Как работает соленоид – — , , » :

Содержание

Линейный электромагнитный соленоид: принцип работы и типы

В данной статье мы подробно поговорим про линейный соленоид, опишем принцип его работы, разберем конструкции линейного и вращательного соленоида, а так же вы узнаете как снизить энергопотребление соленоида.

Описание и принцип работы соленоида

Линейный соленоид работает на том же основном принципе, что и электромеханическое реле, описанное в предыдущем уроке, и точно так же, как и реле, они также могут переключаться и управляться с помощью транзисторов или полевых МОП-транзисторов. Линейный соленоид — это электромагнитное устройство, которое преобразует электрическую энергию в механическое толкающее или тянущее усилие или движение.

Линейный соленоид в основном состоит из электрической катушки, намотанной вокруг цилиндрической трубки с ферромагнитным приводом или «плунжером», который может свободно перемещать или скользить «ВХОД» и «ВЫХОД» в корпусе катушек. Соленоиды могут использоваться для электрического открывания дверей и защелок, открытия или закрытия клапанов, перемещения и управления роботизированными конечностями и механизмами и даже для включения электрических выключателей только путем подачи питания на его катушку.

Соленоиды доступны в различных форматах, причем наиболее распространенными типами являются линейный соленоид, также известный как линейный электромеханический привод (LEMA) и вращающийся соленоид .

Оба типа соленоидов, линейный и вращательный доступны в виде удержания (с постоянным напряжением) или в виде защелки (импульс ВКЛ-ВЫКЛ), при этом типы защелки используются в устройствах под напряжением или при отключении питания. Линейные соленоиды также могут быть разработаны для пропорционального управления движением, где положение плунжера пропорционально потребляемой мощности.

Когда электрический ток протекает через проводник, он генерирует магнитное поле, и направление этого магнитного поля относительно его северного и южного полюсов определяется направлением потока тока внутри провода. Эта катушка проволоки становится « электромагнитом » со своими собственными северным и южным полюсами, точно такими же, как у постоянного магнита.

Сила этого магнитного поля может быть увеличена или уменьшена либо путем управления количеством тока, протекающего через катушку, либо путем изменения количества витков или петель, которые имеет катушка. Пример «электромагнита» приведен ниже.

Магнитное поле, создаваемое катушкой

Когда электрический ток проходит через обмотки катушек, он ведет себя как электромагнит, и плунжер, который находится внутри катушки, притягивается к центру катушки с помощью магнитного потока внутри корпуса катушек, который, в свою очередь, сжимает небольшая пружина прикреплена к одному концу плунжера. Сила и скорость движения плунжеров определяются силой магнитного потока, генерируемого внутри катушки.

Когда ток питания выключен (обесточен), электромагнитное поле, созданное ранее катушкой, разрушается, и энергия, накопленная в сжатой пружине, заставляет поршень вернуться в исходное положение покоя. Это движение плунжера вперед и назад известно как «ход» соленоидов, другими словами, максимальное расстояние, на которое плунжер может проходить в направлении «вход» или «выход», например, 0–30 мм.

Такой тип соленоида обычно называется линейным соленоидом из-за линейного направленного движения и действия плунжера. Линейные соленоиды доступны в двух основных конфигурациях, которые называются «тягового типа», так как он тянет подключенную нагрузку к себе, когда они находятся под напряжением, и «толкающего типа», которые действуют в противоположном направлении, отталкивая его от себя при подаче питания. Как притягивающие, так и толкающие типы обычно имеют одинаковую конструкцию, с разницей в расположении возвратной пружины и конструкции плунжера.

Конструкция линейного соленоида вытяжного типа

Линейные соленоиды полезны во многих устройствах, которые требуют движения открытого или закрытого типа (например, внутри или снаружи), таких как дверные замки с электронным управлением, пневматические или гидравлические регулирующие клапаны, робототехника, управление автомобильным двигателем, ирригационные клапаны для полива сада и даже для дверного звонка. Они доступны как открытая рама, закрытая рама или герметичные трубчатые типы.

Вращательный соленоид

Большинство электромагнитных соленоидов являются линейными устройствами, создающими линейную силу движения или движения вперед и назад. Однако имеются также вращательные соленоиды, которые производят угловое или вращательное движение из нейтрального положения либо по часовой стрелке, против часовой стрелки, либо в обоих направлениях (в двух направлениях).

Вращающиеся соленоиды можно использовать для замены небольших двигателей постоянного тока или шаговых двигателей, если угловое движение очень мало, а угол поворота — это угол, смещенный от начального к конечному положению.

Обычно доступные ротационные соленоиды имеют перемещения 25, 35, 45, 60 и 90 o, а также многократные перемещения к определенному углу и от него, такие как самовосстановление в двух положениях или возврат в нулевое вращение, например, от 0 до 90- до -0 ° , самовосстановление в 3 положениях, например от 0 ° до +45 ° или от 0 ° до -45 °, а также фиксация в 2 положениях.

Вращающиеся соленоиды производят вращательное движение, когда под напряжением, обесточено, или изменение полярности электромагнитного поля изменяет положение ротора с постоянными магнитами. Их конструкция состоит из электрической катушки, намотанной вокруг стальной рамы с магнитным диском, соединенным с выходным валом, расположенным над катушкой.

Когда катушка находится под напряжением, электромагнитное поле генерирует множество северных и южных полюсов, которые отталкивают соседние постоянные магнитные полюса диска, заставляя его вращаться на угол, определяемый механической конструкцией вращающегося соленоида.

Вращающиеся соленоиды используются в торговых автоматах или игровых автоматах, для управления клапанами, затворами камер со специальными высокоскоростными, низкоэнергетическими или регулируемыми позиционирующими соленоидами с высоким усилием или крутящим моментом, такими как те, которые используются в точечно-матричных принтерах, пишущих машинках, автоматах или в автомобилях.

Электромагнитное переключение

Обычно соленоиды, линейные или вращающиеся, работают с приложением постоянного напряжения, но их также можно использовать с синусоидальными напряжениями переменного тока, используя двухполупериодные мостовые выпрямители для выпрямления питания, которые затем можно использовать для переключения соленоида постоянного тока. Малые соленоиды типа DC могут легко управляться с помощью транзисторных или полевых МОП-транзисторов и идеально подходят для использования в роботизированных устройствах.

Однако, как мы видели ранее с электромеханическими реле, линейные соленоиды являются «индуктивными» устройствами, поэтому требуется некоторая электрическая защита через катушку соленоида для предотвращения повреждения полупроводникового переключающего устройства высокими обратными ЭДС. В этом случае используется стандартный «Диод маховика», но вы также можете использовать стабилитрон или варистор малого значения.

Снижение энергопотребления соленоида

Одним из основных недостатков соленоидов, особенно линейного соленоида, является то, что они являются «индуктивными устройствами», изготовленными из катушек с проволокой. Это означает, что соленоидная катушка преобразует часть электрической энергии, используемой для их работы, в «нагрев» из-за сопротивления провода.

Другими словами, при длительном подключении к источнику электропитания они нагреваются, и чем дольше время, в течение которого питание подается на соленоидную катушку, тем горячее становится. Также, когда катушка нагревается, ее электрическое сопротивление также изменяется, позволяя течь большему току, повышая ее температуру.

При постоянном входном напряжении, подаваемом на катушку, катушка соленоидов не имеет возможности остыть, потому что входная мощность всегда включена. Чтобы уменьшить этот самогенерируемый эффект нагрева, необходимо уменьшить либо количество времени, в течение которого катушка находится под напряжением, либо уменьшить количество тока, протекающего через нее.

Один из способов потребления меньшего тока заключается в подаче подходящего достаточно высокого напряжения на электромагнитную катушку, чтобы обеспечить необходимое электромагнитное поле для работы и посадки плунжера, но затем один раз активировать для снижения напряжения питания катушек до уровня, достаточного для поддержания плунжера, в «сидячем» или закрытом положении. Одним из способов достижения этого является последовательное подключение подходящего «удерживающего» резистора с катушкой соленоида, например:

Здесь контакты переключателя замыкаются, замыкая сопротивление и передавая полный ток питания непосредственно на обмотки электромагнитных катушек. После подачи питания контакты, которые могут быть механически связаны с плунжером электромагнитного действия, размыкаются, соединяя удерживающий резистор R H последовательно с катушкой соленоида. Это эффективно соединяет резистор последовательно с катушкой.

Используя этот метод, соленоид может быть подключен к его источнику напряжения на неопределенный срок (непрерывный рабочий цикл), так как мощность, потребляемая катушкой, и выделяемое тепло значительно уменьшаются, что может быть до 85-90% при использовании подходящего силового резистора. Однако мощность, потребляемая резистором, также будет генерировать определенное количество тепла, I 2 R (закон Ома), и это также необходимо учитывать.

Рабочий цикл соленоида

Другим более практичным способом уменьшения тепла, выделяемого катушкой соленоидов, является использование «прерывистого рабочего цикла». Прерывистый рабочий цикл означает, что катушка многократно переключается «ВКЛ» и «ВЫКЛ» на подходящей частоте, чтобы активировать механизм плунжера, но не дать ему обесточиться во время периода ВЫКЛ. Прерывистое переключение рабочего цикла является очень эффективным способом уменьшения общей мощности, потребляемой катушкой.

Рабочий цикл (% ED) соленоида — это часть времени «ВКЛ», когда на электромагнит подается напряжение, и это отношение времени «ВКЛ» к общему времени «ВКЛ» и «ВЫКЛ» для одного полного цикла операций. Другими словами, время цикла равно времени включения плюс время выключения. Рабочий цикл выражается в процентах, например:

Затем, если соленоид включен или включен на 30 секунд, а затем выключен на 90 секунд перед повторным включением, один полный цикл, общее время цикла включения / выключения составит 120 секунд, (30 + 90) поэтому рабочий цикл соленоидов будет рассчитываться как 30/120 сек или 25%. Это означает, что вы можете определить максимальное время включения соленоидов, если вам известны значения рабочего цикла и времени выключения.

Например, время выключения равно 15 секундам, рабочий цикл равен 40%, поэтому время включения равно 10 секундам. Соленоид с номинальным рабочим циклом 100% означает, что он имеет постоянное номинальное напряжение и поэтому может быть оставлен включенным или постоянно включен без перегрева или повреждения.

В этом уроке о соленоидах мы рассматривали как линейный соленоид, так и вращающийся соленоид как электромеханический привод, который можно использовать в качестве выходного устройства для управления физическим процессом. В следующем уроке мы продолжим рассмотрение устройств вывода, называемых исполнительными механизмами, и устройства, которое снова преобразует электрический сигнал в соответствующее вращательное движение, используя электромагнетизм. Тип устройства вывода, которое мы рассмотрим в следующем уроке — это двигатель постоянного тока.

meanders.ru

Соленоиды. Виды и устройство. Работа и особенности

Цилиндрическая обмотка, которая имеет длину, значительно больше ее диаметра, называется соленоидом. В переводе с английского, это слово обозначает – подобный трубе, то есть, это катушка, похожая на трубу.

Устройство и принцип действия

Соленоидом также можно назвать катушку индуктивности, которая намотана проводом на каркас в виде цилиндра. Такие катушки могут быть намотаны как одним, так и несколькими слоями. Так как длина обмотки намного больше диаметра, то при подключении постоянного напряжения на эту обмотку, внутри катушки образуется магнитное поле.

Часто соленоидами называют электромеханические устройства, содержащие катушку, внутри которой имеется ферромагнитный сердечник. Такие устройства выполнены в виде втягивающих реле автомобильного стартера, различных электроклапанов. Втягивающим элементом такого своеобразного электромагнита является сердечник из ферромагнитного материала.

Если в устройстве соленоида нет сердечника, то при подключении постоянного тока вдоль обмотки образуется магнитное поле. Индукция этого поля равна:

Где, N – количество витков в обмотке, l – длина катушки, I – ток, протекающий по соленоиду, μ0 — вакуумная магнитная проницаемость.

На концах соленоида величина магнитной индукции в два раза ниже, по сравнению с внутренней частью, так как две части соленоида совместно образуют двойное магнитное поле. Это применимо к длинному или бесконечному соленоиду, в сравнении с диаметром каркаса обмотки.

По краям соленоида магнитная индукция равна:

Так как соленоиды являются катушками индуктивности, следовательно, соленоид может запасать энергию в магнитном поле. Эта энергия равна работе, совершаемой источником, для образования тока в обмотке.

Этот ток образует в соленоиде магнитное поле:

Если ток в катушке изменяется, то возникает ЭДС самоиндукции. В этом случае напряжение на соленоиде определяется:

Индуктивность соленоида определяется:

Где, V – объем катушки соленоида, z – длина проводника катушки, n – количество витков, l – длина катушки, μ0 — вакуумная магнитная проницаемость.

При подключении к проводникам соленоида переменного напряжения, магнитное поле будет создаваться тоже переменным. Соленоид имеет сопротивление переменному току в виде комплекса двух составляющих: активной и реактивной. Они зависят от индуктивности и электрического сопротивления проводника катушки.

Виды соленоидов

По назначению соленоиды разделяют на два класса:

  1. Стационарные. То есть, для магнитных полей стационарного вида, которые долго держатся при некоторых значениях.
  2. Импульсные. Для создания импульсных магнитных полей. Они могут существовать только в краткий период времени, не больше 1 с.

Стационарные способны создать поля не более 2,5х105 Э. Соленоиды импульсного типа могут создать поля 5х106 Э. Если при создании поля соленоиды не подвергаются деформации и не слишком греются, то магнитное поле прямо зависит от проходящего тока: Н = k*I, где k – постоянная величина соленоида, поддающаяся расчету.

Стационарные делятся:

  • Резистивные.
  • Сверхпроводящие.

Резистивные соленоиды производят из материалов, обладающих электрическим сопротивлением. В связи с этим вся подходящая к ним энергия переходит в теплоту. Чтобы избежать теплового разрушения устройства, необходимо отвести лишнее тепло. Для этих целей применяют криогенное или водяное охлаждение. Для этого требуется вспомогательная энергия, сравнимая с требуемой энергией для питания соленоида.

Сверхпроводящие соленоиды производят из сплавов, обладающих свойствами сверхпроводимости. Их электрическое сопротивление равно нулю при различных температурах во время эксперимента. При функционировании сверхпроводящего соленоида теплота выделяется только в подходящих проводниках и источнике напряжения. Источник питания в этом случае можно исключить, так как соленоид функционирует в короткозамкнутом режиме. При этом поле может существовать без расхода энергии бесконечно долго при условии сохранения сверхпроводимости.

Устройства для создания мощных магнитных полей включают в себя три главные части:

  1. Соленоид.
  2. Источник тока.
  3. Система охлаждения.

При проектировании соленоида берут во внимание величины внутреннего канала и мощности источника питания.

Создание устройства с резистивным соленоидом для образования стационарных полей является глобальной научно-технической задачей. В мире, в том числе и в нашей стране, существует всего несколько лабораторий с подобными устройствами. Применяются соленоиды различных конструкций, эксплуатация которых осуществляется около тепловой границы.

Для обслуживания таких устройств необходим персонал, состоящий из работников высокой квалификации, работа которых дорого ценится. Большая часть финансов расходуется на оплату электрической энергии. Эксплуатация и обслуживание таких мощных соленоидов со временем окупается, так как ученые и исследователи различных областей науки, из разных стран могут получать важнейшие результаты для развития науки.

Наиболее сложные и важные задачи можно решить путем применения сверхпроводящих соленоидов. Этот способ более эффективный, экономичный и простой. Для примера можно назвать создание мощных стационарных полей сверхпроводящими соленоидами. Наиболее оригинальное свойство сверхпроводимости – это отсутствие электрического сопротивления у некоторых сплавов и металлов при температуре ниже критического значения.

Явление сверхпроводимости позволяет производить соленоид, не имеющий диссипации энергии при прохождении электрического тока. Однако, образованное поле имеет ограничение в том, что при достижении некоторого значения критического поля свойство сверхпроводимости разрушается, и электрическое сопротивление возобновляется.

Критическое поле повышается при снижении температуры от 0 до наибольшего значения. Еще в 50-х годах прошлого века открыты сплавы, у которых критическая температура находится в интервале от 10 до 20 К. При этом они имеют свойства очень мощных критических полей.

Технология создания таких сплавов и производство из них материалов для катушек соленоидов очень трудоемка и сложна. Поэтому такие устройства имеют высокую стоимость. Однако их эксплуатация недорогая и простая в обслуживании. Для этого необходим только источник питания низкого напряжения небольшой мощности и жидкий гелий. Мощность источника понадобится не выше 1 киловатта. Устройство таких соленоидов состоит из катушки, выполненной из меди и сверхпроводника многожильным проводом, лентой или шиной.

Существует возможность снижения энергетических затрат на создание еще более мощных полей. Эта возможность реализуется в нескольких ведущих странах, в том числе и в России. Такой способ основан на применении комбинации из водоохлаждаемого и сверхпроводящего соленоидов. Его еще называют гибридным соленоидом. В этом устройстве интегрируются наибольшие достижимые поля обоих типов соленоидов.

Водоохлаждаемый соленоид должен находиться внутри сверхпроводящего. Создание гибридного соленоида является объемной и сложной научно-технической проблемой. Для ее решения требуется работа нескольких коллективов научных учреждений. Подобное гибридное устройство эксплуатируется в нашей стране в Академии наук. Там соленоид со сверхпроводящими свойствами имеет массу 1,5 тонны. Обмотка выполнена из специальных сплавов ниобия с цинком и титаном. Обмотка водоохлаждаемого соленоида выполнена медной шиной.

Похожие темы:

electrosam.ru

Наиболее оптимальные варианты управления соленоидом

Соленоиды используются во многих устройствах для обеспечения линейного или вращательного приведения в действие  механических систем.Хотя управление соленоидом может быть таким же простым, как включение и выключение нагрузки (например, выключатель), часто более высокая производительность может быть получена с помощью специализированной интегральной микросхемы (ИС) для его управления.

В этой статье мы рассмотрим, как система управления электропривода влияет на электромеханические характеристики соленоидов. Будет сравниваться две различные схемы: простой коммутатор и драйвер регулирования тока. Также будут рассмотрены технологии энергосбережения, которые ограничивают рассеивание мощности в соленоиде.

Принцип работы соленоида

Самая примитивная конструкция соленоида представляет собой катушку, создающую магнитное поле. Устройства, которые мы называем соленоидами, состоят из катушки и движущегося сердечника из железа или другого материала. При подаче тока в катушку сердечник втягивается и приводит в движение механический объект, соединенный с сердечником. Простой соленоид показан ниже:

Для приведения в движение сердечника на катушку подается напряжение. Поскольку индуктивное сопротивление катушки довольно велико для ускорения процессов срабатывания на катушку подают повышенное напряжение. Втягивающая сила сердечника пропорциональна току.

Для удержания механического устройства в активной зоне необходим гораздо меньший ток. Если ток в катушке после доведения механического устройства до конечной точки не уменьшить, то это вызовет значительно больший нагрев соленоида.

Для решения этой проблемы можно использовать  драйвер постоянного тока. Ток можно контролировать по времени для обеспечения минимальных тепловых потерь при максимально необходимом удерживающем моменте.

Испытательная установка

Чтобы сравнить электромеханические характеристики различных схем привода соленоида, была создана простая тестовая установка с использованием сервоусилителя, подключенного к соленоиду с изгибом для измерения движения соленоида. Движение, наряду с напряжением и током, было зафиксировано с помощью осциллографа. Для управления соленоидом использовалась MPS MPQ6610 IC.

Простые драйверы для соленоидов

Самый простой способ управлять соленоидом — включить и выключить ток. Это часто делается с помощью переключателя MOSFET с низкой стороны и токового защитного диода (рисунок ниже). В этой схеме ток ограничен только напряжением питания и постоянным сопротивлением соленоида.

Электромеханические характеристики простого привода соленоида ограничены. Поскольку полное напряжение и ток применяются в течение 100% времени, ток втягивания ограничивается постоянной мощностью рассеяния соленоида. Большая индуктивность катушки ограничивает скорость нарастания тока при включении соленоида.

В тесте измерялось движение, напряжение и ток соленоида включаемого с помощью простого переключателя (рисунок ниже). В этом случае время включения соленоида (15 Ом, рассчитанного на 12 В) занимало 30 мс, чтобы приводить в действие механический привод и рассеивать мощность 10 Вт.

Если вы задаетесь вопросом о «впадине» в текущей форме волны, то это уменьшение тока связано с обратной ЭДС, создаваемой движущимся сердечником соленоида. Обратная ЭДС увеличивается по мере того, как сердечник разгоняется до тех пор, пока соленоид не втянется и не остановится.

Высокопроизводительный драйвер соленоида

В большинстве применений полный ток необходим только для втягивания соленоида. После завершения движения уровень тока в соленоиде может быть снижен, что приводит к экономии энергии и значительно меньшему количеству тепла, выделяемого в катушке. Это также позволяет использовать более высокое напряжение питания, что обеспечивает форсировку тока втягивания, чтобы сделать процесс втягивания сердечника соленоида более быстрым и обеспечить большую силу втягивания.

Мощный полумост MPS MPQ6610 вместе с несколькими внешними компонентами может выполнить эту задачу (рисунок ниже). MPQ6610 рассчитан на 60 В и 3 А и доступен в небольших пакетах TSOT и SOIC.

Результирующие сигналы возбуждения показаны на рисунке ниже. Желтая линия — это сигнал OUT, управляющий соленоидом, а зеленый — ток соленоида. Первоначально полное напряжение питания 24 В (в этом случае приводится в движение соленоид). После задержки ток уменьшается путем широтно-импульсной модуляции выхода. Время втягивания сокращается до 16 мс, а рассеиваемая мощность удержания значительно ниже (около 600 мВт вместо 10 Вт).

Эта схема работает следующим образом:

Первоначально входной сигнал низкий. Это разряжает C1-D1 и удерживает контакт ISET с низким значением Q1.

Входной сигнал нарастает, что позволяет MPQ6610  «нарастить» выходной сигнал до высокого уровня, применяя полное напряжение питания к соленоиду. C1 начинает заряжаться через R1. Ток поступает из штыря ISET, пропорционального току, протекающему в соленоиде. С зарядом C1 напряжение на штыре ISET может увеличиться.

Предполагая, что в соленоиде имеется достаточный ток, напряжение на шине ISET продолжает расти, пока не достигнет своего порога регулирования тока (1,5 В). На этом этапе MPQ6610 начинает регулировать ток соленоида. Регулируемый ток удержания устанавливается значением R2.

Время задержки (когда соленоид приводится в 100% рабочий цикл) устанавливается значениями R1 и C1. Для стандартного логического уровня 3,3 В время составляет приблизительно 0,33 × RC. Для примера выше, с R1 = 100 кОм и C1 = 2,2 мкФ, 0,33 × RC = 75 мс.

Выводы

Представленные в этой статье измерения показывают, что улучшенная производительность и значительно более низкое потребление энергии могут быть достигнуты с использованием управляющего током драйвера для управления соленоидами. Небольшие драйверы на интегральных микросхемах, такие как MPS MPQ6610, могут обеспечить это преимущество производительности по низкой цене и занимать очень небольшую площадь на печатной плате.

И кому интересно как работает соленоид:

elenergi.ru

Устройство и принцип работы соленоидов АКПП

АКПП любой формации представляет собой достаточно сложный механизм, просто изобилующий разного рода деталями. Одни из них являются лишь вспомогательными в работе устройства, а другие – настоящей основой. Именно к категории последних относятся соленоиды, отвечающие за переключение передач и управление режимами коробки. Более подробно о принципах функционирования и общей концепции данных элементов АКПП поговорим сегодня. Интересно? Тогда обязательно ознакомьтесь с приведённой ниже статьёй.

Соленоид АКПП – это специальное устройство, которое отвечает за движение масла внутри гидроблочного механизма. Управляется оно электронным блоком управления АКПП и, по сути, представляет собой обычный электромеханический клапан. Именно соленоиды стали наиболее распространёнными «управленцами» переключения передач и режимов работы в современных автоматических коробках передач. Если в роботизированных и вариаторных КПП заменить данные узлы чем-то возможно, то вот в гидравлических АКПП они стали основой управления, поэтому вряд ли будут вытеснены в течение ближайших десятилетий.

Стоит отметить, что соленоид в коробке переключения передач далеко не один – их множество, которые зачастую объединены в целые блоки. Ранее функции контроля движения масла по каналам АКПП возлагались на механические клапанные механизмы, однако развитие автомобильной электроники спровоцировало замену таких устройств на более удобные соленоиды. Если быть точнее, то первый соленоид был установлен в конструкцию автомата лишь в середине 80-х годов в США, после чего получил широкое распространение в этой сфере применения.

Повторимся, любой соленоид – это электромеханическое устройство, которое, честно говоря, очень простое по своей конструкции. Основная функция данного механизма заключается в перекрытии подачи масла по тому или иному каналу АКПП посредством его запирания специальным стержнем. Последний, к слову, выполнен из металла и попросту скользит в проводящей ток спирали (электричество в ней течёт постоянно, пока заведён мотор автомобиля). Нарастание тока движет стержень к концу спирали, то есть запирает канал подачи масла, снижение – к его началу, соответственно, усиливая подачу смазки. Движение стержня любого соленоида организовано при помощи специальных механизмов – запирающих и возвратных пружин.

Все соленоиды АКПП собраны в её элементе под названием «гидроблок» (в народе – блок соленоидов). Гидроблок, к слову, представляет собой плиту, разделённую на многочисленные каналы и имеющую в конструкции множество датчиков, клапанов. Такая организация позволяет автомату осуществлять возложенные на него обязанности, которые заключаются в автоматическом переключении передач. Соленоиды в этой системе играют немаловажную роль и находятся под управлением ЭБУ, направляющем им сигналы по открытию или закрытию конкретного канала гидроблока.

Виды соленоидов

Как стало ясно из предыдущего пункта статьи, управление АКПП без соленоидов представить сложно. В зависимости от того, по какому принципу работают данные механизмы, принято выделять несколько поколений установок. На сегодняшний день выделяются три основных вида соленоидов:

  • Первый – стандартный электромеханический клапан, работающий по принципу «полностью отрыть канал подачи масла или же полностью закрыть его». Соответственно, при открытом положении такого соленоида по каналу гидроблока свободно протекает трансмиссионная жидкость, а при закрытом — масло не течёт;
  • Второй – соленоид, представленный электромагнитным клапаном. Такие механизмы одно время были очень популярны в сфере автомобилестроения, так как могли точно организовать работу АКПП. Несмотря на это, низкая надёжность электромагнитных соленоидов сильно подорвала их популярность, поэтому в масштабном автомобилестроении они практически не используются. Главная фишка данных устройств заключается в том, что стержень может не только полностью открыть или закрыть канал подачи масла, но и сделать это частично, мягко регулируя подачу трансмиссионной жидкости;
  • Третий – соленоид, представленный усовершенствованным электромагнитным клапаном. Данный механизм имеет в своей конструкции не просто запирающий/открывающий канал стержень, а тонко работающий гидравлический клапан. Работа подобных соленоидов основана на том, что контроль движения масла осуществляется при помощи шарового клапана. По сути, такое устройство позволяет организовать тонкую настройку работы АКПП, но при этом является заметно надёжней второго типа соленоидов, поэтому во время своего появления получило широкое применение. Более того, новейшие соленоиды имеют в конструкции фильтрующий элемент, который при пропускании через него трансмиссионной жидкости отсеивает лишний мусор и существенно продлевает срок службы коробки.

С течением времени конструкция автомата становилась всё более и более сложной, поэтому усложнялись и принципы работы соленоидов АКПП, из-за чего они подвергались усиленной модернизации. Основные совершенствования касались того, чтобы переложить на клапан дополнительные функции по типу сброса давления в конкретном блоке сцепления коробки или заблокировать муфту гидротрансформатора.

Типы соленоидов в современных коробках

Идеи автомобильных инженеров позволили достичь подобных задач. Теперь многочисленные типы соленоидов не только отвечают за переключение передач, но и тонко управляют режимами работы АКПП. Сегодня стандартный автомат имеет в конструкции 6 типов соленоидов:

  • Соленоид EPC-формации или клапан линейного давления. Данный соленоид является важнейшим в конструкции АКПП и всегда стоит в гидроблоке первым. Основной функцией линейного соленоида является контроль подачи масла в конкретный канал. Нагрузка на данный механизм высока, поэтому он ломается чаще всего и подлежит первоочередной проверке;
  • Соленоид TCC-формации или клапан, блокирующий муфту гидротрансформатора. Данное устройство, как правило, включается при работе мотора на высоких оборотах и частично отвечает за повышение КПД мотора. При «слабой» езде этот соленоид не работает;
  • Соленоид Shift-формации или клапан-шифтовик. Располагается за линейным клапаном, имеет сложную структуру и выполняет важнейшую функцию всего гидроблока – переключает передачи посредством отточенной подачи трансмиссионной жидкости по соответствующим каналам;
  • Управляющий соленоид. Пожалуй, наиболее простое устройство во всём гидроблоке, ибо имеет лишь одну несложную функцию – контроль за работой всех остальных соленоидов. Функционирование управляющего клапана очень схоже с тем, как работает транзистор любой микросхемы;
  • Соленоид проскальзывания. Подобный клапан организует плавность перехода с одной передачи на другую, то есть, переводя работу автомата в режим проскальзывания;
  • Соленоид охлаждения. Этот же механизм пускает нагретое масло АКПП в отделы охлаждения, что необходимо для стабильной работы коробки.

Важно понимать, что для каждой пары сцепления (передачи) имеется не один соленоид, а сразу несколько из отмеченных выше. Стабильная и беспроблемная работа АКПП возможна лишь при нормальной работе всех клапанов гидроблока, поэтому относиться к ним нужно с должным уровнем ответственности.

О неисправностях соленоидов АКПП и их ремонте

Неисправный соленоид – это одна из главных причин некорректной работы и перехода АКПП в аварийный режим. Несмотря на высокую надёжность современных клапанов гидроблока, по своей сущности эти устройства являются расходниками, поэтому требуют периодической замены. Если ситуация не слишком запущена, проблему может решить обычная замена масла в АКПП. Поменять соленоид вполне можно собственноручно, однако прежде всего важно диагностировать его неисправность.

Для проверки любого клапана гидроблочной плиты придётся осуществлять его «прозвонку». Необходимо это по одной простой причине: неисправный соленоид теряет нормальное для себя сопротивление, если быть точнее, оно повышается. Как проверить соленоид? Очень просто, процедура диагностики клапанов не представляет собой ничего сложного и заключается в исполнении следующих операций:

  1. Снимите гидроблок с коробки, который зачастую располагается на днище узла, реже – сбоку;
  2. Отсоедините контакты каждого соленоида от соответствующих разъёмов блока управления;
  3. Прозвоните каждый клапан. Норма сопротивления на его конках определяется для каждого типа в индивидуальном порядке. Так, например, для соленоидов EV-1 норма сопротивления находится в пределах 65-66 Ом (при 20 градусах по Цельсию). Для других клапанов нормальные показатели, соответственно, свои.

Примечание! На современных коробках имеются функции самодиагностики, поэтому для определения того, какой именно соленоид неисправен, достаточно подключиться к бортовому компьютеру автомобиля. Если подобная мера не возможна, то придётся проводить диагностику традиционным «прозвоном» своими руками, после чего уже ремонтировать нужный элемент узла.

Допустим, неисправный клапан выявлен – что требуется дальше? Естественно, ремонт соленоида или их группы. К сожалению, разобрать клапан, промыть его и собрать обратно не выйдет, придётся полностью менять элемент гидроблока. Стоимость его не особо высока, поэтому бояться процедуры ремонта не стоит. Зачастую замена соленоидов в АКПП проводится так:

  1. Гидроблок снимается с коробки;
  2. От клапана отсоединяются все разъёмы;
  3. Откручивают крепления соленоида, и он снимается с гидроблока;
  4. После этого на место старого клапана устанавливается новый, к нему присоединяются все разъёмы;
  5. Затем гидроблок устанавливается обратно на КПП. Ремонт окончен.

Как видите, особых сложностей в устройстве соленоидов автомата и их ремонте нет. Разобраться и с тем, и с другим вполне поможет представленный сегодня материал. Надеемся, он был для вас полезен и дал ответы на интересующие вопросы. Удачи на дорогах и в ремонте авто!

auto-gl.ru

Принцип работы электромагнитного клапана | ValveSale

Соленоидный клапан

Запорный элемент электромеханического действия, выполняющий функцию дистанционного автоматического контроля направлений движения жидкой и газообразной рабочей среды внутри трубопровода. С помощью электромагнитной катушки происходит дозированная подача необходимых объемов потока в определенный момент времени.

Широко применяется на бытовом уровне и в крупных промышленных конструкциях в широком диапазоне рабочих температур. В трубопроводах жилищно-коммунального хозяйства клапан выполняет регулирование среды внутри водопроводной или канализационных систем, центрального отопления. Используется на технологических линиях химических и нефтеперерабатывающих предприятиях, фильтрационных гидропроводах. Применим в сельском хозяйстве: поливочных конструкциях, системах дозирования и смешения.

Принцип работы электромагнитного клапана

Для производства электромагнитных клапанов используются материалы, соответствующие требованиям ГОСТ и международным стандартам. Электромагнитный клапан состоит из нескольких основных элементов:

  • Корпус. Может изготавливаться из нержавеющей стали, чугуна, коррозионностойкой латуни, химических полимеров.

  • Индукционная катушка с сердечником (соленоид). Располагается в герметичном корпусе, обмотка выполнена из высокопрочной технической меди.

  • Уплотнитель. Для обеспечения максимальной герметичности используется полимер политетрафторэтилен (тефлон), термостойкая резина, силикон, каучук, фторопласт.

  • Функциональные элементы: плунжер, пружина, шток из нержавеющей маркированной стали.  

Как работает электромагнитный клапан

Принцип работы электромагнитного клапана основан на работе элемента управления — электромагнитной катушки. При отсутствии постоянного или переменного тока под механическим давлением пружины, мембрана (поршень) клапана расположены в седле устройства. При подаче электрического напряжения различной мощности к клеммам соленоида, сердечник вовлекается внутрь катушки, обеспечивая открытие или закрытие протокового отверстия. Обесточивание соленоида приводит к закрытию створок. Конструктивные особенности устройства соленоидного клапана могут меняться, в зависимости от его типа.

Типы электромагнитных клапанов

Электромагнитные клапаны распределены на несколько категорий.

По типу рабочего положения выделяют:

  • Нормально-открытые клапаны. По умолчанию, затворный элемент находится в открытом положении и не создает препятствий движению потоков.

  • Нормально-закрытые клапаны. Отсутствие напряжения на катушке характеризуется закрытой позицией затвора.

По принципу действия электромагнитные клапаны разделяют на:

  • Клапан прямого действия. смена положений затворного компонента осуществляется под воздействием движения сердечника, при подаче электронапряжения.

  • Клапан непрямого действия. Воздействие энергии рабочей среды приводит к открытию и закрытию условного прохода. Управляется дистанционно, под действием пилотного клапана, срабатывающего при подаче электрического тока к катушке.

По типу присоединения к трубопроводу:

  • Муфтовые. Монтаж производится при помощи внутренней трубной резьбы цилиндрической формы, с различным диаметром условного прохода и резьбовым шагом. Условное обозначение диаметра соленоидного клапана указывается в техническом паспорте изделия.
  • Фланцевые. Присоединение к трубопроводу с помощью парных фланцев с отверстиями для болтов и шпилек. Применяется в трубопроводах крупного диаметра. При монтаже используется уплотнительное кольцо или прокладка из паронита.

По типу уплотнительной мембраны:

  • Мембрана FKM (фтористый каучук). Стандартное уплотнение, применяется для большинства неагрессивных рабочих сред.

  • Мембрана NBR (бутадиен-нитрильный каучук). Используется в средах продуктов нефтепереработки: бензин, масла, керосин, диз.топливо.

  • Мембрана EPDM (этилен-пропиленовый каучук). Характеризуется повышенной устойчивостью к температурам, работает в среде химических растворов и соединений: щелочей, спиртов, гликолей, кетона, воды и др.

Правила монтажа и эксплуатации

Любые монтажные работы с клапаном проводятся при отсутствии рабочей среды в системе и обесточивании электрической цепи. Перед началом работ следует очистить трубопровод от механических частиц и взвесей.

Как подключить электромагнитный клапан соленоидный. Подключение электромагнитных клапанов в системе производится в горизонтальном положении, катушкой вверх.

  • Для правильной работы устройства направление движения среды должно соответствовать указательной стрелке на корпусе.

  • Установка электромагнитного клапана производится в месте, доступном для последующего ремонта или обслуживания.

  • Запрещена установка клапана в местах с высокими показателями конденсации или вибрации, участках с возможным обледенением трубы, вблизи течей и порывов.

  • Установка дополнительных сетчатых фильтров подходящего типоразмера защитит клапан от попадания загрязнений, и, как следствие, снижения его гидравлических характеристик.

Преимущества электромагнитных клапанов
  • Автоматический тип работы

  • Высокое быстродействие

  • Возможность удаленного управления

  • Компактность (малые габаритные и весовые показатели)

  • Длительный срок эксплуатации

  • Простота монтажа и обслуживания

Причины поломок и методы устранения

Правильная эксплуатация и соблюдение технических параметров, указанных в паспорте изделия обеспечат надежную и длительную работу устройства. В некоторых случаях преждевременные неисправности электромагнитного клапана возможны по нескольким причинам.

  • Снижение герметичности изделия может быть вызвано попаданием механических частиц на седло устройства. Рекомендуется демонтаж и чистка устройства с последующей установкой в системе сетчатого фильтра до клапана.

  • Выход из строя индукционной катушки может быть обусловлен неправильной мощностью напряжения, подаваемого к клеммам или превышением граничных параметров температуры и давления внутри трубопровода. Следует провести демонтаж устройства и заменить катушку. Попадание влаги на катушку может вызвать короткое замыкание и поломку устройства.

  • Неполное открытие/закрытие клапана может стать следствием загрязнения управляющего отверстия, дефектами мембраны или прокладки, остаточным напряжением на соленоиде и др.

Ремонт электромагнитного клапана должен производиться квалифицированным специалистом, имеющим допуск к работе с электрическими сетями.

Производство соленоидных клапанов осуществляется на специализированных заводах трубной арматуры, расположенные практически в каждой стране Европы. Одни из ведущим мировым производителем электромагнитных клапанов являются SMART HYDRODYNAMIC SYSTEMS. Стоимость электромагнитного клапана зависит от его функций, конструктивного типа, диаметра резьбы и фирмы- производителя электромагнитных (соленоидных) клапанов. Для определения необходимого вида устройства можно проконсультироваться со специалистами или посмотреть видео электромагнитного клапана.


В нашем магазины вы можете купить электромагнитный клапан по выгодной цене оптом и в розницу со склада в Москве с доставкой по России. Быстрые отгрузки в города: Санкт-Петербург, Екатеринбург, Казань, Краснодар, Самара, Воронеж, Нижний Новгород, Волгоград, Ростов-на-Дону, Челябинск, Новосибирск, Омск, Уфа, Красноярск, Пермь.

valvesale.ru

Соленоиды автоматической коробки передач: назначение, устройство, принцип работы

Соленоид АКПП — электромагнитный клапан, открывает и закрывает масляные каналы гидроблока, по которым подается рабочая жидкость ATF к механическим элементам внутри коробки передач.

Работой соленоидов управляет ЭБУ коробкой – автомат. Блок управления посылает электрические сигналы на соленоид, тем самым открывая или закрывая клапан. Это позволяет контролировать давление трансмиссионного масла при его подаче на фрикционы (элементы сцепления АКПП).

Благодаря работе соленоидов в автоматической коробке происходит переключение передач, а также включается и отключается блокировка ГДТ (гидротрансформатора).

Читайте в этой статье

Устройство соленоидов АКПП

Если говорить о  самой простой конструкции, для простоты понимания, соленоид является электроклапаном. В двух словах, в корпусе стоит стержень из металла, на который навита спираль. По указанной спирали идет ток.

Данный стержень в корпусе подвижен, под воздействием тока перемещается от конца спирали к ее началу. Также на стержень воздействие оказывает пружина, которая закрывает клапан.

Соленоид устанавливается в гидроблоке (гидравлическая клапанная плита). Клапан вставляется в канал, также к нему присоединяется электропроводка для подсоединения к блоку управления. Как правило, в АКПП устанавливается от 4-х соленоидов и более (в зависимости от количества передач, особенностей конструкции коробки и т.д.).

Виды соленоидов

Соленоиды для автоматических трансмиссий на начальном этапе выполняли только функцию открытия и закрытия каналов гидроблока.  Далее соленоид стал по принципу работы напоминать электромагнитный клапан (гидравлический клапан).

Устройство получило отдельный масляный канал и клапан шарикового типа, который отвечает за перекрытие данного канала. Далее технология получила развитие, что позволило создать соленоиды  нового поколения.

В таком устройстве шарик в открытом положении позволяет маслу пройти из первого во второй канал, а в закрытом из второго в третий.  В результате удалось добиться эффективного механизма включения и выключения фрикционных муфт (фрикционов).

Следующим этапом развития стали соленоиды с возможностью  дополнительного регулирования, похожие на вентиль. Такие клапаны имеют внутренне кривое сечение. Получив импульс от ЭБУ, сечение соленоида может приоткрыться или немного закрыться. Такое решение позволило еще более гибко управлять давлением масла.

Также добавим, что соленоиды бывают шариковыми, золотниковыми (с клапаном – золотником), линейные соленоиды, соленоиды VFS и т.д.  Кстати, ресурс последних заметно ниже, чем у линейных.

Еще соленоиды могут выполнять разные функции. Например, если отдельно изучать устройство гидромеханических АКПП, соленоид ЕРС /LPC является «главным», так как через него масло проходит  к другим соленоидам и каналам гидроблока.

В АКПП также устанавливается соленоид ТСС. Данный соленоид отвечает за блокировку/разблокировку ГДТ. Через него проходит горячее и загрязненное масло из гидротрансформатора, так что данный элемент часто выходит из строя. Соленоид Shift выполняет роль переключателя скоростей, еще имеются управляющие соленоиды гидроплиты и т.д.

Неисправности и ремонт/замена соленоидов АКПП

Прежде всего, срок службы соленоидов напрямую зависит от состояния и качества масла АКПП. Если масло грязное, клапаны-соленоиды забиваются продуктами износа АКПП, различными отложениями и т.д.

В результате клапан начинает «подклинивать» или «зависать». Естественно, коробка перестает корректно работать, появляются толчки, рывки, пинки АКПП, не включаются отдельные передачи и т.д.

Также частой причиной проблем с соленоидами является износ каналов и плунжеров, нередко отмечается то, что пружины теряют упругость, в корпусе появляются трещины, возникают проблемы с обмоткой соленоида.

Зачастую, ресурс самых надежных соленоидов не более 450 тыс. км, более дешевые «облегченные» версии исправно работают не более 250 тыс. км. Чаще всего, изнашиваются сами детали внутри соленоидов (втулки, клапаны, плунжеры, шарик и т.д.).

Диагностика и замена соленоидов коробки — автомат нужна в том случае, если АКПП стала некорректно работать. При диагностике следует проверять соленоиды по отдельности. В зависимости от типа автоматической коробки, каждый из них отвечает за  те или иные функции.

Например, в простом «автомате» на 4 передачи обычно стоит 4 соленоида. При этом первый соленоид отвечает за включение первой и второй передачи, второй за третью и четвертую передачу, третий  клапан управляет блокировкой ГДТ, четвертый отвечает за тормозную ленту.

Если водитель заметил, что возникли проблемы при переходе со второй  на третью или с первой на вторую передачу, следует на начальном этапе изучить устройство конкретной АКПП. Тогда можно более точно предположить, какой соленоид неисправен.

Также проблема с соленоидами часто проявляется в виде высвечивания ошибки, загорания сигнальной лампы неисправной АТ на панели приборов и т.д.

В таком случае ошибки нужно считать сканером и расшифровать, а также проверить гидроблок и соленоиды. Соленоиды проверяются на сопротивление, а также промываются или продуваются сжатым воздухом. 

Ремонт соленоида в автоматической коробке часто не предусмотрен. Если иначе, касательно ремонта соленоидов, задача усложняется, так как данная деталь в современных АКПП неразборная.

На практике это означает, что соленоид в таком случае можно только промыть и прочистить. Если же соленоид можно разобрать, тогда возможна замена его обмотки, а также более тщательная очистка всех элементов клапана.

Замена соленоидов  в коробке — автомат выполняется после диагностики их работоспособности. Для замены необходимо снять клапанную плиту, извлечь неисправный клапан и установить новый.  После этого гидроблок устанавливается на место, проверятся герметичность, заливается жидкость АТФ и затем тестируется работа АКПП.

Читайте также

krutimotor.ru

Соленоид — это… Что такое Соленоид?

Образование магнитного потока в соленоиде

Схема полей в соленоиде при протекании по обмотке переменного тока

Солено́ид — разновидность электромагнитов. Соленоид — это односложная катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра. Характеризуется значительным соотношением длины намотки к диаметру оправки, что позволяет создать внутри катушки относительно равномерное магнитное поле.

Соленоид почти всегда снабжается внешним магнитопроводом. Внутренний магнитопровод может быть подвижным или отсутствовать вовсе.

Соленоид на постоянном токе

Если длина соленоида намного больше его диаметра и не используется магнитный материал, то при протекании тока по обмотке внутри катушки создаётся магнитное поле, направленное вдоль оси, которое однородно и для постоянного тока по величине равно

(СИ),

(СГС),

где — магнитная проницаемость вакуума, — число витков N на единицу длины l (линейная плотность витков), — ток в обмотке.

При протекании тока соленоид запасает энергию, равную работе, которую необходимо совершить для установления текущего тока . Величина этой энергии равна

При изменении тока в соленоиде возникает ЭДС самоиндукции, значение которой

Индуктивность соленоида

Индуктивность соленоида выражается следующим образом:

(СИ),
(СГС),

где  — объём соленоида,  — длина проводника, намотаннного на соленоид,  — длина соленоида,  — диаметр витка.

Без использования магнитного материала плотность магнитного потока в пределах катушки является фактически постоянной и равна

где − магнитная проницаемость вакуума, − число витков, — сила тока и — длина катушки. Пренебрегая краевыми эффектами на концах соленоида, получим, что потокосцепление через катушку равно плотности потока , умноженному на площадь поперечного сечения и число витков :

Отсюда следует формула для индуктивности соленоида

эквивалентная предыдущим двум формулам.

Соленоид на переменном токе

При переменном токе соленоид создаёт переменное магнитное поле. Если соленоид используется как электромагнит, то на переменном токе величина силы притяжения изменяется. В случае якоря из магнитомягкого материала направление силы притяжения не изменяется. В случае магнитного якоря направление силы меняется. На переменном токе соленоид имеет комплексное сопротивление, активная составляющая которого определяется активным сопротивлением обмотки, а реактивная составляющая определяется индуктивностью обмотки.

Применение

Соленоиды постоянного тока чаще всего применяются как поступательный силовой электропривод. В отличие от обычных электромагнитов обеспечивает большой ход. Силовая характеристика зависит от строения магнитной системы (сердечника и корпуса) и может быть близка к линейной.

Соленоиды приводят в движение ножницы для отрезания билетов и чеков в кассовых аппаратах, язычки замков, клапаны в двигателях, гидравлических системах и проч. Один из самых известных примеров — «тяговое реле» автомобильного стартёра.

Соленоиды на переменном токе применяются в качестве индуктора для индукционного нагрева в индукционных тигельных печах.

См. также

dic.academic.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о