное понижение давления для подачи во вторичный контур (редукционные и/или редукционно-предохранительные клапаны).

• Редукционный клапан позволяет точно поддерживать давление в системах зажима заготовок или фиксации уровня.

• Другим применением редукционно-предохранительных клапанов может быть обеспечение постоянного давления для уравновешивания двунаправленных исполнительных звеньев.

• Несмотря на то, что редукционные и редукционно-предохранительные клапаны Sun Hydraulics являются нормально открытыми, в них возможно перекрытие основного золотника обратным потоком. Данная функция достигается путем применения отдельного обратного клапана. В системах, где невозможно перекрытие напорной линии от насоса (системы с трехлинейным направляющим клапаном с открытым центром), линия слива 3 может быть соединена с линией, идущей на противоположное исполнительное звено, обеспечивая поддержание клапана открытым благодаря подаче рабочего давления в пружинный отсек клапана. Однако, расход в обратном направлении в таком случае будет ограничен пружиной открытия главной ступени.

• Редукционный клапан также может выполнять функцию регулируемого ограничительного компенсатора давления (см. рис. 1).

• Все редукционные и редукционно-предохранительные клапаны Sun Hydraulics с пилотным управлением оснащены заслонкой из нержавеющей стали толщиной 150 мкм для предотвращения засорения жиклера.

Редукционные и редукционно-предохранительные клапаны Sun Hydraulics производятся в типоразмерах под расход 20…320 л/мин регулируются во всем диапазоне рабочего давления до 315 бар при давлении на входе до 350 бар. Клапаны с пилотным управлением имеют меньший диапазон давления — до 107 бар при максимальном давлении на входе 210 бар. Перед отгрузкой
с завода-изготовителя все редукционные и редукционно-предохранительные клапаны Sun настраиваются на максимальное давление, за исключением редукционных клапанов прямого действия, настраиваемых на расход 30 см 3 /мин, поскольку в них не предусмотрен пилотный расход.

ПРИМЕЧАНИЕ: все редукционные и редукционно-предохранительные клапаны Sun Hydraulics являются функционально взаимозаменяемыми (имеют аналогично расположенные порты и одинаковые седла в соответствии с типоразмерами). Однако,
для работы редукционно-предохранительных клапанов весьма важно, чтобы размер соединения порта 3 (слив пружинной секции) обеспечивал функцию полнопроходной перепускной линии.


Конструктивные принципы и особенности

Трехлинейные редукционные клапаны с пилотным управлением – PB*B
Эксплуатационные характеристики редукционных клапанов серии PB*B:
• Малый гистерезис, обеспечивающий точную регулировку давления и высокую стабильность работы.
• Высокая пропускная способность при компактных размерах.
• Повышенный обратный расход из линии 1 в линию 2 может вызвать перекрытие клапана (при необходимости работы с
обратным потоком следует использовать внешний обратный клапан).
• Максимально пологий график зависимости отклонения давления от расхода.
• Низкий пилотный расход через линию 3 (0,11. ..0,33 л/мин в зависимости от типоразмера). Если пилотный расход имеет
критическое значение, следует рассмотреть возможность применения клапанов прямого действия.
• Динамические характеристики данных клапанов более низкие по сравнению с клапанами прямого действия.
• Максимальное давление на входе изменяется в зависимости от диапазона настройки давления.

ПРИМЕЧАНИЕ: см. общее примечание по редукционным клапанам ниже.

Трехлинейные редукционно-предохранительные клапаны прямого действия – PR*B
Эксплуатационные характеристики редукционно-предохранительных клапанов серии PR*B:
• Демпфирующая конструкция обеспечивает высокую стабильность работы.
• Отсутствие пилотного потока из линии слива делает данные клапаны подходящими для использования в схемах с гидроаккумулятором, где они помогают понизить перетечки во вторичном контуре.
• Редукционно-предохранительные клапаны прямого действия отличаются превосходными динамическими арактеристиками по сравнению с клапанами с пилотным управлением.
• Низкая чувствительность к перепадам температуры гидравлической жидкости и маслорастворимым загрязнениям.
• Высокая стабильность работы с горячим маслом (отсутствие колебаний давления) и надежное закрытие при работе с холодным маслом.
• Прочная и надежная конструкция, выдерживающая большие скачки давления и противодавления.
• График зависимости отклонения давления от расхода более крутой по сравнению с клапанами с пилотным управлением.
• Возможность выполнения предохранительной функции и применения в системах, в которых возможно перекрытие напорной линии от насоса.
• Данные клапаны, в отличие от исполнений с пилотным управлением, имеют переходный шаг давления между режимами редукционного и предохранительного клапана. Этот шаг равен 5% от максимального давления настройки, вне зависимости от фактической настройки. Обратите внимание на то, что данная особенность делает эти клапаны неподходящими для использования в качестве уравновешивающих. Если наличие переходного шага может негативно сказаться на эксплуатации, следует рассмотреть возможность применения редукционно-предохранительных клапанов прямого действия серии PR*C или клапанов с пилотным управлением серии PP*B.

ПРИМЕЧАНИЕ: см. общее примечание по редукционным клапанам ниже.

Трехлинейные редукционно-предохранительные клапаны с пилотным управлением – PP*B
Эксплуатационные характеристики редукционно-предохранительных клапанов серии PP*B аналогичны характеристикам редукционных клапанов серии PB*B, за исключением следующего:
• Малый гистерезис обеспечивает высокую точность регулировки давления клапанов как в режиме редукционных, так и в режиме предохранительных (единая регулировка для обеих функций при практически одинаковых настройках).

ПРИМЕЧАНИЕ: см. общее примечание по редукционным клапанам ниже.

Трехлинейные редукционные клапаны прямого действия – PR*R
Эксплуатационные характеристики редукционных клапанов серии PR*R аналогичны характеристикам редукционно-предохранительных клапанов серии PR*B, за исключением следующего:
• Возможность использования в качестве нормально открытых регулируемых ограничительных компенсаторов давления для внешних жиклеров.
• Поскольку данные клапаны прямого действия не способны выполнять предохранительную функцию, их применение в системах, в которых возможно перекрытие напорной линии от насоса, не рекомендуется (при малых или полностью отсутствующих перетечках во вторичном контуре давление за клапаном может возрастать вплоть до выравнивания с давлением на входе).
• В большинстве применений в качестве редукционных клапанов в системах, требующих использования клапанов прямого действия, рекомендуется использование редукционно-предохранительных клапанов серии PR*B.

ПРИМЕЧАНИЕ: см. общее примечание по редукционным клапанам ниже.

Трехлинейные редукционно-предохранительные клапаны прямого действия (без переходного шага) – PRDC
Эксплуатационные характеристики редукционно-предохранительных клапанов без переходного шага серииPR*C аналогичны характеристикам редукционно-предохранительных клапанов прямого действия серии PR*B, за исключением следующего:
• Отсутствие переходного шага фактически означает отсутствие разницы в настройке давления между режимами редукционного и предохранительного клапана. Это обеспечивает улучшенный контроль давления.
• Расход масла на выходе из линии 3 равен около 0,4 л/мин. Несмотря на то, что этот пилотный расход достаточно велик, это скажется на работе системы только в случае перекрытия напорной линии насоса.
• В настоящее время данные клапаны поставляются только в типоразмере 1 (40 л/мин).

ПРИМЕЧАНИЕ: см. общее примечание по редукционным клапанам ниже.

Трехлинейные редукционные и редукционно-предохранительные клапаны с пневматическим пилотным управлением — PB*C и PP*C
Редукционные и редукционно-предохранительные клапаны серий PB*C и PP*C с пневматическим пилотным управлением регулируются дистанционно с использованием сжатого воздуха, действующего через мембрану. Данная конструкция служит заменой традиционной схеме с пружиной и предназначена для внешнего управления настройкой клапана.
Эксплуатационные характеристики и особенности:
• Настройка давления прямо пропорциональна давлению воздуха (пилотное соотношение 20:1).
• Максимально допустимое давление воздуха: 10,5 бар.
• Максимально допустимый перепад давления: 210 бар.
• Большинство других характеристики аналогичны редукционным и редукционно-предохранительным клапанам серий PB*B и PP*B.
• Данные клапаны могут использоваться как взрывозащищенные в системах с дистанционной регулировкой давления.
• Давление в линии 3 определяет минимальную настройку клапана и не должно превышать 70 бар. 

Четырехлинейные редукционно-предохранительные клапаны прямого действия и с пилотным управлением, с линией слива – PS*B и PV*A
Редукционно-предохранительные клапаны серий PS*B и PV*A имеют дополнительную линию слива (линия 4), которая отделяет пружинную секцию от других линий. Основные эксплуатационные характеристики аналогичны клапанам серии PR*B прямого действия и серии PP*B с пилотным управлением, описанным выше.
Отличающиеся характеристики:
• Поскольку линия 4 соединена со сливом, данный клапан является нечувствительным к противодавлению в линии 3.
• Повышение давления в линии 4 дает возможность увеличить эффективное давление настройки до значений, превышающих номинальную настройку клапана на величину действующего противодавления.
• Любое давление в линии 4 (слив) непосредственно добавляется к давлению настройки в соотношении 1:1 и не должно превышать 350 бар.

Четырехлинейные вентилируемые редукционно-предохранительные клапаны с пилотным управлением – PV*B
Вентилируемые редукционно-предохранительные клапаны серии PV*B оснащены линией для дистанционного управления (линия 4) между основным поршнем и пилотной секцией. Основные эксплуатационные характеристики аналогичны редукционно-предохранительным клапанам с пилотным управлением серии PP*B, описанным выше.
Отличающиеся характеристики:
• Настройка клапана (в пределах номинального диапазона) дистанционно регулируется путем контроля давления в линии 4.
• Пилотный расход в линии 4 регулируется в диапазоне 0,11…0,33 л/мин в зависимости от типоразмера. Для управления данным клапаном необходимо применение пилотного клапана с практически идентичными параметрами в контуре линии 4 (рекомендуемые модели Sun Hydraulics: RBAA, RBAC, RBAD).
• Вентилирование и блокировка пилотного потока из линии 4 (аналогично двухлинейным клапанам) влияют на пониженное давление после клапана в линии 1, что может выражаться соответственно в падении давления на выходе до минимального (вентилирование) или в повышении давления до значения номинальной настройки.

ПРИМЕЧАНИЕ: см. ниже общее примечание по редукционным клапанам.

Общее примечание по редукционным клапанам Sun Hydraulics: Любое давление в линии 3 (слив из пружинной секции) непосредственно добавляется к настройке клапана в соотношении 1:1.

Обзор моделей редукционных и редукционно-предохранительных клапанов Sun Hydraulics


ФункцияОписаниеНоминальный расходМодельСедлоОбозначение
3-линейныйРедукционный клапан
прямого действия
40 л/мин
80 л/мин
160 л/мин
320 л/мин
PRDR
PRFR
PRHR
PRJR
T-11A
T-2A
T-17A
T-19A
3-линейныйРедукционный клапан
с пилотным управлением
20 л/мин
40 л/мин
80 л/мин
160 л/мин
320 л/мин
PBBB
PBDB
PBFB
PBHB
PBJB
T-163A
T-11A
T-2A
T-17A
T-19A
3-линейныйРедукционный клапан
с пневматическим
пилотным управлением
80 л/мин
160 л/мин
320 л/мин
PBFC
PBHC
PBJC
T-2A
T-17A
T-19A
3-линейныйРедукционно-
предохранительный
клапан прямого
действия
40 л/мин
80 л/мин
160 л/мин
320 л/мин
PRDB
PRFB
PRHB
PRJB
T-11A
T-2A
T-17A
T-19A
3-линейныйРедукционно-
предохранительный
клапан прямого действия
с переходным шагом
давления
40 л/минPRDCT-11A
3-линейныйРедукционно-
предохранительный
клапан с пилотным
управлением
40 л/мин
80 л/мин
160 л/мин
320 л/мин
PPDB
PPFB
PPHB
PPJB
T-11A
T-2A
T-17A
T-19A
3-линейныйРедукционно-
предохранительный клапан
с пневматическим
пилотным управлением
80 л/мин
160 л/мин
320 л/мин
PPFC
PPHC
PPJC
T-2A
T-17A
T-19A
4-линейныйРедукционно-
предохранительный
клапан прямого
действия со сливом
40 л/мин
80 л/мин
160 л/мин
PSDB
PSFB
PSHB
T-21A
T-22A
T-23A
4-линейныйРедукционно-
предохранительный клапан
с пилотным управлением,
со сливом
40 л/мин
80 л/мин
160 л/мин
320 л/мин
PVDA
PVFA
PVHA
PVJA
T-21A
T-22A
T-23A
T-24A
4-линейныйРедукционно-
предохранительный клапан
с пилотным управлением
вентилируемый
40 л/мин
80 л/мин
160 л/мин
320 л/мин
PVDB
PVFB
PVHB
PVJB
T-21A
T-22A
T-23A
T-24A

Скачать эту статью в pdf по ссылке.

Конструкция соленоидных клапанов Kipvalve

Описание конструкции соленоидных клапанов KIPVALVE

Назначение и применение

Соленоидные клапаны предназначены для управления потоками жидкости или пара, как в сложных технологических процессах, так и в быту. С их помощью можно дистанционно включить и отключить подачу жидкости или пара в нужный момент времени.
Клапаны KIPVALVE широко используются для подачи воды в поливочных системах, системах водоснабжения и пожаротушения, управления отопительными процессами, подачи охлаждающей жидкости в экструдерах, обеспечения работы котельных объектов и парогенераторов, смешивания различных сред, а также для заполнения и опустошения емкостей в системах автоматического контроля уровня. Использование соленоидных клапанов делает технологический процесс более удобным и надежным.

Принцип работы

Серия WTR220 NC (нормально закрытые, 2/2 ходовые):

Клапаны серии WTR220 по принципу работы относятся к клапанам прямого действия. Они не имеют пилотных и перепускных отверстий, а запорная втулка вмонтирована в сердечник соленоида, что обеспечивает гарантированную работоспособность клапана при нулевом перепаде давления между входом и выходом и обеспечивает быстродействие работы клапана.

При отсутствии напряжения питания на катушке соленоида, пружина сжатия, воздействуя на сердечник соленоида сверху, прижимает запорную втулку к седлу, закрывая тем самым клапан.

При подаче напряжения питания на катушку соленоида, сердечник соленоида втягивается, преодолевая сопротивление пружины сжатия, поднимает запорную втулку вверх, и клапан открывается.

 

 

а

б

 

Рисунок 1 — Принцип работы соленоидного клапана серии WTR220 NC (нормально закрытый, 2/2 ходовой)
а) клапан закрыт; б) клапан открыт

Серия WTR223 NC (нормально закрытые, 2/2 ходовые) :

 

Клапаны серии WTR223 по принципу работы относятся к клапанам с плавающей мембраной принудительного подъема. Они снабжены пилотным отверстием и меньшим по диаметру перепускным отверстием, а сердечник соленоида соединен с мембраной при помощи пружины растяжения, что обеспечивает гарантированную работоспособность клапана при нулевом перепаде давления между входом и выходом.

При отсутствии напряжения питания на катушке соленоида, рабочая среда через перепускное отверстие попадает в полость над мембраной, уравновешивая давление с двух сторон мембраны. Однако из-за разности площадей мембраны, на которые действует давление рабочей среды, усилие, приложенное к мембране давлением среды сверху, чуть больше усилия, приложенного к мембране давлением среды снизу. Благодаря давлению пружины сжатия и дополнительному усилию, создаваемому давлением среды, мембрана плотно прижимается к седлу клапана, закрывая его.

При подаче напряжения питания на катушку соленоида, сердечник соленоида втягивается, открывая пилотное отверстие в центре мембраны. Давление рабочей среды стравливается через это отверстие из полости над мембраной на выход клапана, уменьшая тем самым давление сверху мембраны. Под давлением среды, действующим на мембрану снизу, и усилием пружины растяжения мембрана поднимается вверх, открывая клапан.

 

 

а

б

 

Рисунок 2 — Принцип работы соленоидного клапана серии WTR223 NC (нормально закрытый, 2/2 ходовой)
а) клапан закрыт; б) клапан открыт

Серия WTR224B NC (нормально закрытые, 2/2 ходовые):

Клапаны WTR224B по принципу работы относятся к клапанам непрямого действия с плавающей мембраной. Они снабжены пилотным отверстием и меньшим по диаметру перепускным отверстием, а сердечник соленоида не имеет непосредственной связи с мембраной (мембрана прижата к седлу пружиной сжатия).

При отсутствии напряжения питания на катушке соленоида, рабочая среда через перепускное отверстие попадает в полость над мембраной, уравновешивая давление с двух сторон мембраны. Однако из-за разности площадей мембраны, на которые действует давление рабочей среды, усилие, приложенное к мембране давлением среды сверху, чуть больше усилия, приложенного к мембране давлением среды снизу. Благодаря давлению пружины сжатия и дополнительному усилию, создаваемому давлением среды, мембрана плотно прижимается к седлу клапана, закрывая его.

При подаче напряжения питания на катушку соленоида, сердечник соленоида втягивается, открывая пилотное отверстие в корпусе клапана. Давление рабочей среды стравливается через это отверстие из полости над мембраной на выход клапана, уменьшая тем самым давление сверху мембраны. Давление среды, действующее на мембрану снизу, поднимает ее вверх, открывая клапан. В виду отсутствия непосредственной механической связи мембраны с сердечником соленоида, открытие клапана происходит только за счет давления рабочей среды, т.е. при наличии минимального давления между входным и выходным портами клапана.


а

б

Рисунок 3 – Принцип работы соленоидного клапана серии WTR224B NC (нормально закрытый, 2/2 ходовой)
а) клапан закрыт; б) клапан открыт

 

 

Серия WTR224B NO (нормально открытые, 2/2 ходовые):

Клапаны WTR224B по принципу работы относятся к клапанам непрямого действия с плавающей мембраной. Они снабжены пилотным отверстием и меньшим по диаметру перепускным отверстием, а сердечник соленоида не имеет непосредственной связи с мембраной (мембрана прижата к седлу пружиной сжатия).

При отсутствии напряжения питания на катушке, сердечник соленоида поднят вверх, а пилотное отверстие в корпусе клапана открыто. Давление рабочей среды постоянно стравливается через это отверстие из полости над мембраной на выход клапана, уменьшая тем самым давление сверху мембраны. Давление среды, действующее на мембрану снизу, поднимает ее вверх, оставляя клапан открытым. В виду отсутствия непосредственной механической связи мембраны с сердечником соленоида, клапан находится в открытом состоянии только за счет давления рабочей среды, т.е. при наличии минимального давления между входным и выходным портами клапана.

При подаче напряжения питания на катушку, соленоид закрывает пилотное отверстие, рабочая среда через перепускное отверстие попадает в полость над мембраной, уравновешивая давление с двух сторон мембраны. Далее из-за разности площадей мембраны, на которые действует давление рабочей среды, усилие, приложенное к мембране давлением среды сверху, чуть больше усилия, приложенного к мембране давлением среды снизу. Благодаря давлению пружины сжатия и дополнительному усилию, создаваемому давлением среды, мембрана плотно прижимается к седлу клапана, закрывая его.

a

б

Рисунок 4 — Принцип работы соленоидного клапана серии WTR224B NO (нормально открытый, 2/2 ходовой)
а) клапан открыт; б) клапан закрыт

Серия WTR223B NC (нормально закрытые, 2/2 ходовые):

 

Клапаны серии WTR223B по принципу работы относятся к клапанам с плавающей мембраной. Они снабжены пилотным отверстием и меньшим по диаметру перепускным отверстием, а сердечник соленоида не имеет непосредственной связи с мембраной (мембрана прижата к седлу пружиной сжатия).

При отсутствии напряжения питания на катушке соленоида, рабочая среда через перепускное отверстие попадает в полость над мембраной, уравновешивая давление с двух сторон мембраны. Однако из-за разности площадей мембраны, на которые действует давление рабочей среды, усилие, приложенное к мембране давлением среды сверху, чуть больше усилия, приложенного к мембране давлением среды снизу. Благодаря давлению пружины сжатия и дополнительному усилию, создаваемому давлением среды, мембрана плотно прижимается к седлу клапана, закрывая его.

При подаче напряжения питания на катушку соленоида, сердечник соленоида втягивается, открывая пилотное отверстие в корпусе клапана. Давление рабочей среды стравливается через это отверстие из полости над мембраной на выход клапана, уменьшая тем самым давление сверху мембраны. Давление среды, действующее на мембрану снизу, поднимает ее вверх, открывая клапан. В виду отсутствия непосредственной механической связи мембраны с сердечником соленоида, открытие клапана происходит только за счет давления рабочей среды, т.е. при наличии минимального давления между входным и выходным портами клапана.


а

б

Рисунок 3 — Принцип работы соленоидного клапана серии WTR223B NC (нормально закрытый, 2/2 ходовой)
а) клапан закрыт; б) клапан открыт

 

 

Серия WTR223B NO (нормально открытые, 2/2 ходовые):

Нормально открытые клапаны серии WTR223B по принципу работы относятся к клапанам с плавающей мембраной. Они снабжены пилотным отверстием и меньшим по диаметру перепускным отверстием, а сердечник соленоида не имеет непосредственной связи с мембраной и поднят пружиной сжатия (мембрана прижата к седлу пружиной сжатия).

При отсутствии напряжения питания на катушке, сердечник соленоида поднят вверх, а пилотное отверстие в корпусе клапана открыто. Давление рабочей среды стравливается через это отверстие из полости над мембраной на выход клапана, уменьшая тем самым давление сверху мембраны. Давление среды, действующее на мембрану снизу, поднимает ее вверх, оставляя клапан открытым. В виду отсутствия непосредственной механической связи мембраны с сердечником соленоида, клапан находится в открытом состоянии только за счет давления рабочей среды, т.е. при наличии минимального давления между входным и выходным портами клапана.

При подаче напряжения питания на катушку, соленоид закрывает пилотное отверстие, рабочая среда через перепускное отверстие попадает в полость над мембраной, уравновешивая давление с двух сторон мембраны. Однако из-за разности площадей мембраны, на которые действует давление рабочей среды, усилие, приложенное к мембране давлением среды сверху, чуть больше усилия, приложенного к мембране давлением среды снизу. Благодаря давлению пружины сжатия и дополнительному усилию, создаваемому давлением среды, мембрана плотно прижимается к седлу клапана, закрывая его.

a

б

Рисунок 4 — Принцип работы соленоидного клапана серии WTR223B NO (нормально открытый, 2/2 ходовой)
а) клапан открыт; б) клапан закрыт

Серия STM423 NC (нормально закрытые, 2/2 ходовые):

 

Клапаны серии STM423 по принципу работы аналогичны клапанам серии WTR223B. Но в отличии от серии WTR223B клапаны серииSTM423 имеют латунный поршень вместо гибкой мембраны, что позволяет применять их при более высоких температурах рабочей среды. Клапаны серии STM423 снабжены пилотным отверстием и меньшим по диаметру перепускным отверстием, а сердечник соленоида не имеет непосредственной связи с поршнем (поршень прижат к седлу пружиной сжатия).

При отсутствии напряжения питания на катушке соленоида, рабочая среда через перепускное отверстие попадает в полость над поршнем, уравновешивая давление с двух сторон поршня. Однако из-за разности площадей поршня, на которые действует давление рабочей среды, усилие, приложенное к поршню давлением среды сверху, чуть больше усилия, приложенного к поршню давлением среды снизу. Благодаря давлению пружины сжатия и дополнительному усилию, создаваемому давлением среды, поршень плотно прижимается к седлу клапана, закрывая его.

При подаче напряжения питания на катушку соленоида, сердечник соленоида втягивается, открывая пилотное отверстие в корпусе клапана. Давление рабочей среды стравливается через это отверстие из полости над поршнем на выход клапана, уменьшая тем самым давление сверху поршня. Давление среды, действующее на поршень снизу, поднимает его вверх, открывая клапан. В виду отсутствия непосредственной механической связи поршня с сердечником соленоида, открытие клапана происходит только за счет давления рабочей среды, т. е. при наличии минимального давления между входным и выходным портами клапана.


а

б

Рисунок 5 — Принцип работы соленоидного клапана серии STM423 NC (нормально закрытый, 2/2 ходовой)
а) клапан закрыт; б) клапан открыт

Модельный ряд:

    • WTR220
      Быстродействующие клапаны прямого действия
    • WTR223
      Универсальные клапаны для любого применения
    • WTR223B
      Для систем под давлением
    • STM423
      Клапан для горячей воды или пара

 

Комплектующие для клапанов KIPVALVE

  • Сменные комплекты уплотнений и мембраны
  • Катушки (соленоиды)

Электромагнитный соленоидный клапан KIPVALVE сертифицирован и имеет разрешительную документацию. Вы можете узнать больше об электромагнитных клапанах KIPVALVE, связавшись с представителями KIPVALVE в вашем регионе.

Особенности конструкции клапанов KIPVALVE

Прочный материал корпуса

КОВАНАЯ ЛАТУНЬ. Основные свойства этого материала — высокая прочность и пластичность, которые позволяют выдерживать клапану (в отличие от распространенных на рынке дешевых корпусов из прессованной латуни) повышенные механические нагрузки, удары, а также сохраняют резьбу при усиленном затягивании и обеспечивают надежное соединение клапана с трубопроводом. Корпуса из кованой латуни имеют большую толщину стенок, что придает им дополнительную прочность.
НЕРЖАВЕЮЩАЯ СТАЛЬ. Корпуса из этого материала используются для работы в агрессивных средах, а также при взаимодействии с пищевыми продуктами и т.п.

Особый конструктив мембран для надежного запирания клапанов

В сериях WTR223 и WTR223B устанавливаются мембраны с металлической опорной шайбой. Такой конструктив мембраны повышает ее жесткость и обеспечивает надежное прилегание к седлу, а также предотвращает деформацию мембраны клапана при высоких давлениях и температурах. В серии STM423 устанавливается латунный поршень с фторопластовым уплотнением седла и графитовыми кольцами скольжения.

Надежный конструктив и материал трубки сердечника катушки

Трубка сердечника надежно приварена к стальному основанию, что обеспечивает ее механическую прочность (в сравнении с распространенными на рынке более простыми конструкциями, где трубка сердечника завальцована в мягкое латунное основание, что может привести к поломке трубки).

Высокопрочный материал катушки

Изготавливается из термостойкой эпоксидной смолы, способной длительно выдерживать температуру +200 °С (в отличие от пластика, температура которого не должна превышать 80 °С).

Гарантия — 24 месяца

P&ID (схемы трубопроводов и контрольно-измерительных приборов) и библиотека символов клапанов P&ID

Схема трубопроводов и контрольно-измерительных приборов (P&ID) представляет собой графическое представление технологической системы, которая включает трубопроводы, сосуды, регулирующие клапаны, контрольно-измерительные приборы и другие технологические компоненты и оборудование в система. P&ID — это основной схематический чертеж, используемый для размещения установки системы управления технологическим процессом. Таким образом, P&ID имеет решающее значение на всех этапах разработки и эксплуатации технологической системы.

Этапы использования P&ID:

  • Проектирование и компоновка технологической системы
  • Спецификация компонентов
  • Разработка схем системы управления
  • Анализ безопасности и эксплуатации (HAZOP – исследование опасности и работоспособности)
  • Установка и/или наращивание системы
  • Запуск, остановка и рабочие схемы и процедуры
  • Обучение сотрудников работе с технологической системой
  • Техническое обслуживание и модификация системы

P&ID также используются в качестве основы для живого графического представления технологической системы в ее HMI (человеко-машинном интерфейсе) или другой системе управления.

Символы, используемые в P&ID

Для представления компонентов на этих схемах используются стандартные символы. Важно отметить, что эти символы НЕ соответствуют масштабу и НЕ имеют точных размеров. Они просто используются для представления определенного типа компонента. Эти символы также помечены словами, буквами и цифрами для дальнейшей идентификации и указания компонентов, которые они представляют. Еще одно важное соображение заключается в том, что диаграммы НЕ всегда отображают физическое расположение и близость каждого компонента. Цель состоит НЕ в том, чтобы служить планом этажа или картой системы, а в том, чтобы проиллюстрировать процесс работы системы.

Символы клапанов для P&ID

Общий символ для 2-ходового клапана представляет собой два треугольника, направленных друг к другу с соприкасающимися кончиками внутренних точек. Линии трубопровода представлены линиями, соединяющимися с каждой стороной символа клапана. Различные типы линий используются для представления различных труб, трубок и шлангов. В этих примерах используются одиночные сплошные линии, обозначающие простые жесткие трубы или трубки. Обычно все трубы проходят либо вертикально, либо горизонтально и используют только прямые углы. Направление потока указано стрелкой в ​​конце линии, где он встречается со следующим компонентом, а также через каждые 9поворот на 0 градусов.

Тип клапана

Тип клапана представлен добавлением фигуры в центре, где точки соприкасаются. Здесь показаны символы P&ID для наиболее распространенных типов клапанов.

Все клапаны, представленные выше, представляют собой 2-ходовые линейные клапаны, которые используются для управления потоком, вкл/выкл или дросселирования. Для многоходовых клапанов, таких как 3-ходовой и 4-ходовой, структура символа аналогична, с треугольником для обозначения каждого порта или «хода».

3-ходовые и 4-ходовые шаровые краны могут содержать дополнительную информацию, определяющую тип сверления шара: Т-образный или Г-образный проходной шар. Еще одна деталь, которую можно изобразить на схеме, — это проточный тракт в неактивированном или обесточенном состоянии. Это показано с помощью маленьких стрелок рядом с символом, как показано ниже.

Существует множество других типов клапанов. Вот некоторые из них.

Тип привода

Способ срабатывания определяется линией, идущей от центра клапана с небольшим символом, часто содержащим букву, в верхней части линии. Вот несколько примеров шаровых кранов с разными способами срабатывания.

Безопасное положение

Когда привод находится в безопасном положении, оно обозначается стрелкой на линии между клапаном и приводом. Другой метод, используемый для обозначения позиции отказа, — это две буквы «FO» или «FC».

Торцевые соединения

Торцевые соединения могут быть представлены в общем виде линиями, представляющими трубы, входящие непосредственно в клапан, как и во всех приведенных выше примерах. Соединения также могут быть явно определены с использованием различных других методов. Фланцевые соединения представлены, как показано ниже, где трубы имеют перпендикулярные линии на концах, которые проходят параллельно сторонам символа клапана с небольшим промежутком между ними. Это показывает, что клапан можно снять, не разрезая трубу. Полупостоянные резьбовые соединения показаны маленькими полыми кружками в месте соединения. Неразъемные сварные соединения вместо этого изображаются квадратиками. Если соединение выполнено сваркой внахлест, квадрат является полым или незаполненным.

Стандартизация

Международное общество автоматизации (ISA: www.isa.org) определило стандарт для P&ID. Стандарт ANSI/ISA-5.1-2009 доступен на веб-сайте ISA.

Несмотря на то, что для этих символов существует строгий набор стандартов, вы найдете различные способы представления определенных клапанов. Вы также обнаружите вопиющие расхождения между некоторыми типами клапанов в разных библиотеках, отраслях и компаниях. Этот вопрос не представляет такой проблемы, поскольку все компоненты также описываются текстом, номером детали (уникальная модель), номером метки (конкретный компонент в системе) и подробно определяются в ключе или легенде, прилагаемой к чертежу. . Пока вы сохраняете последовательность в своих чертежах, схема P&ID будет приемлемой и понятной для всех, кто с ней работает.

Трубы, трубки и шланги (технологические линии):

Технологические линии — это линии, по которым фактически протекает технологическая среда. Они представлены разными типами линий. В полной P&ID каждая строка будет помечена номером строки. Например: 150-67P00-2299-115101-N. Эта метка будет либо идти параллельно линии, либо с линией выноски, указывающей на определяемую линию, если она не помещается на самой линии. На этикетке будет указана информация о размере, классе, изоляции и многом другом. Разные компании используют разные структуры для этих чисел, но все они содержат одну и ту же информацию. Линии процесса выделены жирнее, чем другие линии, например те, которые представляют электрические, пневматические сигналы или сигналы данных.

Различные обозначения труб

Существует 2 метода, иллюстрирующих пересечение труб на чертежах, но НЕ соединенных физически. Либо используйте небольшой «горб», чтобы показать, что одна линия проходит «над» другой, либо разорвите одну из линий очень близко к другой, чтобы показать, что она проходит под ней. Это НЕ физическое представление реальных труб. Фактически, они могут даже не пересекаться в реальной системе. Это просто способ разделить линии, когда они должны пересекаться на чертеже.

Линии связи/сигналов:

Системы управления технологическими процессами используют различные типы сигналов для передачи информации между компонентами, приборами и компьютерами системы управления. Каждый тип сигнала имеет свой тип линии для явного определения типа сигнала, который проходит по ней.

Различные символы сигналов

Другие общие символы P&ID для основных компонентов процесса:

Резервуары

Насосы, вентиляторы и компрессоры

Список можно продолжать и продолжать… Буквально сотни символов обозначают все компоненты, используемые в системах управления технологическими процессами. Теплообменники, охладители, бойлеры, фильтры и т.д. и т.п. Мы создали библиотеку символов P&ID, которая включает в себя наиболее распространенные компоненты, используемые в схемах трубопроводов и контрольно-измерительных приборов.

Контрольно-измерительные приборы (сенсоры, передатчики, измерители и т. д.)

Под контрольно-измерительными приборами понимаются устройства, которые воспринимают, измеряют, показывают, передают и/или записывают физические свойства в системе. Для этих типов компонентов существует несколько иной подход. Компоненты представлены так называемым «пузырем». Пузырь представляет собой простой круг, квадрат или шестиугольник.

Квадратные кружки обозначают общий дисплей. Общее устройство либо отображает информацию от нескольких приборов, либо управляет несколькими приборами, либо и то, и другое. Внутри квадрата будет либо круг, либо ромб.
Кружок означает, что это основной выбор или «Базовая система управления технологическим процессом».
Ромб означает, что это альтернативный вариант или «Инструментальная система безопасности».
Шестиугольные пузыри представляют собой компьютерные системы.

Круглые кружки обозначают дискретные инструменты.

Этот тип пузырьков также используется для определения функции конечных элементов управления, таких как клапаны. Это делается с помощью линии выноски, указывающей на символ элемента управления. Буквы и цифры внутри кружка описаны ниже.

Все эти типы пузырьков дополнительно определяются горизонтальной линией, линиями или их отсутствием. Эти строки определяют, где находится прибор и доступен ли он оператору.

Нет строки означает, что устройство и/или его дисплей физически расположены в поле, и если у него есть дисплей, то его можно прочитать только локально.
A Сплошная линия означает, что дисплей расположен на главной панели управления или видеодисплее и обычно доступен оператору.
A Пунктирная линия означает, что дисплей обычно НЕ доступен оператору.
A Двойная сплошная линия означает, что дисплей расположен на вторичной или локальной панели управления, обычно доступной для оператора
A Двойная пунктирная линия означает, что дисплей расположен на дополнительной панели управления и обычно НЕ доступен оператору.

Номера тегов

Внутри формы есть буквы и цифры, используемые для обозначения измеряемого свойства (например, скорости потока, давления, температуры или уровня) и функции, выполняемой с этим измерением. Типичные функции: отображение, запись, передача и управление. Ниже приведены несколько образцов, а также таблица букв и того, что они обозначают для наиболее распространенных компонентов инструментов.

Эти приборы обозначаются пятью буквами: (минимум 2)

1 -й За буква является свойство, измеряемое:
F = скорость потока, P = давление, T = температура, L = Уровень

2ND . = дифференциал, F = передаточное число. просто опустите, если никакие модификаторы не применяются

3-й указывает пассивную/считывающую функцию:
A = тревога, R = запись, I = индикатор, g = датчик

4th — Активная/выходная функция:
C = Контроллер, T = передача, S = Switch, V = клапан

5th — функция = клапан

5th — это функция .
H = высокий, L = низкий, O = открытый, C = закрытый. просто опустите, если никакие модификаторы не применяются

см. более полный список в Википедии

За этим следует номер цикла, уникальный для этого цикла. Например FIC045 означает, что это F низкий уровень I , указывающий C контроллер в контуре управления 045 . Он также известен как «теговый» идентификатор полевого устройства, который обычно связан с местоположением и функцией прибора. В одном и том же контуре может быть FT045, который является передатчиком F low T в том же контуре. Ниже приведены несколько примеров полных символов для нескольких инструментов в одном цикле.

Эта запись была опубликована в разделе «Последние новости» и помечена как символ 2-ходового клапана, символ 3-ходового клапана, загружаемые символы P&ID в формате pdf, схема клапана, P&ID клапана. Добавьте постоянную ссылку в закладки.

Как читать символы компонентов P&ID и клапанов [с загрузкой]

Схемы трубопроводов и приборов (P&ID) составляются на этапах разработки и проектирования химических, физических, электрических и механических процессов. Все, от символов шарового крана до линий связи, включено в P&ID, чтобы указать правильное направление для установки управления технологическим процессом.

В этой статье мы выделяем некоторые из наиболее распространенных символов клапанов P&ID, технологических линий, торцевых соединений и других важных компонентов. Прежде чем углубиться, загрузите PDF-версию символов, перечисленных в этой статье.

Что такое схема трубопроводов и приборов (P&ID)?

P&ID — это подробное визуальное представление технологической системы. P&ID включают стандартные символы, поясняющие:

  • Идентификация компонента
  • Как подключаются инструменты
  • Где расположены инструменты
  • Функция инструментов в процессе

Символы для этих компонентов нарисованы не в масштабе и не предназначены для указания точных размеров. Символы также могут быть помечены словами, буквами и цифрами для большей детализации.

Ниже приведен пример P&ID для процесса теплообмена:

Как используются P&ID?

Цель P&ID — проиллюстрировать процесс системы. P&ID используются для проектирования и обслуживания производственных процессов, которые они представляют, и необходимы для устранения неполадок и мониторинга процессов.

Поскольку P&ID не нарисованы в масштабе, их нельзя использовать в качестве карты или поэтажного плана системы.

P&ID и PFD

P&ID часто путают со схемами технологических процессов (PFD). Однако PFD представляет собой более высокоуровневое описание процесса и не включает столько подробностей, как P&ID.

Стандартизация

Международное общество автоматизации (ISA) разработало стандарт ANSI/ISA-5.1-2009, определяющий правильные способы использования символов в P&ID. Несмотря на то, что эти стандарты действуют, могут быть вариации определенных символов, используемых в разных отраслях или компаниях. Но, поскольку все компоненты в P&ID используют текст или числа для дальнейшей идентификации, базовое понимание символов не должно быть проблемой.

Категории символов

P&ID используют основные символы для определения функции каждого компонента в процессе.

К ним относятся следующие категории:

Клапаны
Приводы
Позиции безопасности
Торцевые соединения
Технологические линии
Сигнальные линии
Сосуды
Насосы, вентиляторы и компрессоры
Датчики, преобразователи и счетчики
Хотите пропустить прокрутку 9030 Измерители

0 Номера тегов? Получите PDF-версию этого сообщения прямо на ваш почтовый ящик. >>

Символы клапанов

Двухходовые клапаны
Двухходовой двухпозиционный клапан обозначен двумя равносторонними треугольниками, направленными друг к другу. Эти клапаны используют различные типы линий для представления различных типов клапанов. Направление потока показано стрелкой в ​​конце линии.

Наиболее часто изображаемые двухходовые клапаны включают:

  • Шаровой кран
  • Поворотный затвор
  • Пробковый клапан
  • Задвижка
  • Шаровой клапан
  • Пережимной клапан
  • Игольчатый клапан
  • Мембранный клапан

Ищете шаровой кран определенного типа? Мы поможем вам найти именно те детали, которые вам нужны для вашего проекта.
>>

3-ходовые и 4-ходовые клапаны
Для многоходовых клапанов к символу добавляются дополнительные треугольники. Клапаны с L-образным и Т-образным портом обозначены линиями внутри символа шара. Путь потока обозначен маленькими стрелками рядом с символом.

Клапаны других типов

Дополнительные клапаны обозначены как:

Приводы

Тип срабатывания показан линиями, выступающими из центра клапана. Небольшой символ появляется над строкой для дальнейшей идентификации. Электрический и гидравлический привод обозначен буквами.

Позиции отказобезопасности

Приводы с вариантами отказоустойчивости обозначены линией и стрелкой, направленными либо к шару (предохранитель закрыт), либо в сторону от шара (предохранитель открыт). Их также можно обозначить буквами «FO» или «FC».

Торцевые соединения

Тип соединения клапана (фланцевое, резьбовое, сварное или сварное враструб) отображается с помощью перпендикулярных линий, кругов и квадратов. Например, перпендикулярные линии во фланцевом соединении показывают, что клапан можно снять, не затрагивая трубу. Незакрашенные кружки обозначают временные резьбовые соединения, а постоянные сварные соединения показаны закрашенными квадратами. Сварные соединения с раструбом отображаются незакрашенными квадратами.

Технологические линии

Трубы, шланги и шланги показаны с использованием различных стилей линий. Затем каждая строка помечается номером, который включает в себя определяющую информацию о классе компонента, размере, изоляции и других факторах. Если трубы пересекаются, но не соединены, их можно разделить на чертеже, разорвав одну из линий или добавив кривую, как показано ниже:

Сигнальные линии

Для передачи информации между компонентами P&ID включают символы для каждого тип сигнала.

Сосуды

Резервуары для хранения, бочки и технологические сосуды изображаются с использованием следующих стандартных символов.

Насосы, вентиляторы и компрессоры

Воздуходувки, дымососы, воздушные компрессоры, нагнетательные вентиляторы и т.п. показаны с использованием вариантов следующих символов.

Датчики, преобразователи и измерители

Контрольно-измерительные устройства, такие как датчики, преобразователи и измерители, измеряют, регистрируют и контролируют различные части технологического процесса. В P&ID эти компоненты показаны с использованием различных форм, чтобы представить каждый инструмент и объяснить, как они связаны.

Горизонтальные линии также используются для определения того, где находится инструмент и доступен ли он.

Номера тегов

Буквы и цифры могут быть включены внутрь фигур для дополнительной информации, такой как измеряемое свойство и функция, связанная с этим измерением.

В теге может быть до 5 букв:

  • Первая буква для измеряемой величины (ток, мощность, давление и т.д.)
  • Вторая буква — модификатор (газ, соотношение, разность и т. д.)
  • Третья буква определяет считывающую/пассивную функцию (датчик, индикация, свет и т. д.)
  • Четвертая буква — выход/активная функция (станция управления, переключатель и т. д.)
  • Пятая буква — модификатор функции (запустить, остановить и т. д.)

За буквами следует номер шлейфа, который указывает расположение и функцию прибора. В приведенном ниже примере FT — это датчик расхода, а порядковый номер 028 указывает местоположение устройства. Порядковый номер назначается всем устройствам в пределах одной функции.

Gemini Valve производит, распространяет и обслуживает полный набор шаровых кранов с улучшенными характеристиками, включая шаровые краны, изготовленные по индивидуальному заказу. Чтобы получить дополнительную информацию или поговорить со специалистом, свяжитесь с нами здесь.

Джордж Паккард

Вице-президент по маркетингу

Джордж Паккард, вице-президент по маркетингу компании Gemini Valve, более 10 лет занимается техническими продажами и маркетингом в отрасли арматуростроения. Разнообразный опыт Джорджа включает в себя общение с клиентами для устранения неполадок в критических приложениях и работу с ведущими инженерами отрасли для продвижения последних инноваций в конструкции автоматизированных шаровых кранов.

Как читать символы компонентов P&ID и клапанов

В этом бесплатном загружаемом руководстве мы выделяем некоторые из наиболее распространенных символов клапанов P&ID, технологических линий, концевых соединений и других важных компонентов.

Загрузить

Понимание того, как читать их в FD и P&ID

Электростанции и технологические установки имеют миллионы движущихся частей, и схемы показывают, как они работают. Немногие детали важнее клапанов. Клапан регулирует поток воздуха или жидкости через трубопровод. Таким образом, чтобы понять систему, показанную на блок-схеме процесса (FD) или схеме трубопроводов и приборов (P&ID), вы должны понимать символы клапанов. Символы клапанов могут показать вам тип, принцип их работы и многое другое.

Символы клапанов для различных типов

Клапаны используются в различных отраслях промышленности, но в этой статье мы обсудим наиболее часто используемые клапаны на электростанциях и в технологических установках.

В алфавитном порядке (графические примеры не представляют все конфигурации):

Шар

В шаровом кране используется полый вращающийся шар с отверстием, проходящим через шар. Отверстие совпадает с входным/выходным отверстием, когда оно открыто. И твердые стороны шара выровнены с входом/выходом, когда клапан закрыт.

КЛАПАН

СИМВОЛЫ КЛАПАНА

ДИАГРАММА

Этот тип символа клапана похож на шаровой клапан. Символ шарового клапана имеет больший круг, указывающий на шар внутри клапана.

Дроссельный клапан

Дроссельный клапан вращает плоский диск, чтобы блокировать или разблокировать поток через систему.

КЛАПАН

СИМВОЛЫ КЛАПАНА

ДИАГРАММА

Эти клапаны являются демпферами (не все демпферы являются дисковыми). Заслонка представляет собой клапан или пластину, которая останавливает или регулирует поток. Таким образом, вы можете найти заслонку на FD или P&ID, показывающую одну или несколько дроссельных заслонок.

Чек

Обратный клапан регулирует поток жидкости или воздуха, пропуская их только в одном направлении. Также известен как обратный клапан или односторонний клапан.

КЛАПАН

ОБОЗНАЧЕНИЯ КЛАПАНА

СХЕМА

Существует несколько вариантов расположения обратных клапанов, как показано на схеме ниже. Главный показатель этого символа – это то, что поток однонаправленный.

Задвижка

Задвижка является одним из наиболее часто используемых типов задвижек на электростанциях. Эти клапаны работают, поднимая затвор вверх и вниз, чтобы открывать или закрывать клапан, тем самым контролируя поток через систему.

КЛАПАН

Символы клапана

Схема

Шаровой клапан

Запорный клапан работает за счет барьера, такого как пробка, которая перемещается вверх или вниз для уплотнения неподвижного кольца.

Клапан

Символы клапана

Диаграмма

Точно так же, как и шаровой кран, этот символ показывает круг. Символ шарового клапана имеет кружок меньшего размера, указывающий на форму корпуса клапана, а не на наличие шара внутри клапана.

Дополнительные типы символов клапанов

Ниже показаны дополнительные символы клапанов, которые могут встречаться в FD или P&ID.

Символы открытого или закрытого клапана

Клапан обычно находится в открытом или закрытом состоянии. На FD или P&ID символы клапанов окрашены в белый цвет, чтобы показать, что они нормально открыты, а полностью черные символы показывают, что они нормально закрыты.

Символы работы клапана

Кроме того, символы могут указывать на работу клапана. Работа клапанов может быть автоматической, ручной, пневматической (мембранной), моторной, гидравлической, соленоидной, пневматической (роторно-поршневой), балансировочной и т. д. Символы операций показаны на рисунке ниже.

Автоматические клапаны — это специальные клапаны, оснащенные приводами, которые часто управляются датчиками температуры или расхода. Эти клапаны могут также включать датчики давления или температуры.

Клапаны с ручным управлением открываются/закрываются вручную, поэтому многие операторы называют их ручными клапанами. Это происходит, когда оператор вращает маховик клапана по часовой стрелке или против часовой стрелки, чтобы установить клапан в нужное положение.

Клапаны с электроприводом открываются/закрываются с помощью электродвигателей. Обычно это связано с размером клапана или критическим положением клапана, например, клапана управления потоком.

Клапаны с гидравлическим приводом открываются/закрываются за счет давления гидравлической жидкости. Эти типы клапанов используются, когда требуется большое усилие для изменения положения клапана.

Электромагнитные клапаны используют электромагнитную электромагнитную катушку для открытия или закрытия клапана. Между тем, соленоидные катушки активируются при подаче электрического питания (чтобы остановить поток) или обесточены (чтобы разрешить поток) или наоборот.

Клапаны балансировочные отрегулировать давление и расход для достижения гидравлического баланса в системе.

Мембранные клапаны с пневматическим приводом используют сжатый воздух для вертикального изменения положения клапана путем подачи сжатого воздуха на мембрану, которая изменяет положение клапана. Таким образом, эти клапаны используют комбинацию сжатого воздуха, диафрагмы, пружин и электромагнитных клапанов для достижения правильного положения клапана и соответствующего потока через систему.

Пневматические поворотные клапаны используют сжатый воздух для создания линейного или вращательного движения для работы определенных типов клапанов.

Предохранительный и обратный клапаны

Кроме того, клапаны могут быть предохранительными или обратными клапанами.

Предохранительные или предохранительные клапаны защищают систему от избыточного давления. Эти клапаны открываются для сброса давления в системе при обнаружении определенного давления.

Обратные клапаны используются для регулирования давления перед клапаном в системе. Эти клапаны модулируют для поддержания желаемого давления в системе.

Блок-схемы FCS

FCS уже более 25 лет использует символы клапанов среди многих других в рамках учебных документов для создания FD и P&ID.

Наша команда использует существующую документацию, а также системы обхода для создания точных учебных материалов для наших клиентов. Поэтому необходимо провести тщательный анализ системы.

Если вы хотите узнать больше об учебных материалах FCS, свяжитесь с нами по адресу [email protected].

Предыдущие блоги Николетт Вильянуэва:

Николетт Вильянуэва

Николетт Вильянуэва — специалист по графике/администрированию в FCS. Она предоставляет графику для обучения и управляет веб-сайтом компании. Николетт имеет более 10 лет опыта работы с графикой и работает в FCS с апреля 2019 года..

Как читать схематический чертеж золотникового клапана

В предыдущей статье RealPars мы узнали, что такое золотниковый клапан и как он работает механически. В этой статье мы продолжим эту тему и узнаем о том, как золотниковый клапан представлен на технических чертежах и чертежах производителей, как понять, что означает схематический рисунок золотникового клапана и как он связан с работой клапана.

Схематический чертеж золотникового клапана

Как мы уже знаем, направляющие воздушные клапаны, в частности, золотниковые клапаны, являются строительными блоками пневматического управления.

На технических чертежах символы пневматических цепей предоставляют подробную информацию о клапане, который они представляют.

Символы показывают:

– методы приведения в действие

– количество положений

– пути потока

– количество портов клапана

Когда мы видим схему золотникового клапана, мы видим, что это состоит из блоков, каждый из которых содержит ряд линий и стрелок.

Количество прямоугольников, составляющих символ клапана, указывает количество возможных положений клапана.

Направление потока указано стрелками в каждом поле.

Эти стрелки показывают путь потока, который обеспечивает клапан, когда он находится в каждом положении.

Слева и справа от ящиков мы можем видеть типы используемых приводов.

В некоторых случаях на одном конце ящиков будет один привод, а на другом конце пружинный возврат. В других случаях на обоих концах может быть привод.

Схема двухпозиционного золотникового клапана

Рассмотрим пример типичной схемы двухпозиционного золотникового клапана.

Этот клапан управляется ручным рычагом и имеет пружину, которая возвращает клапан обратно в исходное положение, когда рычаг не используется.

Текущее состояние клапана отображается в рамке рядом с активным приводом.

Таким образом, в нашем примере, если рычаг слева НЕ задействован, привод с пружинным возвратом справа управляет клапаном.

Таким образом, мы можем посмотреть на блок рядом с пружинным приводом на схеме золотникового клапана, чтобы увидеть путь потока и проигнорировать другой блок.

Когда рычаг приводится в действие, красный прямоугольник рядом с рычагом показывает путь потока клапана, поэтому мы можем игнорировать синий прямоугольник.

Помните, что клапан может находиться только в одном положении в данный момент времени, а количество прямоугольников на его схеме представляет собой количество положений, в которых он может находиться. Так что в этом примере клапан имеет два положения.

Схема трехпозиционного золотникового клапана

Теперь давайте рассмотрим трехпозиционный клапан.

Этот 3-позиционный клапан имеет как соленоиды, так и приводы с пружинным возвратом с обеих сторон клапана.

Приводы с пружинным возвратом вернут клапан в среднее положение, но только ЕСЛИ ни один из соленоидов не активен.

В этом примере средний прямоугольник указывает на то, что потока воздуха не будет, пока не будет активен один из двух приводов.

Типичное использование клапана такого типа: удар  или дюймовый цилиндр с приращением по длине его хода путем нажатия на один из приводов.

Количество портов клапана показано количеством конечных точек в данном поле.

Мы должны подсчитывать порты в одном поле только один раз для каждого символа.

Например, в 3-позиционном клапане есть три блока, которые показывают три возможных положения, но клапан имеет пять физических портов. Таким образом, клапан будет называться электромагнитным клапаном 5/3.

Вы также можете увидеть, что некоторые производители используют буквы вместо цифр для обозначения портов, но как только вы поймете схему, это будет легко перевести.

Резюме

В этой статье мы продолжили нашу тему, рассматривая конструкцию и работу золотниковых клапанов.

Мы рассмотрели, как клапаны представлены на технических чертежах и чертежах производителей, а также как преобразовать эти схемы в работу клапана в реальном мире.

Мы знаем, что каждое положение клапана представлено прямоугольником, который показывает физические порты и направление потока.

Мы понимаем, где на схеме показаны приводы, и если мы хотим увидеть текущее состояние клапанов, нам нужно только посмотреть на поле непосредственно рядом с активным в данный момент приводом.

Некоторые 3-позиционные клапаны могут иметь среднее положение, которое будет активным, когда ни один соленоид не активен.

Наконец, мы обсудили нумерацию портов и то, как некоторые производители могут использовать буквы вместо цифр.

Мы надеемся, что вам понравилось это краткое введение в то, как читать схематический чертеж золотникового клапана.

Наша команда экспертов RealPars готова ответить на ваши вопросы и ответить на ваши отзывы. Мы будем рады услышать ваши предложения по темам, которые вы хотите, чтобы наша команда осветила.

У вас есть друг, клиент или коллега, которым может пригодиться эта информация? Пожалуйста, поделитесь этой статьей.

The Realpars Team

Поиск для:

Инженер по автоматизации

Опубликовано 14 октября 2019 г.

от Daniel Crimmins

. я узнаю о мышлении, которое помогло мне получить работу по программированию ПЛК без опыта. Это мой личный опыт как человека, который искал работу в этой сфере, и как работодателя, который просматривает резюме и проводит собеседования с кандидатами для различных проектов. Итак, приступим!

В этой статье мы познакомим вас с языком программирования ПЛК, который называется Sequential Function Chart, или сокращенно SFC. Стандарт программирования ПЛК IEC 61131-3 включает пять языков программирования: — Лестничная диаграмма — Схема функционального блока — Список инструкций — …

В этой статье я расскажу о лазерных датчиках. Я объясню, что такое лазерные датчики, основы их работы, различные типы лазерных датчиков и приведу несколько примеров использования лазерных датчиков в автоматизации. Что такое лазерный датчик? Лазер…

Схема клапана — эксперты по управлению потоком

♦ Конструкция
Шаровые краны состоят из двух частей и имеют сплошной полнопроходной шар. Соответствующие стандарты проектирования: EN ISO 17292, EN 12516, ASME B16.34 и API 608. стандартная поставка. Другие материалы могут быть предоставлены по запросу.

♦ Огнестойкий 
Шаровые краны сертифицированы на пожаробезопасность в соответствии с API 607, 6-я редакция, и ISO 10497. В случае пожара вторичное металлическое седло предотвращает утечку через порт клапана. Графитовое уплотнение штока и графитовая спирально-навитая прокладка корпуса Leader® с внутренним слоем из ПТФЭ обеспечивают герметичность уплотнения штока и соединений корпуса.

♦ Сальниковое уплотнение
Две тарельчатые пружинные шайбы обеспечивают оптимальное уплотнение, а также компенсируют изменение условий процесса. Преимуществами этой функции являются повышенная безопасность эксплуатации и меньшее техническое обслуживание. В соответствии с требованиями пожарной безопасности упаковочный материал изготовлен из графита. Чтобы соответствовать очень строгим требованиям по выбросам для сертификации TA-Luft, было установлено уплотнительное кольцо из Viton®.

♦ Антистатический и ATEX
Соединение шар-шток и соединение шток-корпус имеют антистатическую функцию, которая обеспечивает электрическую непрерывность между этими частями. В результате шаровые краны соответствуют руководству ATEX 94/9/EC (Ex II 2 G-D Ec-c II) для потенциально взрывоопасных сред.

♦ Прямой монтаж
Верхний фланец прямого монтажа в соответствии с ISO 5211 является стандартным для этих шаровых кранов. Эта функция позволяет установить привод без монтажного кронштейна и адаптера привода. Это дает значительное снижение затрат, компактность автоматизированной установки и более высокий уровень безопасности для операторов.

♦ Шар 
Полностью отполированный цельный шар имеет отверстие для сброса давления в прорези штока, чтобы избежать нарастания давления в полости корпуса. Это обеспечивает плотное запирание и долгий срок службы.

♦ Шток 
Шток клапана в сборе имеет ударопрочную конструкцию и прямоугольное верхнее соединение. Упорная шайба из ПТФЭ помогает достичь низкого рабочего крутящего момента.

♦ TA-Luft
Благодаря двойному уплотнению штока, в котором используются уплотнительное кольцо и подпружиненный сальник, фланцевые шаровые краны соответствуют очень строгим требованиям по выбросам. В этом отношении они сертифицированы TA-Luft (VDI 2440, раздел 3.3.1.3).

♦ Седла
Гибкая конструкция седла обеспечивает герметичность при высоком и низком давлении. Специальная конструкция седла сводит к минимуму износ и обеспечивает низкие значения крутящего момента при любых условиях эксплуатации. Стандартный материал седла — высококачественный PTFE TFM1600. Помимо проверенных механических и химических свойств ПТФЭ, эта химически усиленная версия подходит для более широкого спектра применений в отношении давления и температуры.

♦ Тестирование
Шаровые краны герметичны на 100 % и протестированы в соответствии с API 598 (ASME) или EN 12266 (DIN).

♦ SIL
SIL — это международный стандарт (IEC 61508), сокращение от «Safety Integrity Level». Шаровые краны Econ® подходят для приложений SIL 2.

♦ Монтажная длина
Шаровые краны DIN поставляются с монтажной длиной в соответствии со стандартами EN 558, 27, а клапаны ASME — в соответствии с длинной моделью B16. 10.

 

♦ Фланцы
Фланцы соответствуют стандарту EN 1092-1 (версия DIN) или ASME B16.5 RF (версия ASME). Облицовка фланцев имеет шероховатость поверхности Ra 3,2–6,3.

♦ Nace
Все шаровые краны Econ® из нержавеющей стали соответствуют стандарту NACE MR0175. По запросу также может поставляться стальная версия в соответствии со спецификациями NACE.

♦ Отделка
Отливки имеют высококачественную отделку (минимум MSS SP112, уровень 2). Шаровые краны из углеродистой стали имеют грунтовку и синее верхнее покрытие (RAL 5015). Общая толщина краски 60-80 мкм.

♦ Эксплуатация
Шаровые краны в стандартной комплектации поставляются с рукояткой из нержавеющей стали 304 (DN15–DN80) или Т-образным стержнем (DN100–DN150). Для DN200 может поставляться редуктор. Все ручки фиксируются в открытом и закрытом положении. Если требуется дополнительная безопасность, следует установить висячий замок, чтобы заблокировать клапан в открытом или закрытом положении. В качестве опции для клапанов DN15-DN80 может поставляться усиленный рычаг.

♦ Опции
• Седла TFM4215 (также доступны другие материалы)
• Рычаг для тяжелых условий эксплуатации DN15-DN80
• Редуктор для всех размеров
• Удлиненный шток для изоляции труб
• Удлиненный шток для применения при низких температурах
• Рычаг с пружинным возвратом
• Концевые выключатели для дистанционного оповещения об открытии/закрытии
• Пневматический привод
• Электрический привод
• Гидравлический привод
• Электрогидравлический привод

♦ Материалы и сертификаты испытаний
Все фланцевые шаровые краны Econ® могут поставляться с сертификатом испытаний и материалов EN 10204-3.1.

Символы клапанов в P&ID — шаровой клапан, предохранительный клапан и др.

В этой статье вы узнаете о различных типах символов клапанов, используемых в P&ID. В технологических трубопроводах используется множество типов клапанов, каждый из которых имеет свой символ. Это делает клапан одной из сложных частей чтения P&ID. Но со временем вы сможете легко запомнить эти символы и эффективно читать P&ID.

Существует два типа символов клапана — первый, общие символы, и второй, символ с модификатором. Общие символы подскажут вам, что в линии есть клапан, но не расскажут о типах клапана. Принимая во внимание, что символ клапана с модификатором сообщит вам тип клапана, используемого в трубопроводе.

Общие символы клапанов

Здесь на изображении выше вы можете увидеть часто используемые символы для клапанов. Эти символы носят общий характер — например, первый символ клапана.

Теперь, когда вы смотрите на символ на чертеже, он просто указывает на то, что используется какой-то клапан, но не дает информации о типе клапана, будь то вентиль, шаровой или клапан пробкового типа. Существуют специальные символы для затвора, глобуса, пробки и шарового крана, которые я объясню вам через несколько минут.

Аналогично, следующие два символа относятся к трехходовому и четырехходовому клапанам. Это может быть пробка или шаровой кран. Следующие два символа — это обратный клапан и запорный обратный клапан. Эти обратные клапаны могут быть поворотными обратными или подъемными обратными клапанами.

Следующий символ — перепускной клапан. Вы можете видеть, что это то же самое, что и обратный клапан, единственное отличие состоит в написанном тексте под символом клапана. Вы должны быть очень осторожны при чтении этого типа символов, так как их легко не заметить.

Последний символ — автоматический рециркуляционный клапан. Этот тип клапана используется в линии нагнетания насоса, чтобы гарантировать, что насос не будет страдать от низкого входного давления, что приводит к кавитации.

Посмотрите это видео, которое объяснит вам все аспекты, затронутые в этой статье.

Тест P&ID – Проверьте себя, пройдите этот тест

Символы предохранительного клапана

На изображении выше первый символ обозначает угловой клапан. В большинстве случаев в качестве углового клапана используется шаровой кран. Следующий символ — предохранительный клапан, используемый для защиты трубопроводной системы или оборудования от избыточного давления.

Теперь на резервуаре с конической крышей используется дыхательный клапан. Этот клапан выполняет функцию предохранительного клапана и вакуумного клапана. В случае избыточного давления этот клапан сбрасывает давление, а в случае создания вакуума в баке этот клапан пропускает воздух в бак. Так же, как вдыхать и выдыхать воздух.

Вакуумный клапан предотвращает повреждение оборудования от отрицательного давления. Предохранительные клапаны с пилотным управлением работают только как предохранительные клапаны, но используются для трубопроводов большого диаметра. В этом типе используется небольшой предохранительный клапан для управления основным предохранительным клапаном. Эта схема экономически эффективна при крупномасштабных операциях по оказанию помощи.

Теперь я объясню вам особый символ клапана, который используется в P&ID и изометрических чертежах.

Если вы хотите подробно узнать о более чем 18 типах клапанов, вы можете купить мой курс, как стать экспертом в области трубопроводной арматуры.

Символ задвижки

На изображении выше вы можете видеть задвижку. Теперь посмотрите на символ P&ID для задвижки. Это модификация общего символа клапана путем вставки вертикальной линии между двумя треугольниками. Три символа, показанные ниже, представляют собой символы задвижек, используемые на изометрических чертежах. Первый предназначен для концов под приварку встык, второй — для фланцевого концевого клапана, а третий — для торцевого соединения.

Символ шарового клапана

Для шарового клапана символ изменяется путем добавления небольшого темного круга между треугольниками. Вы можете видеть, что P&ID и изометрические символы почти одинаковы, с единственным изменением в типах концов.

Символ шарового крана

Как видите, шаровой кран имеет два символа P&ID. Причина в том, что символы P&ID и изометрических чертежей меняются от компании к компании. Так что, если вы меняете компанию, вы должны знать об этом. Точно так же вы можете увидеть символы ISO для шаровых кранов с торцевыми, фланцевыми и раструбными концами.

Символ игольчатого клапана

Как и шаровой клапан, игольчатый клапан также имеет несколько символов P&ID. Если вы видите, что, несмотря на то, что эти символы различны, вы все равно можете легко их интерпретировать. Если вы используете вторые символы P&ID, ваш изометрический символ будет соответствующим образом изменен.

Обозначение пробкового клапана

Для пробкового клапана первый символ немного сбивает с толку с шаровым клапаном. Если вы помните символ шарового клапана, у него есть темный круг между треугольниками, тогда как здесь есть только контур круга. Поэтому, когда вы видите этот тип символа, лучше перепроверьте рисунок.

Символ дроссельной заслонки

Символ дроссельной заслонки — единственный символ, в котором не используется полный треугольник. Если обратиться к первому символу, то он похож на шаровой клапан, но треугольник не полный.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *