Основные механизмы и системы двигателя внутреннего сгорания автотракторов
Категория:
Автомобили и трактора
Публикация:
Основные механизмы и системы двигателя внутреннего сгорания автотракторов
Читать далее:
Основные механизмы и системы двигателя внутреннего сгорания автотракторов
Двигатель внутреннего сгорания (рис. 4) состоит из следующих механизмов и систем, выполняющих определенные функции.
Кривошипно-шатунный механизм осуществляет рабочий цикл двигателя и преобразует прямолинейное, возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Механизм состоит из цилиндра с головкой, поршня с кольцами, поршневого пальца, шатуна, коленчатого вала, маховика. Механизм установлен в блок-картере, закрытом снизу поддоном (резервуаром для масла).
Механизм газораспределения предназначен для своевременного впуска в цилиндр горючей смеси или воздуха и своевременного удаления отработавших газов. Он состоит из клапанов с направляющими втулками, пружин с деталями их крепления, штанг 4, коромысел, толкателей, распределительного вала и шестерен привода распределительного вала.
Рекламные предложения на основе ваших интересов:
Система охлаждения служит для отвода избыточного тепла от нагретых деталей двигателя. Она бывает жидкостной или воздушной. Если система охлаж— дения жидкостная, то она состоит из рубашки охлаждения, радиатора, водяного насоса, вентилятора, термостата и патрубков. Система воздушного охлаждения состоит из теплоотводящих ребер, вентилятора, кожуха и щитков, направляющих воздушный поток для отвода тепла.
Система смазки обеспечивает подачу масла к трущимся деталям двигателя с целью уменьшения трения между ними и отвода тепла. Она состоит из резервуара для масла, масляного насоса, фильтров и маслопроводов.
Система питания служит для приготовления горючей смеси и подвода ее к цилиндру (карбюраторные двигатели) или подачи топлива в цилиндр и напол-’ нения его воздухом (дизельные двигатели).
Рис. 4. Устройство одноцилиндрового карбюраторного двигателя
У карбюраторных двигателей эта система состоит из топливного бака, топливопроводов, топливного и воздушного фильтров, топливного насоса, карбюратора (или смесителя), впускного и выпускного трубопроводов, глушителя.
У дизельных двигателей система питания состоит из тех же деталей и приборов, с той лишь разницей, что вместо карбюратора установлены топливный насос высокого давления и форсунка.
Система зажигания предназначена для принудительного воспламенения рабочей смеси от электрической искры. В нее входят приборы, обеспечивающие получение электрического тока высокого напряжения, провода и свечи.
У дизельных двигателей приборы системы зажигания отсутствуют, так как топливо воспламеняется от соприкосновения со сжатым воздухом, имеющим высокую температуру.
Система пуска предназначена для пуска двигателя. К ней относятся: пусковой бензиновый двигатель с механизмом передачи (на тракторе), электрический стартер на автомобиле и иногда на тракторе, декомпрессионный механизм, приборы подогрева воды и воздуха.
Двухтактные двигатели имеют те же основные механизмы и системы, что и четырехтактные, но отличаются по устройству и действию механизма газорас-. пределения.
Рекламные предложения:
Читать далее: Основные понятия и определения по двигателем автотрактора
Категория: — Автомобили и трактора
Главная → Справочник → Статьи → Форум
Основные механизмы и системы двигателя — Общее устройство и работа двигателя — Двигатель — Автомобиль
10 июня 2011г.
Двигатель внутреннего сгорания состоит из двух основных механизмов — кривошипно-шатунного и газораспределительного — и систем охлаждения, смазки, питания. У карбюраторных двигателей имеется и система зажигания.
Кривошипно-шатунный механизм воспринимает силу давления газов и преобразует прямолинейное, возвратно-поступательное движение поршня во вращательное движение коленчатого вала.
Газораспределительный механизм предназначен для своевременного впуска в цилиндр свежей горючей смеси (карбюраторные двигатели) или воздуха (дизели) и выпуска из него отработавших газов.
Система охлаждения отводит теплоту от нагревающихся деталей двигателя. Она может быть жидкостной (у большинства отечественных двигателей) или воздушной (МеМЗ-968).
Система смазки служит для уменьшения трения между деталями двигателя, охлаждения их и отвода продуктов износа.
Система питания обеспечивает приготовление горючей смеси и подачу ее в цилиндры двигателя (карбюраторные и газовые двигатели) или же раздельную подачу в цилиндры топлива и воздуха (дизели), а также удаление из цилиндров продуктов сгорания.
Система зажигания служит для воспламенения рабочей смеси в цилиндрах двигателя при помощи электрической искры.
Основные данные двигателей, установленных на автомобилях ГАЭ-53А, ГАЗ-51А, ЗИЛ-130, «Москвич-412» и ГАЗ-24 «Волга», приведены в таблице:
Контрольные вопросы
- Что называется тактом и из каких тактов состоит рабочий цикл четырехтактного двигателя?
- Что называется степенью сжатия и как она влияет на мощность и экономичность работы двигателя?
- Назовите величину степени сжатия и литраж изучаемых двигателей.
- Какова степень сжатия дизелей и на каком топливе они работают?
- Как происходит рабочий цикл четырехтактного дизеля?
«Автомобиль», под. ред. И.П.Плеханова
Гидронасосы. Типы. Характеристики преимущества и недостатки различных конструкций.
Если вы хотите сказать спасибо автору, просто нажмите кнопку:2. Гидронасосы. Типы. Характеристики преимущества и недостатки различных конструкций.
Гидравлические насосы предназначены для преобразования механический энергии (крутящий момент, частоту вращения) в гидравлическую (подача, давление). Существует большое разнообразие типов и конструкций гидравлических насосов, но всех их объединяет единый принцип действия – вытеснение жидкости. Насосы использующие принцип вытеснения называются объемными. Во время работы внутри насоса образуются изолированные камеры, в которых рабочая жидкость перемещается из полости всасывания в полость нагнетания. Поскольку между полостями всасывания и нагнетания не существует прямого соединения, объемные насосы очень хорошо приспособлены для работы в условиях высокого давления в гидросистеме.
Основными параметрами гидронасосов являются:
• Рабочий объем (удельная подача) [см3/об] – это объем жидкости вытесняемый насосом за 1 оборот вала.
• Максимальное рабочее давлени [МПа, bar]
• Максимальная частота вращения [об/мин]
Классификация объемных насосов по типу вытесняющего элемента показана на Схеме 1.
Схема 1.
При выборе типа насоса для гидросистемы необходимо учитывать ряд факторов свойственных определенным типам насосов и особенности разрабатываемой гидросистемы. Основными критериями выбора насоса являются:
- Диапазон рабочих давлений
- Интервал частот вращения
- Диапазон значений вязкости рабочей жидкости
- Габаритные размеры
- Доступность конструкции для обслуживания
- Стоимость
Далее будут рассмотрены различные типы насосов с описанием их конструктивных преимуществ и недостатков.
1.Поршневые Насосы
1.1 Ручные насосы
Простейшим насосом использующим принцип вытеснения жидкости является ручной насос. Данный вид насосов используется в современной технике для обеспечения гидравлической энергией исполнительных гидродвигателей (в основном линейного перемещения) вспомогательных механизмов. Вторым, часто встречающимся, назначением ручных насосов в гидросистемах является использование его как аварийного источника гидравлической энергии.Давления развиваемые этими насосами лежат в диапазоне до 50МПа, но чаще всего данные насосы используют на давлениях не более 10-15МПа. Рабочий объем до 70 см3. Рабочий объем для ручного насоса это суммарный объем жидкости вытесняемый им за прямой и обратный ход рукоятки. Обычно насосы с малым рабочим объемом способны достигать больших величин рабочего давления, это связано с ограничением силы прикладываемой к рычагу пользователем.
Принцип действия ручного насоса одностороннего действия изображен на рис.1. При ходе поршня вверх через обратный клапан КО2 происходит всасывание жидкости из бака, клапан КО1 при этом закрыт. При ходе поршня вниз происходит вытеснение жидкости через клапан КО1 в напорный трубопровод, клапан КО2 – закрыт.
На рис. 2 показан ручной насос двустороннего действия. При ходе поршня вверх через обратный клапан КО4 происходит всасывание жидкости из бака в нижнюю полость. Одновременно происходит вытеснение рабочей жидкости внапорный трубопровод через клапан КО1. Клапана КО2 и КО3 при этом закрыты. При ходе поршня вниз через обратный клапан КО2происходит всасывание жидкости из бака в нижнюю полость. Одновременно происходит вытеснение рабочей жидкости в напорный трубопровод через клапан КО3. Клапана КО1 и КО4 при этом закрыты.
Внешний вид ручного насоса показан на рис. 3.
Рис. 1
Рис. 2
Рис. 3
Достоинства и недостатки:
Достоинства
- простота конструкции.
- высокая надежность.
- отсутствие приводного двигателя.
Недостатки
- Низкая производительность
1.2Радиально-поршневые насосы
Радиально-поршневые насосы это разновидность роторно-поршневыхгидромашин. Эти насосы применяются для гидросистем с высоким давлением (свыше 40МПа). Эти насосы способны длительно создавать давления до 100МПа.Отличительной особенностью насосов данного типа является их тихоходность, частота вращения насосов данного типакак правило не превышает 1500-2000 об/мин. Частоты вращения до 3000 об/мин можно встретить только для насосов рабочим объемом не более 2-3 см3/об.
Радиально-поршневые насосы бывают двух типов:
- С эксцентричным ротором
- С эксцентричным валом
Радиально-поршневой насос с эксцентричным ротором изображен на рис. 4. Конструктивно поршневая группа насоса установлена в роторе насоса. Ось вращения ротора и ось неподвижного статора смещены на величину эксцентриситета e. При вращении ротора поршни совершают поступательное движение. Величина хода составит 2e. Насос данной конструкции имеет золотниковое распределение. При вращении цилиндры поочередно соединяются с полостями слива и нагнетания разделенными перегородкой золотника, расположенного в центре.
Рис.4
Радиально-поршневой насос с эксцентричным валом изображен на рис. 5. Конструктивно поршневая группа насоса установлена в статоре насоса. Ось вращения вала и ось неподвижного статора совпадают, но на валу имеется кулачок, который смещен на величину е относительно центра вращения вала. При вращении вала, кулачок заставляет поршни совершать поступательное движение. Величина хода составит 2e. Насос данной конструкции имеет клапанное распределение. При вращении вала поршни выдвигаясь из цилиндров наполняются жидкостью через клапана всасывания. Нагнетание жидкости происходит через клапана нагнетания при вхождении поршней в цилиндры.
Данная конструкция редко используется как насосная и намного чаще используется в гидромоторах, о которых будет рассказано в одной из следующих статей.
Рис.5
Рабочий объем гидромашин данного типа можно рассчитать по формуле:
где z – число поршней
dп – диаметр поршня
е – эксцентриситет
Радиально поршневые насосы могут иметь конструкцию с переменным рабочим объемом. Регулировка рабочего объема происходит за счет изменения величины эксцентриситета е.
Из двух описанных конструкций большее распостранение получили радиально-поршневые насосы с эксцентричным валом. Это явилось следствием более простой конструкции. Фотографии радиально-поршневых насосов с эксцентричным валом представлены на рис. 6.
Рис. 6(а)
Рис. 6(б)
Достоинства и недостатки насосов радиально-поршневого:
Достоинства
- простота конструкции.
- высокая надежность.
- Работа на давлениях до 100МПа.
- Относительно малый осевой размер.
Недостатки
- Высокая пульсация давления
- Малые частоты вращения вала
- Больший вес конструкции по отношению к аксиально-поршневым машинам.
1.3Аксиально-поршневые насосы
Аксиально-поршневые насосы – это разновидность роторно-поршневых гидромашин с аксиальным расположением цилиндров (т.е. располагаются вокруг оси вращения блока цилиндров, параллельны или располагаются под небольшим углом к оси).Существует деление по типу вытеснителя на аксиально-плунжерные и аксиально-поршневые гидромашины. Отличаются они тем, что в первых в качестве вытеснителей используются плунжеры, а во вторых — поршни см. рис. 7.
Рис. 7
Насосы данного типа являются самыми распространёнными в современных гидроприводах. По количеству конструктивных исполнений они во много раз превосходят прочие типы гидронасосов. Эти насосы обладают наилучшими габаритно-весовыми характеристики (иными словами имеют высокую удельную мощность), обладают высоким КПД.Насосы этого типа способны даватьдавление до 40МПа и работать на высоких частотах вращения (насосы общего применения имеют частоты до 4000 об/мин, но существуют специализированные насосы этого типа с частотами вращения до 20000 об/мин).
Все аксиально поршневые насосы можно разделить на 2 типа:
- Снаклонным блоком (ось вращения блока цилиндров располагается по углом к оси вращения вала)
- С наклоннымдиском (ось вращения блока цилиндров совпадает с осью вращения вала)
На рис. 8 показана конструктивная схема аксиально поршневого насоса с наклонным блоком. При вращении вала насоса, вращается шарнирно соединенный с ним блок цилиндров. При этом поршни совершают поступательные движения. Блок цилиндров прилегает к распределителю который имеет два паза: один паз соединен с линией всасывания, а другой с линией нагнетания. При выдвижении поршня цилиндр движется над пазом всасывания (см. вид А рис.8) и наполняется жидкостью. После прохождения нижней мертвой точки (точки в которой поршень находится в максимально выдвинутом состоянии) цилиндр соединяется с пазом нагнетания в распределителе и начинает вытеснять жидкость из цилиндра пока не достигнет верхней мертвой точки (точки в которой поршень находится в максимально утоленном в цилиндр состоянии). Далее Цилиндр снова соединяется с пазом всасывания и цикл повторяется. Система распределения используемая в данной конструкции насоса называется золотниковой.
Рис.8
Утечки из цилиндров во время нагнетания скапливаются в корпусе насоса. Чтобы не допустить роста давления в корпусе, на насосах данной конструкции имеется линия дренажа. Если ее заглушить, то это приведет к выходу из строя манжеты вала и нарушению герметичности насоса, а в некоторых случаях – к разрушению корпуса насоса.
На рис.9 показана конструкция насоса с наклонным диском.
Принцип работы насоса с наклонным диском аналогичен работе насоса с наклонным блоком. Насос данной конструкции так-же имеет золотниковое распределение. Отличие конструкций состоит в соосности осей вала и блока цилиндров.
Рабочий объем аксиально-поршневых насосов можно рассчитать из следующего выражения:
где z – число поршней
dп – диаметр поршня
Dц– диаметр расположения цилиндров
γ – угол наклона диска(блока)
Для насосов конструкций рис. 8,9возможны исполнения с изменяемым рабочим объемом. Изменение рабочего объема происходит за чет изменения угла наклона диска или блока (в зависимости от конструкции).
Для аксиально-поршневых насосов необходим механизм синхронизации вращения приводного вала и блока цилиндров. Существует четыре основных способа такой синхронизации:
- Синхронизация одинарным (силовым) карданом
- Синхронизация двойным (несиловым) карданом
- Синхронизация шатунами поршней (бескарданная схема)
- Синхронизация коническим зубчатым зацеплением.
Аксиально-поршневой насос с наклонным блоком представлен на рис. 10. В данной конструкции синхронизация вращения вала и блока цилиндров осуществлена посредством конической зубчатой передачи.
Регулируемый аксиально-поршневой насос с наклонным диском представлен на рис. 11.
Рис. 11
Рассмотрим еще одну довольно распространённую конструкцию насоса с наклонным диском. Это конструкция аксиально-плунжерного насоса с неподвижным блоком, клапанным распределением и приводом плунжеровкулачкового типа (вращающейся наклонной шайбой). По ГОСТ 17398-72 этот тип насоса классифицируется как аксиально-кулачковый. Схема такого насоса показана на рис. 12.
Рис. 12
Эта конструкция имеет принципиальные отличия от конструкции изображенной на рис. 9. Насос на рис. 12 в отличие от предыдущей конструкции на рис. 9 имеет неподвижный блок цилиндров, совмещенный с корпусом, наклонный диск объединенный с валом и клапанное распределение рабочей жидкости. Ход плунжера определяется вращением наклонного диска. Система распределения работает следующим образом: выдвигаясь из цилиндра поршень создает в камере разряжение и через клапан всасывания камера наполняется жидкостью из полости корпуса, объединенной со всасыванием. При вхождении в цилиндр клапан всасывания находится в закрытом состоянии, происходит вытеснение рабочей жидкости из рабочей камеры через клапан нагнетания в линию нагнетания.
Некоторые конструкции аксиально-кулачковых насосов могут работать на давлениях до 70МПа.
Примечательным является факт отсутствия в данной конструкции линии дренажа так как всасывание осуществляется непосредственно из корпуса насоса. При этом в корпусе насоса абсолютное давления ниже атмосферного. По этой причине в данной конструкции повышенные требования предъявляются к уплотнению вала, при выходе из строя которого насос подсасывает воздух и подает гидросистему смесь воздуха и рабочей жидкости. Такой «воздушный коктейль» приводит к вибрациям в гидросистеме и выходу из строя ее элементов, включая насос.
Рабочий объем рассчитывается по той-же зависимости что и для описанных выше конструкций аксиально-поршневых насосов. Следует отметить что насос данной конструкции не имеет исполнения с регулируемым рабочим объемом.
Фотография насоса сконструктивным вырезом показана на рис. 13.
Достоинства и недостатки насосов аксиально-поршневого типа:
Достоинства
- простота конструкции.
- Работа на давлениях до 70МПа.
- Высокий КПД.
- Частоты вращения до 4000 об/мин
- Высокая удельная мощность.
Недостатки
- Высокая пульсация давления
- Высокая стоимость по сравнению с другими типами гидронасосов.
2. Шестеренные насосы
Шестеренные насосы относятся к типу роторныхгидромашин. Рабочими элементами (вытеснителями) являются две вращающиеся шестерни. Различают два основных типа таких насосов:
- Насосы внешнего зацепления
- Насосы внутреннего зацепления.
Частным случаем шестеренных насосов с внутренним зацеплением являются героторные насосы.
Шестеренные насосы широко распространены в гидросистемах с невысокими (до 20 МПа) давлениями. Они широко применяются в сельскохозяйственной, дорожной технике, мобильной гидравлике, системах смазки. Используются для обеспечения гидравлической энергией гидроприводов вспомогательных механизмов в сложных гидросистемах. Столь широкое распространение шестеренные насосы получили за простоту конструкции, компактность и малый вес. Платой за простоту конструкции стало довольно низкое значение КПД (не более 0,85), низкое рабочее давление, и небольшой ресурс (особенно на давлениях ≈20МПа). Шестеренные насосы могут работать на частотах вращения до 5000об/мин.
Существуют образцы шестеренных насосов на давления до 30МПа однако ресурс таких насосов на порядок ниже.
2.1Шестеренные насосы внешнего зацепления
Основными элементами шестеренных насосов внешнего зацепления являются шестерни. При вращении шестерен жидкость, заключенная во впадинах зубьев переносится из линии всасывания в линию нагнетания (рис.14). Поверхности зубьев А1 и А2 вытесняют при вращении шестерен больше жидкости чем может поместиться в пространстве освобождаемом зацепляющимися зубьями B1 и B2. Разность объемов, высвобождаемых двумя парами зубьев вытесняется в линию нагнетания. В месте зацепления шестерен при работе насоса образуются области «запертого» объема, что вызывает пульсации давления в линии нагнетания.
Рабочий объем шестеренного насоса можно определить из зависимости:
Где m – модуль зубьев
z – число зубьев
b – ширина зуба
h – высота зуба
Шестерни насосов внешнего зацепления в большинстве конструкций имеют прямой зуб, однако встречаются конструкции таких насосов с косым и шевронным зубом. Преимущество применения косого зуба состоит в меньшем уровне пульсаций за счет того что в месте зацепления «запертые» объемы не образуются. Недостатком конструкций с косым зубом является возникающая осевая сила, для восприятия которой нужно включать в конструкцию упорные подшипники. Этот недостаток отсутствует в насосах с шевронным зубом, где осевая сила компенсируется формой зуба. У насосов с шевронным зубом также малый уровень пульсаций.
Рис. 14
Конструктивный разрез шестеренного насоса с внешним зацеплением показан на рис. 15.
Рис. 15
Достоинства и недостатки шестеренных насосов внешнего зацепления:
Достоинства
- простота конструкции.
- Частоты вращения до 5000 об/мин
- Низкая стоимость
Недостатки
- Высокая пульсация давления
- Низкий КПД
- Сравнительно низкие давления
2.2 Шестеренные насосы внутреннего зацепления
Отличительной особенностью шестеренных насосов внутреннего зацепления является меньший уровень пульсаций и как следствие малый уровень шума. В связи с этим они находят широкое в стационарных машинах и механизмах, а так-же на мобильной технике работающей в закрытых помещениях.
Принцип работы шестеренного насоса с внутренним зацеплением состоит, как и у насосов внешнего зацепления, в переносе жидкости во впадинах шестерен от линии всасывания в линию нагнетания. В зоне всасывания при вращении шестерен объем камеры, образованной зубьями шестерен и серпообразным разделителем, увеличивается(см. рис. 16). При этом происходит наполнение рабочей камеры жидкостью из линии всасывания. В зоне нагнетания происходит процесс вытеснения рабочей жидкости в линию нагнетания, т.к. объем камеры в этой зоне при вращении шестерен уменьшается.
Рабочий объем шестеренного насоса с внутренним можно определить из зависимости:
Где m – модуль зубьев
z – число зубьев внутренней шестерни
b – ширина зуба
h – высота зуба
Конструктивный разрез шестеренного насоса с внутренним зацеплением показан на рис. 17.
Рис.17
Достоинства и недостатки шестеренных насосов внутреннего зацепления:
Достоинства
- простота конструкции.
- Частоты вращения до 4000 об/мин
- Низкий уровень шума
- Низкая стоимость
Недостатки
- Низкий КПД
- Сравнительно низкие давления
2.3 Героторные насосы.
Героторные насосы это разновидность шестеренных насосов с внутренним зацеплением. Отличие от классической конструкции шестеренного насоса с внутренним зацеплением состоит в отсутствии серпообразного разделителя. Разделение полостей всасывания и нагнетания реализовано за счет применения специального профиля. Его форма такова что в зоне где должен находиться серпообразный разделитель обеспечен постоянный контакт шестерен. (рис.18). Принцип работы насоса данной конструкции точно такой же как и шестеренного насоса с внутренним зацеплением.Героторные насосы обычно используют при невысоких давлениях (до 15МПа) и подачах до 120 л/мин. При этом частоты вращения составляют не более 1500 об/мин.
Изображение героторногопоказано насосана рис. 19.
Рис.18
Рабочий объем героторного насоса можно определить из выражения:
Где Аmin,Аmin – минимальная и максимальная площадь межзубьевой камеры
z – число зубьев внутренней шестерни
b – ширина зуба
\
Рис.19
Достоинства и недостатки героторных насосов:
Достоинства
- Простота конструкции
- Низкий уровень шума
Недостатки
- Невысокий КПД
- Высокая по сравнению с шестеренными насосами стоимость
2.4 Роторно-винтовые насосы.
Еще одной разновидностью шестеренного насоса можно считать винтовые насосы. Их рабочие элементы можно представить как косозубые шестерни с количеством зубьев равному числу заходов винтовой нарезки. Главным преимуществом этих насосов является равномерность подачи и как следствие низкий уровень шума. Достоинством насоса также является его способность перекачивать жидкости с твердыми включениями. Давление развиваемое насосом может составлять до 20МПа. Частоты вращения до 1500 об/мин.
Ввиду сложности изготовления данного типа насосов, они не получили широкого распространения и применяются лишь в специфических гидросистемах. Существуют двух (рис. 20) и трехвинтовые (рис. 21) конструкции насосов.
Достоинства и недостаткироторно-винтовых насосов:
Достоинства
- Низкий уровень шума
- Низкий уровень пульсаций
Недостатки
- Невысокий КПД
- Высокая стоимость
3. Пластинчатые насосы.
Пластинчатые гидронасосы это гидромашины в которых роль вытеснителя рабочей жидкости выполняют радиально расположенные пластины, которые совершают возвратно-поступательные движения при вращении ротора. В российской литературе пластины часто называют – шиберами, а насосы – шиберными.
Различают пластинчатые гидронасосы однократного действия и двойного действия. У насосов однократного действия за один оборот вала гидромашины процесс всасывания и нагнетания осуществляется один раз, в машинах двойного действия — два раза.
Пластинчатые насосы имеют низкий уровень шума и хорошую равномерность подачи. Также эти насосы имеют сравнительно большие рабочие объемы при небольших габаритах. Пластинчатые гидронасосы могут работать на давлениях до 21МПа при частотах вращения до 1500 об/мин.
3.1 Насос однократного действия
Принцип работы насоса однократного действия состоит в следующем. При сообщении вращающего момента валу насоса ротор насоса приходит во вращение (см. рис. 22). Под действием центробежной силы пластины прижимаются к корпусу статора, в результате чего образуется две полости, герметично отделённых друг от друга. При прохождении пластин через область всасывания, объем рабочих камер между ними увеличивается и происходит всасывание рабочей жидкости.При прохождении пластин через область нагнетания, объем рабочих камер между ними уменьшается и происходит вытеснение рабочей жидкости в линию нагнетания. Для обеспечения прижима пластин в зоне нагнетания в полость под ними подводится давление из линии нагнетания. В некоторых случаях дополнительный прижим пластин организуется за счет установки пружин под пластины.
Рабочий объем пластинчатого насоса однократного действия рассчитывается как:
Где e – эксцентриситет
b – ширина пластины
Насосы однократного действия конструктивно могут иметь исполнения с регулируемым рабочим объемом. Регулировка рабочего объема происходит за счет изменения величины эксцентриситета e.
Рис. 22
Достоинства и недостаткипластинчатых насосов однократного действия:
Достоинства
- Низкий уровень шума
- Низкий уровень пульсаций
- Возможность регулировки рабочего объема
- Низкая по сравнению с роторно-поршневыми насосами стоимость.
- Менее требователен к чистоте рабочей жидкости.
Недостатки
- Большие нагрузки на подшипники ротора.
- Сложность уплотнения торцов пластин
- Низкая ремонтопригодность
- Сравнительно невысокие давления (до 7МПа)
3.2 Насос двойного действия
Принцип действия насоса двойного действия полностью аналогичен принципу работы насоса однократного действия (рис. 23). Отличием является наличие двух зон всасывания и двух зон нагнетания. Для обеспечения прижима пластин в зоне нагнетания, также как и насосов однократного действия, подводится давление нагнетания.
Рис. 23
Рабочий объем пластинчатого насоса двойного действия рассчитывается как:
Где b – ширина пластины
Изображение внутреннего устройства пластинчатого насоса двойного действия показано на рис. 24.
Рис. 24
Достоинства и недостаткипластинчатых насосов двойного действия:
Достоинства
- Низкий уровень шума
- Низкий уровень пульсаций
- Возможность регулировки рабочего объема
- Уравновешенность радиальных нагрузок в роторе.
- Низкая по сравнению с роторно-поршневыми насосами стоимость.
- Менее требователен к чистоте рабочей жидкости.
- Большие по сравнению пластинчатыми насосами однократного действия давления (до 21МПа)
Недостатки
- Низкая ремонтопригодность
- Сложность уплотнения торцов пластин
4. Рекомендации по выбору насоса для гидросистемы.
Выбор типа и насоса нужно осуществлять исходя из условий работы гидросистемы, ее назначения и требований к параметрам потребного потока рабочей жидкости.
Основными параметрами при выборе типа насоса являются:
- Уровень действующих давлений рабочей жидкости;
- Класс чистоты рабочей жидкости;
- Диапазон вязкостей рабочей жидкости;
- Экономическое обоснование применения.
При выборе насоса для гидросистемы следует учитывать большое количество определяющих факторов. Основными критериями с которых необходимо начать выбор насоса являются необходимая подача Qи давлениеp. Также в начале процедуры подбора необходимо четкое представление о типе приводного двигателя. В зависимости от предназначения и базирования механизма приводимого в действие гидросистемой приводной двигатель может быть электрическим или двигателем внутреннего сгорания. При выборе мощности приводного двигателя следует определить необходимую для гидросистемы гидравлическую мощность, которую можно приблизительно определить по зависимости (1).
где Q – подача насоса [л/мин]
p – давление в гидросистеме [МПа]
ɳ — КПД насоса (шестеренного и пластинчатого ɳ=0,85, для роторно-поршневого ɳ=0,9)
После определения мощностивыбирается тип гидронасоса исходя из характеристик свойственных для каждого из типов насосов и рабочего давления. Необходимый рабочий объем гидронасоса определяется как:
где Q – необходимая подача насоса [л/мин]
n – частота вращения двигателя [об/мин]
Определив необходимый рабочий объем насоса,выбираем по каталогу насос выбранного типа с наиболее близким значением рабочего объема. После чего взяв из каталога реальные значения q0и ɳ, рассчитываем реальное значение подачи насосаQ:
и проверяем насос на совместимость с выбранным двигателем по мощности (см. выражение (1)).
При необходимости наличия регулируемой подачи насоса, помимо установки регулируемого насоса, можно применить насос постоянного рабочего объема при этом подачу регулировать оборотами приводного двигателя. Данный способ регулирования может быть осуществлен в ограниченных характеристиками двигателя пределах.
Для ступенчатой регулировки скорости гидродвигателя в гидросистеме можно применять два насоса илимногосекционные насосы, фактически представляющие собой несколько насосовконструктивно выполненных одним блоком. Для регулировки скорости в этом случае необходимо подключать или отключать секции насоса изменяя тем самым суммарную подачу насоса. Способы коммутации секций будут описаны в статьях 7 и 8.
5. Причины отказа насосов.
При эксплуатации насоса следует обращать внимание на условия его работы. Наиболее часто неисправность насоса бывает вызвана:
- Попаданием посторонних частиц (грязи)
- Масляным голоданием
- Работой на водно-масляной эмульсии
- Работой на воздушно-масляной смеси
- Работой с перегрузкой по давлению
- Превышением допустимых оборотов
- Превышение давления в корпусе
- Перегревом рабочей жидкости
6. Заключение.
Данная статья написана в помощь специалистам осуществляющим ремонт, обслуживание и эксплуатацию гидросистем станочного оборудования и мобильных машин. Ознакомившись с вышенаписанным материалом, читатель получает базовые сведения о самых распространённых типах гидравлических насосов, их преимуществах и недостатках. Также в материале имеется простейший алгоритм определения мощности насоса и подбора приводного двигателя.
Следует отметить что практически все описанные конструктивные типы насосов могут использоваться в качестве гидромоторов, но об этом в следующей статье…
Все типы насосов описанные в данной статье можно приобрести в компании RGC гидроагрегаты.Возможна поставка гидрооборудования и запасных частей под заказ. Также в нашей компании можно получить консультации по гидрооборудованию.
Внимание! Данная статья авторская. При копировании ее с сайта обязательно указывать источник!
С Уважением,
Начальник конструкторского отдела
Лебедев М.К.
Тел.: 8(800) 550-42-20
Урок 25. тепловые двигатели. кпд тепловых двигателей — Физика — 10 класс
Физика, 10 класс
Урок 25. Тепловые двигатели. КПД тепловых двигателей
Перечень вопросов, рассматриваемых на уроке:
1) Понятие теплового двигателя;
2)Устройство и принцип действия теплового двигателя;
3)КПД теплового двигателя;
4) Цикл Карно.
Глоссарий по теме
Тепловой двигатель – устройство, в котором внутренняя энергия топлива превращается в механическую.
КПД (коэффициент полезного действия) – это отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.
Двигатель внутреннего сгорания – двигатель, в котором топливо сгорает непосредственно в рабочей камере (внутри) двигателя.
Реактивный двигатель – двигатель, создающий необходимую для движения силу тяги посредством преобразования внутренней энергии топлива в кинетическую энергию реактивной струи рабочего тела.
Цикл Карно – это идеальный круговой процесс, состоящий из двух адиабатных и двух изотермических процессов.
Нагреватель – устройство, от которого рабочее тело получает энергию, часть которой идет на совершение работы.
Холодильник – тело, поглощающее часть энергии рабочего тела (окружающая среда или специальные устройства для охлаждения и конденсации отработанного пара, т.е. конденсаторы).
Рабочее тело — тело, которое расширяясь, совершает работу (им является газ или пар)
Основная и дополнительная литература по теме урока:
1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 269 – 273.
2. Рымкевич А.П. Сборник задач по физике. 10-11 класс. -М.: Дрофа,2014. – С. 87 – 88.
Открытые электронные ресурсы по теме урока
http://kvant.mccme.ru/1973/12/teplovye_mashiny.htm
Теоретический материал для самостоятельного изучения
Сказки и мифы разных народов свидетельствуют о том, что люди всегда мечтали быстро перемещаться из одного места в другое или быстро совершать ту или иную работу. Для достижения этой цели нужны были устройства, которые могли бы совершать работу или перемещаться в пространстве. Наблюдая за окружающим миром, изобретатели пришли к выводу, что для облегчения труда и быстрого передвижения нужно использовать энергию других тел, к примеру, воды, ветра и т.д. Можно ли использовать внутреннюю энергию пороха или другого вида топлива для своих целей? Если мы возьмём пробирку, нальём туда воду, закроем её пробкой и будем нагревать. При нагревании вода закипит, и образовавшие пары воды вытолкнут пробку. Пар расширяясь совершает работу. На этом примере мы видим, что внутренняя энергия топлива превратилась в механическую энергию движущейся пробки. При замене пробки поршнем способным перемещаться внутри трубки, а саму трубку цилиндром, то мы получим простейший тепловой двигатель.
Тепловой двигатель – тепловым двигателем называется устройство, в котором внутренняя энергия топлива превращается в механическую.
Вспомним строение простейшего двигателя внутреннего сгорания. Двигатель внутреннего сгорания состоит из цилиндра, внутри которого перемещается поршень. Поршень с помощью шатуна соединяется с коленчатым валом. В верхней части каждого цилиндра имеются два клапана. Один из клапанов называют впускным, а другой – выпускным. Для обеспечения плавности хода поршня на коленчатом вале укреплен тяжелый маховик.
Рабочий цикл ДВС состоит из четырех тактов: впуск, сжатие, рабочий ход, выпуск.
Во время первого такта открывается впускной клапан, а выпускной клапан остается закрытым. Движущийся вниз поршень засасывает в цилиндр горючую смесь.
Во втором такте оба клапана закрыты. Движущийся вверх поршень сжимает горючую смесь, которая при сжатии нагревается.
В третьем такте, когда поршень оказывается в верхнем положении, смесь поджигается электрической искрой свечи. Воспламенившаяся смесь образует раскаленные газы, давление которых составляет 3 -6 МПа, а температура достигает 1600 -2200 градусов. Сила давления толкает поршень вниз, движение которого передается коленчатому валу с маховиком. Получив сильный толчок маховик будет дальше вращаться по инерции, обеспечивая движение поршня и при последующих тактах. Во время этого такта оба клапана остаются закрытыми.
В четвертом такте открывается выпускной клапан и отработанные газы движущимся поршнем выталкиваются через глушитель (на рисунке не показан) в атмосферу.
Любой тепловой двигатель включает в себя три основных элемента: нагреватель, рабочее тело, холодильник.
Для определения эффективности работы теплового двигателя вводят понятие КПД.
Коэффициентом полезного действия называют отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.
Q1 – количество теплоты полученное от нагревания
Q2 – количество теплоты, отданное холодильнику
– работа, совершаемая двигателем за цикл.
Этот КПД является реальным, т.е. как раз эту формулу и используют для характеристики реальных тепловых двигателей.
Зная мощность N и время работы t двигателя работу, совершаемую за цикл можно найти по формуле
Передача неиспользуемой части энергии холодильнику.
В XIX веке в результате работ по теплотехнике французский инженер Сади Карно предложил другой способ определения КПД (через термодинамическую температуру).
Главное значение этой формулы состоит в том, что любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т1, и холодильником с температурой Т2, не может иметь КПД, превышающий КПД идеальной тепловой машины. Сади Карно, выясняя при каком замкнутом процессе тепловой двигатель будет иметь максимальный КПД, предложил использовать цикл, состоящий из 2 адиабатных и двух изотермических процессов
Цикл Карно — самый эффективный цикл, имеющий максимальный КПД.
Не существует теплового двигателя, у которого КПД = 100% или 1.
Формула дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, η = 1.
Но температура холодильника практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.
Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими.
Повышение КПД тепловых двигателей и приближение его к максимально возможному — важнейшая техническая задача.
Тепловые двигатели – паровые турбины, устанавливают также на всех АЭС для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном – поршневые двигатели внутреннего сгорания; на водном – двигатели внутреннего сгорания и паровые турбины; на железнодорожном – тепловозы с дизельными установками; в авиационном – поршневые, турбореактивные и реактивные двигатели.
Сравним эксплуатационные характеристики тепловых двигателей.
КПД:
Паровой двигатель – 8%.
Паровая турбина – 40%.
Газовая турбина – 25-30%.
Двигатель внутреннего сгорания – 18-24%.
Дизельный двигатель – 40– 44%.
Реактивный двигатель – 25%.
Широкое использование тепловых двигателей не проходит бесследно для окружающей среды: постепенно уменьшается количество кислорода и увеличивается количество углекислого газа в атмосфере, воздух загрязняется вредными для здоровья человека химическими соединениями. Возникает угроза изменения климата. Поэтому нахождение путей уменьшения загрязнения окружающей среды является сегодня одной из наиболее актуальных научно-технических проблем.
Примеры и разбор решения заданий
1. Какую среднюю мощность развивает двигатель автомобиля, если при скорости 180 км/ч расход бензина составляет 15 л на 100 км пути, а КПД двигателя 25%?
Дано: v=180км/ч = 50 м/с, V = 15 л = 0,015 м3, s = 100 км = 105 м, ɳ = 25% = 0,25, ρ = 700 кг/м3, q = 46 × 106 Дж/кг.
Найти: N.
Решение:
Запишем формулу для расчёта КПД теплового двигателя:
Работу двигателя, можно найти, зная время работы и среднюю мощность двигателя:
Количество теплоты, выделяющееся при сгорании бензина, находим по формуле:
Учитывая всё это, мы можем записать:
Время работы двигателя можно найти по формуле:
Из формулы КПД выразим среднюю мощность:
.
Подставим числовые значения величин:
После вычислений получаем, что N=60375 Вт.
Ответ: N=60375 Вт.
2. Тепловая машина имеет КПД 25 %. Средняя мощность передачи теплоты холодильнику составляет 4 кВт. Какое количество теплоты рабочее тело получает от нагревателя за 20 с?
Дано: ɳ = 25%, N = 4000 Вт, t = 20 с.
Найти: Q1.
Решение
=
– это количество теплоты, отданное холодильнику
Двигатель внутреннего сгорания — урок. Физика, 8 класс.
Обрати внимание!
Двигатель внутреннего сгорания — распространённый вид теплового двигателя, который работает на жидком топливе (бензин, керосин, нефть) или горючем газе.
Двигатель состоит из цилиндра, в котором перемещается поршень \( 3\), соединённый при помощи шатуна \(4\) с коленчатым валом \(5\).
Два клапана, впускной \(1\) и выпускной \(2\), при работе двигателя автоматически открываются и закрываются в нужные моменты.
- клапан для подачи горючей смеси;
- клапан для удаления отработанных газов;
- цилиндр;
- шатун;
- коленчатый вал;
- свеча для воспламенения горючих газов в цилиндре 3.
Ход поршня — расстояние между мёртвыми точками, крайними положениями поршня в цилиндре.
Такие двигатели называют четырёхтактными, т.к. рабочий цикл происходит за четыре хода или такта: впуск (а), сжатие (б), рабочий ход (в) и выпуск (г).
1 такт (впуск) — при такте впуска поршень от верхней мёртвой точки перемещается к нижней мёртвой точке. Цилиндр заполняется горючей смесью через открытый впускной клапан. Т.е. поршень всасывает горючую смесь.
2 такт (сжатие) — при такте сжатия поршень от нижней мёртвой точки перемещается к верхней мёртвой точке. Поршень движется вверх. Оба клапана плотно закрыты, и поэтому рабочая смесь сжимается. При сжатии температура смеси и давление повышаются.
3 такт (рабочий ход) — рабочая смесь воспламеняется от электрической искры, проскакивающей между электродами свечи зажигания. В начале такта рабочего хода сгорающая смесь начинает активно расширяться. А т.к. впускной и выпускной клапаны всё ещё закрыты, то расширяющимся газам остаётся только один единственный выход — давить на подвижный поршень. Поршень под действием этого давления начинает перемещаться к нижней мёртвой точке, создаётся крутящий момент.
4 такт (выпуск) — при движении поршня от нижней мёртвой точки к верхней мёртвой точке открывается выпускной клапан (впускной всё ещё закрыт), и отработавшие газы с огромной скоростью выбрасываются из цилиндра двигателя.
После такта выпуска начинается новый рабочий цикл, всё повторяется.
Для того чтобы вращение вала было более равномерным, двигатель обычно делают многоцилиндровым: 2-, 3-, 4-, 6-, 8-цилиндровым и т.д.
Источники:
http://webmyoffice.ru/media/files/99/dvigatel-moto-2.jpg
http://usauto.ucoz.ru/news/bilet_6/2011-04-26-4
http://autooboz.info/wp-content/uploads/2007/09/dvigatel-vnutrennego-sgoraniya2.jpg
http://dvigyn.com/wpcontent/images_18/princip_raboti_dvigatelya_vnutrennego_sgoraniya_v_4_takta-2.jpg
http://dvigyn.com/wpcontent/images_18/princip_raboti_dvigatelya_vnutrennego_sgoraniya_v_4_takta-3.jpg
Двигатель внутреннего сгорания — Energy Education
Двигатели внутреннего сгорания (ДВС) являются наиболее распространенной формой тепловых двигателей, поскольку они используются в транспортных средствах, лодках, кораблях, самолетах и поездах. Они названы так потому, что топливо воспламеняется для выполнения работы внутри двигателя. [1] В качестве выхлопных газов выбрасывается та же смесь топлива и воздуха. Это можно сделать с помощью поршня (так называемого поршневого двигателя) или турбины.
Закон идеального газа
Тепловые двигатели внутреннего сгорания работают по принципу закона идеального газа: [math] pV = nRT [/ math].Повышение температуры газа увеличивает давление, которое заставляет газ расширяться. [1] Двигатель внутреннего сгорания имеет камеру, в которую добавлено топливо, которое воспламеняется для повышения температуры газа.
Когда в систему добавляется тепло, это заставляет внутренний газ расширяться. В поршневом двигателе это заставляет поршень подниматься (см. Рисунок 2), а в газовой турбине горячий воздух нагнетается в камеру турбины, вращая турбину (Рисунок 1). Прикрепив поршень или турбину к распределительному валу, двигатель может преобразовывать часть энергии, поступающей в систему, в полезную работу. [2] Для сжатия поршня в двигателе прерывистого внутреннего сгорания двигатель выпускает газ. Затем используется радиатор, чтобы система работала при постоянной температуре. Газовая турбина, которая использует непрерывное горение, просто выбрасывает свой газ непрерывно, а не по циклу.
Поршни и турбины
Рисунок 1. Схема газотурбинного двигателя. [3]Двигатель, в котором используется поршень , называется двигателем прерывистого внутреннего сгорания , тогда как двигатель, использующий турбину , называется двигателем непрерывного внутреннего сгорания .Разница в механике очевидна из-за названий, но разница в использовании менее очевидна.
Поршневой двигатель чрезвычайно отзывчив по сравнению с турбиной, а также более экономичен при низкой мощности. Это делает их идеальными для использования в транспортных средствах, так как они также запускаются быстрее. И наоборот, турбина имеет превосходное отношение мощности к массе по сравнению с поршневым двигателем, а ее конструкция более надежна для продолжительной работы с высокой выходной мощностью. Турбина также работает лучше, чем поршневой двигатель без наддува, на больших высотах и при низких температурах.Его легкий вес, надежность и возможность работы на большой высоте делают турбины предпочтительным двигателем для самолетов. Турбины также широко используются на электростанциях для выработки электроэнергии.
Двигатель четырехтактный
- главная
Хотя существует множество типов двигателей внутреннего сгорания, четырехтактный поршневой двигатель (рис. 2) является одним из самых распространенных.Он используется в различных автомобилях (которые, в частности, используют бензин в качестве топлива), таких как автомобили, грузовики и некоторые мотоциклы. Четырехтактный двигатель обеспечивает один рабочий ход на каждые два цикла поршня. Справа есть анимация четырехтактного двигателя и дальнейшее объяснение процесса ниже.
- В камеру впрыскивается топливо.
- Загорается топливо (в дизельном двигателе это происходит иначе, чем в бензиновом).
- Этот огонь толкает поршень, что является полезным движением.
- Отходы химикатов, по объему (или массе) это в основном водяной пар и диоксид углерода. В результате неполного сгорания могут присутствовать такие загрязнители, как окись углерода.
Двухтактный двигатель
- главная
Как следует из названия, системе требуется всего два движения поршня для выработки энергии. Основным отличительным фактором, который позволяет двухтактному двигателю работать только с двумя движениями поршня, является то, что выпуск и впуск газа происходят одновременно, [6] , как показано на Рисунке 3.Сам поршень используется в качестве клапана системы вместе с коленчатым валом для направления потока газов. Кроме того, из-за частого контакта с движущимися компонентами топливо смешивается с маслом для добавления смазки, что обеспечивает более плавный ход. В целом двухтактный двигатель содержит два процесса:
- Воздушно-топливная смесь добавляется и поршень движется вверх (сжатие). Впускной канал открывается из-за положения поршня, и топливовоздушная смесь поступает в удерживающую камеру.Свеча зажигания воспламеняет сжатое топливо и начинает рабочий такт.
- Нагретый газ оказывает высокое давление на поршень, поршень движется вниз (расширение), отходящее тепло отводится.
Роторный двигатель (Ванкеля)
- главная
В двигателе этого типа имеется ротор (внутренний круг обозначен буквой «B» на рисунке 4), который заключен в корпус овальной формы.Он выполняет стандартные этапы четырехтактного цикла (впуск, сжатие, зажигание, выпуск), однако эти этапы выполняются 3 раза за один оборот ротора , создавая три такта мощности за один оборот .
Для дальнейшего чтения
Список литературы
- ↑ 1.0 1.1 Р. Д. Найт, «Тепловые двигатели и холодильники» в журнале Физика для ученых и инженеров: стратегический подход, 3-е изд. Сан-Франциско, США: Pearson Addison-Wesley, 2008, гл.19, сек 2, с. 530
- ↑ Р. А. Хинрихс и М. Кляйнбах, «Тепло и работа», в Энергия: ее использование и окружающая среда , 5-е изд. Торонто, Онтарио. Канада: Брукс / Коул, 2013, глава 4, стр.93-122
- ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/4/4c/Jet_engine.svg
- ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/d/dc/4StrokeEngine_Ortho_3D_Small.gif
- ↑ «Файл: Двухтактный двигатель.gif — Wikimedia Commons «, Commons.wikimedia.org, 2018. [Online]. Доступно: https://commons.wikimedia.org/wiki/File:Two-Stroke_Engine.gif.[ Доступно: 17 мая 2018 г.].
- ↑ С. Ву, Термодинамика и тепловые циклы. Нью-Йорк: Nova Science Publishers, 2007.
- ↑ Wikimedia Commons [Online], доступно: http://upload.wikimedia.org/wikipedia/commons/f/fc/Wankel_Cycle_anim_en.gif
Двигатель внутреннего сгорания, объяснение
Современный двигатель внутреннего сгорания — это чудо техники, чудо механики, для использования которого не требуется много знаний о его работе.Если вы не автомобильный фанат, вы, вероятно, не так много думаете о двигателе своей машины.
Конечно, пока что-то под капотом не пойдет не так. Когда дела идут плохо, проблемы и причины могут сбивать с толку многих водителей, для которых такие термины, как «поршень» и «картер» являются непонятной терминологией, а «боксер» напоминает Мухаммеда Али, а не Фердинанда Порше.
Итак, чтобы немного прояснить, что происходит под капотом, мы в Gear Patrol собрали воедино краткое руководство о том, как работает двигатель внутреннего сгорания, и краткое изложение различных типов двигателей внутреннего сгорания, доступных массовому потребителю автомобили.
Полезные термины
Карбюратор: Устройство, которое смешивает воздух и топливо в надлежащем соотношении для сгорания. Система механическая, а не электронная, как современные двигатели с впрыском топлива или с прямым впрыском; как таковой, он менее эффективен.
Картер: Часть блока двигателя, в которой находится коленчатый вал. Обычно изготавливается из одного или двух кусков алюминия или чугуна.
Коленчатый вал: Компонент двигателя, соединенный с поршнями, который обеспечивает вращательное движение при сгорании.
Цилиндр: Часть блока двигателя, в которой находятся поршень и шатун, а также место, где происходит сгорание.
Прямой впрыск: Метод, с помощью которого бензин нагнетается под давлением и впрыскивается в камеру сгорания цилиндра. В отличие от впрыска топлива, когда газ впрыскивается во впускной канал цилиндра.
Гармонический балансир: Также известный как демпфер, круглое устройство из резины и металла, прикрепленное к передней части коленчатого вала для поглощения вибраций и уменьшения износа коленчатого вала.Он уменьшает гармоники двигателя, возникающие при движении нескольких цилиндров вдоль коленчатого вала.
Поршень: Компонент, расположенный внутри стенок цилиндра и закрепленный поршневыми кольцами. Он перемещается вверх и вниз во время четырехтактного процесса сгорания, создавая силу при взрыве топлива, а воздух перемещает его.
Ред. Соответствие: Технология в автомобилях с механической коробкой передач, в которой используются датчики педали сцепления, переключения передач и коробки передач, отправляющие сигналы электронному блоку управления, которые сообщают ему о необходимости автоматического увеличения оборотов двигателя, если обороты в минуту падают слишком низко.Согласование оборотов также происходит во время переключения на пониженную передачу, повышая обороты, чтобы соответствовать более низкой передаче. Это снижает износ двигателя и упрощает процесс переключения передач.
Вибрация кручения: Вибрация, возникающая из-за вращающихся валов в автомобиле.
Двигатель внутреннего сгорания
Как только вы преодолеете защитную пластиковую крышку двигателя, которая есть на большинстве новых автомобилей, становится ясно сердце автомобиля: двигатель, окруженный радиатором, резервуарами для жидкости, воздушной камерой и аккумулятором. Независимо от того, насколько сложными могут быть двигатели — отчасти благодаря таким функциям, как прямой впрыск, согласование оборотов и т. Д.- в большинстве автомобилей используется так называемый четырехтактный цикл сгорания для преобразования топлива в кинетическую энергию. Короче говоря, ваш двигатель 1. втягивает воздух и топливо, 2. сжимает его, 3. воспламеняет его, толкая поршни вниз и создавая механическую силу, которая перемещает автомобиль, а 4. выталкивает. воздух, чтобы освободить место для следующего цикла цикла.
Хотя реальный процесс значительно сложнее, четыре этапа в основном можно суммировать следующим образом:
Ход впуска: Воздух и топливо втягиваются в цилиндр по мере того, как поршень движется вниз.
Ход сжатия: Воздух, подаваемый в двигатель, и топливо сжимаются, когда цилиндр перемещается в положение хода вверх.
Ход сгорания: Искра от свечи зажигания воспламеняет топливно-воздушную смесь, создавая давление. Расширяющаяся смесь толкает поршень вниз.
Ход выхлопа: Образовавшаяся газовая смесь, образовавшаяся в результате воспламенения и расширения, выбрасывается из цилиндра как отходы.
Мощность двигателя сильно различается в зависимости от количества цилиндров, конфигурации двигателя и таких технологий, как турбонаддув и наддув.Лошадиная сила — это не просто добавление цилиндров или рабочий объем; Фактически, многие из сегодняшних высокопроизводительных четырехцилиндровых двигателей могут легко соответствовать или превосходить мощность своих шестицилиндровых собратьев. В наши дни это еще и технологическая игра; Соедините меньший бензиновый двигатель с электродвигателем, и вы получите рецепт дополнительного ускорения. (Показательный пример: BMW i8, который сочетает в себе 1,5-литровый рядный трехцилиндровый двигатель с турбонаддувом и электродвигатель общей мощностью 357 лошадиных сил и 420 фунт-фут крутящего момента.)
Типы двигателей
Современные двигатели внутреннего сгорания прошли долгий путь с 1876 года, когда уроженец Германии Николаус Отто построил первый четырехтактный двигатель внутреннего сгорания. Сегодня автомобильные инженеры регулярно творят чудеса, извлекая из конструкции максимальную мощность и эффективность. И хотя гибридные и электрические силовые агрегаты находятся на подъеме, на данный момент двигатели внутреннего сгорания — рядные / прямые, V-образные и оппозитные / плоские, работающие на бензине или дизельном топливе, ‚владеют дорогой.
Рядные / прямые двигатели
Примеры рядных / прямолинейных двигателей
Рядные / прямые тройки: BMW i8
Рядные / прямые четверки: Honda Civic Si
Рядные / прямые-шестерки: BMW X3 / X4 M
В «рядном» или «прямом» двигателе цилиндры расположены по прямой линии.Подавляющее большинство автомобилей с четырьмя цилиндрами на дорогах — это двигатели с рядным четырехцилиндровым двигателем, поэтому промышленность обычно называет их «четырехцилиндровыми». Рядные четырехцилиндровые двигатели, как правило, используются в автомобилях эконом-класса, поскольку они менее дороги в сборке и проще в обслуживании — цилиндры выстраиваются вдоль одного коленчатого вала, который приводит в движение поршни.
Рядный / рядный шестицилиндровый двигатель по своей сути сбалансирован из-за того, что отсутствуют вторичные гармоники, генерируемые парами поршней, движущихся под нечетным углом или на разных осях друг от друга, что приводит к гораздо меньшей вибрации, чем у рядных четырехцилиндровых двигателей. -цилиндровые двигатели.В настоящее время только BMW и Mercedes-Benz производят рядные / рядные шестицилиндровые двигатели для своих легковых автомобилей, и они имеют звездную репутацию благодаря плавности хода и сбалансированности.
V-образные двигатели
Примеры V-образных двигателей
V-4: Porsche 919 Hybrid Le Mans
V-6: Toyota 4Runner
V-8: Dodge Challenger
V- 10: Lamborghini Huracán
V-12: Ferrari 821 Superfast
«V-6» и «V-8» настолько укоренились в американском словаре, что некоторые люди могут не знать, что двигатели выпускаются в каком-либо другом формате.Двигатели V-типа обычно имеют два ряда цилиндров, установленных под углом 90 градусов друг к другу — отсюда V-образная форма — причем каждый ряд имеет половину общего числа цилиндров. В результате V-образные двигатели короче и занимают меньше места, чем прямые, что позволяет автопроизводителям уменьшить размер моторного отсека и увеличить зоны деформации и пространство для пассажиров. Кроме того, их легче установить ниже в автомобиле, что улучшит управляемость.
Если вы считаете себя фанатом автоспорта, вам нравятся двигатели V-типа из-за их частого использования в гоночных автомобилях.Жесткая конструкция и прочные материалы, используемые в двигателях V-типа, позволяют им выдерживать высокие нагрузки. Это также обеспечивает низкие силы крутильной вибрации, обеспечивая плавную подачу при переключении передач и высоких оборотах.
Boxer / Flat Engine
Примеры двигателей Boxer / Flat
Flat-Four: Subaru WRX
Flat-Six: Porsche 911 Carrera
Термин «оппозитный» двигатель происходит от расположения поршней, которые лежать горизонтально друг к другу, как два боксера-соперника, которые касаются перчаток в начале боя.Поршни в оппозитном / плоском двигателе образуют два ряда — по одному с каждой стороны одного коленчатого вала.
Двигатель оппозитного типа звучит не просто устрашающе; он обеспечивает более низкий центр тяжести, чем рядные / прямые и V-образные двигатели, что улучшает управляемость. (Есть причина, по которой Porsche использует оппозитный двигатель в своих спортивных автомобилях 911, 718 Boxster и 718 Cayman). Однако оппозитные двигатели имеют тенденцию быть более громоздкими и иметь более неудобную форму, что затрудняет их размещение в переднем моторном отсеке. . (Subaru — единственный автопроизводитель, использующий в настоящее время оппозитный двигатель — однако, это удается довольно успешно.)
Дизельные двигатели
Примеры дизельных двигателей
Турбодизель V-6: Ram 1500 EcoDiesel
Турбодизель V-8: Ford F-250 Super Duty
Избавьтесь от старого представления о выбросе дыма хриплых 18-колесных автомобилей; современные дизельные двигатели, работающие на экологически чистом топливе, используемые в легковых автомобилях, гораздо менее тяжелые. Сгорание, происходящее в дизельном двигателе, не требует искры; скорее, высокоэнергетическое дизельное топливо воспламеняется из-за сильного сжатия поршней: воздух сжимается, нагревая его до очень высоких температур; топливо впрыскивается, и смесь воспламеняется.
Хотя дизельные двигатели имеют разное количество цилиндров, они отличаются от своих газовых аналогов тем, что они используют сжатие, а не искру для воспламенения сжатой топливно-воздушной смеси. Но не только то, как происходит сгорание, отличает эти силовые установки от других: в силу того, что для сгорания требуется более высокое давление, дизельный двигатель должен быть построен как резервуар, чтобы противостоять неправильному обращению. В результате они, как правило, служат дольше, чем стандартные двигатели внутреннего сгорания.Дизельные двигатели также более эффективны; они извлекают из своего топлива больше энергии, чем бензин.
И, наконец, у дизельных двигателей есть одно преимущество, которое нравится многим энтузиастам: больший крутящий момент на более низких оборотах двигателя, что заставляет их чувствовать себя более быстрыми вне очереди.
Подробнее Обзоры Gear Patrol
Горячие отзывы и подробные обзоры заслуживающих внимания, актуальных и интересных продуктов. Прочитать историю
Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.
Типы двигателей
Двигатели — это машины, которые преобразуют источник энергии в физическую работу. Если вам нужно что-то передвигать, двигатель — это то, что вам нужно. Но не все двигатели сделаны одинаково, и разные типы двигателей определенно не работают одинаково.
Изображение предоставлено Little Visuals / Pixabay.Вероятно, наиболее интуитивно понятный способ различить их — это тип энергии, которую каждый двигатель использует для выработки мощности.
- Тепловые двигатели
- Двигатели внутреннего сгорания (двигатели внутреннего сгорания)
- Двигатели внешнего сгорания (ЕС двигатели)
- Реакционные двигатели
- Электродвигатели
- Физические механизмы
Тепловые двигатели
В самом широком смысле этим двигателям для перехода в движение требуется источник тепла.В зависимости от того, как они выделяют указанное тепло, это могут быть двигатели внутреннего сгорания (которые сжигают материал) или негорючие двигатели. Они действуют либо за счет прямого сгорания топлива, либо за счет преобразования жидкости для создания работы. Таким образом, большинство тепловых двигателей также частично пересекаются с химическими системами привода. Это могут быть двигатели с воздушным дыханием (которые забирают окислитель, например кислород из атмосферы) или двигатели без дыхания (с окислителями, химически связанными в топливе).
Двигатели внутреннего сгоранияДвигатели внутреннего сгорания (двигатели внутреннего сгорания) сегодня довольно распространены.Они приводят в действие автомобили, газонокосилки, вертолеты и так далее. Самый большой двигатель внутреннего сгорания может генерировать 109 000 л.с. для корабля, перевозящего 20 000 контейнеров. Двигатели внутреннего сгорания получают энергию из топлива, сжигаемого в специальной области системы, называемой камерой сгорания. В процессе горения образуются продукты реакции (выхлоп), общий объем которых намного превышает общий объем реагентов, вместе взятых (топливо и окислитель). Это расширение и есть хлеб с маслом для двигателей внутреннего сгорания — это то, что на самом деле обеспечивает движение.Тепло является лишь побочным продуктом сгорания и представляет собой потраченную впустую часть запаса энергии топлива, поскольку фактически не обеспечивает никакой физической работы.
Рядный 4-цилиндровый двигатель внутреннего сгорания.Изображение предоставлено НАСА / Исследовательским центром Гленна. Двигатели
IC различаются по количеству «ходов» или циклов, которые каждый поршень делает для полного вращения коленчатого вала. Сегодня наиболее распространены четырехтактные двигатели, в которых реакция сгорания разбита на четыре этапа:
- Индукция или впрыск топливовоздушной смеси (карбюрата) в камеру сгорания.
- Сжатие смеси.
- Зажигание свечой зажигания или компрессией — топливо идет штанга .
- Выброс выхлопных газов.
Изображение предоставлено Дук / Викимедиа.
На каждом шаге 4-тактный поршень поочередно опускается или поднимается. Зажигание — это единственный этап, на котором в двигателе создается работа, поэтому для движения на всех остальных этапах каждый поршень полагается на энергию от внешних источников (другие поршни, электростартер, ручной запуск или инерция коленчатого вала).Вот почему вам нужно тянуть за шнурок газонокосилки, и почему вашему автомобилю нужен исправный аккумулятор, чтобы начать работать.
Другими критериями для дифференциации двигателей внутреннего сгорания являются тип используемого топлива, количество цилиндров, общий рабочий объем (внутренний объем цилиндров), распределение цилиндров (рядные, радиальные, V-образные двигатели и т. Д.), А также мощность и мощность. -весовой выход.
Двигатели внешнего сгоранияДвигатели внешнего сгорания (двигатели ЕС) хранят топливо и продукты выхлопа отдельно — они сжигают топливо в одной камере и нагревают рабочую жидкость внутри двигателя через теплообменник или стенку двигателя.В эту категорию попадает и этот великий отец промышленной революции, паровая машина.
В некоторых отношениях двигатели с электронным управлением работают так же, как и их аналоги на базе IC — им обоим требуется тепло, которое получается при сжигании материала. Однако есть и несколько отличий.
В двигателяхEC используются жидкости, которые подвергаются тепловому расширению-сжатию или сдвигу по фазе, но чей химический состав остается неизменным. Используемая жидкость может быть газообразной (как в двигателе Стирлинга), жидкой (двигатель с органическим циклом Ренкина) или претерпевать изменение фазы (как в паровом двигателе) — для двигателей внутреннего сгорания почти всегда жидкость представляет собой жидкое топливо. и воздушная смесь, которая воспламеняется (меняет свой химический состав).Наконец, двигатели могут либо выпускать жидкость после использования, как двигатели внутреннего сгорания (двигатели с открытым циклом), либо постоянно использовать одну и ту же жидкость (двигатели с закрытым циклом).
Паровоз Стивенсона работает
Удивительно, но первые паровые машины, получившие промышленное применение, генерировали работу за счет создания вакуума, а не давления. Эти машины, получившие название «атмосферные двигатели», были громоздкими и очень неэффективными. Со временем паровые двигатели приобрели форму и характеристики, которые мы ожидаем от двигателей сегодня, и стали более эффективными — с поршневыми паровыми двигателями, в которых была введена поршневая система (которая до сих пор используется двигателями внутреннего сгорания) или составные системы двигателей, в которых повторно использовалась жидкость. в цилиндрах при понижении давления для создания дополнительной «мощности».
Сегодня паровые двигатели вышли из широкого использования: они тяжелые, громоздкие, имеют гораздо меньшую топливную эффективность и удельную мощность, чем двигатели внутреннего сгорания, и не могут так быстро менять мощность. Но если вас не беспокоит их вес, размер и вам нужен постоянный запас работы, они просто великолепны. Таким образом, ЕС в настоящее время с большим успехом используется в качестве паротурбинных двигателей для морских операций и электростанций.
Применениедля атомной энергетики отличается тем, что называется негорючими или внешними тепловыми двигателями , поскольку они работают по тем же принципам, что и двигатели ЕС, но не получают энергию от сгорания.
Реакционные двигателиРеакционные двигатели , в просторечии известные как реактивные двигатели , создают тягу за счет выброса реактивной массы. Основным принципом реактивного двигателя является третий закон Ньютона: в основном, если вы ударите чем-то с достаточной силой через заднюю часть двигателя, он вытолкнет переднюю часть вперед. И реактивные двигатели действительно хороши в этом.
Безумно хорошо в этом.Изображение предоставлено thund3rbolt / Imgur.
То, что мы обычно называем «реактивным» двигателем, прикрепленное к пассажирскому самолету Boeing, строго говоря, является воздушно-реактивным двигателем и относится к классу двигателей с турбинным двигателем. Прямоточные воздушно-реактивные двигатели, которые обычно считаются более простыми и надежными, поскольку они содержат меньше (или почти не содержат) движущихся частей, также являются воздушно-реактивными двигателями, но относятся к классу таранных. Разница между ними заключается в том, что прямоточные воздушно-реактивные двигатели полагаются на чистую скорость для подачи воздуха в двигатель, тогда как турбореактивные двигатели используют турбины для втягивания и сжатия воздуха в камеру сгорания.В остальном они функционируют в основном одинаково.
В турбореактивных двигателях воздух втягивается в камеру двигателя и сжимается вращающейся турбиной. Ramjets рисуют и сжимают его, двигаясь очень быстро. Внутри двигателя он смешивается с мощным топливом и воспламеняется. Когда вы концентрируете воздух (и, следовательно, кислород), смешиваете его с большим количеством топлива и взрываете его (таким образом, генерируя выхлоп и термически расширяя весь газ), вы получаете реакционный продукт, который имеет огромный объем по сравнению с всасываемым воздухом. Единственное место, через которое может пройти вся эта масса газов, — это задняя часть двигателя, что происходит с огромной силой.По пути он приводит в действие турбину, втягивая больше воздуха и поддерживая реакцию. И, чтобы добавить оскорбления к травмам, в задней части двигателя есть метательное сопло.
Здравствуйте, я метательная форсунка. Я буду твоим проводником.Эта часть оборудования заставляет весь газ проходить через пространство еще меньшего размера, чем он первоначально прошел, таким образом, еще больше ускоряя его в «струю» материи. Выхлоп выходит из двигателя с невероятной скоростью, в три раза превышающей скорость звука, толкая самолет вперед.
Реактивные двигатели, не дышащие воздухом, или ракетные двигатели , работают так же, как реактивные двигатели без переднего долота — потому что им не нужен внешний материал для поддержания сгорания. Мы можем использовать их в космосе, потому что в них есть весь необходимый окислитель, заключенный в топливо. Это один из немногих типов двигателей, в которых постоянно используется твердое топливо.
Тепловые двигатели могут быть до смехотворно большими или очаровательно маленькими. Но что, если все, что у вас есть, — это розетка, и вам нужно запитать свои вещи? Что ж, в таком случае вам нужно:
Электродвигатели
Ах да, чистая банда.Классические электрические двигатели бывают трех типов: магнитные, пьезоэлектрические и электростатические.
И, конечно же, привод Duracell.Магнитный, как и батарея там, наиболее часто используется из трех. Он основан на взаимодействии магнитного поля и электрического потока для создания работы. Он работает по тому же принципу, что и динамо-машина для выработки электроэнергии, но наоборот. Фактически, вы можете выработать немного электроэнергии, если вручную провернете электромагнитный двигатель.
Для создания магнитного двигателя вам понадобятся несколько магнитов и намотанный провод. Когда к обмотке подается электрический ток, он индуцирует магнитное поле, которое взаимодействует с магнитом, создавая вращение. Важно, чтобы эти два элемента были разделены, поэтому электродвигатели состоят из двух основных компонентов: статора, который является внешней частью двигателя и остается неподвижной, и ротора, который вращается внутри него. Они разделены воздушной прослойкой. Обычно магниты встроены в статор, а проводник намотан на ротор, но они взаимозаменяемы.Магнитные двигатели также оснащены коммутатором для переключения электрического потока и модуляции индуцированного магнитного поля, когда ротор вращается для поддержания вращения.
Пьезоэлектрические приводы — это типы двигателей, в которых используется свойство некоторых материалов генерировать ультразвуковые колебания под воздействием электрического тока для создания работы. Электростатические двигатели используют одинаковые заряды, чтобы отталкивать друг друга и вызывать вращение ротора. Поскольку в первом используются дорогие материалы, а во втором для работы требуется сравнительно высокое напряжение, они не так распространены, как магнитные приводы.
Классические электрические двигатели обладают одними из самых высоких показателей энергоэффективности среди двигателей, преобразуя до 90% энергии в работу.
Ионные приводыИонные приводы представляют собой смесь реактивного и электростатического двигателей. Этот класс приводов ускоряет ионы (плазму), используя электрический заряд для создания движения. Они не работают, если вокруг корабля уже есть ионы, поэтому они бесполезны за пределами космического вакуума.
Подруливающее устройство Холла.Изображение предоставлено NASA / JPL-Caltech.
Они также имеют очень ограниченную выходную мощность. Однако, поскольку в качестве топлива они используют только электричество и отдельные частицы газа, они были тщательно изучены для использования в космических кораблях. Deep Space 1 и Dawn успешно использовали ионные двигатели. Тем не менее, эта технология кажется наиболее подходящей для малых кораблей и спутников, поскольку след электронов, оставляемый этими двигателями, отрицательно влияет на их общую производительность.
Приводы EM / CannaeEM / Cannae Приводы используют электромагнитное излучение, содержащееся в микроволновом резонаторе, для создания доверия.Это, наверное, самый необычный из всех типов двигателей. Его даже называют «невозможным» побуждением, поскольку это нереакционный побудительный мотив, то есть он не производит никакого разряда для создания тяги, по-видимому, в обход Третьего закона.
«Вместо топлива в нем используются микроволны, отражающиеся от тщательно настроенного набора отражателей для достижения небольшой силы и, следовательно, тяги без топлива», — сообщил Андрей о поездке.
Было много споров о том, работает ли этот тип двигателя на самом деле или нет, но испытания НАСА подтвердили, что он функционально исправен.В будущем его даже обновят. Поскольку он использует только электрическую энергию для создания тяги, хотя и в небольших количествах, он кажется наиболее подходящим двигателем для исследования космоса.
Но это в будущем. Давайте посмотрим, с чего все началось. Давайте посмотрим на:
Физические двигатели
Работа этих двигателей зависит от накопленной механической энергии. Заводные двигатели , пневматические и гидравлические двигатели все являются физическими приводами.
Модель Ле Плонжера с огромными баллонами с воздухом.Изображение предоставлено Национальным морским музеем.
Они не очень эффективны. Они также обычно не могут использовать большие запасы энергии. Например, заводные двигатели хранят упругую энергию в пружинах, и их нужно заводить каждый день. Пневматические и гидравлические двигатели должны иметь на себе огромные трубки со сжатой жидкостью, которые, как правило, не работают очень долго. Например, Plongeur , первая в мире подводная лодка с механическим приводом, построенная во Франции между 1860 и 1863 годами, несла поршневой воздушный двигатель, снабженный 23 танками на 12.5 баров. Они занимали огромное пространство (153 кубических метра / 5 403 кубических фута), и их хватало только для того, чтобы корабль пролетел 5 морских миль (9 км / 5,6 миль) при скорости 4 узла.
Тем не менее, физические диски, вероятно, использовались впервые. Катапульты, требушеты или тараны полагаются на этот тип двигателей. То же самое и с кранами, приводимыми в движение человеком или зверем — все они использовались задолго до любых других типов двигателей.
Это далеко не полный список всех двигателей, созданных человеком.Не говоря уже о том, что биология тоже создала побуждения — и они являются одними из самых эффективных, которые мы когда-либо видели. Но если вы прочтете все это, я почти уверен, что у вас к этому моменту заканчивается топливо. Так что отдохните, расслабьтесь, и в следующий раз, когда вы встретите двигатель, смазывайте руки и нос, исследуя его — мы рассказали вам основы.
Двигатель внутреннего сгорания — обзор
Первые разработки
Развитие транспортного биотоплива идет рука об руку с изобретением двигателя внутреннего сгорания.Считается, что его прототип был впервые концептуализирован американским изобретателем Сэмюэлем Мори (1762–1843) в начале 19 века (Коварик, 1998). Однако только в начале 1860-х годов немецкий изобретатель Николаус Август Отто (1832–1891 гг.) В сотрудничестве с механиком Майклом Джозефом Зонсом разработал первую четырехтактную версию двигателя внутреннего сгорания, широко известную сегодня как двигатель с искровым зажиганием ( или бензиновый) двигатель, или просто двигатель Отто (Коварик, 1998). Другая версия двигателя внутреннего сгорания, двигатель с воспламенением от сжатия, была разработана несколькими десятилетиями позже немецким изобретателем Рудольфом Дизелем (1858–1913).Этот дизельный двигатель до сих пор носит имя своего изобретателя (Коварик, 1998).
Хотя сегодня в двигателях внутреннего сгорания для питания транспортных средств используются продукты на нефтяной основе, изначально они были разработаны для использования биотоплива, такого как этанол. Отто разработал свой двигатель в сотрудничестве с Ойгеном Лангеном (1833–1895 гг.), Немецким изобретателем и предпринимателем, который также владел сахарным заводом. Это заставляет многих полагать, что Отто использовал этанол в качестве основного топлива. Точно так же Дизель тестировал в своем двигателе различные виды топлива, включая этанол и биодизель.Фактически, на одной из первых демонстраций Дизеля на Всемирной выставке в Париже в 1897 году дизельный двигатель работал на арахисовом масле (Biofuels, 2018). Хотя из-за высокого содержания воды и более низкого энергосодержания потребовалось несколько регулировок для работы двигателей внутреннего сгорания на этаноле в течение длительного периода времени, все испытания, проведенные Diesel, продемонстрировали возможность его использования с выходом энергии, идентичным топливо на основе нефти (Коварик, 1998). Это соответствовало большинству других исследований этанола в качестве моторного моторного топлива, которые продемонстрировали либо удовлетворительные, либо даже превосходные характеристики этанола по сравнению с топливом на нефтяной основе (Коварик, 1998).
Первоначальная конструкция двигателя внутреннего сгорания для биотоплива была обусловлена тем, что это был самый популярный вид топлива, и в то время никто не мог подумать о маркировке биотоплива как о «новом» или «альтернативном». Например, этанол в качестве топлива для освещения уже тогда широко использовался во всем мире, в то время как нефть, впервые обнаруженная в Пенсильвании (США) в 1859 году, только появлялась в качестве источника энергии (Коварик, 1998). Коммерческое использование этанола в качестве «обычного» моторного топлива стало жертвой недальновидных политических и экономических решений в Соединенных Штатах.Чтобы собрать деньги на войну, во время Гражданской войны в США (1861–1865 гг.) На этанол был введен налог в размере 2,08 доллара за галлон. Этанол стал слишком дорогим, и его производство резко сократилось, что способствовало развитию нефтяной промышленности США, поскольку последняя извлекала выгоду из того, что не облагалась этим налогом.
Когда в 1906 году налог на этанол был отменен, в Соединенных Штатах были предприняты отдельные попытки коммерциализировать этанол и топливные смеси на основе нефти. Наиболее ярким примером этих усилий стало движение сельскохозяйственных химиков 1930-х годов, целью которого было содействие производству промышленных продуктов из сельскохозяйственного сырья (Hale, 1934).Движение поддержали некоторые промышленники. Например, оригинальный автомобиль Генри Форда (1863–1947) (так называемая Модель Т), построенный в то время, был разработан для работы на этаноле (New York Times, 1925). Однако эти усилия были встречены противодействием нефтяной промышленности, которая лоббировала возрождение этанола и его использования в топливных смесях с нефтью. Из-за сильного лоббирования отрасли законодательные предложения по продвижению этанола в качестве моторного топлива не увенчались успехом. Негативную роль сыграло и начало сухого закона в 1919 году.Хотя этанол в этот период все еще можно было использовать в транспортных средствах в смеси с нефтью (Управление энергетической информации, 2017), производство этанола в качестве моторного топлива было остановлено из-за отсутствия спроса. После отмены сухого закона в 1933 году производство этанола в США возродилось, но только для того, чтобы в значительной степени удовлетворить быстро растущий рыночный спрос на давно запрещенные алкогольные напитки. В результате выросла национальная и глобальная зависимость от транспортного топлива на нефтяной основе.
Еще одним важным фактором, способствовавшим снижению популярности этанола в качестве транспортного топлива в Соединенных Штатах, было открытие положительного влияния свинца на характеристики двигателя внутреннего сгорания в 1920-х годах.Чтобы уменьшить детонацию двигателя, этанол можно смешивать с топливом на нефтяной основе; однако два промышленных исследователя, Томас Мидгли (1889–1944) и Чарльз Кеттеринг (1876–1958), обнаружили, как тетраэтилсвинец может быть использован для тех же целей (Коварик, 1998). Исследования воздействия на здоровье этилированного транспортного топлива не обсуждались или прекращались в то время, что в сочетании с производственными ограничениями, введенными запретом, привело к полной замене этанола тетраэтилсвинцом в моторном топливе.Только в 1980–90-х годах негативные последствия использования этилированного транспортного топлива для здоровья были клинически доказаны и, следовательно, получили политическое признание, и тетраэтилсвинец был запрещен в качестве топливной добавки в развитых странах (Loefgren and Hammar, 2000).
В отличие от Соединенных Штатов, (известные в то время) запасы нефти в Европе были ограниченными, что вызвало политическую озабоченность по поводу надежности ее поставок в качестве топлива. В результате такие страны, как Франция, Германия и Великобритания, начали продвигать использование этанола на транспорте.Двигатели были разработаны для работы на смеси этанола и топлива на основе нефти, а некоторые двигатели даже были разработаны для работы на чистом этаноле. В Европе этанол получали из картофеля и винограда в качестве основного сырья, в то время как в других странах мира сахарный тростник и патока представляли собой еще одно важное сырье в то время (Коварик, 1998). Использование этанола в качестве транспортного топлива поощрялось политически и с помощью налоговых льгот. В Германии, например, на нефть были введены специальные импортные пошлины, и специализированная организация, Centrale für Spiritus-Verwerthung, отвечала за регулирование национального рынка этанола, в том числе для производства транспортного топлива (Kovarik, 1998).Некоторые ученые полагают, что политическая поддержка использования этанола на транспорте в Германии могла продлить Первую мировую войну, поскольку (сэкономленные) запасы нефти использовались в военных целях (Kovarik, 1998). Несмотря на более высокую популярность, чем в США, этанол не стал «обычным» транспортным топливом в Европе в межвоенный период. Частично это было связано с быстрым снижением затрат на производство топлива на основе нефти, но также и потому, что подготовка к Второй мировой войне перенаправила традиционное этанольное сырье на производство военных материалов (Коварик, 1998).
Во время Второй мировой войны спрос на биотопливо снова увеличился, поскольку ископаемое топливо стало менее распространенным (Biofuels, 2018). Однако этот спрос длился недолго, и послевоенное восстановление мировой экономики явилось основным фактором, уменьшившим роль биотоплива на транспорте. Поскольку нефть была доступна в изобилии и дешево, промышленные и академические исследования технологии биотоплива в то время в значительной степени бездействовали. Именно топливный кризис 1970–80-х годов и более жесткие стандарты выбросов и экономии топлива, введенные в 1990-х годах, вернули к жизни общественный интерес к биотопливу (Biofuels, 2018; Lee and Mo, 2011).С тех пор соответствующая программа исследований неуклонно развивалась, и регулярно публикуются исследования по различным аспектам использования технологии биотоплива на транспорте, включая экономику производства, усовершенствования конструкции двигателей и отношение потребителей (Xu and Boeing, 2013). Сегодня биотопливо представляет собой важную тему в международном политическом и исследовательском дискурсе, учитывая значительную роль, которую они, как ожидается, будут играть в удовлетворении будущего глобального спроса на энергию и в сокращении углеродного следа при производстве энергии.
Основные сведения о двигателе
Основные сведения о двигателеХанну Яэскеляйнен, Магди К. Хаир
Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.
Аннотация : Поршневые двигатели внутреннего сгорания — подкласс тепловых двигателей — могут работать в четырех- и двухтактных циклах. В каждом случае двигатель может быть оборудован системой сгорания с искровым зажиганием (SI) или с воспламенением от сжатия (CI).Возможен ряд других классификаций двигателей на основе мобильности двигателя, применения, топлива, конфигурации и других параметров конструкции. Теоретически процесс сгорания можно смоделировать, применяя законы сохранения массы и энергии к процессам в цилиндре двигателя. Основные конструктивные и рабочие параметры двигателей внутреннего сгорания включают степень сжатия, рабочий объем, зазор, выходную мощность, указанную мощность, термический КПД, указанное среднее эффективное давление, среднее эффективное давление при торможении, удельный расход топлива и многое другое.
Тепловые двигатели
Определение и классификация
Тепловые двигатели — это машины преобразования энергии — они преобразуют химическую энергию топлива в работу, сжигая топливо в воздухе для производства тепла. Это тепло используется для повышения температуры и давления рабочего тела, которое затем используется для выполнения полезной работы. Тепловые двигатели можно классифицировать как:
- Двигатели внутреннего сгорания, или
- Двигатели внешнего сгорания.
Их также можно разделить на возвратно-поступательные и вращательные.В поршневых двигателях рабочая жидкость используется для линейного перемещения поршня. Затем поступательное движение обычно преобразуется во вращательное с помощью кривошипно-скользящего механизма (шатун / коленчатый вал). В роторном двигателе рабочая жидкость вращает ротор, соединенный с выходным валом.
Двигатели внутреннего сгорания
В двигателях внутреннего сгорания (ДВС) рабочее тело состоит из воздуха, топливовоздушной смеси или продуктов сгорания самой топливно-воздушной смеси.Поршневые двигатели с возвратно-поступательным движением являются, пожалуй, наиболее распространенной формой известных двигателей внутреннего сгорания. Они приводят в действие автомобили, грузовики, поезда и большинство морских судов. Они также используются во многих небольших служебных приложениях. Они могут работать на жидком топливе, таком как бензин и дизельное топливо, или на газообразном топливе, таком как природный газ и сжиженный нефтяной газ. Двумя общими подкатегориями поршневых двигателей с возвратно-поступательным движением являются двухтактный двигатель и четырехтактный двигатель . Примеры роторных двигателей внутреннего сгорания включают роторный двигатель Ванкеля и газовую турбину.
Общие цели при проектировании и разработке всех тепловых двигателей включают: максимизацию работы (выходную мощность), минимизацию потребления энергии и уменьшение загрязняющих веществ, которые могут образовываться в процессе преобразования химической энергии в работу. На рисунке 1 показаны основные узлы поршневых двигателей внутреннего сгорания. Конструкция магистрального двигателя является наиболее распространенной, хотя термин «магистральный двигатель» редко используется за пределами отрасли крупных двигателей. Конструкция крейцкопфа в настоящее время используется только в больших тихоходных двухтактных двигателях.Впускные и выпускные клапаны опущены для простоты, однако стоит отметить, что в некоторых конструкциях двухтактных двигателей используются впускные и выпускные отверстия, а не клапаны.
Рисунок 1 . Основные узлы поршневых (а) и крейцкопфных (б) двигателейКак двух-, так и четырехтактный поршневой двигатель внутреннего сгорания может быть оборудован системой сгорания с искровым зажиганием (SI) или с воспламенением от сжатия (CI).
Обычно системы с искровым зажиганием характеризуются предварительно смешанным зарядом (т.е.е. топливо и воздух смешиваются перед зажиганием) и внешний источник зажигания, такой как свеча зажигания. Предварительное смешивание может происходить во впускном коллекторе или в цилиндре. Хотя предварительно смешанный заряд имеет относительно однородное пространственное распределение воздуха и топлива в большинстве случаев, это распределение также может быть неоднородным. Возгорание инициируется искрой, и пламя распространяется наружу вдоль фронта от места искры. Сгорание в двигателях SI считается кинетическим, потому что вся смесь воспламеняется, а скорость сгорания определяется тем, насколько быстро химическая реакция может потреблять эту смесь, начиная с источника воспламенения.
Обычные дизельные двигатели характеризуются впрыском топлива непосредственно в цилиндр примерно в то время, когда требуется зажигание. В результате заправка воздуха и топлива в этих двигателях очень неоднородна: одни регионы являются чрезмерно богатыми, а другие — обедненными. Между этими крайностями смесь топлива и воздуха будет существовать в различных пропорциях. При впрыске топливо испаряется в этой высокотемпературной среде и смешивается с горячим окружающим воздухом в камере сгорания.Температура испарившегося топлива достигает температуры самовоспламенения и самовоспламеняется, чтобы начать процесс сгорания. Температура самовоспламенения топлива зависит от его химического состава. В отличие от системы SI, сгорание в двигателях с воспламенением от сжатия может происходить во многих точках, где соотношение воздух-топливо и температура могут поддерживать этот процесс. Говорят, что основная часть процесса сгорания в двигателях с ХИ регулируется смешиванием, потому что скорость регулируется образованием воспламеняющихся смесей воздуха и топлива в камере сгорания.
В некоторых случаях различие между модулями SI и CI может быть нечетким. Из-за необходимости сокращения выбросов и расхода топлива были разработаны системы сгорания, которые могут использовать некоторые особенности двигателей SI и CI; например, самовозгорание предварительно смешанных смесей бензина, дизельного топлива или их смеси.
Газовые турбины, рис. 2, являются еще одним примером двигателей внутреннего сгорания. Однако, в отличие от поршневых двигателей с возвратно-поступательным движением, сгорание происходит отдельно в специальной камере сгорания.
Рисунок 2 . Микрогазовая турбина для расширителей диапазона в транспортных средствах средней и большой грузоподъемности(Источник: Wrightspeed Inc.)
Двигатели внешнего сгорания
В двигателях внешнего сгорания рабочее тело полностью отделено от топливовоздушной смеси. Тепло от продуктов сгорания передается рабочему телу через стенки теплообменника. Паровая машина — хорошо известный пример двигателя внешнего сгорания.
Примером поршневого двигателя внешнего сгорания является двигатель Стирлинга, в котором тепло добавляется к рабочему телу при высокой температуре и отводится при низкой температуре. Тепло, добавляемое к рабочему телу, может быть получено практически от любого источника тепла, такого как сжигание ископаемого топлива, дерева или любого другого органического материала.
Цикл Ренкина, на котором основаны многие конструкции паровых двигателей, является еще одним примером двигателя внешнего сгорания. Тепло, поступающее от внешнего источника, повышает температуру жидкости, такой как вода, до тех пор, пока она не превратится в пар, который используется для перемещения поршня или вращения турбины.Паровые двигатели приводили в движение автомобили в США с 1900 по 1916 год; однако к 1924 году они почти исчезли. Паровые грузовики были популярны в Англии до середины 1930-х годов. В то время как паровые локомотивы во многих странах постепенно заменялись тепловозами на протяжении большей части 20 -го -го века, некоторые из них оставались в эксплуатации до 21-го -го -го века. Причины отказа от парового двигателя в качестве основного двигателя в мобильных приложениях заключались в размере и количестве основных компонентов, необходимых для их работы, таких как печь, котел, турбина, клапаны, а также их сложных элементов управления [422] .Паровая турбина, которая до сих пор работает на многих стационарных электростанциях, является примером роторного двигателя внешнего сгорания.
В 21 веке и гг. Акцент на повышении эффективности двигателей вызвал новый интерес к циклу Ренкина для мобильных приложений — в форме рекуперации отработанного тепла выхлопных газов (WHR). В то время как в некоторых из этих устройств используется пар, в других используются органические жидкости, которые лучше подходят для применений с относительно низкой температурой выхлопных газов автомобилей. Из-за комбинации цикла Ренкина и органической рабочей жидкости эти системы часто называют системами рекуперации отходящего тепла с органическим циклом Ренкина (ORC).
###
Двигатель внутреннего сгорания — New World Encyclopedia
Четырехтактный цикл (или цикл Отто)
1. впуск
2. компрессия
3. мощность
4. выпуск
Двигатель внутреннего сгорания — это двигатель, в котором сгорание топлива происходит в замкнутом пространстве, называемом камерой сгорания. Эта экзотермическая реакция топлива с окислителем создает газы с высокой температурой и давлением, которые могут расширяться. Отличительной особенностью двигателя внутреннего сгорания является то, что полезная работа выполняется расширяющимися горячими газами, которые непосредственно вызывают движение, например, воздействуя на поршни, роторы или даже нажимая и перемещая сам двигатель.
Это контрастирует с двигателями внешнего сгорания, такими как паровые двигатели, в которых процесс сгорания используется для нагрева отдельной рабочей жидкости, обычно воды или пара, которые затем, в свою очередь, работают, например, при нажатии на поршень, приводимый в действие паром.
Термин Двигатель внутреннего сгорания (ДВС) почти всегда используется для обозначения поршневых двигателей, двигателей Ванкеля и аналогичных конструкций, в которых сгорание является прерывистым. Однако двигатели непрерывного сгорания, такие как реактивные двигатели, большинство ракет и многие газовые турбины, также являются двигателями внутреннего сгорания.
Двигатели внутреннего сгорания используются в основном на транспорте. Несколько других применений предназначены для любой переносной ситуации, когда вам нужен неэлектрический двигатель. Самым большим применением в этой ситуации будет двигатель внутреннего сгорания, приводящий в действие электрогенератор. Таким образом, вы можете использовать стандартные электроинструменты с приводом от двигателя внутреннего сгорания.
Преимущество этого — портативность. Этот тип двигателя удобнее использовать в транспортных средствах над электричеством.Даже в случае гибридных автомобилей они по-прежнему используют двигатель внутреннего сгорания для зарядки аккумулятора. Недостатком является загрязнение, которое они тушат. Не только очевидное загрязнение воздуха, но и загрязнение сломанными или устаревшими двигателями и отработанными частями, такими как масло или резиновые изделия, которые необходимо выбросить. Еще одним фактором является шумовое загрязнение, многие двигатели внутреннего сгорания очень громкие. Некоторые из них настолько громкие, что людям нужны средства защиты органов слуха, чтобы не повредить уши. Еще один недостаток — размер.Очень непрактично иметь маленькие двигатели, которые могут иметь любую мощность. Электродвигатели для этого гораздо практичнее. Вот почему более вероятно увидеть электрический генератор, работающий на газе, в районе, где нет электричества для питания более мелких предметов.
История
Демонстрация непрямого или всасывающего принципа внутреннего сгорания. Это может не соответствовать определению двигателя, потому что процесс не повторяется. Ранние двигатели внутреннего сгорания использовались для питания сельскохозяйственного оборудования, аналогичного этим моделям.Первые двигатели внутреннего сгорания не имели компрессии, но работали на той топливно-воздушной смеси, которая могла всасываться или вдуваться во время первой части такта впуска. Наиболее существенное различие между современных двигателей внутреннего сгорания и более ранними конструкциями заключается в использовании сжатия, в частности сжатия в цилиндре.
- 1509: Леонардо да Винчи описал двигатель без сжатия. (Его описание не может подразумевать, что идея была оригинальной или что она действительно была построена.)
- 1673: Христиан Гюйгенс описал двигатель без сжатия. [1]
- 1780-е годы: Алессандро Вольта построил игрушечный электрический пистолет, в котором электрическая искра взорвала смесь воздуха и водорода, выпустив пробку из конца пистолета.
- Семнадцатый век: английский изобретатель сэр Сэмюэл Морланд использовал порох для привода водяных насосов.
- 1794: Роберт Стрит построил двигатель без сжатия, принцип работы которого будет доминировать почти столетие.
- 1806: Швейцарский инженер Франсуа Исаак де Риваз построил двигатель внутреннего сгорания, работающий на смеси водорода и кислорода.
- 1823: Сэмюэл Браун запатентовал первый двигатель внутреннего сгорания для промышленного применения. Он был без сжатия и основан на том, что Харденберг называет «циклом Леонардо», который, как следует из этого названия, к тому времени уже устарел. Как и сегодня, раннее крупное финансирование в области, где стандарты еще не были установлены, досталось лучшим шоуменам раньше, чем лучшим работникам.
- 1824: Французский физик Сади Карно основал термодинамическую теорию идеализированных тепловых машин. Это научно установило необходимость сжатия для увеличения разницы между верхней и нижней рабочими температурами, но неясно, знали ли конструкторы двигателей об этом до того, как сжатие уже стало широко использоваться. Это могло ввести в заблуждение дизайнеров, пытавшихся подражать циклу Карно бесполезными способами.
- 1826 г. 1 апреля: Американец Сэмюэл Мори получил патент на «газовый или паровой двигатель без сжатия».«
- 1838: Патент был выдан Уильяму Барнету (англ.). Это было первое зарегистрированное предположение о сжатии в цилиндре. Он, по-видимому, не осознавал его преимуществ, но его цикл стал бы большим достижением, если бы был достаточно развит.
- 1854: итальянцы Эухенио Барсанти и Феличе Маттеуччи запатентовали первый действующий эффективный двигатель внутреннего сгорания в Лондоне (номер пункта 1072), но не начали его производство. Он был похож по концепции на успешный двигатель непрямого действия Отто Лангена, но не так хорошо проработан в деталях.
- 1860: Жан Жозеф Этьен Ленуар (1822-1900) создал газовый двигатель внутреннего сгорания, внешне очень похожий на горизонтальный паровой двигатель двойного действия, с цилиндрами, поршнями, шатунами и маховиком, в которых газ, по существу, поглощал место пара. Это был первый серийный двигатель внутреннего сгорания. Его первый двигатель с компрессией шокировал сам себя. №
- 1862: Николаус Отто разработал двигатель непрямого действия со свободным поршнем без сжатия, более высокая эффективность которого получила поддержку Лангена, а затем и большей части рынка, который в то время в основном предназначался для небольших стационарных двигателей, работающих на горючем газе.
- 1870: В Вене Зигфрид Маркус установил первый передвижной бензиновый двигатель на ручной тележке.
- 1876: Николаус Отто в сотрудничестве с Готлибом Даймлером и Вильгельмом Майбахом разработал практичный четырехтактный двигатель (цикл Отто). Немецкие суды, однако, не удержали его патент на все двигатели с цилиндрическим компрессором или даже на четырехтактный цикл, и после этого решения внутрицилиндровое сжатие стало универсальным.
- 1879: Карл Бенц, работавший независимо, получил патент на свой двигатель внутреннего сгорания, надежный двухтактный газовый двигатель, основанный на конструкции четырехтактного двигателя Николауса Отто.Позже Бенц спроектировал и построил свой собственный четырехтактный двигатель, который использовался в его автомобилях, которые стали первыми автомобилями в производстве.
- 1882: Джеймс Аткинсон изобрел двигатель цикла Аткинсона. Двигатель Аткинсона имел одну фазу мощности на оборот вместе с разными объемами впуска и расширения, что делало его более эффективным, чем цикл Отто.
- 1891: Герберт Акройд Стюарт передает права аренды нефтяного двигателя Хорнсби, Англия, для производства двигателей. Строят первые двигатели с холодным пуском и воспламенением от сжатия.В 1892 году они устанавливают первые на водонасосной станции. Экспериментальная версия с более высоким давлением производит самоподдерживающееся воспламенение только за счет сжатия в том же году.
- 1892: Рудольф Дизель разрабатывает двигатель типа теплового двигателя Карно, сжигающий угольную пыль.
- 1893 23 февраля: Рудольф Дизель получил патент на дизельный двигатель.
- 1896: Карл Бенц изобрел оппозитный двигатель, также известный как горизонтально расположенный двигатель, в котором соответствующие поршни одновременно достигают верхней мертвой точки, таким образом уравновешивая друг друга по импульсу.
- 1900: Рудольф Дизель продемонстрировал дизельный двигатель на выставке 1900 Universelle (Всемирная выставка) с использованием арахисового масла (биодизеля).
- 1900: Вильгельм Майбах спроектировал двигатель, построенный в Daimler Motoren Gesellschaft — в соответствии со спецификациями Эмиля Еллинека — который требовал, чтобы двигатель был назван Daimler-Mercedes в честь его дочери. В 1902 году автомобили с этим двигателем были запущены в производство компанией DMG.
Приложения
Двигатели внутреннего сгорания чаще всего используются в качестве передвижных двигателей в автомобилях, оборудовании и другом переносном оборудовании.В мобильных сценариях внутреннее сгорание является преимуществом, поскольку оно может обеспечить высокое соотношение мощности к весу вместе с превосходной удельной топливной энергией. Эти двигатели используются почти во всех автомобилях, мотоциклах, лодках, а также в самых разных самолетах и локомотивах. Там, где требуется очень высокая мощность, например, реактивные самолеты, вертолеты и большие корабли, они появляются в основном в виде турбин. Они также используются в электрических генераторах и в промышленности.
Операция
Все двигатели внутреннего сгорания зависят от экзотермического химического процесса сгорания: реакция топлива, обычно с воздухом, хотя могут использоваться другие окислители, такие как закись азота.
Наиболее распространенное топливо, используемое сегодня, состоит из углеводородов и, в основном, из нефти. К ним относятся виды топлива, известные как дизельное топливо, бензин и нефтяной газ, а также редкое использование пропана. Большинство двигателей внутреннего сгорания, разработанных для бензина, могут работать на природном газе или сжиженном нефтяном газе без значительных модификаций, за исключением компонентов подачи топлива. Также можно использовать жидкое и газообразное биотопливо, такое как этанол и биодизель, форма дизельного топлива, которое производится из сельскохозяйственных культур, которые дают триглицериды, такие как соевое масло.Некоторые также могут работать на водороде.
Все двигатели внутреннего сгорания должны иметь способ зажигания в цилиндрах для создания сгорания. В двигателях используется либо электрический метод, либо система воспламенения от сжатия.
Процесс зажигания бензина
Электрические / бензиновые системы зажигания (которые также могут работать на других видах топлива, как упоминалось ранее) обычно основаны на комбинации свинцово-кислотной батареи и индукционной катушки для создания высоковольтной электрической искры для воспламенения топливовоздушной смеси в цилиндры двигателя.Эту батарею можно заряжать во время работы с помощью устройства, вырабатывающего электричество, такого как генератор переменного тока или генератор, приводимый в действие двигателем. Бензиновые двигатели впитывают смесь воздуха и бензина и сжимают до менее 170 фунтов на квадратный дюйм и используют свечу зажигания для воспламенения смеси, когда она сжимается головкой поршня в каждом цилиндре.
Процесс зажигания дизельного двигателя
Системы воспламенения от сжатия, такие как дизельный двигатель и двигатели HCCI (гомогенный заряд и воспламенение от сжатия), для воспламенения полагаются исключительно на тепло и давление, создаваемые двигателем в процессе сжатия.Возникающая компрессия обычно более чем в три раза выше, чем у бензинового двигателя. Дизельные двигатели будут всасывать только воздух, и незадолго до пикового сжатия небольшое количество дизельного топлива впрыскивается в цилиндр через топливную форсунку, которая позволяет топливу мгновенно воспламениться. Двигатели типа HCCI будут потреблять как воздух, так и топливо, но по-прежнему будут полагаться на процесс самовоспламенения без посторонней помощи из-за более высокого давления и тепла. Это также является причиной того, что дизельные двигатели и двигатели HCCI также более подвержены проблемам с холодным запуском, хотя после запуска они будут работать так же хорошо в холодную погоду.Большинство дизелей также имеют аккумуляторные батареи и системы зарядки, однако эта система является вторичной и добавляется производителями в качестве роскоши для простоты запуска, включения и выключения топлива, что также может быть выполнено с помощью переключателя или механического устройства, а также для работы вспомогательных электрических компонентов и аксессуаров . Однако большинство современных дизелей полагаются на электрические системы, которые также управляют процессом сгорания, чтобы повысить эффективность и сократить выбросы.
Энергия
После успешного воспламенения и сгорания продукты сгорания, горячие газы, имеют больше доступной энергии, чем исходная сжатая топливно-воздушная смесь (которая имела более высокую химическую энергию).Доступная энергия проявляется в виде высокой температуры и давления, которые могут быть переведены в работу двигателем. В поршневом двигателе газы продукта высокого давления внутри цилиндров приводят в движение поршни двигателя.
После того, как доступная энергия удалена, оставшиеся горячие газы сбрасываются (часто путем открытия клапана или выхода выхлопных газов), что позволяет поршню вернуться в свое предыдущее положение (верхняя мертвая точка — ВМТ). Затем поршень может перейти к следующей фазе своего цикла, который варьируется в зависимости от двигателя.Любое тепло, не переведенное в работу, обычно считается отходом и удаляется из двигателя с помощью системы воздушного или жидкостного охлаждения.
Детали
Иллюстрация нескольких ключевых компонентов типичного четырехтактного двигателя.Детали двигателя различаются в зависимости от типа двигателя. Для четырехтактного двигателя ключевыми частями двигателя являются коленчатый вал (фиолетовый), один или несколько распределительных валов (красный и синий) и клапаны. Для двухтактного двигателя вместо клапанной системы могут быть просто выпускной патрубок и впускное отверстие для топлива.В обоих типах двигателей имеется один или несколько цилиндров (серый и зеленый), и для каждого цилиндра есть свеча зажигания (темно-серый), поршень (желтый) и кривошип (фиолетовый). Одиночный ход поршня вверх или вниз известен как ход, а ход вниз, который происходит непосредственно после воспламенения топливовоздушной смеси в цилиндре, известен как рабочий ход.
Двигатель Ванкеля имеет треугольный ротор, вращающийся в эпитрохоидальной камере (в форме фигуры 8) вокруг эксцентрикового вала.Четыре фазы работы (впуск, сжатие, мощность, выпуск) происходят в разных местах, а не в одном месте, как в поршневом двигателе.
В двигателе Бурка используется пара поршней, встроенных в кулисный механизм, который передает возвратно-поступательное усилие через специально разработанный подшипниковый узел для поворота кривошипно-шатунного механизма. Впуск, сжатие, мощность и выпуск — все это происходит при каждом такте вилки.
Классификация
Существует широкий спектр двигателей внутреннего сгорания, соответствующих их многочисленным применениям.Аналогичным образом существует множество способов классификации двигателей внутреннего сгорания, некоторые из которых перечислены ниже.
Хотя термины иногда вызывают путаницу, реальной разницы между «двигателем» и «мотором» нет. Когда-то слово «двигатель» (от латинского, через старофранцузское, ingenium, «способность») означало любую часть механизма. «Мотор» (от лат. мотор, «движитель») — это любая машина, вырабатывающая механическую энергию. Традиционно электродвигатели не называют двигателями, но двигатели внутреннего сгорания часто называют двигателями.»(Электродвигатель относится к локомотиву, работающему от электричества.)
С учетом сказанного, нужно понимать, что обычное использование часто требует определений. Многие люди рассматривают двигатели как те объекты, которые генерируют энергию изнутри, а двигатели — как требующие внешнего источника энергии для выполнения своей работы. Очевидно, корни слов действительно указывают на настоящую разницу. Кроме того, как и во многих определениях, корневое слово объясняет только начало слова, а не его текущее употребление.Конечно, можно утверждать, что так обстоит дело со словами мотор и двигатель.
Принципы работы
Поршневой:
- Двигатель на сырой нефти
- Двухтактный цикл
- Четырехтактный цикл
- Двигатель с горячей лампой
- Тарельчатые клапаны
- Рукавный клапан
- Цикл Аткинсона
- Предлагаемый
- Улучшения
- Двигатель внутреннего сгорания
Поворотный:
- Продемонстрировано:
- Предлагается:
- Орбитальный двигатель
- Квазитурбина
- Роторный двигатель цикла Аткинсона
- Тороидальный двигатель
Непрерывное сгорание:
- Газовая турбина
- Реактивный двигатель
- Ракетный двигатель
Цикл двигателя
Двухтактный
Двигатели, основанные на двухтактном цикле, используют два хода (один вверх, один вниз) для каждого рабочего хода.Поскольку нет специальных тактов впуска или выпуска, необходимо использовать альтернативные методы очистки цилиндров. Наиболее распространенный метод в двухтактных двигателях с искровым зажиганием заключается в использовании движения поршня вниз для повышения давления свежего заряда в картере, который затем продувается через цилиндр через отверстия в стенках цилиндра. Двухтактные двигатели с искровым зажиганием маленькие и легкие (для их выходной мощности) и очень просты в механическом отношении. Общие области применения включают снегоходы, газонокосилки, средства для удаления сорняков, цепные пилы, водные мотоциклы, мопеды, подвесные моторы и некоторые мотоциклы.К сожалению, они также, как правило, громче, менее эффективны и загрязняют больше, чем их четырехтактные аналоги, и они плохо масштабируются до больших размеров. Интересно, что самые большие двигатели с воспламенением от сжатия являются двухтактными и используются в некоторых локомотивах и больших кораблях. Эти двигатели используют принудительную индукцию для продувки цилиндров. Двухтактные двигатели менее экономичны, чем другие типы двигателей, потому что неизрасходованное топливо, распыляемое в камеру сгорания, может иногда выходить из выхлопного тракта вместе с ранее отработанным топливом.Без специальной обработки выхлопных газов это также приведет к очень высокому уровню загрязнения, требуя, чтобы во многих областях применения небольших двигателей, таких как газонокосилки, использовались четырехтактные двигатели, и в некоторых странах с двухтактными двигателями меньшего размера, оснащенными каталитическими преобразователями.
Четырехтактный
Двигатели, основанные на четырехтактном цикле или цикле Отто, имеют один рабочий ход на каждые четыре хода (вверх-вниз-вверх-вниз) и используются в автомобилях, больших лодках и многих легких самолетах. Как правило, они тише, эффективнее и крупнее своих двухтактных собратьев.Есть несколько разновидностей этих циклов, в первую очередь циклы Аткинсона и Миллера. В большинстве дизельных двигателей грузовиков и автомобилей используется четырехтактный цикл, но с системой зажигания с подогревом от сжатия. Этот вариант называется дизельным циклом.
Пятитактный
Двигатели, основанные на пятитактном цикле, представляют собой вариант четырехтактного цикла. Обычно четыре цикла — это впуск, сжатие, сгорание и выпуск. Пятый цикл, добавленный Delautour [2] , — это охлаждение.Двигатели, работающие с пятитактным циклом, на 30 процентов эффективнее, чем эквивалентный четырехтактный двигатель.
Двигатель Бурка
В этом двигателе два диаметрально противоположных цилиндра соединены с кривошипом шатунным штифтом, проходящим через общую вилку. Цилиндры и поршни сконструированы таким образом, что, как и в обычном двухтактном цикле, происходит два рабочих хода на оборот. Однако, в отличие от обычного двухтактного двигателя, отработанные газы и поступающий свежий воздух не смешиваются в цилиндрах, что способствует более чистой и эффективной работе.Механизм с кулисой также имеет низкую боковую тягу и, таким образом, значительно снижает трение между поршнями и стенками цилиндров. Фаза сгорания двигателя Бурка более точно соответствует сгоранию с постоянным объемом, чем четырехтактный или двухтактный цикл. В нем также используется меньше движущихся частей, поэтому необходимо преодолевать меньшее трение, чем в двух других типах возвратно-поступательного движения. Кроме того, его более высокий коэффициент расширения также означает, что используется больше тепла от его фазы сгорания, чем используется в четырехтактных или двухтактных циклах.
Двигатель с регулируемым сгоранием
Это также цилиндрические двигатели, которые могут быть одно- или двухтактными, но в них вместо коленчатого вала и поршневых штоков используются два соединенных зубчатых колеса концентрических кулачка, вращающихся в противоположных направлениях, для преобразования возвратно-поступательного движения во вращательное движение. Эти кулачки практически нейтрализуют боковые силы, которые в противном случае оказывались бы на цилиндры поршнями, значительно повышая механический КПД. Профили кулачков (которые всегда нечетные и по крайней мере три) определяют ход поршня в зависимости от передаваемого крутящего момента.В этом двигателе есть два цилиндра, которые разнесены на 180 градусов для каждой пары кулачков встречного вращения. Для одноходовых версий существует такое же количество циклов на пару цилиндров, как и кулачков на каждом кулачке, в два раза больше для двухтактных агрегатов.
Ванкель
Двигатель Ванкеля работает с тем же разделением фаз, что и четырехтактный двигатель (но без ходов поршня, правильнее было бы называть четырехфазным двигателем), поскольку фазы находятся в разных местах двигателя.Этот двигатель обеспечивает три рабочих хода на оборот на ротор, что в среднем дает ему большее отношение мощности к массе, чем поршневые двигатели. Этот тип двигателя используется в нынешних моделях Mazda RX8 и RX7 ранее, а также в других моделях.
Газовая турбина
В газотурбинных циклах (особенно реактивных двигателях) вместо использования одного и того же поршня для сжатия и последующего расширения газов используются отдельные компрессоры и газовые турбины; давая постоянную мощность. По сути, всасываемый газ (обычно воздух) сжимается, а затем сжигается с топливом, что значительно повышает температуру и объем.Затем больший объем горячего газа из камеры сгорания подается через газовую турбину, которая затем легко может приводить в действие компрессор.
Вышедшие из употребления методы
В некоторых старых двигателях внутреннего сгорания без сжатия: В первой части хода поршня вниз была засасана или вдувалась топливно-воздушная смесь. В остальной части хода поршня вниз впускной клапан закрылся, и топливно-воздушная смесь сгорела. При ходе поршня вверх выпускной клапан был открыт. Это была попытка имитации работы поршневого парового двигателя.
Виды топлива и окислителя
Используемые виды топлива включают нефтяной спирт (североамериканский термин: бензин, британский термин: бензин), автогаз (сжиженный нефтяной газ), сжатый природный газ, водород, дизельное топливо, реактивное топливо, свалочный газ, биодизель, биобутанол, арахисовое масло и другие растительные масла. , биоэтанол, биометанол (метиловый или древесный спирт) и другие виды биотоплива. Даже псевдоожиженные металлические порошки и взрывчатые вещества нашли применение. Двигатели, в которых в качестве топлива используются газы, называются газовыми двигателями, а двигатели, в которых используются жидкие углеводороды, называются масляными двигателями.Однако, к сожалению, бензиновые двигатели также часто называют «газовыми двигателями».
Основные ограничения для топлива заключаются в том, что топливо должно легко транспортироваться через топливную систему в камеру сгорания, и что топливо выделяет достаточно энергии в виде тепла при сгорании, чтобы можно было использовать двигатель на практике.
Окислитель обычно представляет собой воздух, и его преимущество заключается в том, что он не хранится в транспортном средстве, что увеличивает удельную мощность.Однако воздух можно сжимать и переносить на борту транспортного средства. Некоторые подводные лодки предназначены для перевозки чистого кислорода или перекиси водорода, что делает их независимыми от воздуха. Некоторые гоночные автомобили содержат закись азота в качестве окислителя. Другие химические вещества, такие как хлор или фтор, нашли экспериментальное применение; но большинство из них непрактично.
Дизельные двигатели обычно тяжелее, шумнее и мощнее на более низких оборотах, чем бензиновые двигатели. Они также более экономичны в большинстве случаев и используются в тяжелых дорожных транспортных средствах, некоторых автомобилях (в большей степени из-за их более высокой топливной эффективности по сравнению с бензиновыми двигателями), кораблях, железнодорожных локомотивах и легких самолетах.Бензиновые двигатели используются в большинстве других дорожных транспортных средств, включая большинство автомобилей, мотоциклов и мопедов. Обратите внимание, что в Европе сложные автомобили с дизельным двигателем стали довольно распространенными с 1990-х годов, составляя около 40 процентов рынка. И бензиновые, и дизельные двигатели производят значительные выбросы. Есть также двигатели, работающие на водороде, метаноле, этаноле, сжиженном нефтяном газе (СНГ) и биодизеле. Парафиновые и тракторные двигатели с испарительным маслом (TVO) больше не встречаются.
Водород
Некоторые предполагают, что в будущем водород может заменить такое топливо.Кроме того, с внедрением технологии водородных топливных элементов использование двигателей внутреннего сгорания может быть прекращено. Преимущество водорода в том, что при его сгорании образуется только вода. Это не похоже на сжигание ископаемого топлива, которое производит двуокись углерода, главную причину глобального потепления, окись углерода в результате неполного сгорания и другие местные и атмосферные загрязнители, такие как двуокись серы и окислы азота, которые вызывают проблемы с дыханием в городах, кислотные дожди. , и проблемы с газом озоном.Однако свободный водород для топлива не возникает в природе, при его сжигании выделяется меньше энергии, чем требуется для получения водорода в первую очередь самым простым и распространенным методом — электролизом. Хотя существует несколько способов производства свободного водорода, они требуют преобразования горючих в настоящее время молекул в водород, поэтому водород не решает никаких энергетических кризисов, более того, он решает только проблему переносимости и некоторые проблемы загрязнения. Большим недостатком водорода во многих ситуациях является его хранение.Жидкий водород имеет чрезвычайно низкую плотность — в 14 раз меньше, чем вода, и требует обширной изоляции, тогда как газообразный водород требует очень тяжелых резервуаров. Хотя водород имеет более высокую удельную энергию, объемный запас энергии все еще примерно в пять раз ниже, чем у бензина, даже в сжиженном состоянии. (Процесс «Водород по запросу», разработанный Стивеном Амендола, создает водород по мере необходимости, но здесь есть и другие проблемы, такие как относительно дорогое сырье.) К другим видам топлива, более благоприятным для окружающей среды, относится биотопливо.Это не может дать чистого прироста углекислого газа.
Одноцилиндровый бензиновый двигатель (ок. 1910 г.).Цилиндры
Двигатели внутреннего сгорания могут содержать любое количество цилиндров с обычными номерами от одного до двенадцати, хотя использовалось до 36 (Lycoming R-7755). Наличие большего количества цилиндров в двигателе дает два потенциальных преимущества: во-первых, двигатель может иметь больший рабочий объем с меньшими индивидуальными возвратно-поступательными массами (то есть масса каждого поршня может быть меньше), что обеспечивает более плавную работу двигателя (поскольку двигатель имеет тенденцию к вибрировать в результате движения поршней вверх и вниз).Во-вторых, с большим рабочим объемом и большим количеством поршней может быть сожжено больше топлива, и может быть больше событий сгорания (то есть больше рабочих ходов) в заданный период времени, что означает, что такой двигатель может генерировать больший крутящий момент, чем аналогичный двигатель. с меньшим количеством цилиндров. Недостатком большего количества поршней является то, что в целом двигатель будет иметь больший вес и иметь тенденцию создавать большее внутреннее трение, поскольку большее количество поршней трутся о внутреннюю часть их цилиндров. Это имеет тенденцию к снижению топливной экономичности и лишению двигателя части его мощности.Для высокопроизводительных бензиновых двигателей, использующих современные материалы и технологии (например, двигатели, используемые в современных автомобилях), кажется, есть точка разрыва около 10 или 12 цилиндров, после чего добавление цилиндров становится общим ущербом для производительности и эффективности, хотя есть исключения. например двигатель W16 от Volkswagen существуют.
- Большинство автомобильных двигателей имеют от четырех до восьми цилиндров, некоторые высокопроизводительные автомобили имеют десять, двенадцать или даже шестнадцать, а некоторые очень маленькие легковые и грузовые автомобили имеют два или три цилиндра.В предыдущие годы некоторые довольно большие автомобили, такие как DKW и Saab 92, имели двухцилиндровые двухтактные двигатели.
- Радиальные авиационные двигатели, ныне устаревшие, имели от трех до 28 цилиндров, такие как Pratt & Whitney R-4360. Строка содержит нечетное количество цилиндров, поэтому четное число указывает на двух- или четырехрядный двигатель. Самым большим из них был Lycoming R-7755 с 36 цилиндрами (четыре ряда по девять цилиндров), но он так и не был запущен в производство. Мотоциклы
- обычно имеют от одного до четырех цилиндров, а в некоторых высокопроизводительных моделях их шесть (хотя существуют «новинки» с 8, 10 и 12).
- Снегоходы обычно имеют два цилиндра. У некоторых более крупных (не обязательно высокопроизводительных, но тоже туристических машин) их четыре.
- Небольшие портативные приборы, такие как бензопилы, генераторы и бытовые газонокосилки, чаще всего имеют один цилиндр, хотя существуют и двухцилиндровые бензопилы.
Система зажигания
Двигатели внутреннего сгорания можно классифицировать по системе зажигания. Точка цикла, в которой воспламеняется смесь топлива и окислителя, напрямую влияет на КПД и мощность ДВС.Для типичного 4-тактного автомобильного двигателя горящая смесь должна достичь максимального давления, когда коленчатый вал находится под углом 90 градусов после ВМТ (верхней мертвой точки). Скорость фронта пламени напрямую зависит от степени сжатия, температуры топливной смеси и октанового или цетанового числа топлива. Современные системы зажигания предназначены для зажигания смеси в нужное время, чтобы фронт пламени не касался опускающейся головки поршня. Если фронт пламени касается поршня, это приводит к появлению детонации или детонации.Более бедные смеси и смеси с более низким давлением горят медленнее, что требует более точного момента зажигания. Сегодня в большинстве двигателей используется электрическая или компрессионная система нагрева для зажигания. Однако исторически использовались системы с внешним пламенем и горячими трубами. Никола Тесла получил один из первых патентов на механическую систему зажигания — патент США 609250 (PDF) «Электрический воспламенитель для газовых двигателей» 16 августа 1898 года.
Топливные системы
Топливо сгорает быстрее и полнее, если большая площадь его поверхности контактирует с кислородом.Чтобы двигатель работал эффективно, топливо должно испаряться в поступающий воздух в виде того, что обычно называется топливно-воздушной смесью. Обычно используются два метода испарения топлива в воздух: карбюраторный и впрыск топлива.
Часто в более простых поршневых двигателях для подачи топлива в цилиндр используется карбюратор. Однако точный контроль количества топлива, подаваемого в двигатель, невозможно. Карбюраторы — это самые распространенные в настоящее время устройства для смешивания топлива, используемые в газонокосилках и других двигателях малой мощности.До середины 1980-х карбюраторы также были распространены в автомобилях.
Более крупные бензиновые двигатели, такие как используемые в автомобилях, в основном перешли на системы впрыска топлива. В дизельных двигателях всегда используется впрыск топлива.
Автогазовые двигатели (LPG) используют либо системы впрыска топлива, либо карбюраторы с открытым или закрытым контуром.
В других двигателях внутреннего сгорания, таких как реактивные двигатели, используются горелки, а в ракетных двигателях используются различные идеи, включая ударные струи, сдвиг газа / жидкости, форсажные камеры и многие другие идеи.
Конфигурация двигателя
Двигатели внутреннего сгорания можно классифицировать по их конфигурации, которая влияет на их физические размеры и плавность хода (более плавные двигатели производят меньшую вибрацию). Общие конфигурации включают прямую или линейную конфигурацию, более компактную V-образную конфигурацию и более широкую, но более гладкую плоскую или боксерскую конфигурацию. Авиационные двигатели также могут иметь радиальную конфигурацию, которая обеспечивает более эффективное охлаждение. Также использовались более необычные конфигурации, такие как «H», «U», «X» или «W».
Конфигурации с несколькими коленчатыми валами вовсе не обязательно нуждаются в головке блока цилиндров, но вместо этого могут иметь поршень на каждом конце цилиндра, что называется конструкцией с оппозитным поршнем. Эта конструкция использовалась в дизельном авиационном двигателе Junkers Jumo 205 с двумя коленчатыми валами, по одному на обоих концах одного ряда цилиндров, и, что наиболее заметно, в дизельных двигателях Napier Deltic, в которых использовались три коленчатых вала для обслуживания трех групп двусторонних цилиндров. цилиндры расположены в равностороннем треугольнике с коленчатыми валами по углам.Он также использовался в одноблочных локомотивных двигателях и продолжает использоваться для судовых двигателей, как для тяги, так и для вспомогательных генераторов. Двигатель Gnome Rotary, использовавшийся в нескольких ранних самолетах, имел неподвижный коленчатый вал и ряд радиально расположенных цилиндров, вращающихся вокруг него.
Объем двигателя
Мощность двигателя — это рабочий объем поршней двигателя. Обычно он измеряется в литрах (л) или кубических дюймах ( или дюйм3) для двигателей большего размера и кубических сантиметрах (сокращенно см) для двигателей меньшего размера.Двигатели с большей мощностью обычно более мощные и обеспечивают больший крутящий момент на более низких оборотах, но при этом потребляют больше топлива.
Помимо разработки двигателя с большим количеством цилиндров, есть два способа увеличения мощности двигателя. Первый — удлинить ход, второй — увеличить диаметр поршня. В любом случае может потребоваться дополнительная регулировка подачи топлива в двигатель, чтобы обеспечить оптимальную производительность.
Заявленная мощность двигателя может быть больше вопросом маркетинга, чем инженерии.Morris Minor 1000, Morris 1100 и Austin-Healey Sprite Mark II были оснащены двигателем BMC серии A с одинаковым ходом и диаметром цилиндра в соответствии с их спецификациями и были от одного производителя. Однако в торговой литературе и на значках транспортных средств объем двигателя был указан как 1000 куб. См, 1100 куб. См и 1098 куб. См соответственно.
Смазочные системы
Используется несколько различных типов систем смазки. Простые двухтактные двигатели смазываются маслом, смешанным с топливом или впрыскиваемым в поток впуска в виде спрея.Ранние тихоходные стационарные и судовые двигатели смазывались под действием силы тяжести из небольших камер, подобных тем, которые использовались в паровых двигателях в то время, с тендером для пополнения их по мере необходимости. Поскольку двигатели были адаптированы для использования в автомобилях и самолетах, потребность в высоком соотношении мощности к массе привела к увеличению скорости вращения, повышению температуры и большему давлению на подшипники, что, в свою очередь, требовало смазки под давлением для шатунных подшипников и шейки шатуна, при условии, что либо путем прямой смазки от насоса, либо косвенно посредством струи масла, направляемой на приемные чашки на концах шатуна, что имело то преимущество, что при увеличении частоты вращения двигателя создавалось более высокое давление.
Загрязнение двигателя
Обычно двигатели внутреннего сгорания, особенно поршневые двигатели внутреннего сгорания, производят умеренно высокие уровни загрязнения из-за неполного сгорания углеродсодержащего топлива, что приводит к образованию оксида углерода и некоторого количества сажи, а также оксидов азота и серы и некоторых несгоревших углеводородов в зависимости от условий эксплуатации и соотношение топливо / воздух. Основными причинами этого являются необходимость работы бензиновых двигателей со стехиометрическим соотношением для достижения сгорания (топливо сгорает более полно в избытке воздуха) и «гашение» пламени относительно холодными стенками цилиндра.
Дизельные двигатели выделяют широкий спектр загрязняющих веществ, включая аэрозоли многих мелких частиц (PM10), которые, как считается, глубоко проникают в легкие человека. Двигатели, работающие на сжиженном нефтяном газе (LPG), имеют очень низкий уровень выбросов, поскольку LPG горит очень чисто и не содержит серы или свинца.
- Многие виды топлива содержат серу, которая приводит к образованию оксидов серы (SOx) в выхлопных газах, что способствует кислотным дождям.
- Высокая температура горения приводит к образованию больших количеств оксидов азота (NOx), которые, как доказано, опасны как для здоровья растений, так и для здоровья животных.
- Чистое производство углекислого газа не является обязательной характеристикой двигателей, но, поскольку большинство двигателей работают на ископаемом топливе, это обычно происходит. Если двигатели работают на биомассе, то чистый углекислый газ не образуется, поскольку растущие растения поглощают столько же или больше углекислого газа во время роста.
- Водородные двигатели должны производить только воду, но при использовании воздуха в качестве окислителя также образуются оксиды азота.
КПД двигателя внутреннего сгорания
КПД различных типов двигателей внутреннего сгорания различается.Принято считать, что большинство двигателей внутреннего сгорания, работающих на бензине, даже при использовании турбонагнетателей и вспомогательных средств повышения эффективности имеют механический КПД около 20 процентов. Большинство двигателей внутреннего сгорания тратят около 36 процентов энергии бензина в виде тепла, теряемого в системе охлаждения, и еще 38 процентов через выхлопные газы. Остальное, около шести процентов, теряется из-за трения. Большинству инженеров не удавалось успешно использовать потраченную впустую энергию для каких-либо значимых целей, хотя существуют различные дополнительные устройства и системы, которые могут значительно повысить эффективность сгорания.
Впрыск водородного топлива или HFI — это дополнительная система двигателя, которая, как известно, улучшает топливную экономичность двигателей внутреннего сгорания за счет впрыска водорода в качестве улучшения сгорания во впускной коллектор. Можно увидеть рост экономии топлива от 15 до 50 процентов. Небольшое количество водорода, добавляемого к всасываемому топливно-воздушному заряду, увеличивает октановое число комбинированного топливного заряда и увеличивает скорость пламени, тем самым позволяя двигателю работать с более продвинутой синхронизацией зажигания, более высокой степенью сжатия и более бедной воздушно-топливной смесью. к топливной смеси, чем это возможно в противном случае.В результате снижается уровень загрязнения, увеличивается мощность и эффективность. Некоторые системы HFI используют бортовой электролизер для выработки используемого водорода. Также можно использовать небольшой резервуар с водородом под давлением, но этот метод требует повторного заполнения.
Также обсуждались новые типы двигателей внутреннего сгорания, такие как Scuderi Split Cycle Engine, которые используют высокое давление сжатия, превышающее 2000 фунтов на квадратный дюйм, и сгорают после верхней мертвой точки (самая высокая и самая сжатая точка в ход поршня внутреннего сгорания).Ожидается, что такие двигатели будут иметь КПД 50-55%.
Банкноты
Список литературы
- Харденберг, Хорст О. 1999. Средние века двигателей внутреннего сгорания . Варрендейл, Пенсильвания: Международное издательство SAE. ISBN 0768003911.
- Хейвуд, Джон. 1988. Двигатель внутреннего сгорания. Основы. Нью-Йорк: McGraw-Hill Science / Engineering / Math. ISBN 007028637X.
- Стоун, Ричард. 1999. Введение в двигатели внутреннего сгорания .Варрендейл, Пенсильвания: Международное издательство SAE. ISBN 0768004950.
- Тейлор, Чарльз Фейет. 1985. Двигатель внутреннего сгорания в теории и практике . Кембридж, Массачусетс: MIT Press. ISBN 0262700263.
Внешние ссылки
Все ссылки получены 4 марта 2018 г.
- Знакомство с автомобильными двигателями — изображения в разрезе и хороший обзор двигателя внутреннего сгорания.
- Библия по топливу и двигателям — хороший ресурс по различным типам двигателей и топливам
- youtube — Анимация компонентов 4-цилиндрового двигателя
- youtube — Анимация внутренних движущихся частей 4-цилиндрового двигателя
Кредиты
Энциклопедия Нового Света писателей и редакторов переписали и завершили статью Википедия в соответствии со стандартами New World Encyclopedia .Эта статья соответствует условиям лицензии Creative Commons CC-by-sa 3.0 (CC-by-sa), которая может использоваться и распространяться с указанием авторства. Кредит предоставляется в соответствии с условиями этой лицензии, которая может ссылаться как на участников Энциклопедии Нового Света, участников, так и на самоотверженных добровольцев Фонда Викимедиа. Чтобы процитировать эту статью, щелкните здесь, чтобы просмотреть список допустимых форматов цитирования. История более ранних публикаций википедистов доступна исследователям здесь:
История этой статьи с момента ее импорта в Энциклопедия Нового Света :
Примечание. Некоторые ограничения могут применяться к использованию отдельных изображений, на которые распространяется отдельная лицензия.
Руководство по выбору двигателей внутреннего сгорания: типы, характеристики, применение
Двигатели внутреннего сгорания — это машины, использующие тепло и давление реакции сгорания для выработки механической энергии. Большинство двигателей внутреннего сгорания работают, вызывая контролируемое сжигание топлива и воздуха в камере сгорания. Ожог генерирует тепло и давление, которые прямо или косвенно приводят в движение вал, который действительно работает. Механическая энергия, производимая двигателем внутреннего сгорания, может быть вращательной, вибрационной или другой формы в зависимости от конструкции компонентов.Двигатели внутреннего сгорания используются в бесчисленных типах продукции, от автомобилей до крупных промышленных машин.
Типы двигателей внутреннего сгорания
Двигатели внутреннего сгорания классифицируются изначально в зависимости от того, как они сжигают топливо (внутреннее или внешнее). В каждой категории есть несколько различных типов дизайна.
Двигатели внутреннего сгорания
Двигатели внутреннего сгорания — это двигатели внутреннего сгорания, которые сжигают топливо внутри камеры сгорания.
Двухтактные двигатели
Двухтактные двигатели завершают энергетический цикл двумя ходами поршня внутри цилиндра или одним оборотом коленчатого вала. В этих двигателях впускной и выпускной потоки происходят одновременно.
Кредит изображения: Procarcare — ALLDATA LLC.
Часто двухтактные двигатели маркируются как более простые по конструкции и имеют более высокое отношение мощности к массе, чем четырехтактные двигатели.Они также считаются менее экономичными и более загрязняющими. Однако есть много исключений из этих обобщений, и производительность сильно варьируется в зависимости от конструкции двигателя. Двухтактные двигатели используются для выработки энергии в самых разных областях, включая небольшие изделия для ландшафтного дизайна (например, бензопилы, триммеры), работу электростанций и большие корабли.
Четырехтактные двигатели
Четырехтактные двигатели завершают энергетический цикл четырьмя тактами поршня внутри цилиндра или двумя оборотами коленчатого вала.В этих двигателях отдельные фазы разделены, а впуск и выпуск происходят отдельно во время цикла мощности.
Кредит изображения: Dieselduck.ca, Мартин Ледук
УчебникCDX предоставляет отличное видео, которое дополнительно объясняет работу четырехтактного двигателя.
Четырехтактные двигатели часто более экономичны и чище, чем эквивалентные двухтактные, но могут быть тяжелее и сложнее в конструкции.Они являются наиболее распространенным типом двигателей внутреннего сгорания, используемых в самых разных областях, от автомобилей до промышленного оборудования.
Совет по выбору : Теоретически двухтактный двигатель может генерировать вдвое больше мощности, чем четырехтактный двигатель для того же двигателя и того же числа оборотов. На самом деле это почти верно только для очень больших систем, где соотношение мощностей составляет около 1,8: 1. Средний двухтактный двигатель страдает потерями мощности из-за менее полного впуска и выпуска и более короткого эффективного сжатия и рабочего хода, что делает выходную мощность почти эквивалентной.
Роторные двигатели (Ванкеля)
Роторные двигатели(Ванкеля) работают с ротором и валом вместо поршня. Вращение вала приводит в движение трехсторонний ротор, который приводит в движение топливо через систему. В этих двигателях разные фазы (впуск, сжатие, мощность и выпуск) происходят в разных местах двигателя. Приводной вал вращается один раз при каждом запуске двигателя в конструкции Ванкеля.
Кредит изображения: Википедия — Y_tambe
ДвигателиВанкеля часто легче и проще по конструкции, чем аналогичные поршневые двигатели.Кроме того, они обычно более надежны (из-за уменьшения количества движущихся частей) и имеют более высокое отношение мощности к весу. Однако они страдают от менее эффективного уплотнения, что снижает их эффективность и срок службы. Эти двигатели используются в основном в гоночных автомобилях и спортивных автомобилях, где надежность и легкость считаются более важными, чем эффективность и срок службы двигателя.
Турбинные двигатели
Турбинные двигатели — это двигатели внутреннего сгорания, в которых продукты сгорания направляются в турбину внутри двигателя.Газовый поток вращает лопасти турбины, которая вырабатывает энергию или выполняет другую механическую работу. Они меньше, чем большинство аналогичных поршневых двигателей, и имеют очень высокое отношение мощности к массе. У них также меньше движущихся частей, меньше вибрации и отводится значительное количество отработанного тепла в выхлопных газах, что может быть использовано для других целей отопления. Однако у них также есть затраты, более длительное время запуска и более низкая эффективность на холостом ходу. Чаще всего они используются для питания военно-морских судов.
Реактивные двигатели — это подмножество газотурбинных двигателей, оптимизированных для создания тяги. Для выполнения работы горячие газы, генерируемые источником сгорания, продвигаются через сопло с высокой скоростью. Они используются в качестве силовых установок для самолетов.
Двигатели внешнего сгорания
Двигатели внешнего сгорания — это двигатели внутреннего сгорания, которые сжигают свое топливо извне и используют это тепло для перемещения внутренней жидкости, которая выполняет эту работу.
Двигатели Стирлинга
Двигатели Стирлинга — это однофазные двигатели внешнего сгорания, в которых в качестве рабочего тела используется воздух, гелий или водород. Каждый двигатель Стирлинга имеет герметичный цилиндр, одна часть которого горячая, а другая холодная. Рабочий газ внутри двигателя перемещается механизмом с горячей стороны на холодную. Когда газ находится на горячей стороне, он расширяется и толкает поршень вверх. Когда он возвращается в холодную сторону, он сжимается.Правильно спроектированные двигатели Стирлинга имеют два импульса мощности на оборот, что может обеспечить их очень плавную работу. Двигатели Стирлинга могут достигать гораздо более высокого КПД, чем обычные двигатели внутреннего сгорания, и производить меньше шума и вибрации во время работы. Однако они не могут запускаться мгновенно, как двигатели IC, что делает их менее полезными для таких приложений, как автомобили и самолеты. Чаще всего они используются для систем отопления, охлаждения и подводной энергетики.
Двигатель Стирлинга — Изображение предоставлено: MIT
Паровые двигатели
Паровые двигатели — это двухфазные внешние двигатели, в которых в качестве рабочего тела используется вода (в жидкой и паровой форме).Паровые двигатели также могут использовать источники тепла, не связанные с сжиганием, такие как солнечная энергия, ядерная энергия или геотермальная энергия для нагрева пара. Современные паровые двигатели используются в основном в виде турбин для выработки электроэнергии.
Виды топлива
Двигатели внутреннего сгорания также различаются в зависимости от типа топлива, которое они сжигают.
- Бензин — жидкое топливо, полученное из нефти (сырой нефти). Сорта бензина различаются в зависимости от октанового числа (премиум или «этилированный» противобычный или «неэтилированный»). Бензин с более высоким октановым числом может выдерживать большее сжатие перед сгоранием и необходим в некоторых двигателях, рассчитанных на более высокую степень сжатия, чтобы предотвратить детонацию (неконтролируемое сгорание в цилиндре). Бензиновые двигатели также называют двигателями с искровым зажиганием, что означает, что топливо сжигается за счет образования искры от свечи зажигания в цилиндре.
Дизель — жидкое топливо, состоящее из длинных углеводородов, полученных из сырой нефти. Дизель имеет высокую плотность энергии и, следовательно, имеет лучшую экономию топлива (более чем на 33% более эффективен), чем бензин, но горит более грязно.Дизельное топливо со сверхнизким содержанием серы (ULSD) является стандартом для дизельного топлива с низким содержанием серы; большинство используемых сегодня марок дизельного топлива относятся к ULSD. Дизельные двигатели — это двигатели с воспламенением от сжатия, то есть топливо сжигается с использованием сжатого воздуха (высокого давления) для повышения температуры выше точки самовоспламенения (самовоспламенения) топлива. Поскольку в них не используется источник зажигания (искра), дизельные двигатели часто требуют прогрева в очень холодных условиях перед использованием. Дизельные двигатели также обеспечивают больший крутящий момент, чем бензиновые.
Сжиженный пропан (СНГ) представляет собой смесь пропана и бутана, которая при стандартных условиях является газом, но может храниться и превращаться в жидкость при более высоком давлении. Его можно использовать в двигателях внутреннего сгорания в качестве альтернативы бензину (бензину) или дизельному топливу, который горит более чисто, но имеет более низкую плотность энергии (что означает более высокое использование эквивалентного топлива). Некоторые двигатели не подходят для сжиженного нефтяного газа, поскольку он обеспечивает меньшую смазку, чем другие стандартные виды топлива, что вызывает чрезмерный износ клапанов в цилиндрах.
Сжатый природный газ (КПГ) представляет собой смесь метана и других углеводородов, хранящуюся в виде газа высокого давления. Природный газ — это относительно чистое горючее с меньшей удельной энергоемкостью, чем бензин и дизельное топливо. Двигатели, работающие на природном газе, аналогичны стандартным бензиновым или дизельным двигателям; но они содержат соединители, которые подают природный газ из баллонов для хранения, и включают регуляторы для снижения давления. Как и СНГ, КПГ не обеспечивает такое же количество смазки, как стандартное жидкое топливо, и двигатели должны проектироваться и обслуживаться соответствующим образом, чтобы предотвратить износ клапанов.
Этанол — это спирт, полученный в результате ферментации и дистилляции крахмальных культур, таких как кукуруза, или из целлюлозной биомассы, такой как просо. Часто этанол смешивают с бензином в количестве до девяти или десяти процентов (E10), хотя некоторые двигатели могут быть спроектированы для сжигания смесей с чистотой до 85% этанола (E85). Этанол имеет немного более низкое энергосодержание, чем бензин, что приводит к более высокому расходу условного топлива. Однако этанол выделяет меньше загрязняющих веществ, чем бензин, а также имеет большую устойчивость к детонации двигателя, чем бензин.
Реактивное топливо представляет собой смесь различных углеводородов. Он используется специально для газотурбинных двигателей и реактивных двигателей, используемых в авиации. Смеси различаются в зависимости от свойств, требуемых для продукта. В турбинных и дизельных двигателях, используемых в самолетах, используется реактивное топливо на основе керосина, а в самолетах с поршневыми двигателями или двигателями Ванкеля используется так называемый авгаз (авиационный бензин).
Другие виды топлива, которые могут использоваться для питания определенных типов двигателей, включают растительное масло, водород, бутан и древесину (посредством газификации).
Технические характеристики
Наиболее важными характеристиками, которые следует учитывать при выборе двигателей внутреннего сгорания, являются крутящий момент, мощность в лошадиных силах и число оборотов в минуту (частота вращения вала), которые являются взаимозависимыми. Для двигателей внутреннего сгорания также важно учитывать рабочий объем и количество цилиндров.
Крутящий момент (τ) — это мера силы вращения, создаваемой на валу двигателя во время рабочего хода, выраженная в единицах измерения расстояния-силы (фут-фунт, дюйм-фунт, м-Н и т. Д.)). Он определяет величину физической нагрузки, которую может создать двигатель. Спецификация крутящего момента обычно является показателем максимального номинального крутящего момента двигателя в соответствии со стандартами SAE. Крутящий момент измеряет способность двигателя выдерживать нагрузки и ускоряться и, возможно, является лучшим показателем его характеристик. Двигатели создают полезный крутящий момент только в ограниченном диапазоне частот вращения (обсуждается ниже). Оптимальное использование крутящего момента двигателя часто в значительной степени зависит от передачи трансмиссии соответствующей системы.
Совет по выбору: Важно проверить стандарты, которые производитель использует для измерения крутящего момента. Рекламируемые рейтинги, не основанные на определенных стандартах, могут быть обманчивыми и неточными.
об / мин или частота вращения вала — это скорость вращения вала, диска или ротора в двигателе, измеряемая в об / мин (оборотов в минуту). Поскольку скорость и крутящий момент взаимозависимы, номинальные обороты двигателей часто определяют скорость, при которой достигается максимальный крутящий момент.Автомобильные двигатели обычно работают со скоростью около 2500 об / мин. Остановка происходит, когда двигатели работают ниже минимальной скорости, и при работе выше рекомендованного максимума может произойти повреждение или отказ. Двигатели, работающие на более низких скоростях, могут работать дольше, чем эквивалентные двигатели на более высоких скоростях, поскольку они выполняют меньше циклов и со временем изнашиваются меньше. В автомобилях обороты измеряются тахометром.
Мощность (л.с.) — это производная спецификация, которая указывает производительность двигателя.В частности, он определяет скорость передачи энергии в двигателе. Как и крутящий момент, номинальная мощность в лошадиных силах дается в диапазоне различных оборотов двигателя. Мощность в лошадиных силах зависит от частоты вращения и крутящего момента двигателя по уравнению:
.
л.с. = (τ × об / мин) ÷ 5252
где:
л.с. — это
лошадиных силτ — крутящий момент в фут-фунтах
об / мин — частота вращения в об / мин
5252 — коэффициент преобразования единиц измерения.
Вот упрощенный пример того, как будут выглядеть кривые крутящего момента и мощности для небольшого двигателя внутреннего сгорания:
Кривые мощности и крутящего момента двигателя. Кредит изображения: Woodbank Communications Ltd
Мощность и крутящий момент увеличиваются с увеличением частоты вращения двигателя и достигают пика, когда начинают действовать физические ограничения. Эти ограничения включают размер / форму впускного и выпускного трактов, эффективность смешивания топлива, скорость распространения пламени, трение и механическую прочность компонентов.
Рабочий объем — это объем, перемещаемый всеми поршнями в двигателе внутреннего сгорания за один ход.Обычно он измеряется в кубических сантиметрах (cc), кубических дюймах (CID). Рабочий объем — это основная часть конструкции двигателя, которая определяет, сколько топлива можно впрыснуть или смешать в цилиндре во время каждого цикла мощности. Это существенно влияет на максимальную мощность, которую может выдавать двигатель.
Число цилиндров описывает количество цилиндров сгорания в двигателе внутреннего сгорания. Количество цилиндров в двигателе напрямую влияет на количество производимой мощности, поскольку большее количество цилиндров означает больше сгорания топлива и больше рабочих ходов.В результате двигатели с большим количеством цилиндров будут потреблять больше топлива, чем двигатели с меньшим количеством цилиндров.
Другие характеристики двигателя
Помимо основных технических характеристик, покупателям предлагается рассмотреть ряд других технических характеристик и параметров двигателя.
Расход топлива — Расход топлива определяет количество израсходованного топлива. Как и крутящий момент и мощность, расход топлива изменяется в зависимости от частоты вращения двигателя.Производители часто указывают его как диапазон значений на кривой производительности.
Эффективность двигателя — Энергоэффективность описывает количество энергии топлива, используемого двигателем для выполнения полезной работы. Для бензиновых двигателей максимальный КПД обычно находится в диапазоне 25-30%, поскольку 70-75% теряется в виде неиспользованной тепловой энергии. Более эффективные двигатели будут иметь лучшую экономию топлива (т.е. меньший общий расход топлива).
Выбросы — Газообразные выбросы загрязняющих веществ и твердых частиц выбрасываются в потоки выхлопных газов двигателей внутреннего сгорания после сгорания топлива.Состав выхлопных газов важно учитывать при соблюдении стандартов и требований по загрязнению и выбросам. Факторы, влияющие на выбросы выхлопных газов, включают состав топлива и условия сгорания (например, соотношение воздух-топливо, полностью ли сгорает топливо).
Вес — Вес двигателя важен с точки зрения мобильности и размещения. Более легкие двигатели идеально подходят для приложений, где приводная система должна быть портативной или включать транспортировку, поскольку более тяжелые системы требуют большего крутящего момента для перемещения.Для стационарных приложений вес часто не является проблемой.
Размеры — Размеры двигателя должны соответствовать требованиям соответствующей системы или среды. Размеры включают ширину, длину и высоту двигателя.
Степень сжатия — Отношение максимального объема камеры сгорания двигателя к минимальному объему. Он определяет степень сжатия в камере.Высокая степень сжатия приводит к лучшему смешиванию топлива с воздухом и зажиганию, что приводит к увеличению мощности и повышению общей эффективности двигателя. Однако более высокая степень сжатия делает двигатели более восприимчивыми к детонации при использовании топлива с более низким октановым числом, что может снизить эффективность или вызвать повреждение.
Параметры двигателя
Существует ряд параметров, определяющих различные требования к двигателю, которые необходимо учитывать при выборе.
Требования к воздуху — Качество или состав воздуха, используемого в двигателе для смешивания с топливом во время сгорания.Хотя большинство двигателей работают с использованием стандартного окружающего воздуха, в некоторых средах может потребоваться использование фильтров для удаления твердых частиц или нежелательных газов из воздуха.
Требования к охлаждению — Двигателям требуется охлаждение для отвода тепла, образующегося во время работы. Двигатели внутреннего сгорания охлаждаются воздухом или жидкостью. Двигатели с воздушным охлаждением могут работать в более широком диапазоне температур, чем некоторые двигатели с жидкостным охлаждением, поскольку воздух не подвержен замерзанию или кипению.Однако системы с жидкостным охлаждением часто более гибки в отношении потребностей в охлаждении различных частей двигателя, уменьшая горячие точки и большие перепады температур. Сегодня большинство двигателей внутреннего сгорания имеют жидкостное охлаждение.
Требования к маслу — Двигатели требуют смазки для защиты движущихся частей от чрезмерного износа во время работы. Масло используется для обеспечения этой смазки, помещается либо в независимую систему, либо непосредственно смешивается с сжигаемым топливом. Разным двигателям для правильной работы и обслуживания требуются разные сорта масла и смазки.Кроме того, поскольку смазочные материалы со временем загрязняются и разлагаются, их необходимо регулярно заменять после определенного количества циклов или часов работы.
Характеристики
Двигатели внутреннего сгоранияспроектированы с учетом ряда различных характеристик, которые могут быть важны для рассмотрения в процессе выбора.
Карбюраторные двигатели — это двигатели с карбюраторами, предназначенные для смешивания воздушно-топливной смеси в камере сгорания.Карбюраторы используют всасывание, создаваемое всасываемым воздухом, проходящим через трубку Вентури, для втягивания топлива в воздушный поток. По сравнению с топливными форсунками карбюраторы намного проще регулировать, ремонтировать и восстанавливать. Кроме того, они дешевле, чем системы впрыска топлива, и более надежны.
Двигатели с впрыском топлива — это двигатели с топливными форсунками, предназначенные для подачи топлива в камеру сгорания. Топливные форсунки распыляют топливо на капли в камере, продавливая его через сопло под высоким давлением.Они полагаются на компьютеры, которые постоянно меняют соотношение воздуха и топлива для оптимизации. По сравнению с карбюраторами топливные форсунки более точные и эффективные, а также менее загрязняющие окружающую среду.
Двигатели с турбонаддувом — это двигатели, которые включают турбокомпрессоры, предназначенные для повышения эффективности двигателя внутреннего сгорания. Турбокомпрессоры чаще всего встречаются вместе с бензиновыми и дизельными двигателями внутреннего сгорания.
Гибкое топливо или многотопливные двигатели разработаны для совместимости с несколькими различными типами или смесями топлива.Например, двигатель с искровым зажиганием для автомобиля может работать на различных смесях бензина с содержанием этанола до 85% или может иметь добавленные компоненты для сжигания сжатого природного газа.
Стандарты
API RP 7C-11F — Рекомендуемая практика по установке, техническому обслуживанию и эксплуатации двигателей внутреннего сгорания.
SAA AS 4591.