ОглавлениеОТ ИЗДАТЕЛЬСТВАВВЕДЕНИЕ Глава I. Кинематика § 1. Движение тел § 2. Кинематика. Относительность движения и покоя. § 3. Траектория движения § 4. Поступательное и вращательное движения тела § 5. Движение точки § 6. Описание движения точки § 7. Измерение длины § 8. Измерение промежутков времени § 9. Равномерное прямолинейное движение и его скорость § 10. Знак скорости при прямолинейном движении § 11. Единицы скорости § 12. Графики зависимости пути от времени § 13. Графики зависимости скорости от времени § 14. Неравномерное прямолинейное движение § 15. Мгновенная скорость § 16. Ускорение при прямолинейном движении § 17. Скорость прямолинейного равноускоренного движения § 18. Знак ускорения при прямолинейном движении § 19. Графики скорости при прямолинейном равноускоренном движении § 20. Графики скорости при произвольном неравномерном движении § 21. Нахождение пути, пройденного при неравномерном движении, при помощи графика скорости § 22. Путь, пройденный при равнопеременном движении § 23. Векторы § 24. Разложение вектора на составляющие § 25. Криволинейное движение § 26. Скорость криволинейного движения § 27. Ускорение при криволинейном движении § 28. Движение относительно разных систем отсчета § 29. Кинематика космических движений Глава II. Динамика § 30. Задачи динамики § 31. Закон инерции § 32. Инерциальные системы отсчета § 33. Принцип относительности Галилея § 34. Силы § 35. Уравновешивающиеся силы. О покое тела и о движении по инерции § 36. Сила — вектор. Эталон силы § 37. Динамометры § 38. Точка приложения силы § 39. Равнодействующая сила § 40. Сложение сил, направленных по одной прямой § 41. Сложение сил, направленных под углом друг к другу § 43. Масса тела § 44. Второй закон Ньютона § 45. Единицы силы и массы § 46. Системы единиц § 47. Третий закон Ньютона § 48. Примеры применения третьего закона Ньютона § 49. Импульс тела § 50. Система тел. Закон сохранения импульса § 51. Применения закона сохранения импульса § 52. Свободное падение тел § 53. Ускорение свободного падения § 54. Падение тела без начальной скорости и движение тела, брошенного вертикально вверх § 55. Вес тела § 56. Масса и вес § 57. Плотность вещества § 58. Возникновение деформаций § 59. Деформации в покоящихся телах, вызванные действием только сил, возникающих при соприкосновении § 60. Деформации в покоящихся телах, вызванные силой тяжести § 61. Деформации тела, испытывающего ускорение § 62. Исчезновение деформаций при падении тел § 63. Разрушение движущихся тел § 64. Силы трения § 65. Трение качения § 66. Роль сил трения § 67. Сопротивление среды § 68. Падение тел в воздухе Глава III. Статика § 69. Задачи статики § 70. Абсолютно твердое тело § 71. Перенос точки приложения силы, действующей на твердое тело § 72. Равновесие тела под действием трех сил § 73. Разложение сил на составляющие § 74. Проекции сил. Общие условия равновесия § 75. Связи. Силы реакции связей. Тело, закрепленное на оси § 76. Равновесие тела, закрепленного на оси § 77. Момент силы § 78. Измерение момента силы § 79. Пара сил § 80. Сложение параллельных сил. Центр тяжести § 81. Определение центра тяжести тел § 82. Различные случаи равновесия тела под действием силы тяжести § 83. Условия устойчивого равновесия под действием силы тяжести § 85. Клин и винт Глава IV. Работа и энергия § 86. «Золотое правило» механики § 87. Применения «золотого правила» § 88. Работа силы § 89. Работа при перемещении, перпендикулярном к направлению силы § 90. Работа силы, направленной под любым углом к перемещению § 91. Положительная и отрицательная работа § 92. Единица работы § 93. О движении по горизонтальной плоскости § 94. Работа силы тяжести при движении по наклонной плоскости § 95. Принцип сохранения работы § 96. Энергия § 97. Потенциальная энергия § 98. Потенциальная энергия упругой деформации § 99. Кинетическая энергия § 100. Выражение кинетической энергии через массу и скорость тела § 101. Полная энергия тела § 102. Закон сохранения энергии § 103. Силы трения и закон сохранения механической энергии § 104. Превращение механической энергии во внутреннюю энергию § 105. Всеобщий характер закона сохранения энергии § 106. Мощность § 107. Расчет мощности механизмов § 108. Мощность, быстроходность и размеры механизма § 109. Коэффициент полезного действия механизмов Глава V. Криволинейное движение § 110. Возникновение криволинейного движения § 111. Ускорение при криволинейном движении § 112. Движение тела, брошенного в горизонтальном направлении § 113. Движение тела, брошенного под углом к горизонту § 114. Полет пуль и снарядов § 115. Угловая скорость § 116. Силы при равномерном движении по окружности § 117. Возникновение силы, действующей на тело, движущееся по окружности § 118. Разрыв маховиков § 119. Деформация тела, движущегося по окружности § 120. «Американские горки» § 121. Движение на закруглениях пути § 123. Движение планет § 124. Закон всемирного тяготения § 125. Искусственные спутники Земли Глава VI. Движение в неинерциальных системах отсчета и силы инерции § 126. Роль системы отсчета § 127. Движение относительно разных инерциальных систем отсчета § 128. Движение относительно инерциальной и неинерциальной систем отсчета § 129. Поступательно движущиеся неинерциальиые системы § 130. Силы инерции § 131. Эквивалентность сил инерции и сил тяготения § 132. Невесомость и перегрузки § 133. Является ли Земля инерциальиой системой отсчета? § 134. Вращающиеся системы отсчета § 135. Силы инерции при движении тела относительно вращающейся системы отсчета § 136. Доказательство вращения Земли § 137. Приливы Глава VII. Гидростатика § 138. Подвижность жидкости § 139. Силы давления § 140. Измерение сжимаемости жидкости § 141. «Несжимаемая» жидкость § 142. Силы давления в жидкости передаются во все стороны § 143. Направление сил давления § 144. Давление § 145. Мембранный манометр § 146. Независимость давления от ориентации площадки § 147. Единицы давления § 148. Определение сил давления по давлению § 149. Распределение давления внутри жидкости § 150. Закон Паскаля § 151. Гидравлический пресс § 152. Жидкость под действием силы тяжести § 153. Сообщающиеся сосуды § 154. Жидкостный манометр § 155. Устройство водопровода. Нагнетательный насос § 156. Сифон § 157. Сила давления на дно сосуда § 158. Давление воды в морских глубинах § 159. Прочность подводной лодки § 160. Закон Архимеда § 161. Измерение плотности тел на основании закона Архимеда § 162. Плавание тел § 163. Плавание несплошных тел § 164. § 165. Всплывание пузырьков § 166. Тела, лежащие на дне сосуда Глава VIII. Аэростатика § 167. Механические свойства газов § 168. Атмосфера § 169. Давление атмосферы § 170. Другие опыты, показывающие существование атмосферного давления § 171. Разрежающие насосы § 172. Влияние атмосферного давления на уровень жидкости в трубке § 173. Максимальная высота столба жидкости § 174. Опыт Торричелли. Ртутный барометр и барометр-анероид § 175. Распределение атмосферного давления по высоте § 176. Физиологическое действие пониженного давления воздуха § 177. Закон Архимеда для газов § 178. Воздушные шары и дирижабли § 179. Применение сжатого воздуха в технике Глава IX. Гидродинамика и аэродинамика § 180. Давление в движущейся жидкости § 181. Течение жидкости по трубам § 182. Закон Бернулли § 183. Жидкость в неинерциальных системах отсчета § 184. Реакция движущейся жидкости и ее использование § 185. Перемещение на воде § 186. Ракеты § 187. Реактивные двигатели § 188. Баллистические ракеты § 189. Взлет ракеты с Земли § 190. Сопротивление воздуха § 191. Эффект Магиуса и циркуляция § 192. Подъемная сила крыла и полет самолета § 193. Турбулентность в потоке жидкости или газа § 194. Ламинарное течение РАЗДЕЛ ВТОРОЙ. ТЕПЛОТА. МОЛЕКУЛЯРНАЯ ФИЗИКА Глава X. Тепловое расширение твердых и жидких тел § 195. Тепловое расширение твердых и жидких тел § 196. Термометры § 197. Формула линейного расширения § 198. Формула объемного расширения § 199. Связь между коэффициентами линейного и объемного расширения § 200. Измерение коэффициента объемного расширения жидкостей § 201. Особенности расширения воды Глава XI. Работа. Теплота. Закон сохранения энергии § 203. Нагревание тел при совершении работы § 204. Изменение внутренней энергии тел при теплопередаче § 205. Единицы количества теплоты § 206. Зависимость внутренней энергии тела от его массы и вещества § 207. Теплоемкость тела § 208. Удельная теплоемкость § 209. Калориметр. Измерение теплоемкостей § 210. Закон сохранения энергии § 211. Невозможность «вечного двигателя» § 212. Различные виды процессов, при которых происходит передача теплоты Глава XII. Молекулярная теория § 213. Молекулы и атомы § 214. Размеры атомов и молекул § 215. Микромир § 216. Внутренняя энергия с точки зрения молекулярной теории § 217. Молекулярное движение § 218. Молекулярное движение в газах, жидкостях и твердых телах § 219. Броуновское движение § 220. Молекулярные силы Глава XIII. Свойства газов § 221. Давление газа § 222. Зависимость давления газа от температуры § 223. Формула, выражающая закон Шарля § 224. Закон Шарля с точки зрения молекулярной теории § 225. Изменение температуры газа при изменении его объема. Адиабатические и изотермические процессы § 226. Закон Бойля — Мариотта § 227. Формула, выражающая закон Бойля — Мариотта § 228. График, выражающий закон Бойля — Мариотта § 229. Зависимость между плотностью газа и его давлением § 230. Молекулярное толкование закона Бойля — Мариотта § 231. Изменение объема газа при изменении температуры § 232. Закон Гей-Люссака § 233. Графики, выражающие законы Шарля и Гей-Люссака § 234. Термодинамическая температура § 235. Газовый термометр § 236. Объем газа и термодинамическая температура § 237. Зависимость плотности газа от температуры § 238. Уравнение состояния газа § 239. Закон Дальтона § 240. Плотность газов § 241. Закон Авогадро § 242. Моль. Постоянная Авогадро § 243. Скорости молекул газа § 244. Об одном из способов измерения скоростей движения молекул газа (опыт Штерна) § 245. Удельные теплоемкости газов § 246. Молярные теплоемкости § 247. Закон Дюлонга и Пти Глава XIV. Свойства жидкостей § 248. Строение жидкостей § 249. Поверхностная энергия § 250. Поверхностное натяжение § 251. Жидкостные пленки § 252. Зависимость поверхностного натяжения от температуры § 253. Смачивание и несмачивание § 254. Расположение молекул у поверхности тел § 255. Значение кривизны свободной поверхности жидкости § 256. Капиллярные явления § 257. Высота поднятия жидкости в капиллярных трубках § 258. Адсорбция § 259. Флотация § 260. Растворение газов § 261. Взаимное растворение жидкостей § 262. Растворение твердых тел в жидкостях Глава XV. Свойства твердых тел. Переход тел из твердого состояния в жидкое § 263. Введение § 264. Кристаллические тела § 265. Аморфные тела § 266. Кристаллическая решетка § 267. Кристаллизация § 268. Плавление и отвердевание § 269. Удельная теплота плавления § 270. Переохлаждение § 271. Изменение плотности веществ при плавлении § 272. Полимеры § 273. Сплавы § 274. Затвердевание растворов § 275. Охлаждающие смеси § 276. Изменения свойств твердого тела Глава XVI. Упругость и прочность § 277. Введение § 278. Упругие и пластические деформации § 279. Закон Гука § 280. Растяжение и сжатие § 281. Сдвиг § 282. Кручение § 283. Изгиб § 284. Прочность § 285. Твердость § 286. Что происходит при деформации тел § 287. Изменение энергии при деформации тел Глава XVII. Свойства паров § 288. Введение § 289. Пар насыщенный и ненасыщенный § 290. Что происходит при изменении объема жидкости и насыщенного пара § 291. Закон Дальтона для пара § 292. Молекулярная картина испарения § 293. Зависимость давления насыщенного пара от температуры § 294. Кипение § 295. Удельная теплота парообразования § 296. Охлаждение при испарении § 297. Изменение внутренней энергии при переходе вещества из жидкого состояния в парообразное § 298. Испарение при кривых поверхностях жидкости § 299. Перегревание жидкости § 300. Пересыщение паров § 301. Насыщение пара при возгонке § 302. Превращение газа в жидкость § 303. Критическая температура § 304. Сжижение газов в технике § 305. Вакуумная техника § 306. Водяной пар в атмосфере Глава XVIII. Физика атмосферы § 307. Атмосфера § 308. Тепловой баланс Земли § 309. Адиабатические процессы в атмосфере § 310. Облака § 311. Искусственные осадки § 312. Ветер § 313. Предсказание погоды Глава XIX. Тепловые машины § 314. Условия, необходимые для работы тепловых двигателей § 315. Паросиловая станция § 316. Паровой котел § 317. Паровая турбина § 318. Поршневая паровая машина § 319. Конденсатор § 320. Коэффициент полезного действия теплового двигателя § 321. Коэффициент полезного действия паросиловой станции § 322. Бензиновый двигатель внутреннего сгорания § 323. Коэффициент полезного действия двигателя внутреннего сгорания § 324. Двигатель Дизеля § 325. Реактивные двигатели § 326. Передача теплоты от холодного тела к горячему Ответы и решения к упражнениям Предметный указатель |
10 альтернатив бензиновому двигателю
В то время как новые технологии бурения и запасы нефти снижают давление цен на бензин и пиковых объемов производства, спрос на автомобили, работающие на альтернативном топливе, продолжает расти. Экологические проблемы и правительственные постановления сделали поиск заменителей обычного бензинового двигателя внутреннего сгорания приоритетом как для производителей, так и для потребителей. Федеральное правительство требует к 2025 году среднего показателя в 54,5 мили на галлон, что является сложной задачей для традиционных технологий. Калифорния требует увеличения количества автомобилей с нулевым уровнем выбросов или подключаемых гибридных автомобилей. Но в каком направлении идти? В зависимости от таких соображений, как модели использования, эффективность и стоимость, существует по крайней мере дюжина заменителей бензина в качестве моторного топлива, включая электричество, природный газ, растительное масло и даже солнечный свет. Как отмечает Джон О’Делл из Edmunds.com, даже самые многообещающие источники энергии, такие как природный газ, имеют один и тот же недостаток: отсутствие инфраструктуры для заправки или подзарядки. Имея это в виду, вот взгляд на альтернативы, доступные сегодня, а также некоторые предварительные прогнозы относительно их перспектив на будущее.
1. Газоэлектрические гибриды
Первые гибридные модели Honda Insight и Toyota Prius (вверху) появились в США в 1999 году, и сегодня в продаже имеется около 40 газоэлектрических моделей. Использование электричества для частичного питания транспортных средств обеспечивает значительную экономию топлива и сокращение выбросов. Газоэлектрические гибриды используют аккумулятор для обеспечения питания на низких скоростях или для управления остановкой / запуском. Аккумулятор заряжается за счет рекуперативного торможения и двигателя внутреннего сгорания, и его не нужно подключать к розетке. В то время как популярный Prius от Toyota (TM) остается самым продаваемым гибридом — в 2013 году будет продано более 200 000 автомобилей — их число сейчас включают суперкары производства Ferrari и Porsche. Гибрид Porsche Panamera S имеет 3,0-литровый двигатель V6 и по-прежнему потребляет 22 мили на галлон по городу и 30 миль на галлон по шоссе.
2. Подключаемые гибриды
Подключаемые гибриды или PHEVS аналогичны газоэлектрическим гибридам, но имеют более крупные батареи, которые могут перемещать автомобиль на ограниченные расстояния только на электричестве, что приводит к нулевым выбросам. Затем батареи можно заряжать, подключив их к источнику электроэнергии. Стоимость аккумуляторов большего размера влечет за собой значительную надбавку к цене — дополнительные 7000 долларов за версию Prius с подключаемым модулем до недавнего снижения цен — и в настоящее время в США доступны только четыре модели PHEV. Продажи самой известной модели , General Motors (GM) Chevrolet Volt с расширенным ассортиментом (выше) работает менее 2000 в месяц.
3. Электрооборудование
Электромобили (ЭМ) работают без бензина; они используют батарею для хранения электроэнергии, питающей двигатель. Принятие чистых электромобилей медленно растет с тех пор, как они были представлены на массовом рынке три года назад, с повышенным спросом как в нижней части рынка после снижения цен на Nissan Leaf за 30 000 долларов (выше), так и в верхней части с Удивительный успех Tesla Model S за 80 000 долларов. Беспокойство по поводу запаса хода продолжает сдерживать рост интереса покупателей, равно как и ограниченное количество зарядных станций за пределами крупных городов. В 2013 году в продаже было 11 различных моделей электромобилей от основных производителей, в том числе Smart ForTwo Electric от Mercedes, который заявляет о запасе хода в 68 миль на одном заряде и продается за 20 740 долларов без учета льгот и скидок.
4. Этанол и гибкое топливо
Благодаря постановлению правительства о возобновляемых видах топлива от 2007 г., требующему добавления в бензин определенного количества жидкостей, изготовленных из возобновляемых источников, этанол, произведенный из кукурузы, нашел свое применение в топливе страны. Около 84 моделей легковых и грузовых автомобилей имеют обозначение «гибкое топливо», что означает, что они могут работать на смесях, содержащих до 85% этанола. В последнее время возникла негативная реакция на использование этанола, поскольку растет осознание того, что этанол содержит меньше энергии, чем бензин, что приводит к меньшему количеству миль на галлон и требует много энергии для производства, что может привести к увеличению выбросов углекислого газа. Оппоненты также утверждают, что этанол неэтичен, потому что он отвлекает 40% выращиваемой кукурузы от продуктов питания и увеличивает ее стоимость.
5. Биодизельное топливо
Изготовленное из растительного масла, животных жиров или переработанного ресторанного жира, биодизельное топливо повышает октановое число обычного дизельного топлива и сгорает более чисто, в дополнение к тому, что оно нетоксично и биоразлагаемо. Биодизель можно использовать в чистом виде, но чаще всего его можно найти в смеси с 80% обычного дизельного топлива. Постановления правительства требовали, чтобы в 2013 году было произведено 1,3 миллиарда галлонов биодизеля. Биодизель можно использовать в большинстве автомобилей с обычными дизельными двигателями без модификации, в том числе в пикапе Ford (F) F-250 Super Duty.
6. Пропан
Простота обслуживания и снижение выбросов стимулировали использование пропана в парках легковых автомобилей (полицейские машины и школьные автобусы), а также в большегрузных грузовиках с такими знакомыми шильдиками, как Kenworth и Peterbilt. В настоящее время на дорогах находится более 270 000 автомобилей, работающих на пропане. Также известный как сжиженный нефтяной газ (LPG), пропан производится как побочный продукт переработки природного газа и переработки сырой нефти. Несмотря на высокое октановое число и чистоту горения, пропан стоит примерно на треть дешевле бензина. Но он должен храниться в резервуаре под давлением, а инфраструктура заправки пропаном ограничена.
7. Сжиженный и сжатый природный газ
Транспортные средства, работающие на природном газе, работающие на сжиженном или сжатом газе, имеют такой же пробег, как и бензин, но горят чище. По оценкам Министерства энергетики, в настоящее время в эксплуатации находится около 112 000 автомобилей, работающих на природном газе. Большинство из них являются грузовиками средней и большой грузоподъемности, но Honda (HMC) предлагает Civic на природном газе (вверху) с 1998 года. Он медленнее бензинового, имеет ограниченный запас хода и сеть заправок и стоит на тысячи долларов дороже. В его пользу более дешевые цены на топливо отечественного производства и меньшие выбросы.
8. Топливные элементы
Подобно вымышленному Эльдорадо, мерцающему вдалеке, доступные топливные элементы на водороде были недостижимой целью для целого поколения исследователей. Водород привлекателен тем, что его можно производить внутри страны и он сгорает чисто, а автомобили на топливных элементах в два-три раза эффективнее бензиновых. Что сдерживало их, так это стоимость строительства самих ячеек и сети заправочных станций для распределения водорода. В результате производители тестируют небольшие парки FCV, но ни один автомобиль на топливных элементах не вышел на потребительский рынок. Две известные модели в ограниченных тестах: Honda FCX Clarity и Mercedes-Benz F-cell 2012 года (выше), который получает 52 мили на кг водорода (примерно эквивалентно галлону бензина).
9. Солнечная энергия
В октябре автомобиль, работающий на солнечной энергии, проехал почти 2000 миль по австралийской глубинке со средней скоростью 56 миль в час. Звучит идеально — солнечная энергия бесплатна и чиста — но есть несколько предостережений: автомобиль голландской разработки (вверху) просто перевозил водителя, ехал только в светлое время суток и использовал небольшую батарею для движения. Это будущее? Возможно нет. Фотогальванические элементы, которые улавливают солнечный свет и преобразуют его в электричество, дороги в производстве, а автомобиль сделан из дорогих легких материалов, таких как титановые композиты. Тем не менее, автомобили на солнечных батареях могут найти ограниченное применение в качестве пригородных автомобилей, где у них была возможность заряжаться в течение дня, а некоторые из них сегодня используются в качестве тележек для гольфа.
10. Steam
В период с 1899 по 1905 год Stanley Steamer (выше) продавался лучше всех автомобилей с бензиновым двигателем в США. Паровые двигатели разрабатывались с начала 18 века; бензин был младенцем по сравнению с ним. Но двигатели внутреннего сгорания быстро наверстали упущенное после того, как у них появился автозапуск, и пароходы были обречены на то, чтобы таскать с собой тяжелые котлы. Автомобили с паровым двигателем по-прежнему привлекают внимание, потому что они могут сжигать такое топливо, как мусор, древесину и сырую нефть — General Motors представила два экспериментальных автомобиля в 1919 году.69, но они относительно неэффективны и очень тяжелы. В 2009 году современный паровой автомобиль побил рекорд скорости, установленный Stanley Steamer в 1906 году, когда он превысил 130 миль в час, но он весил более трех тонн и содержал более двух миль паровых труб.
Водород может стать топливом для двигателей внутреннего сгорания будущего
- Электричество похоже на будущее, с умными электродвигателями, заменяющими внутреннее сгорание, но один человек возвышается и говорит: «Водород — это путь!»
- Пророк лошадиных сил Майк Коупленд искренне верит, что внутреннее сгорание водорода может избавить от шума гонок и гонок.
- Дело в том, что он может быть прав.
Гуру двигателей Майк Коупленд обеспокоен будущим двигателей внутреннего сгорания.
«Нашему правительству потребуется совсем немного, чтобы принять закон, запрещающий бензиновые двигатели вообще», — сказал он во время вебинара SEMA 23 февраля.
«Сейчас их 90 миллионов зарегистрированных транспортных средств с двигателем внутреннего сгорания в Соединенных Штатах. Этот закон может устранить все это. Это может устранить все гонки. Не может быть NASCAR, не может быть дрэг-рейсинга, не может быть шоссейных гонок, гонок по бездорожью. Все это может быть упразднено законом».
Страшная мысль для такого парня, как Коупленд, который любит гонки и двигатель внутреннего сгорания. Он проработал в General Motors 26 лет, производя всевозможные крутые автомобили и чудовищные двигатели. Затем он основал Arrington Performance, чтобы производить двигатели хот-родов для автомобилей клиентов, а затем основал Diversified Creations, чтобы спасти мир поршневой мощности. Как он собирается это сделать? Одна буква: H.
«Реальность такова, что нам нужен другой вариант. Водород предоставляет такую возможность. Моя цель, моя личная цель, причина, по которой мы с женой так много вкладываем в это, заключается в том, что мы хотим попытаться спасти эту отрасль, которую мы любим».
В то время как большинство OEM-производителей смотрят на электричество как на будущее — следующее большое событие после бензина и внутреннего сгорания, — Коупленд не видит, что электромобили могут обеспечить такие же ощущения, как ДВС.
«Электричество — это вариант, у него есть свои преимущества. И этого уж точно не отнять. Но я не знаю, будут ли люди смотреть гонку NASCAR с целой кучей машин, которые просто издают «Уииииии!», когда проезжают мимо».
Точно так же NHRA нужно больше, чем киловатты, чтобы заинтересовать людей.
«Я был на гонках NHRA в Лас-Вегасе, и у Ford был электромобиль Mustang (Cobra Jet 1400). Они построили действительно хорошую машину. Он работает в середине восьмерки, это исключительно быстро. Но когда пришло время бежать, очередь у киоска выросла, потому что там тихо. Все, что вы слышите, это небольшой визг шин и небольшой визг. Это не вызывает эти чувства».
Его решение состоит в том, чтобы оставить двигатели внутреннего сгорания, но заменить бензин водородом.
Благодаря многочисленным модификациям, инженерным разработкам и правильному программному обеспечению водород может питать двигатель внутреннего сгорания и обеспечивать производительность, подобную той, что предлагают традиционные двигатели с ДВС, но без загрязнения окружающей среды.
Да, это уже делалось раньше, но цель Коупленда — создать комплект, который каждый сможет использовать для перехода с бензина на водород. Итак, он начинает с пикапа Chevy 1948 года, который вы видите здесь, грузовика, который теперь работает на h3. Коупленд при стратегической помощи Bosch взял его из 130-летнего бензина внутреннего сгорания и превратил его в пионера производительности на водородном топливе. Это была грандиозная задача.
«Это не похоже на то, когда все начали переходить с карбюраторов на впрыск топлива в 80-х», — сказал он. Все параметры разные.
«Все мы знаем, что оптимальное соотношение (воздух-топливо) для безнаддувных двигателей составляет 14,7:1. Мы все знаем, что означают уровни октанового числа, примерно какие наддувы вам сойдут с рук, каковы временные кривые и тому подобное. Это никогда не менялось между карбюраторами, впрыском топлива и всем этим. Но водород — это все новое. Всему, что мы делаем, нам приходится учиться».
Его партнерство с Bosch в технической части позволило программе добиться успеха, а когда Bosch не было, он делал обоснованные предположения.
Вот что он сделал: Грузовик установлен на шасси TCI с 6,2-литровым двигателем LS V8, питаемым от нагнетателя Magnuson 2650. Сцепление McLeod находится между ним и пятиступенчатой механической коробкой передач Tremec TKX от American Powertrain. Водород находится в цилиндрическом баке из углеродного волокна длиной 50 дюймов, предназначенном для автобуса, работающего на топливных элементах.
Этот 6,2-литровый V8 имеет много новых внутренних компонентов: увеличенные по сравнению со стандартными поршни Weiseco для лучшего охлаждения, более короткие шатуны и кривошип K1; поршни имеют специальные кольца от Total Seal с зазорами примерно такими же, как в форсированном двигателе или двигателе с закисью азота.
«Они открыты примерно на 3/5/1000 от того, где мы их традиционно устанавливали».
Распределительный вал тоже подходит для этой задачи.
«Водородные двигатели не любят возвращать выхлопные газы во впуск. Так что, если вы проводите большое перекрытие или узкую центральную линию, вы увеличиваете возможность для этого, а мы не хотели этого делать».
Этот контент импортирован из {embed-name}. Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.
Сверху установлены серийные головки блока цилиндров LSA с клапанами Dhenkanal и 16 топливными форсунками, управляемыми специальным компьютером Bosch. «Традиционная» катушка типа LS посылает искру на «традиционную» холодную свечу зажигания.
«Я использую ту же свечу зажигания, что и в дрэг-каре COPO Camaro и дрэг-паке Challenger. Это холодная вилка, потому что у нас нет ни углерода, ни угарного газа, ни углерода нигде. У нас нет проблем с загрязнением вилки, поэтому мы можем запускать ее очень холодно».
16 форсунок впрыскивают h3 во впускные отверстия с двух позиций.
«У нас по восемь форсунок с каждой стороны над портом, и они распыляют прямо (в цилиндры). А поскольку водород очень легкий, вакуум втягивает (его) прямо в цилиндры. Кроме того, у нас есть восемь форсунок в традиционном месте, которые нацелены на клапан — так же, как и с любым бензиновым приложением».
И как все это работает?
«Мы начали с цели в 500 лошадиных сил, — сказал Коупленд. «Аналитически я определил, что мне нужно около 15 фунтов наддува, чтобы добраться туда. Сейчас у нас 20 фунтов наддува при 6000 об/мин».
Он не назвал конкретную мощность, так как двигатель все еще находится в стадии разработки, но мы можем предположить, что он развивает мощность где-то севернее 500 л.с.
Коупленд показал видео грузовика на динамометрическом стенде при 5500 об/мин. Он звучал как двигатель внутреннего сгорания с воем вентилятора, за исключением того, что из выхлопной трубы выходило немного воды.
«Угарного газа нет, углекислого газа нет. Когда топливные смеси правильные, углеводородов нет».
Конечная цель — не что иное, как спасение хот-роддинга.
«Наша программа направлена на создание программы хот-родов и модернизацию этих автомобилей, чтобы мы могли продолжать, наши дети могли продолжать, а наши внуки могли продолжать водить Camaro 69 года, Ford 32 года или Mustang 65 года. который стоит в твоем гараже».
Все может работать. Представители SEMA договорились о том, чтобы представители Калифорнийского совета по воздушным ресурсам посетили стенд Copeland на выставке SEMA в Лас-Вегасе в прошлом году.
«SEMA принесла мне CARB. Они объяснили CARB, что я делаю, и CARB достаточно позаботился, у нас было много разговоров. Они добавили водород к своим приемлемым альтернативным видам топлива. Они дали мне требования, которые я должен им предоставить, чтобы мы могли пройти сертификацию с нулевым уровнем выбросов для этого пакета».
Вскоре последует проверка в гараже SEMA, где тюнеры и производители запчастей смогут убедиться, что их новые компоненты соответствуют стандартам CARB.
Одно из первых применений этой трансмиссии может быть в том, чтобы приводить в действие текущую продукцию небольших производителей автомобилей. Этих парней оставили сохнуть, когда CARB настоял, чтобы они все использовали непомерно дорогие современные двигатели с современным контролем загрязнения. Хот-роды с водородным двигателем могли бы удовлетворить как государственных регуляторов, так и энтузиастов.
Коупленд говорит, что сейчас стоимость запчастей может быть непомерно высокой, но она снизится по мере увеличения объемов. Точно так же доступность водорода, которая в настоящее время ограничена 50 или 60 розничными торговыми точками в Калифорнии, должна расти. Коупленд — оптимист, футурист и, возможно, провидец. Когда-нибудь ваши внуки скажут ему спасибо.
Вы в восторге от перспектив хот-родов, работающих на водороде? Пожалуйста, прокомментируйте ниже.
Марк Вон Марк Вон вырос в семье Фордов и провел много часов, неся свет на рядную шестерку, чудесным образом питаемую одноцилиндровым карбюратором, в то время как его отец проклинал Форд, всю его продукцию и всех, кто когда-либо там работал.