Газотурбинный двигатель принцип работы видео: Газотурбинные двигатели — Принцип работы газовой турбины

Содержание

Как работают турбореактивные двигатели? Какие бывают ТРД?

Турбореактивный двигатель (периодически мы будем его называть сокращенно ТРД) — сколько в этом названии величественного, сразу представляются самолеты, ракеты, космос. Безусловно тот толчок научно-технического прогресса, который произошел благодаря изобретению реактивного двигателя, сыграл очень большую роль в развитии транспорта, и не только авиационного. Также на близкой нашему порталу железной дороге за счет турбореактивной тяги работают такие локомотивы как газотурбовозы, и РЖД считает их довольно перспективными, правда в рамках «штучной» эксплуатации. Водный транспорт тоже не уступает, в мире полно всяких авторских катеров с газотурбинными установками, способными развивать бешенное ускорение, и конечно экранопланы, вроде заржавевшего «Каспийского монстра», используют реактивную тягу для движения.

В данном материале мы не будем обсуждать трехэтажные формулы, учить фамилии конструкторов и первооткрывателей. Особенностью рубрики является попытка простого объяснения работы сложных технических устройств в области транспорта. Также поговорим о видах и принципах работы турбореактивных двигателей. Но начнем мы с обратного: как же ТРД удается перемещать летательные аппараты и экранопланы, что дало толчок к развитию ТРД?

Как турбореактивные двигатели перемещают летательные аппараты и экранопланы

Представьте себе ситуацию, будто вы сидите посреди большой пустой комнаты на стуле с колесиками, но дотянуться ногами до пола не можете, и предметов вокруг, от которых можно оттолкнуться тоже нет, а вам нужно как-то переместиться в сторону выхода. Задача эта совершенно не решаема, если у вас нет при себе никаких предметов, включая одежду. Но если при вас есть хоть что-то, обладающее массой, вы можете со всей силы отбросить это в сторону, противоположную выходу. Удивительным образом стул двинется в сторону выхода, и если вдруг в кармане вы обнаружите пару гантелей или гирю, особых проблем с путешествием не будет.

Главный принцип здесь заключается в следующем: если мы бросаем какой-либо предмет в сторону, на нас действует точно такая же сила, как и на предмет, только противоположно направленная. Если мы хотим кинуть волейбольный мяч, придав ему ускорение рукой, то наша рука почувствует удар — это и есть та сила, действующая в противоположном полету мяча направлении. Поскольку мяч гораздо легче, чем человек, он вынужден отлететь на большое расстояние, при приложенной силе. Но если с той же силой удара, что приложена к мячу, долбануть по гире, которая всего в четыре раза легче человека, то сила удара уже заставит кости сломаться.

Когда человечество получило доступ к поршневым двигателям высокой на тот момент мощности, пришла идея создания летательных аппаратов, известных ныне как самолеты. На валу поршневого движка внутреннего сгорания устанавливался винт с лопастями, отбрасывающий большой объем воздуха, в противоположном полету направлении. Однако скорость полетов на ДВС с воздушным винтом была весьма ограничена, а растущей индустриализации требовались все большие скорости, и тогда вспомнили про газовую турбину.

Движение летательного аппарата с турбореактивными двигателями происходит за счет отбрасывания двигателем газовой смеси с высокой скоростью и в большом объеме, в противоположную движению самолета сторону. Все довольно просто. Воздух — это газовая смесь, и каждый газ, входящий в данную смесь, обладает массой, плотностью, объемом и температурой. Реактивная сила, создаваемая двигателем, зависит от скорости истекания газовой струи и ее массе (или объема при заданной плотности). Чем выше любой из множителей, тем выше сила отталкивания самолета в противоположном направлении.

Принцип действия турбореактивного двигателя

Академическое понятие ТРД выглядит так:
Турбореактивный двигатель — газотурбинный двигатель, в котором химическая энергия топлива преобразуется в кинетическую энергию струй газов, вытекающих из реактивного сопла.

Поясним некоторые моменты: газотурбинный двигатель — это основа любого ТРД, рассматривая далее виды турбореактивных двигателей, данный факт будет хорошо прослеживаться. Под химической энергией имеется в виду высвобождение большого количества теплоты за счет сгорания топлива в присутствии кислорода. Что же касается сопла, то струя газа не всегда имеет максимальную кинетическую энергию при выходе из него, почему — рассмотрим далее.

Основной принцип работы любого газотурбинного двигателя — тепловое расширение воздуха за счет сгорания топлива, и как следствие образование реактивной струи — быстродвижущегося потока газов.

Как это работает

Турбина — это колесо с лопатками (своего рода лопастями), направленных к потоку газов под некоторым углом. Соответственно чем быстрее движется этот поток, тем большее усилие воздействует на лопатки, заставляя их поворачивать турбинное колесо. Надо сказать, что справедливо и обратное утверждение: если турбинное колесо вращается не за счет реактивной струи, то лопатки начинают увлекать за особой воздушный поток, словно вентилятор. Кстати лопасти винта самолета, мельницы или ветрогенератора используют похожий принцип, что и турбинное колесо, только в последнем случае давление, температура и скорость потока куда выше.

Обратите внимание на иллюстрацию работы классической турбореактивной установки, или иначе говоря газотурбинной установки. Мы видим общий вал, на котором расположены кольца (колеса) с лопатками (их все можно также назвать турбинными кольцами (колесами), так как они ни чем не отличаются). С левой стороны изображена «холодная» а справа «горячая» части турбины. Давайте рассмотрим рабочий процесс данного двигателя, слева на право, с самого момента запуска:

  • Изначально окружающий воздух через воздухозаборник контактирует с компрессором низкого давления. Специальный турбостартер (в случае больших двигателей) за счет создания высокого давления воздуха, подаваемого на лопатки одного из турбинных колец, раскручивает вал турбины, приводя в движение компрессор низкого и высокого давления, а также турбинные колеса.
  • Лопатки компрессора низкого давления начинают «проталкивать» воздушный поток к лопаткам компрессора более высокого давления, которое в свою очередь перемещает воздух к следующему компрессору, и с каждым последующим переходом давление воздуха продолжает расти, а также растет и скорость потока. Проходя через лопатки последнего компрессора поток оказывается в просторной камере сгорания, в которой расположены топливные форсунки и свечи для поджига топлива, словно в автомобиле, только гораздо мощнее.
  • Как только давление и скорость потока воздуха достигнут необходимых показателей, через форсунки начинает подаваться жидкий керосин, либо любой горючий газ, а свечи зажигания дают искру. После воспламенения топлива в камере сгорания резко возрастает давление, так как весь объем газовой смеси (включая воздушную смесь), вынужден увеличиться в несколько сотен раз за счет температурного расширения. В этот момент турбостартер (или электростартер), раскручивающий вал турбины, отключается.
  • Весь горячий газ из камеры сгорания под огромным давлением и скоростью встречает на своем пути главную часть двигателя — турбинные колеса, которые вращают вал всей турбины (либо напрямую, либо через редуктор). За счет того, что турбинные колеса изначально вращаются гораздо медленнее, не соответствуя скорости только что разогретого в камере сгорания газа, поток начинает раскручивать турбину, теряя при этом часть кинетической энергии. Таким образом турбина работает самостоятельно, без участия стартера.
  • Пройдя последнее турбинное колесо поток газа вырывается наружу через специально созданное сужение, называемое соплом. За счет сужения скорость потока газа увеличивается еще немного, что создаст большую реактивную силу.
Турбореактивный двигатель

Виды турбореактивных двигателей в авиации

Турбореактивные установки используются сейчас во многих областях техники, сохраняя единый принцип действия. В основе различий в типах ТРД лежит использование кинетической энергии газа, оставшейся после прохождения турбинных колес. Ее можно использовать как напрямую — то есть как реактивную струю, а можно направить еще на ряд турбинных колес, только уже вращающих другие валы. С каждым таким колесом струя газа будет терять энергию, и последующее использование ее реактивных качеств будет уже неоправданным, но как оказалось большим самолетам лучше всего летать не за счет непосредственно реактивной струи газа из камеры сгорания, а за счет большого винта, либо за счет вентилятора огромного диаметра.

Такое раздельное использование газовой струи ввело в обиход двигателестроителей такое понятие как «двухконтурность» турбореактивных двигателей. Контур — это один путь для воздушной струи через двигатель, соответственно один контур — это всегда главная газовая турбина, а второй контур это вентилятор огромного диаметра, создающий гораздо более массивный воздушный поток. Если объем одного контура превышает объем другого, речь идет о большой или малой степени двухконтурности.

Турбовинтовой двигатель

Начнем с двигателей с самым большим показателем степени двухконтурности (это условное выражение, так как подобные двигатели не принято называть двухконтурными) — Турбовинтовых ТРД.

Во главе угла газовая турбина, есть и компрессор низкого и высокого давления, и воздухозаборник, правда не прямоточный, а также камера сгорания и турбина отбора мощности, так сказать, да, чуть не забыл про сопло. Хотя от него в данном двигателе толку никакого нет. Струя газа после камеры сгорания тратит 5% своей энергии на вращение компрессоров, и 90% на вращение турбинного колеса, установленного на валу воздушного винта, через планетарный редуктор для увеличения мощности, за счет снижения оборотов. Таким образом реактивная струя вращает массивный винт, который действительно очень большой. Самолеты на поршневых двигателях не могли о таких винтах даже мечтать.

Сейчас большая авиация уже отказалась от таких двигателей в пользу турбовентиляторных ТРД, однако на малой авиации турбовиновые машины не теряют популярность. Даже на небольшие самолеты есть возможность установки турбовинтовых моторов, так как они гораздо надежней поршневых двигателей внутреннего сгорания, однако производство ТРД всегда обходится дороже, так как там важна точность обработки материалов и их качество, ведь работать предстоит при высоких давлениях, скоростях и температурах.

Турбовентиляторный двигатель

Вот здесь можно разгуляться по степеням двухконтурности, каких соотношений только в мире не найти. В свое время инженеры заметили, что вентилятор, состоящий из большого количества лопастей (как большой компрессор ТРД), способен создавать более быстрый и стабильный поток воздуха, нежели винт, но и это не все прелести. Многие из нас, кто родом из СССР, наверняка помнят, что было, когда где-то в небе пролетал самолет. Неважно какая у него была высота, хоть все 11 км, всегда у земли был слышен грохот реактивных машин или винтов. Жизнь возле аэропортов вообще представляла из себя сущий кошмар, с трясущимися стенами. Но вот сейчас все это в прошлом. Разве что военные учения с их турбовинтовыми бомбардировщиками, напомнят о прошлых временах в авиации.

Так вот турбовентиляторный ТРД подарил нам тишину. Их гигантский размер и высокая мощность не требуют высоких оборотов, а значит не производят сильный шум.

Как можно видеть из схемы, основное отличие от турбовинтового двигателя заключается в том, что отбор реактивной мощности идет на вращение вентилятора, а не винта. Турбовентиляторный двигатель создает движущую реактивную струю на 70% за счет вентилятора, 30% выходящих из сопла газов.

Турбовентиляторный двигатель

Турбовальные и иные виды ТРД

Я думаю мне удалось продемонстрировать связь всех видов ТРД друг с другом, и огромное множество применений этого революционного изобретения рассматривать не имеет смысла. Скажем лишь, что не только самолеты используют реактивную мощность, но и вертолеты.

На вертолетах ТРД установлен таким образом, чтобы струи газа, выходящие из сопла, были направлены назад. Это помогает уменьшить расход топлива и скорость при движении вперед. А вот основной потребитель мощности, через вал и редуктор реактивной турбины, установлен перпендикулярно турбодвигателю — на крыше. В принципе через редуктор можно передать вращательное движение от вала куда угодно и как угодно. Такие ТРД называют турбовальными.

Двигатель для турбовинтовых самолетов также вариация турбовального двигателя

Автор: Томаш Гетихен

Использованы материалы:
Большая российская энциклопедия

Как устроен газотурбинный двигатель на танке

Содержание

  1. Газотурбинный двигатель: Устройство и принцип работы
  2. Отличительные черты
  3. Газотурбинный двигатель принцип работы
  4. Устройство газотурбинного двигателя
  5. «Минус» и «плюс» мотора
  6. Виды газотурбинных двигателей
  7. Газотурбинный танк Т-80У: тест-драйв «Популярной механики»
  8. Не задохнуться в пыли
  9. Комфорт и чистота
  10. На пути к гибриду
  11. На пути к Т-80: танковые газотурбинные двигатели
  12. Видео

Газотурбинный двигатель: Устройство и принцип работы

Сегодня среднестатистический обыватель знаком с устройством и принципом работы мотора внутреннего сгорания, а вот газотурбинный двигатель, приводит пользователя в тупик. Тем не менее принцип действия турбинного агрегата намного проще поршневого мотора. Из-за особенностей эксплуатации, первый нашёл применение в авиации, второй установлен на 90% штатных автомобилей.

По классификации, силовая установка относится к тепловым устройствам, поскольку трансформирует выделившийся напор от горения в работу механики. В противовес агрегату с поршнями, проходящее преобразование течёт в непрерывной газовой струе, а это влияет на конструкцию и эксплуатацию. Попытки установить газотурбинный мотор на машины предпринимаются постоянно, однако массового развития идея не получила.

Отличительные черты

Как уже говорилось раньше, предпринимались попытки использовать газотурбинный двигатель для автомобиля, однако дальше испытаний дело не пошло. Единственная отрасль, в которой агрегат нашёл применение – авиация.

Если сравнивать газотурбинный мотор с иными силовыми установками, то у первого изделия значение вырабатываемой мощи по отношению к массе больше. Так же плюс в используемом топливе, доведённый до мелкодисперсного состояния, ассортимент воображает, главный вид – керосин и дизель. Но возможно применение: бензина, газа, спирта, мазута, угольной пыли и т.п.

Агрегат с поршнями и газотурбинная установка, это моторы, работающие на основе тепла, преобразующие энергию, выделившуюся при горении в работу механики. Разница между устройствами заключается в течение процесса. В обоих моторах происходит забор и воздушное сдавливание, после чего подаётся порция горючего, затем субстанция горит, увеличивается и сбрасывается атмосферную среду.

В поршневых установках описанные действия происходят в одной точке – камере сгорания, при этом соблюдается очерёдность действий. Для газотурбинного двигателя характерно протекание действий в нескольких частях механизма одновременно.

Что бы понять, как работает газотурбинный двигатель, разделяют этапы протекания процессов, которые в сумме составляют преобразование топлива в работу:

За счёт прохождения атмосферного воздуха через компрессорное колесо, смесь сжимается в объёме, увеличивая напор, до сорока раз. После происходит перетекание воздуха в горящий объём, куда подаётся и топливо. Перемешиваясь с воздушной массой и сгорая, смесь энергетически преобразуется.

Выделившуюся силу переформатируют в работу механики. Для этого используют специальные лопатки, которые вращаются в газовой струе, выходящей с напором.

Распределяя полученную работу, задействуют её кусок в сдавливании очередной воздушной порции, оставшаяся мощь отводится для привода механизма.

Таким образом, видно, что действие газотурбинного устройства сопровождается оборачиванием и это единственное перемещение в установке. Тогда как для других видов силовых агрегатов действию сопутствует перемещение вытеснителя. Учитывая, что габариты и масса газотурбинного агрегата меньше поршневого собрата, а полезный коэффициент и мощь выше, превосходство первого очевидно. Однако увеличенный аппетит и сложность эксплуатации нивелируют преимущества. С целью экономии горючего, установки применяют устройство обмена теплом.

Схема включения в процесс турбины:

Газотурбинный двигатель принцип работы

Смысл двигателестроения, достижение повышенного значения полезного коэффициента. В нашем случае, требуемые результаты, напрямую связаны с горением смеси и при этом обширном выделении тепла. Это не так просто, как кажется, основополагающее препятствие – материал изделия, которому сложно выдержать температуру и напор. По этой причине, проведено много расчётов, направленных на снятие тепла с турбины и применение в ином русле. Усилия не пропали даром, повторное использование энергии стало возможным и нагревало сжатые воздушные массы перед горением, а не терялось зря. Без таких устройств «теплообменников» достичь значений полезного действия было бы не возможно.

Для достижения повышенных показателей мощи, турбинные лопатки раскручивают до как можно больших показателей. Скорость вращения обусловлена напором выходящих газов. Чем меньше размер установки, тем выше частота оборотов, поскольку только так достигается стабильность работы.

Газотурбинный двигатель Т 80:

Устройство газотурбинного двигателя

Если сравнивать газотурбинный двигатель с мотором, который применяют на автомобиле, устройство первого проще. Агрегат включает камеру, где происходит сгорание; присутствуют свечи, поджигающие заряд; форсунка, участвующая в смесеобразовании. На одном валу помещены турбинные колёса и нагнетатель. Присутствуют: редуктор понижения, устройство обмена теплом, трубки, коллектор впуска, сопло и концентратор.

Вращаясь на компрессорном валу, лопатки втягивают воздушную массу, используя коллектор впуска. Достигнув скорости вращения 0,5 км/с, нагнетатель затягивает воздух в концентратор. В конечной точке скоростной режим падает, однако сдавливание массы повышается. Далее воздушная масса перетекает в устройство температурного обмена для набора температуры и перехода в область горения. В пространство параллельно с воздушной массой постоянно поступает горючее, за это отвечают распылители. Перемешиваясь, масса и горючее образуют рабочую консистенцию, которая после приготовления воспламеняется свечой. Горение поднимает напор объёма, газы, вырываясь сквозь концентратор, сталкиваются с турбинными лопатками, двигая колесо. Импульс, создаваемый окружностью, передаётся посредством редуктора на движущий элемент, а газовый остаток перетекает в устройство обмена теплом, подогревая там сдавленные воздушные массы и выбрасываясь в среду окружения.

Газотурбинный мотор «ДР59Л»:

Минус установки, цена материала, способного выдержать температуру. Кроме того, чтобы исключить поломку, поступающий в агрегат воздух требует повышенной степени очистки. Несмотря на это, доработка и усовершенствование агрегата проводятся постоянно. Расширяется сфера применения, сегодня построена автомобильная, авиационная установка, и даже газотурбинный двигатель для кораблей.

«Минус» и «плюс» мотора

Газотурбинный агрегат способен вырабатывать большой момент, а значит повышенные показатели мощности. Для охлаждения сопутствующих элементов нет каких-либо устройств, поскольку соприкасающихся поверхностей мало. В то же время, подшипников используется не много, а качество деталей свидетельствует о надёжности и безотказности агрегата.

Отрицательный аспект, это дороговизна используемых материалов при изготовлении деталей и, как следствие, немалые вложения в починку механизма. Несмотря на недостатки, конструкция постоянно дорабатывается и совершенствуется.

Газотурбинный двигатель используют в авиации, на автомобилях установку применяют как эксперимент. Это произошло по причине постоянной потребности в охлаждении газов, поступающих на лопатки турбины. Это снижает полезное действие агрегата, увеличивая потребление горючего.

Главные преимущества мотора:

Танковая установка «ГТД-1500»:

Виды газотурбинных двигателей

Конструктивно газотурбинные силовые установки делят на четыре типа

Двигатель этого типа используют в авиационной промышленности, когда важен показатель скорости передвижения (например, военные самолёты). Работа происходит за счет выхода газов из сопла самолёта на повышенной скорости. Газы толкают транспорт и таким образом двигают изделие вперёд.

Конструктивным отличием с предшественником считается дополнительная турбинная секция. Устройство вращает винт, забирая энергию у газов, прошедших компрессорную турбину. Визуально, механизм представлен рядом лопаток, размещают деталь в передней или задней части. Для отвода выхлопа применяют отводящие патрубки. Аппарат предназначен для установки на летательных аппаратах, используемых на малых высотах и скоростях, может оснащаться биротативным воздушным винтом.

Турбовентиляторный двигатель «Д-27»:

Конструктивно, турбина похожа на предыдущую установку, различие во второй турбинной секции. Элемент отнимает энергию газов частично, как следствие, используются отводные выхлопные патрубки. Особенность агрегата, вентилятор активируется турбиной пониженного напора. По этой причине, второе название двигателя – «двухконтурный». Здесь внутренний контур образован воздушным потоком, идущим через агрегат, внешний контур создаёт направление, чтобы повысить эффект толчка вперёд. Последние выпуски летательных аппаратов применяют турбовентиляторные двигатели, поскольку механизмы надёжны и экономичны на больших высотах.

Конструктивно, установка похожа на предыдущий агрегат. Разница в том, что вал механизма приводит в действие многочисленные возможные элементы. Мотор получил распространение на вертолётах, танках, кораблях. Например, М90ФР, корабельный газотурбинный двигатель, устанавливаемый на фрегатах Российского флота. К таковым относятся: «Адмирал Горшков», «Дерзкий» и др.

Газотурбинный

»:

Случается, что газотурбинная силовая установка применяется, как вспомогательное оборудование, например, автономный источник питания на борту. Простые агрегаты сжимают воздушные массы, отбираемые у турбинного компрессора, который запускает главные двигатели. Сложные установки вырабатывают электрическую энергию для нужд бортовой сети.

Источник

Газотурбинный танк Т-80У: тест-драйв «Популярной механики»

Т-80 – первый в мире серийно производимый танк с газотурбинным двигателем (ГТД). Работы по оснащению танков силовыми установками этого типа начались еще в конце 1950-х годов. Тогда на опытные образцы боевых машин ставились вертолетные двигатели. Быстро выяснилось, что они неспособны нормально работать в наземных условиях – вибрация и облака пыли быстро выводили ГТД из строя. Пришлось разрабатывать двигатель с самого нуля. Но откуда вообще возникла идея устанавливать газотурбинный двигатель на танк? «Во-первых, таким образом хотели решить проблему повышения боеготовности машины в условиях нашего сурового климата, – говорит Сергей Суворов, военный эксперт, кандидат военных наук, в прошлом – офицер-танкист. – Для того чтобы танк с дизельным двигателем мог начать движение при температурах от 0 до –20°С, необходимо для начала разогреть двигатель с помощью специального устройства – подогревателя – в течение 20–30 минут, затем запустить силовой агрегат и еще прогревать его около 10 минут на холостом ходу, пока температура охлаждающей жидкости в системе охлаждения не поднимется примерно до 40°C. Таким образом, зимой требуется в общей сложности 30–40 минут для выхода танка по тревоге из парка, что в боевых условиях немало. Газотурбинный танк может трогаться с места уже через 45 секунд после нажатия на кнопку пуска двигателя независимо от температуры окружающего воздуха.

Второе преимущество ГТД – так называемый коэффициент приспособляемости двигателя. Чем выше его значение, тем проще может быть конструкция коробки передач. Коробка передач Т-80 схожа с той, что установлена на Т-64, но в ней убран один планетарный ряд – в результате вместо семи передач их всего четыре. А упрощение всегда означает повышение надежности и удешевление конструкции, снижение утомляемости механика-водителя. Впрочем, сам по себе газотурбинный двигатель заметно дороже дизельного».

Не задохнуться в пыли

Еще одним толчком для советских конструкторов стала информация о том, что темой газотурбинных танков стали интересоваться в США. В условиях холодной войны и гонки вооружений советское руководство не могло пропустить такую информацию мимо ушей. Нашей оборонке пришлось срочно приступить к работе, и в результате Т-80 появился на свет раньше своего газотурбинного собрата-конкурента – танка M1A1 Abrams – на несколько лет.

Одной из главных задач, которую предстояло решить конструкторам, была защита газотурбинного двигателя от пыли. Та система очистки воздуха, которую в результате удалось сделать, уникальна, и аналогов в мире ей нет. Газотурбинный Abrams тоже имеет систему очистки, однако в ходе американской операции в Ираке «Буря в пустыне» выяснилось, что в условиях песчаной бури американский танк мог двигаться или стоять на месте с работающим двигателем не более 15 минут. Затем приходилось останавливаться и вытряхивать песок из бумажных фильтров. В Т-80 с пылью боролись прямоточные циклоны – вихревые газоочистители. Кроме того, пневмовибратор стряхивал песок с наиболее подверженного загрязнению соплового аппарата. После остановки двигателя пыль также стряхивалась с лопаток турбины, и на них не происходило запекания песка в виде стекловидной массы.

Комфорт и чистота

«Когда Т-80 движется на тебя, на расстоянии до 30 м машины совсем не слышно, – рассказывает Сергей Суворов. – Первое, что доносится до слуха, – это лязг зубьев ведущих колес. Танк не дымит, выпуская практически чистый горячий воздух. Я служил на Т-80 и думаю, что в плане комфорта среди отечественных танков ему не было равных до появления Т-90АМ. Сказки о комфорте в танках западного производства так и остались сказками. Уровень эргономики во всех «абрамсах», «леопардах», «меркавах» и прочих «челленджерах» примерно на уровне Т-55 или Т-62. В «восьмидесятках» при –35°С механик-водитель раздевался да нательного белья, я сидел в башне на командирском месте в хромовых сапогах. Никаких рукавиц – тонкие кожаные перчатки. На других машинах в холод без нескольких слоев одежды, меховых варежек, шерстяной маски на лицо и валенок в башне не поездишь».

Т-80У – наиболее совершенная на сегодня машина из всего семейства Т-80. В этой модификации, появившейся в 1985 году, был применен новый комплекс вооружения. Несколько лет спустя тот же комплекс поставили на танк Т-72Б, после этого и ряда доработок танк получил наименование Т-90. Он располагает более мощным двигателем ГТД-1250 (1250 л. с. против 1100 л.с. у предшествующих модификаций).

На пути к гибриду

Одна из главных претензий, предъявляемых танку Т-80, – прожорливость его газотурбинного двигателя. С этим трудно поспорить – ГТД действительно потребляет больше топлива, чем дизель. «Основной вид горючего для этого танка – дизельное топливо, – говорит Сергей Суворов, – но Т-80 может ездить и на керосине, и на смесях бензина. Как-то во время службы на Урале я столкнулся с ситуацией, когда мои танки ездили практически на воде. Баки нам заправили какой-то белой, похожей на молоко жидкостью, в которой воды было, наверно, не меньше 50%. Я тогда задавал себе вопрос – сколько бы на этой адской смеси проехал Abrams? А Т-80 ездили как ни в чем не бывало. При этом температура воздуха в тот день была ниже –10°С. Но проверку батальон сдал. Правда, потом от влаги начались проблемы в работе топливной системы двигателя».

Как считает Сергей Суворов, относительно низкая экономичность Т-80 связана не только и не столько с применением ГТД, сколько с конструкцией именно танковых газотурбинных двигателей. В отличие от дизеля, мотор Т-80 имеет более низкую приемистость. Чтобы набрать максимальные обороты, а следовательно, и мощность, дизелю надо полсекунды, а ГТД-1000/1250 – секунды три-четыре. Если на пути танка яма, механик-водитель должен бросить педаль газа, то есть сократить подачу топлива. Двигатель резко сбрасывает обороты, и танк фактически останавливается. Потом механик снова нажимает педаль подачи топлива, но требуется еще несколько секунд, пока турбина раскрутится снова. Чтобы не стоять в ямах, танкистов обучали раскручивать турбину до максимальных оборотов, а затем в яме замедляться с помощью системы торможения. Танк при этом не глохнет – так как нет жесткой связи между турбиной двигателя и трансмиссией, между ними связь только газодинамическая, однако топливо продолжает литься рекой. «В танковом газотурбинном двигателе была изначально применена не совсем правильная идеология подачи топлива, – объясняет Сергей Суворов. – Например, в ряде авиационных газотурбинных двигателей после запуска автоматически поддерживается заданное значение постоянных оборотов, а регулирование мощности на валу осуществляется за счет изменения подачи топлива, без изменения частоты вращения турбины. Если бы в танковом двигателе существовала такая же система, тогда и расход топлива был бы почти таким же, как на дизеле». Впрочем, конструкторская мысль не стоит на месте. Уже разработан перспективный газотурбинный танковый двигатель ГТД-1500, который по экономичности не уступает дизелям.

Источник

На пути к Т-80: танковые газотурбинные двигатели

В пятидесятых годах прошлого века широкое распространение получили газотурбинные двигатели (ГТД) различных классов. Турбореактивные моторы разгоняли авиацию до сверхзвуковых скоростей, а по воде и железным дорогам двигались локомотивы и корабли с первыми моделями газотурбинных двигателей. Предпринимались попытки оснастить такими моторами и грузовики, однако эти эксперименты оказались неудачными. Подобные силовые установки, при всех своих плюсах – экономичности на номинальном режиме работы, компактности и возможности применять различные типы топлива – не были лишены недостатков. Прежде всего, это слишком большой расход топлива при разгоне или торможении, что в итоге и определило нишу, в которой ГТД нашли свое применение. Одним из итогов различных экспериментов с такой силовой установкой стал советский танк Т-80. Но достижение всемирной известности было далеко не простым делом. От начала работ по созданию танкового ГТД до начала его серийного производства прошло почти два десятка лет.

Идея сделать танк с газотурбинной силовой установкой появилась еще тогда, когда никто и не думал о проекте Т-80. Еще в 1948 году конструкторское бюро турбинного производства Ленинградского Кировского завода начало работу над проектом танкового ГТД мощностью в 700 лошадиных сил. К сожалению, проект был закрыт за бесперспективностью. Дело в том, что 700-сильный двигатель, по расчетам, потреблял чрезвычайно много топлива. Расход признали слишком большим для практического использования. Чуть позже неоднократно предпринимались попытки сконструировать другие двигатели подобного класса, но они тоже не дали никакого результата.

Во второй половине пятидесятых годов ленинградские конструкторы создали еще один двигатель, который дошел до стадии сборки прототипа. Получившийся ГТД-1 не оснащался теплообменником и выдавал мощность до тысячи лошадиных сил при расходе топлива в 350-355 г/л.с. ч. Вскоре на основе этого двигателя сделали две модификации: ГТД1-Гв6 со стационарным теплообменником и ГТД1-Гв7 с вращающимся. К сожалению, несмотря на некоторый прогресс, все три модели ГТД имели расход топлива выше расчетного. Улучшить этот параметр не представлялось возможным, поэтому проекты закрыли.

В целом, все ранние проекты ГТД для сухопутной, в том числе и гусеничной, техники не отличались особыми успехами. Все они не смогли добраться до серийного производства. В то же время, в ходе разработки и испытаний новых моторов удалось найти немало новых оригинальных технических решений, а также собрать нужную информацию. К этому времени сформировались две основные тенденции: попытки приспособить авиационный двигатель для использования на танке и сделать специальный ГТД.

В начале шестидесятых годов произошло несколько событий, которые позитивно сказались на всем направлении. Сначала Научно-исследовательский институт двигателей (НИИД) предложил несколько вариантов моторно-трансмиссионного отделения для танка Т-55. Предлагались два варианта газотурбинного двигателя, отличавшиеся друг от друга мощностью и потреблением топлива. В апреле 1961 года вышло соответствующее распоряжение руководства страны, согласно которому НИИД должен был продолжить работы по начатым проектам, а на Челябинском тракторном заводе создавалось специальное конструкторское бюро, занятое исключительно тематикой ГТД.

Новое бюро получило индекс ОКБ-6 и объединило усилия с Институтом двигателей. Результатом проектирования стал проект ГТД-700. При мощности до 700 л.с. этот двигатель потреблял 280 г/л.с.ч, что приближалось к требуемым значениям. Столь высокие для своего времени характеристики были обусловлены рядом оригинальных решений. Прежде всего необходимо отметить конструкцию теплообменника, каналы которого были оптимизированы в плане сечения и скорости течения газов. Кроме того, на работе двигателя благотворно сказался новый одноступенчатый воздухоочиститель циклонного типа, задерживавший до 97% пыли. В 1965 году начались испытания двух первых образцов ГТД-700. Работа двигателей на стенде показала все преимущества примененных решений, а также позволила вовремя определить и исправить имеющиеся проблемы. Вскоре собрали еще три двигателя ГТД-700, один из которых позже был установлен на опытный танк «Объект 775Т». В марте 1968 года прошел первый запуск газотурбинного двигателя на танке и через несколько дней начались ходовые испытания. До апреля следующего года экспериментальный танк прошел около 900 километров при наработке двигателя порядка 100 часов.

Несмотря на имеющиеся успехи, в 1969 году испытания двигателя ГТД-700 завершились. В это время прекратились работы над ракетным танком «Объект 775» и, как следствие, его газотурбинной модификацией. Однако развитие двигателя не остановилось. По результатам испытаний сотрудники НИИД провели несколько исследований и пришли к позитивным выводам. Как оказалось, конструкция ГТД-700 позволяла довести мощность до уровня порядка 1000 л. с., а расход топлива снизить до 210-220 г/л.с.ч. Перспективная модификация двигателя получила обозначение ГТД-700М. Ее расчетные характеристики выглядели многообещающе, что привело к дальнейшим разработкам. ВНИИТрансмаш (переименованный ВНИИ-100) и конструкторское бюро ЛКЗ предприняли попытку установить ГТД-700М на танки «Объект 432» и «Объект 287». Однако никаких практических результатов добиться не удалось. Моторно-трансмиссионное отделение первого танка оказалось недостаточно большим для размещения всех агрегатов силовой установки, а второй проект вскоре был закрыт за бесперспективностью. На этом история двигателя ГТД-700 закончилась.

ГТД-3 для «Объекта 432»

Одновременно с НИИД и челябинскими конструкторами над своими проектами ГТД работали в омском ОКБ-29 (сейчас Омское моторостроительное конструкторское бюро) и ленинградском ОКБ-117 (завод им. В.Я. Климова). Стоит отметить, основным направлением работы этих предприятий была адаптация авиационных двигателей к танковым «нуждам». Этим фактом обусловлен целый ряд особенностей получившихся двигателей. Одним из первых переработке подвергся вертолетный турбовальный двигатель ГТД-3, разработанный в Омске. После адаптации для использования на танке он получил новый индекс ГТД-3Т и немного потерял в мощности, с 750 до 700 л.с. Расход топлива в танковом варианте составлял 330-350 г/л.с.ч. Такое потребление горючего было слишком велико для практического использования двигателя, но ГТД-3Т все же был установлен на ходовой макет, базой для которого послужил танк Т-54. Позже подобный эксперимент провели с танком Т-55 (проект ВНИИ-100) и с «Объектом 166ТМ» (проект Уралвагонзавода). Примечательно, что после испытаний своего опытного образца тагильские конструкторы пришли к выводу о нецелесообразности продолжения работ по газотурбинной тематике и вернулись к созданию танков с дизельными двигателями.

В 1965 году ОКБ-29 и ВНИИ-100 получили задание доработать двигатель ГТД-3Т для использования на танке «Объект 432», который вскоре был принят на вооружение под обозначением Т-64. В ходе такой доработки двигатель получил новое обозначение ГТД-3ТЛ и ряд изменений в конструкции. Изменились конструкция компрессора и корпуса турбины, появилась система перепуска газов после компрессора, созданы два новых редуктора (один в составе моторного агрегата, другой располагался на корпусе танка), а также переделана выхлопная труба. Имея сравнительно небольшие габариты, двигатель ГТД-3ТЛ хорошо вписался в моторно-трансмиссионное отделение «Объекта 432», а в свободных объемах уместились дополнительные баки на 200 литров топлива. Стоит отметить, в МТО танка пришлось ставить не только новый двигатель, но и новую трансмиссию, приспособленную для работы с газотурбинным двигателем. Крутящий момент двигателя передавался на главный редуктор и распределялся на две бортовые планетарные коробки передач. В конструкции новой трансмиссии широко использовались детали исходной системы «Объекта 432». Ввиду специфических требований двигателя к подаче воздуха пришлось заново спроектировать оборудование для подводного вождения, имеющее в своем составе воздухопитающие и выхлопные трубы большего диаметра.

В ходе проектирования двигателя ГТД-3ТЛ, с целью проверки некоторых идей, на танке Т-55 установили мотор ГТД-3Т. Танк с газотурбинным двигателем сравнили с аналогичной бронемашиной, оборудованной стандартным дизелем В-55. В результате этих испытаний подтвердились все предварительные расчеты. Так, средняя скорость опытного танка оказалась немного выше скорости серийного, но за это преимущество пришлось платить в 2,5-2,7 раза более высоким расходом топлива. При этом к моменту сравнительных испытаний не были достигнуты требуемые характеристики. Вместо необходимых 700 л.с. ГТД-3ТЛ выдавал лишь 600-610 и сжигал порядка 340 г/л.с.ч вместо требовавшихся 300. Повышенный расход топлива привел к серьезному уменьшению запаса хода. Наконец, ресурс в 200 часов не дотягивал даже до половины от заданных 500. Выявленные недостатки были учтены и вскоре появился полноценный проект ГТД-3ТЛ. К концу 1965 года ОКБ-29 и ВНИИ-100 совместными усилиями завершили разработку нового двигателя. За основу для него был взят не танковый ГТД-3Т, а авиационный ГТД-3Ф. Новый двигатель развивал мощность до 800 л.с. и потреблял не более 300 г/л.с.ч. В 1965-66 годах изготовили два новых двигателя и проверили их на танке «Объект 003», представлявшем собой доработанный «Объект 432».

Одновременно с испытаниями танка «Объект 003» шла разработка «Объекта 004» и силовой установки для него. Предполагалось использовать двигатель ГТД-3ТП, имевший большую мощность в сравнении с ГТД-3ТЛ. Кроме того, мотор с индексом «ТП» должен был размещаться не поперек корпуса танка, а вдоль, что повлекло за собой перекомпоновку некоторых агрегатов. Основные пути развития остались прежними, но их нюансы подверглись определенным коррективам, связанным с выявленными проблемами газотурбинных двигателей. Пришлось серьезно доработать систему забора и фильтрации воздуха, а также отвода выхлопных газов. Еще один серьезный вопрос касался эффективного охлаждения двигателя. Создание новой трансмиссии, повышение характеристик и доведение моторесурса до требуемых 500 часов также остались актуальными. При проектировании двигателя и трансмиссии для танка «Объект 004» старались скомпоновать все агрегаты таким образом, чтобы они могли уместиться в МТО с минимальными его доработками.

Наибольшим изменениям подверглась крыша моторно-трансмиссионного отделения и кормовой лист бронекорпуса. Крышу сделали из сравнительно тонкого и легкого листа с окнами, на которых разместили жалюзи воздухозаборного устройства. В корме появились отверстия для выброса газов двигателя и воздуха из системы охлаждения. Для повышения живучести эти отверстия прикрыли бронированным колпаком. Двигатели и некоторые агрегаты трансмиссии укрепили на заново разработанной раме, которая монтировалась на бронекорпусе без доработок последнего. Сам двигатель установили продольно, с небольшим сдвигом от оси танка влево. Рядом с ним разместились топливный и масляный насосы, 24 прямоточных циклона системы воздухоочистки, компрессор, стартер-генератор и т.п.

Двигатель ГТД-3ТП мог выдавать мощность до 950 л.с. при расходе топлива в 260-270 г/л. с.ч. Характерной чертой этого двигателя стала его схема. В отличие от предыдущих моторов семейства ГТД-3 он был сделан по двухвальной системе. С двигателем была сопряжена четырехскоростная трансмиссия, разработанная с учетом характерных для газотурбинного двигателя нагрузок. Согласно расчетам, трансмиссия могла работать в течение всего срока службы двигателя – до 500 часов. Бортовые коробки передач имели тот же размер, что и на исходном «Объекте 432» и помещались на исходных местах. Приводы управления агрегатами двигателя и трансмиссии в большинстве своем располагались на старых местах.

Насколько известно, «Объект 004» так и остался на чертежах. В ходе его разработки удалось решить несколько важных вопросов, а также определить планы на будущее. Несмотря на уменьшение заметности танка с ГТД в инфракрасном спектре, улучшившееся качество очистки воздуха, создание специальной трансмиссии и т.п., расход топлива оставался на недопустимом уровне.

Еще одним проектом, начавшимся в 1961 году, были ленинградские исследования перспектив турбовального двигателя ГТД-350. Ленинградские Кировский завод и Завод им. Климова совместными усилиями начали изучать поставленный перед ними вопрос. В качестве стенда самых для первых исследований применялся серийный трактор К-700. На него установили двигатель ГТД-350, для работы с которым пришлось немного доработать трансмиссию. Вскоре начался еще один эксперимент. На этот раз «платформой» для газотурбинного двигателя стал бронетранспортер БТР-50П. Подробности этих испытаний не стали достоянием общественности, но известно, что по их результатам двигатель ГТД-350 признали пригодным для использования на сухопутной технике.

На его базе создали два варианта двигателя ГТД-350Т, с теплообменником и без. Без теплообменника газотурбинный двигатель двухвальной системы со свободной турбиной развивал мощность до 400 л.с. и имел расход топлива на уровне 350 г/л.с.ч. Вариант с теплообменником был ощутимо экономичнее – не более 300 г/л.с.ч., хотя и проигрывал в максимальной мощности порядка 5-10 л.с. На основе двух вариантов двигателя ГТД-350Т были сделаны силовые агрегаты для танка. При этом, ввиду сравнительно малой мощности, рассматривались варианты с применением как одного двигателя, так и двух. В результате сравнений наиболее перспективным был признан агрегат с двумя двигателями ГТД-350Т, располагавшимися вдоль корпуса танка. В 1963 году началась сборка опытного образца такой силовой установки. Его установили на шасси экспериментального ракетного танка «Объект 287». Получившуюся машину назвали «Объектом 288».

В 1966-67 годах этот танк прошел заводские испытания, где подтвердил и скорректировал расчетные характеристики. Однако главным результатом поездок по полигону стало понимание того, что перспективы спаренной системы двигателей сомнительны. Силовая установка с двумя двигателями и оригинальным редуктором получилась сложнее в производстве и эксплуатации, а также дороже, чем один ГТД эквивалентной мощности с обычной трансмиссией. Предпринимались некоторые попытки развить двухдвигательную схему, но в итоге конструкторы ЛКЗ и Завода им. Климова остановили работы в этом направлении.

Стоит отметить, проекты ГТД-350Т и «Объект 288» были закрыты только в 1968 году. До этого времени, по настоянию заказчика в лице Минобороны, состоялись сравнительные испытания сразу нескольких танков. В них участвовали дизельные Т-64 и «Объект 287», а также газотурбинные «Объект 288» и «Объект 003». Испытания были суровыми и проходили на разных местностях и в разных погодных условиях. В результате выяснилось, что при имеющихся преимуществах в части габаритов или максимальной мощности существующие газотурбинные двигатели менее пригодны для практического применения, чем освоенные в производстве дизели.

Незадолго до прекращения работ по тематике спаренных двигателей конструкторы ЛКЗ и Завода им. Климова сделали два эскизных проекта, подразумевавших установку на танк «Объект 432» спаренной установки с перспективными двигателями ГТД-Т мощностью по 450 л.с. Рассматривались различные варианты размещения двигателей, но в итоге оба проекта не получили продолжения. Спаренные силовые установки оказались неудобными для практического применения и более не использовались.

Двигатель для Т-64А

Принятый на вооружение в шестидесятых годах танк Т-64А при всех своих преимуществах не был лишен недостатков. Высокая степень новизны и несколько оригинальных идей стали причиной технических и эксплуатационных проблем. Немало нареканий вызвал двигатель 5ТДФ. В частности, и из-за них было решено всерьез заняться перспективным ГТД для этого танка. В 1967 году появилось соответствующее постановление руководства страны. К этому времени уже имелся определенный опыт в сфере оснащения танка «Объект 432» газотурбинной силовой установкой, поэтому конструкторам не пришлось начинать с нуля. Весной 1968-го года на ленинградском Заводе им. Климова развернулись проектные работы по двигателю ГТД-1000Т.

Главным вопросом, стоявшим перед конструкторами, было снижение расхода топлива. Остальные нюансы проекта уже были отработаны и не нуждались в столь большом внимании. Улучшать экономичность предложили несколькими путями: повысить температуру газов, улучшить охлаждение элементов конструкции, модернизировать теплообменник, а также повысить КПД всех механизмов. Кроме того, при создании ГТД-1000Т применили оригинальный подход: координацией действий нескольких предприятий, занятых в проекте, должна была заниматься сводная группа из 20 их сотрудников, представлявших каждую организацию.

Благодаря такому подходу достаточно быстро удалось определиться с конкретным обликом перспективного двигателя. Таким образом, в планы входило создание трехвального ГТД с двухкаскадным турбокомпрессором, кольцевой камерой сгорания и охлаждаемым сопловым аппаратом. Силовая турбина – одноступенчатая с регулируемым сопловым аппаратом перед ней. В конструкцию двигателя ГТД-1000Т сразу ввели встроенный понижающий редуктор, который мог преобразовывать вращение силовой турбины со скоростью порядка 25-26 тыс. оборотов в минуту в 3-3,2 тыс. Выходной вал редуктора разместили таким образом, что он мог передавать крутящий момент на бортовые коробки передач «Объекта 432» без лишних деталей трансмиссии.

По предложению сотрудников ВНИИТрансмаш, для очистки поступающего воздуха применили блок прямоточных циклонов. Выведение выделенной из воздуха пыли было обязанностью дополнительных центробежных вентиляторов, которые, кроме того, обдували масляные радиаторы. Использование такой простой и эффективной системы очистки воздуха привело к отказу от теплообменника. В случае его использования для достижения требуемых характеристик требовалось очищать воздух почти на все 100%, что было, как минимум, очень сложно. Двигатель ГТД-1000Т без теплообменника мог работать даже если в воздухе оставалось до 3% пыли.

Отдельно стоит отметить компоновку двигателя. На корпусе собственно газотурбинного агрегата установили циклоны, радиаторы, насосы, маслобак, компрессор, генератор и прочие части силовой установки. Получившийся моноблок имел габариты, пригодные для установки в моторно-трансмиссионное отделение танка Т-64А. Кроме того, в сравнении с оригинальной силовой установкой, двигатель ГТД-1000Т оставлял внутри бронированного корпуса объем, достаточный для размещения баков на 200 литров топлива.

Весной 1969 года началась сборка опытных экземпляров Т-64А с газотурбинной силовой установкой. Интересно, что в создании прототипов участвовали сразу несколько предприятий: Ленинградский Кировский и Ижорский заводы, Завод им. Климова, а также Харьковский завод транспортного машиностроения. Чуть позже руководство оборонной промышленности решило построить опытную партию из 20 танков Т-64А с газотурбинной силовой установкой и распределить их по различным испытаниям. 7-8 танков предназначались для заводских, 2-3 для полигонных, а оставшиеся машины должны были пройти войсковые испытания в разных условиях.

За несколько месяцев испытаний в условиях полигонов и испытательных баз было собрано нужное количество информации. Двигатели ГТД-1000Т показали все свои преимущества, а также доказали пригодность для использования на практике. Однако выяснилась другая проблема. При мощности в 1000 л.с. двигатель не слишком удачно взаимодействовал с имеющейся ходовой частью. Ее ресурс заметно снижался. Более того, к моменту окончания испытаний почти все двадцать опытных танков нуждались в ремонте ходовой или трансмиссии.

На финишной прямой

Самым очевидным решением проблемы выглядела доработка ходовой части танка Т-64А для использования вместе с ГТД-1000Т. Однако такой процесс мог занять слишком много времени и с инициативой выступили конструкторы ЛКЗ. По их мнению, нужно было не модернизировать имеющуюся технику, а создавать новую, изначально рассчитанную под большие нагрузки. Так появился проект «Объект 219».

Как известно, за несколько лет разработки этот проект успел претерпеть массу изменений. Корректировались почти все элементы конструкции. Точно так же доработкам подвергся и двигатель ГТД-1000Т и сопряженные с ним системы. Пожалуй, самым главным вопросом в это время было повышение степени очистки воздуха. В результате массы исследований выбрали воздухоочиститель с 28 циклонами, оснащенными вентиляторами с особой формой лопасти. Для уменьшения износа некоторые детали циклонов покрыли полиуретаном. Изменение воздухоочистительной системы сократило поступление пыли в двигатель примерно на один процент.

Еще во время испытаний в Средней Азии проявилась другая проблема газотурбинного двигателя. В тамошних грунтах и песках было повышенное содержание кремнезема. Такая пыль, попав в двигатель, спекалась на его агрегатах в виде стекловидной корки. Она мешала нормальному течению газов в тракте двигателя, а также увеличивала его износ. Эту проблему пытались решить при помощи специальных химических покрытий, впрыска в двигатель особого раствора, создания вокруг деталей воздушной прослойки и даже применения неких материалов, постепенно разрушавшихся и уносивших с собой пригоревшую пыль. Однако ни один из предложенных методов не помог. В 1973 году эту проблему решили. Группа специалистов Завода им. Климова предложила установить на наиболее подверженную загрязнению часть двигателя – сопловой аппарат – специальный пневмовибратор. При необходимости или через определенный промежуток времени в этот агрегат подавался воздух от компрессора и сопловой аппарат начинал вибрировать с частотой в 400 Гц. Налипшие частички пыли буквально стряхивались и выдувались выхлопными газами. Чуть позже вибратор заменили восемью пневмоударниками более простой конструкции.

В результате всех доработок наконец удалось довести ресурс двигателя ГТД-1000Т до требуемых 500 часов. Расход топлива танков «Объект 219» был примерно в 1,5-1,8 раза больше, чем у бронемашин с дизельными двигателями. Соответствующим образом сократился и запас хода. Тем не менее, по совокупности технических и боевых характеристик танк «Объект 219сп2» признали пригодным для принятия на вооружение. В 1976 году вышло постановление Совмина, в котором танк получил обозначение Т-80. В дальнейшем эта бронемашина претерпела ряд изменений, на ее базе было создано несколько модификаций, в том числе и с новыми двигателями. Но это уже совсем другая история.

По материалам сайтов:
журнал ««Техника и вооружение: вчера, сегодня, завтра…»»
http://armor.kiev.ua/
http://army-guide.com/
http://t80leningrad.narod. ru/

Война, которой не было. 13 серия. «Танк Т-80. Совершенное оружие»

Источник

Видео

УПРАВЛЕНИЕ, ВНУТРИ ТАНКА Т-80У танк. ГАЗОТУРБИННЫЙ/ Иван Зенкевич ПРО

Т-80: Прожорливая Тварь. Основной боевой танк с газотурбинным двигателем.

Как запустить Т-80Б. Как работает газотурбинный двигатель ГТД-1000.

газотурбиный двигатель и его работа

О двигателе танка Т-14.

Танковый газотурбинный двигатель ГТД-1250

Танк Абрамс (M1 Abrams) — Мегазаводы | Документальный фильм

Танк Т-34. Дизельный двигатель типа В-2 — Часть-1

Почему на танки России устанавливают двигатели, которым уже 90 лет🤪?

экспонат. двигатель для танка Т-80

Газотурбинный двигатель авиационный серии МкА

Получение энергии. Электроэнергетика Производство двигателей и турбин Производство машин и оборудования Производство транспортных средств и оборудования Прорывные технологии 

 

 

Газотурбинный двигатель малой тяги серии МкА (микроавиационный) отличается конструктивом, материалами, характеристиками, а также заранее продуманной интеграцией в ряд изделий. Это позволило повысить топливную эффективность двигателя на 82%, ресурс двигателя на 50 %, мощность на 30 %, надежность на 91%.

 

Описание

Преимущества

Технические характеристики газотурбинного двигателя малой тяги

Применение

 

Описание:

Газотурбинный двигатель малой тяги серии МкА (микроавиационный) отличается конструктивом, материалами, характеристиками, а также заранее продуманной интеграцией в ряд изделий.

Основой двигателя является единый модуль, содержащий в себе:

гибридный компрессор, обеспечивающий необходимый коэффициент сжатия и напора газа на выходе из модуля,

блок торроидальной нессиметричной камеры сгорания с шариковой испарительной системой,

одноступенчатую турбину с пассивным охлаждением лопаток.

  

В конструкции газотурбинного двигателя малой тяги применены новые методы балансировки подвижных элементов двигателя, позволившие снизить нагрузку на подшипниковые узлы и увеличить ресурс их работы на 20%, и новые методы синтеза системы управления, которые позволили значительно снизить расход топлива.

Газотурбинный двигатель малой тяги производится с применением аддитивных технологий производства и нанонапылений, пероуглеродосодержащих и композиционных материалов.

В двигателе используются многоканальная система смазки внутренних узлов, инновационная система воздушных тепловых экранов и интеллектуальная система самодиагностики.

В двигателе применена система управления с распределенной логикой, способная подстраиваться под параметры внешней среды, текущие условия, режимы эксплуатации двигателя и оптимизировать его параметры для достижения максимальной мощности, сберегая при этом ресурс внутренних узлов и агрегатов.

Внедрение подобных технологий позволило повысить топливную эффективность на 82%, ресурс двигателя на 50 %, мощность на 30 %, надежность на 91%.

 

Преимущества:

– компактность,

высокие характеристики надежности, мощности и потребления топлива,

– малый вес.

 

Технические характеристики газотурбинного двигателя малой тяги:

Характеристики:Значение:
Вес, г2060
Длина, мм324
Диаметр основной, мм115
Ширина с пилонами, мм128
Тяга максимальная, Ньютон (кВт)200 (12)
Тяга рабочая, Ньютон160
Расход топлива (на макс. тяге), мл/мин460
Используемое топливокеросин/дизельное топливо
Максимальные скорость вращения, об/мин120 000

 

Применение:

малая авиация,

локальная энергетика.

 

Примечание: описание технологии на примере газотурбинного двигателя малой тяги серии МкА (микроавиационный).

 

авиационный газотурбинный вспомогательный двигатель
продам новый первый танковый малый вертолетный вспомогательный газотурбинный двигатель аи 8
морские малоразмерные иноземцев корабельные российские судовые скубачевский авиационные газотурбинные двигатели для вмф россии 2016 год книга малой мощности россия скачать теория
вспомогательные газотурбинные паротурбинные установки двигатели газотурбинным наддувом
автомобильный маленький м90фр газотурбинный двигатель для авиамоделей для кораблей для фрегатов на автомобиле своими руками авто аи 20 аи 92 вертолета видео внутреннего сгорания гтд 1250 история купить недостатки принцип работы видео
как работает дизельный газотурбинный двигатель реферат т 80 танка т 80 установка цена ямз
использование газогидратов в газотурбинных двигателях
диагностика газотурбинного газотурбинный расчет испытания камера сгорания принцип работы применение обороты мощность конструкция модель компрессор газотурбинного двигателя в танке


мотоцикл с газотурбинным двигателем
работа вал запуск кпд редуктор ресурс ремонт ротор схема характеристики устройство цикл газотурбинного двигателя видео
завод изготовление агрегаты лопатки производство лопаток разработка центр технологической компетенции лопатки эксплуатация топливо масло для типы металлокерамические вставки для газотурбинных двигателей россии

 

Коэффициент востребованности 1 311

Двигатель внутреннего сгорания: устройство, принцип работы, виды


Люди постоянно пытаются построить экономичный и надёжный мотор. До сих пор идея об изобретении вечного двигателя не даёт покоя многим изобретателям. Неудачные разработки исчезли в веках. Но в результате проб и ошибок появилось несколько типов двигательных установок. Эти механизмы успешно нами эксплуатируются.

Все известные двигатели используют разные виды энергии, которую затем преобразуют в движение. В качестве приводной тяги может служить электроэнергия, вода и тепло. Поэтому они разделяются на следующие типы:

  • электродвигатели;
  • гидравлические машины;
  • тепловые агрегаты.

Тепловые моторы основаны на преобразовании тепловой энергии в работу. В таких машинах применён один из двух способов сгорания топлива: внешний и внутренний.

В школе наверняка всем рассказывали о машинах, работающих на пару. Они как раз и представляют вид тепловых двигателей с внешней камерой сгорания. Первые паровые механизмы были построены ещё в середине XIX века. Сейчас паровые машины практически исчезли из нашей жизни. Они уступили место двигателям внутреннего сгорания (ДВС).

Принципиально ДВС отличаются от паровых машин местом размещения камеры сгорания. В механизмах с внутренним сгоранием эти камеры расположены в самих агрегатах. Такие моторы работают практически во всех транспортных средствах.

В этой статье приведена основная информация о принципе работы различных видов ДВС: газотурбинного, роторного, поршневого. Рассказано, как работает двигательный агрегат с внешней камерой сгорания — двигатель Стирлинга. Описана классификация и устройство двигателей внутреннего сгорания поршневого типа. Объяснено отличие двухтактного двигателя от четырёхтактного.

Содержание

Принцип работы ДВС


Самым главным механизмом, установленным в каждом автомобиле, является двигатель внутреннего сгорания. Механики любят называть его сердцем автомобиля. Именно он отвечает за преобразование энергии сгорания углеводородного топлива в механическое движение.

Работают ДВС на жидком или газообразном топливе.

Принцип работы ДВС прост. Небольшие порции топлива, смешанного с воздухом в нужной пропорции, поступают в камеру сгорания. В ней топливная смесь воспламеняется. Выделяемая при этом энергия приводит в движение поршни, которые вращают вал.

Все остальные узлы автомобиля предназначены либо для повышения производительности силового агрегата, либо для контроля и управления. Вспомогательные системы создают также комфорт пассажирам и водителям, при этом обеспечивая им безопасную езду.

Более чем за полуторавековую историю своего развития появились ДВС, различающиеся конструкцией, мощностью и используемым топливом.


Видео: Принцип работы двигателя внутреннего сгорания

Главная классификация ДВС

Все существующие ДВС разделены на 3 вида:

  • поршневые;
  • роторные;
  • газотурбинные.

В поршневых агрегатах рабочим органом является поршень. В роторных моторах используется движение ротора. В газотурбинных двигателях движение осуществляется турбиной.

В каждом из видов этих силовых установок конструктивно реализованы разные схемы преобразования тепловой энергии в полезную работу. Это принципиально отличает их друг от друга. Максимальная производительность силовых агрегатов зависит от того, каким образом преобразуется тепловая энергия. Каждый вид силовых агрегатов создан для эффективной работы в своей области применения.

Ниже подробно описаны конструкции этих агрегатов и физические процессы, происходящие в них. Отдельный раздел статьи посвящён двигателю Стирлинга. Он относится к механизмам с внешней камерой сгорания. Но принцип работы этого мотора по нескольким признакам похож на ДВС. Это часто вызывает путаницу.

Газотурбинный двигатель


При воспламенении топлива образуются газы, которые при нагреве расширяются. Этот факт всем известен из школьного курса физики. Указанный принцип положен в основу газотурбинной установки. Топливная смесь сгорает, и нагретый газ моментально расширяется, заставляя лопасти турбины вращаться. Чем больше температура газа, тем быстрее он увеличивается в объёмах. Эта зависимость определяет коэффициент полезного действия этого вида ДВС: чем выше температура газов, тем больше КПД.

Разработано два типа газотурбинных установок, отличающихся количеством рабочих валов. Агрегаты с двумя валами мощнее по сравнению с одновальными механизмами.

Газотурбинные двигатели устанавливают на машины, где необходима большая мощность силовой установки. Например, грузовые автомобили, корабли, самолёты и железнодорожные локомотивы.

Видео: Принцип работы газотурбинного двигателя

Роторный ДВС


В моторах этого вида реализован принцип вращения вала от кругового движения ротора. Ротором является треугольный поршень, который вращается в овальной камере – статоре. Ротор закреплён на валу с эксцентриситетом. При таком расположении во время вращения ротора в цилиндре создаются полости для тактов зажигания, сгорания и выпуска. За один оборот ротора происходит 3 такта работы.

Достоинством роторного ДВС является отсутствие шатунов, коленчатого вала и многих сопутствующих узлов. Инженеры подсчитали, что деталей в агрегате роторного типа намного меньше, чем в моторах других типов. Поэтому роторные моторы гораздо меньше других. Это является ещё одним их преимуществом.

В Японии, известной своими передовыми разработками в автомобилестроении, были сконструированы двигатели, имеющие несколько роторов. Например, японцы сконструировали агрегат, имеющий такую же мощность, что и шестипоршневой двигатель гоночного автомобиля. Но размеры многороторного движка при этом гораздо меньше.

На ранних моделях вазовских автомобилей в своё время устанавливались роторные моторы.

Роторные двигатели гораздо проще и эффективнее поршневых.  Но по непонятной причине роторные агрегаты используются очень редко.

Видео: Принцип работы роторного двигателя

Поршневой двигатель


Это – самый распространённый тип двигателя. Рассмотрим его принципиальную схему работы.

В конструкции мотора этого вида имеется несколько цилиндров, внутри каждого из них поршни совершают возвратно-поступательные движения. В обоих концах цилиндров расположены клапаны. Открываясь, клапан пропускает порцию топливной смеси в камеру сгорания, образующуюся в цилиндре перед поршнем. В это время поршень, двигаясь вверх, сжимает смесь.

В расчётный момент происходит её воспламенение.  Образующиеся газы расширяются и толкают поршень в другую сторону. Несколько таких поршней закреплены на валу П-образной конструкции. Обычно такой вал называют коленчатым. За каждое движение поршня вал проворачивается на определённую величину. Цикл движения поршня от одной стороны цилиндра до другой называется тактом. Скоординированная работа поршней заставляет коленчатый вал проворачиваться на полный оборот. Такие циклы постоянно повторяются, заставляя вращаться вал с большой скоростью.

Автомобилестроители постоянно совершенствуют поршневые двигатели. Каждое усовершенствование приводит к повышению мощности двигателя. Поршневые агрегаты являются самыми надёжными из всех видов силовых установок.

Видео: Принцип работы дизельного двигателя

Читайте также: Что такое трансмиссия автомобиля

Двигатель Стирлинга


В качестве примера разновидности двигательного агрегата с внешней камерой сгорания можно привести так называемый двигатель Стирлинга. Своё название он получил по фамилии изобретателя – шотландского священника Роберта Стирлинга. Этот оригинальный мотор работает на основе неоднократного нагрева рабочего тела – порции воздуха.

Принцип работы внешне похож на схему ДВС. В моторе Стирлинга тоже имеется цилиндр с поршнем, который двигается по возвратно-поступательной траектории и приводит в движение кривошипно-шатунный механизм. Мало того, цилиндр имеет радиатор охлаждения как в двигателе внутреннего сгорания.

Но главным отличием двигателя Стирлинга от ДВС является отсутствие топливной смеси. Её роль в данном случае выполняет воздух, который нагревается внешним источником тепла.

Дело в том, что уже находящийся в цилиндре воздух, нагреваясь, расширяется и толкает вытеснитель, который в свою очередь двигает рабочий поршень вверх. Поршень проворачивает кривошип. Проходя через зону охлаждения, воздух сжимается, давление в цилиндре уменьшается, образуя разрежение. В это время кривошип, двигаясь дальше, возвращает поршень в нижнее положение. Так периодически чередуя циклы нагрева и остывания рабочего тела (воздуха), извлекают энергию из процесса изменения давления.

Примечательно, что такой агрегат легко превратить в тепловой насос, изменив координацию работы рабочего поршня и вытеснителя.

Двигатель Стирлинга может работать практически на любом топливе, от дров до ядерной энергии. При этом конструкция этого агрегата очень проста и надёжна. Инженеры разработали 3 типа моторов подобного рода и назвали их буквами греческого алфавита. Выше описан принцип самого простого из них: бета-типа.

Двигатель конструкции Стирлинга незаменим в тех случаях, когда появляется необходимость преобразования очень маленького перепада температур. В таких условиях ни одна газовая турбина функционировать не может. Проще говоря, установки Стирлинга могут эффективно работать от обычной переносной газовой горелки или даже спиртовки. Туристы уже оценили такие устройства. Учёные предсказывают, что двигатели Стирлинга сделают революцию в солнечной энергетике.

Видео: Принцип работы двигателя Стирлинга

Виды поршневых ДВС


Поршневые моторы классифицируются по типу используемого топлива:

  • бензиновые;
  • газовые;
  • дизельные.

Кроме того, двигатели отличаются системой зажигания. В установках, использующих принудительное зажигание, воспламенение топливной смеси производится устройствами, генерирующими искру. Их ещё называют свечами зажигания. В них периодически образуется электрическая дуга, которая и поджигает топливо в камере сгорания цилиндра. Работают свечи от электрического аккумулятора. Сложность представляет регулировка свечей. Необходимо отрегулировать свечи так, чтобы искра образовывалась точно в тот момент, когда смесь достигнет расчётного уровня сжатия.

Принудительное зажигание характерно только для бензиновых двигателей. Реже такая система применяется в двигателях, работающих на газе.

Топливная смесь может подаваться в цилиндры двумя способами: с помощью карбюратора или инжектора.

Поршневые агрегаты, использующие в качестве топлива солярку, называются дизельными и имеют другую систему воспламенения топлива в цилиндре. В дизельных установках смесь самопроизвольно воспламеняется в результате её сжатия поршнем. Отличительной особенностью дизельных двигателей является их «всеядность». Они способны работать на нескольких видах топлива. Дизели прекрасно функционируют, будучи заправлены другими горючими веществами. Например, керосином, мазутом или даже растительным маслом.

В зависимости от количества тактов рабочего цикла, различают двухтактные и четырёхтактные ДВС. Двухтактные двигатели обычно ставят на мотоциклы, мопеды или газонокосилки. Четырёхтактные моторы устанавливаются в современных автомобилях.

По пространственному расположению цилиндров ДВС тоже имеют свою классификацию.

Если цилиндры расположены на одной оси, то такие двигатели называются рядными. Обозначаются рядные моторы английским символом «R» с цифрой, указывающей на количество цилиндров.

Если цилиндры размещены под углом друг к другу, то такие агрегаты называют V-образными. Они гораздо компактнее других типов двигателей. Обычно угол между осями цилиндров составляет 120 градусов. Имеются модели V-образных моторов с другим углом между осями цилиндров.

Агрегаты, обозначаемые символом «Vr», имеют переходную конструкцию. Они обладают признаками и рядных, и V-образных двигателей.

При расположении цилиндров напротив друг друга, то есть под углом 180 градусов, двигатели называются оппозитными.

Читайте также: Что такое лямбда-зонд

Устройство двигателя внутреннего сгорания: описание основных узлов ДВС


В этом разделе рассмотрено назначение и конструктивное исполнение отдельных узлов поршневых двигателей.

Кривошипно-шатунный механизм

Поршни в цилиндрах движутся возвратно-поступательно. Кривошип вместе с шатунами преобразуют это движение во вращение вала. Механизм называется кривошипно-шатунным (КШМ). Состоит из П-образного вала, называемого коленчатым, узла цилиндров, головки блока цилиндров (ГБЦ) и креплений.

Газораспределительная система

ГБЦ регулирует подачу обогащённой смеси в цилиндры. Процесс происходит за счёт скоординированных во времени циклов открытия и закрытия группы клапанов, осуществляющих подачу смеси и выпуск отработанных газов. Кроме этого, газораспределительная система отводит наружу выхлопные газы. Управляет клапанами распределительный вал, который связан с коленвалом зубчатой или ремённой передачей. Вращаясь, распределительный вал заставляет открываться и закрываться нужные клапана в строго определённое время.

Вся система состоит из распредвала и клапанных групп. Ремонт головки часто вызывает затруднения, так как требует тщательной установки уплотнений. При неправильно установленных прокладках произойдёт подсос воздуха, возможна также утечка топлива. Это нарушает баланс топливной смеси.

Система питания


Внутрь цилиндров подаётся не чистое горючее, а порция смеси, состоящей из обогащённого воздухом топлива. Карбюратор смешивает бензин с воздухом, то есть обогащает топливо. Затем приготовленная смесь через коллектор, называющийся впускным, попадает в камеру.

Если ДВС оборудован инжектором, то бензин под высоким давлением подается сразу во впускной коллектор. Впрыск происходит через форсунки. Бензин и воздух смешиваются не в карбюраторе, а непосредственно во впускном коллекторе.

Топливо циркулирует в системе питания за счёт работы насоса. В карбюраторных двигателях установлены механические насосы. В инжекторных — электрические.

Инжекторные двигатели обычно оснащаются электронным зажиганием. Такое зажигание эффективнее свечного, так как воспламенением топливно-воздушной смеси управляет бортовой компьютер. Для его эффективной работы в автомобиле установлены специальные датчики, собирающие все необходимые данные для компьютера.

Зажигание


В двигателях с карбюратором всегда имеются так называемые свечи зажигания. Они генерируют вольтову дугу, поджигающую топливную смесь. В народе такую дугу обычно называют искрой. В таких автомобилях система зажигания состоит из свечей и аккумулятора.

В двигателях на дизельном топливе процесс возгорания смеси принципиально отличается. Она самовоспламеняется. Это стало возможным благодаря уникальным свойствам дизельного топлива. Дизтопливо через форсунки под высоким давлением подаётся в цилиндр. Предварительно воздух в камере цилиндра тоже сжимается и нагревается до 700 градусов. В таких условиях солярка мгновенно самовоспламеняется.

Выхлопная система

Вывод газов наружу осуществляется системой выпуска продуктов сгорания — выхлопной системой. Токсичные газы направляются сначала в выпускной коллектор, в котором осуществляется сбор выхлопных газов от всех цилиндров. Из коллектора газ, содержащий большое количество вредных веществ, выбрасывается наружу через глушитель.

Последние модели всех автомобилей теперь выпускаются только с каталитическими нейтрализаторами. Они сильно снижают токсичность выхлопных газов, приводя их в соответствие с экологическими нормами.

Система смазки


В автомобиле есть много деталей вращения. Во время работы двигателя трущиеся между собой детали активно изнашиваются. Чтобы уменьшить износ и увеличить КПД двигателя, в каждом автомобиле предусмотрена замкнутая система, созданная для циркуляции смазки. Подача масла в систему осуществляет масляный насос. Перед тем, как попасть в двигатель, масло проходит через фильтр, где очищается от накопившихся загрязнений. Через систему распределения масло подаётся в подшипники коленчатого вала и в газораспределительный механизм для смазки деталей распределительного вала. Затем отработанное масло поступает в картер — специально сконструированную ёмкость в виде поддона. Из картера масло опять забирается насосом и направляется на следующий цикл смазки.

В результате работы системы смазки фильтры засоряются, что снижает степень очистки. Недостаточный уровень очистки ухудшает характеристики масла. По мере засорения фильтров давление масла начинает повышаться. Для сброса давления и безопасной работы узлов автомобиля устанавливают предохранительные, или так называемые редукционные клапаны, срабатывающие при превышении давления масла. Эти клапаны срабатывают вследствие засорения фильтров. Своевременная замена масла и фильтров является непременным условием эффективной работы ДВС.

Во время работы мотора масло нагревается, что тоже плохо отражается на работе мотора. Все мощные двигатели работают со своей системой охлаждения масла. Обычно их называют масляными радиаторами.

Системы охлаждения


Во время продолжительной работы двигатели могут нагреться до достаточно высоких температур. Температура внешней поверхности цилиндров достигает нескольких сотен градусов. Никакие механизмы не могут эффективно работать при таких высоких температурах. Поэтому конструкторы разработали системы для охлаждения узлов автомобиля. Принцип работы таких систем заключается в передаче тепла от нагретых частей к охлаждающей жидкости. Заметим, что состав таких жидкостей и их свойства постоянно улучшаются производителями.

Самым узнаваемым элементом системы охлаждения стал радиатор, который обычно находится в начале моторного отсека, непосредственно перед двигателем. Такое расположение позволяет радиатору дополнительно охлаждаться встречным потоком воздуха. Для повышения эффективности работы радиатора впереди него установлен мощный вентилятор.

Радиатор понижает температуру самого охлаждающего агента после того, как тот отберёт тепло от цилиндров. Вся система охлаждения состоит из термостата, помпы, небольшой расширительной ёмкости и устройства обогрева салона.

Работа системы охлаждения регулируется термостатом. Если двигатель ещё не нагрелся до критических величин, то помпа прогоняет охлаждающую жидкость по так называемому «малому» кругу, то есть только в пределах самого двигателя. Когда термостат включается, то жидкость пропускается через радиатор, охлаждаясь при этом гораздо эффективнее.

Порог срабатывания термостата обычно составляет 90 градусов. В некоторых моделях автомобилей температура срабатывания термостата может быть установлена больше или меньше этой величины.

Долговременная работа любого автомобиля невозможна без эффективной системы охлаждения.

Читайте также: Что такое интеркулер в автомобиле

Четырехтактный ДВС


Число тактов работы — одна из важнейших характеристик любого ДВС. Далее приведено описание взаимодействия поршня с клапанами поочерёдно в каждом такте. Напомним, 1 цикл — это 4 такта.

В первом такте выполняется впуск смеси. Топливо смешивается с воздухом. Поршень двигается к наивысшей точке. В камере сгорания создаётся область низкого давления — разрежение. Впускной клапан открывает отверстие в камере для подачи смеси. Коленвал начинает первый оборот.

Во втором такте смесь сжимается. Впускной клапан закрывается. Поршень, достигнув наивысшей точки, сжимает обогащённую топливную смесь. Коленвал завершает первый оборот.

Рабочий ход выполняется в третьем такте. Обогащённая смесь поджигается. В бензиновых двигателях поджигание производится электрической дугой от свечи. В дизельных — топливо воспламеняется самостоятельно в процессе сжатия. Облако расширяющихся газов заставляет поршень двигаться вниз. Начало второго оборота коленвала.

В четвёртом такте происходит выпуск. Открывается выпускной клапан. Газы выводятся в коллектор, а затем выбрасываются наружу. Поршень начинает двигаться вверх. Вал завершает второй оборот.

Таким образом, за 1 рабочий цикл этот двигатель совершает 4 такта, во время которых вал проворачивается дважды.

Видео: Принцип работы четырёхтактного двигателя

Двухтактный мотор


В этих двигателях сжатие и рабочий ход совершаются также как в четырёхтактных. Но очистка и заполнение цилиндров топливной смесью происходит за очень короткое время в момент нахождения поршня в самом нижнем положении. Если в четырёхтактном двигателе смесь попадает в камеру сгорания через открытые отверстия клапанов, то в этом моторе очередная порция смеси поступает в цилиндр через специальные отверстия, называемыми окнами. Они открываются и закрываются телом поршня. Процессы наполнения полостей цилиндра новой смесью и удаления продуктов сгорания называются продувкой.

Для осуществления продувки внутренняя полость цилиндра напрямую связана с КШМ. По сути, поршень двигается в одном пространстве с кривошипом. Под ним образуется полость, которую называют кривошипной камерой или картером. Эта камера тоже участвует в процессах газообмена. В ней периодически создаётся разрежение. Это позволяет поступать новой порции смеси через впускное отверстие.

Такая конструкция позволяет двигателю развивать в 1,5 раза большую мощность по сравнению с другими моторами аналогичного объёма при тех же оборотах двигателя. Но есть и ряд недостатков.

  • Детали в таком двигателе работают с большей интенсивностью, то есть быстрее изнашиваются.
  • Особое значение придаётся герметизации всех механизмов, работающих практически в одном пространстве: поршня, цилиндра и кривошипа.
  • Так как в картере нельзя устроить масляную ванну, то смазку поршня и других деталей осуществляют добавлением масла в топливо.
  • Перепады давления смеси в цилиндре не так велики, поэтому для повышения производительности двигателя часто используют принудительную продувку.

Рабочий цикл осуществляется в течение одного оборота коленвала.

Видео: Принцип работы двухтактного двигателя

Вам также будет интересно почитать:

Двигатель внутреннего сгорания: устройство, принцип работы, виды

Рабочий цикл двухтактного двигателя состоит из впуска и выпуска происходящего за один оборот коленчатого вала, тогда как 4-х тактный имеет следующие циклы — впуск, сжатие, рабочий ход, выпуск. И протекают они за два оборота маховика. В двигателе с 4 тактами впуск и выпуск осуществляются в виде разных процессов, в двухтактнике они совмещены со сжатием топливной смеси и расширением рабочих газов. Принцип действия двухтактного двигателя:

Двухтактный дизельный двигатель работает по такому же принципу, только у него отсутствует свеча зажигания, а воспламенение топлива происходит от сжатия. Поэтому степень сжатия в дизельных двс намного выше бензиновых.

Принцип работы ДВС

Самым главным механизмом, установленным в каждом автомобиле, является двигатель внутреннего сгорания. Механики любят называть его сердцем автомобиля. Именно он отвечает за преобразование энергии сгорания углеводородного топлива в механическое движение. Работают ДВС на жидком или газообразном топливе.

Принцип работы ДВС прост. Небольшие порции топлива, смешанного с воздухом в нужной пропорции, поступают в камеру сгорания. В ней топливная смесь воспламеняется. Выделяемая при этом энергия приводит в движение поршни, которые вращают вал.

Все остальные узлы автомобиля предназначены либо для повышения производительности силового агрегата, либо для контроля и управления. Вспомогательные системы создают также комфорт пассажирам и водителям, при этом обеспечивая им безопасную езду.

Более чем за полуторавековую историю своего развития появились ДВС, различающиеся конструкцией, мощностью и используемым топливом.

Видео: Принцип работы двигателя внутреннего сгорания

Определение

Двигатель имеет приставку «внутреннего сгорания» по одной простой причине. Дело в том, что топливо воспламеняется внутри рабочей камеры, а не внешне. Сгорая, топливо выделяет энергию, которая преобразуется в механическую работу для ее передачи остальным «органам» автомобиля.

Существуют разные виды двигателей, но большей популярностью пользуется поршневой. Данная разновидность мотора позволяет хранить топливо компактно, при этом много не затрачивать его при больших пробегах.

Главная классификация ДВС

Все существующие ДВС разделены на 3 вида:

  • поршневые;
  • роторные;
  • газотурбинные.

В поршневых агрегатах рабочим органом является поршень. В роторных моторах используется движение ротора. В газотурбинных двигателях движение осуществляется турбиной.

В каждом из видов этих силовых установок конструктивно реализованы разные схемы преобразования тепловой энергии в полезную работу. Это принципиально отличает их друг от друга. Максимальная производительность силовых агрегатов зависит от того, каким образом преобразуется тепловая энергия. Каждый вид силовых агрегатов создан для эффективной работы в своей области применения.

Ниже подробно описаны конструкции этих агрегатов и физические процессы, происходящие в них. Отдельный раздел статьи посвящён двигателю Стирлинга. Он относится к механизмам с внешней камерой сгорания. Но принцип работы этого мотора по нескольким признакам похож на ДВС. Это часто вызывает путаницу.

Газотурбинный двигатель

При воспламенении топлива образуются газы, которые при нагреве расширяются. Этот факт всем известен из школьного курса физики. Указанный принцип положен в основу газотурбинной установки. Топливная смесь сгорает, и нагретый газ моментально расширяется, заставляя лопасти турбины вращаться. Чем больше температура газа, тем быстрее он увеличивается в объёмах. Эта зависимость определяет коэффициент полезного действия этого вида ДВС: чем выше температура газов, тем больше КПД.

Разработано два типа газотурбинных установок, отличающихся количеством рабочих валов. Агрегаты с двумя валами мощнее по сравнению с одновальными механизмами.

Газотурбинные двигатели устанавливают на машины, где необходима большая мощность силовой установки. Например, грузовые автомобили, корабли, самолёты и железнодорожные локомотивы.

Видео: Принцип работы газотурбинного двигателя

Роторный ДВС

В моторах этого вида реализован принцип вращения вала от кругового движения ротора. Ротором является треугольный поршень, который вращается в овальной камере – статоре. Ротор закреплён на валу с эксцентриситетом. При таком расположении во время вращения ротора в цилиндре создаются полости для тактов зажигания, сгорания и выпуска. За один оборот ротора происходит 3 такта работы.

Достоинством роторного ДВС является отсутствие шатунов, коленчатого вала и многих сопутствующих узлов. Инженеры подсчитали, что деталей в агрегате роторного типа намного меньше, чем в моторах других типов. Поэтому роторные моторы гораздо меньше других. Это является ещё одним их преимуществом.

В Японии, известной своими передовыми разработками в автомобилестроении, были сконструированы двигатели, имеющие несколько роторов. Например, японцы сконструировали агрегат, имеющий такую же мощность, что и шестипоршневой двигатель гоночного автомобиля. Но размеры многороторного движка при этом гораздо меньше.

На ранних моделях вазовских автомобилей в своё время устанавливались роторные моторы.

Роторные двигатели гораздо проще и эффективнее поршневых. Но по непонятной причине роторные агрегаты используются очень редко.

Видео: Принцип работы роторного двигателя

Поршневой двигатель

Это – самый распространённый тип двигателя. Рассмотрим его принципиальную схему работы.

В конструкции мотора этого вида имеется несколько цилиндров, внутри каждого из них поршни совершают возвратно-поступательные движения. В обоих концах цилиндров расположены клапаны. Открываясь, клапан пропускает порцию топливной смеси в камеру сгорания, образующуюся в цилиндре перед поршнем. В это время поршень, двигаясь вверх, сжимает смесь. В расчётный момент происходит её воспламенение. Образующиеся газы расширяются и толкают поршень в другую сторону. Несколько таких поршней закреплены на валу П-образной конструкции. Обычно такой вал называют коленчатым. За каждое движение поршня вал проворачивается на определённую величину. Цикл движения поршня от одной стороны цилиндра до другой называется тактом. Скоординированная работа поршней заставляет коленчатый вал проворачиваться на полный оборот. Такие циклы постоянно повторяются, заставляя вращаться вал с большой скоростью.

Автомобилестроители постоянно совершенствуют поршневые двигатели. Каждое усовершенствование приводит к повышению мощности двигателя. Поршневые агрегаты являются самыми надёжными из всех видов силовых установок.

Видео: Принцип работы дизельного двигателя

Двигатель Стирлинга

В качестве примера разновидности двигательного агрегата с внешней камерой сгорания можно привести так называемый двигатель Стирлинга. Своё название он получил по фамилии изобретателя – шотландского священника Роберта Стирлинга. Этот оригинальный мотор работает на основе неоднократного нагрева рабочего тела – порции воздуха.

Принцип работы внешне похож на схему ДВС. В моторе Стирлинга тоже имеется цилиндр с поршнем, который двигается по возвратно-поступательной траектории и приводит в движение кривошипно-шатунный механизм. Мало того, цилиндр имеет радиатор охлаждения как в двигателе внутреннего сгорания.

Но главным отличием двигателя Стирлинга от ДВС является отсутствие топливной смеси. Её роль в данном случае выполняет воздух, который нагревается внешним источником тепла.

Дело в том, что уже находящийся в цилиндре воздух, нагреваясь, расширяется и толкает вытеснитель, который в свою очередь двигает рабочий поршень вверх. Поршень проворачивает кривошип. Проходя через зону охлаждения, воздух сжимается, давление в цилиндре уменьшается, образуя разрежение. В это время кривошип, двигаясь дальше, возвращает поршень в нижнее положение. Так периодически чередуя циклы нагрева и остывания рабочего тела (воздуха), извлекают энергию из процесса изменения давления.

Примечательно, что такой агрегат легко превратить в тепловой насос, изменив координацию работы рабочего поршня и вытеснителя.

Двигатель Стирлинга может работать практически на любом топливе, от дров до ядерной энергии. При этом конструкция этого агрегата очень проста и надёжна. Инженеры разработали 3 типа моторов подобного рода и назвали их буквами греческого алфавита. Выше описан принцип самого простого из них: бета-типа.

Двигатель конструкции Стирлинга незаменим в тех случаях, когда появляется необходимость преобразования очень маленького перепада температур. В таких условиях ни одна газовая турбина функционировать не может. Проще говоря, установки Стирлинга могут эффективно работать от обычной переносной газовой горелки или даже спиртовки. Туристы уже оценили такие устройства. Учёные предсказывают, что двигатели Стирлинга сделают революцию в солнечной энергетике.

Видео: Принцип работы двигателя Стирлинга

Эксплуатация и причины поломки двигателей

Чаще всего двухтактные моторы встречаются в мототехнике, лодочных двигателях, газонокосилках, цепных пилах и прочих устройствах, где требуется применение легкого и надежного двигателя. Тем не менее, даже такой простой по конструкции движок может выйти из строя из-за нарушения правил эксплуатации.

  • Низкое качество бензина. Плохое топливо часто приводит к появлению детонации. Чаще всего это заметно на невысоких оборотах при подгазовках. Возникающие ударные нагрузки приводят к поломке перегородок поршней, чрезмерным нагрузкам на подшипники коленвала. Детонация может возникать из-за перегрева двигателя, нагара на поршне и бедной смеси.
  • Низкое качество деталей, из которых собран мотор. Особенно это актуально для китайских производителей, часто допускающих брак в производстве комплектующих. Это приводит к раннему выходу из строя поршня, коленчатого вала, цилиндра и прочих деталей, а затем и капитальному ремонту. Обычно помогает оценить состояние поршневой простой замер компрессии.
  • Низкокачественное моторное масло. Топливомасляная смесь для двухтактных двигателей имеет очень важное значение. Именно от его качества будет зависеть как мягко работает мотор, чистота выхлопа, отсутствие перегрева и лишних шумов. Плохое масло приводит к образованию слоя нагара на поршне, в коренных и шатунных подшипниках, к задирам на стенках цилиндра и юбке поршня, проходное сечение глушителя уменьшается из-за нагара. Масла для двухтактных двигателей следует применять синтетические или полусинтетические, использование минералки нежелательно.
  • Перегрев на двухтактном двигателе воздушного охлаждения не редкость. К этому приводит длительная работа с полностью открытым дросселем, или неисправность системы охлаждения. Перегрев может быть кратковременным, когда наблюдается потеря мощности и максимальных оборотов, после снижения нагрузки и охлаждения двигателя все приходит в норму. Клин возникает вследствие очень сильного перегрева, когда тепловой зазор между поршнем и цилиндром уменьшается настолько, что силы трения намертво прихватывают их между собой. После него требуется ремонт ЦПГ.
  • Карбюратор не настроен. Топливная смесь получается слишком бедной или очень богатой. Езда на переобогащенной смеси чревата высоким расходом топлива, потерей мощности и образованию нагара. Бедная смесь может вызывать детонацию и снижение максимальной мощности двигателя.

Чтобы продлить срок службы и отсрочить капремонт, следует провести правильную обкатку двухтактного лодочного или мотоциклетного мотора. Для этого пропорция масла смешиваемого с бензином должна быть немного выше установленной для нормальной эксплуатации. На такой смеси дать двигателю поработать в режиме неполной мощности несколько часов, что эквивалентно 500-1000 км пробега для скутера и мотоцикла.

Все же из-за токсичности выхлопа двухтактные двигатели постепенно вытесняются современными четырехтактными. Они продолжают использоваться только там, где требуется высокая удельная мощность при минимальной массе и простоте конструкции – мототехника, бензопилы и триммеры, модели самолетов и многое другое.

Виды поршневых ДВС

Поршневые моторы классифицируются по типу используемого топлива:

  • бензиновые;
  • газовые;
  • дизельные.

Кроме того, двигатели отличаются системой зажигания. В установках, использующих принудительное зажигание, воспламенение топливной смеси производится устройствами, генерирующими искру. Их ещё называют свечами зажигания. В них периодически образуется электрическая дуга, которая и поджигает топливо в камере сгорания цилиндра. Работают свечи от электрического аккумулятора. Сложность представляет регулировка свечей. Необходимо отрегулировать свечи так, чтобы искра образовывалась точно в тот момент, когда смесь достигнет расчётного уровня сжатия.

Принудительное зажигание характерно только для бензиновых двигателей. Реже такая система применяется в двигателях, работающих на газе.

Топливная смесь может подаваться в цилиндры двумя способами: с помощью карбюратора или инжектора.

Поршневые агрегаты, использующие в качестве топлива солярку, называются дизельными и имеют другую систему воспламенения топлива в цилиндре. В дизельных установках смесь самопроизвольно воспламеняется в результате её сжатия поршнем. Отличительной особенностью дизельных двигателей является их «всеядность». Они способны работать на нескольких видах топлива. Дизели прекрасно функционируют, будучи заправлены другими горючими веществами. Например, керосином, мазутом или даже растительным маслом.

В зависимости от количества тактов рабочего цикла, различают двухтактные и четырёхтактные ДВС. Двухтактные двигатели обычно ставят на мотоциклы, мопеды или газонокосилки. Четырёхтактные моторы устанавливаются в современных автомобилях.

По пространственному расположению цилиндров ДВС тоже имеют свою классификацию.

Если цилиндры расположены на одной оси, то такие двигатели называются рядными. Обозначаются рядные моторы английским символом «R» с цифрой, указывающей на количество цилиндров.

Если цилиндры размещены под углом друг к другу, то такие агрегаты называют V-образными. Они гораздо компактнее других типов двигателей. Обычно угол между осями цилиндров составляет 120 градусов. Имеются модели V-образных моторов с другим углом между осями цилиндров.

Агрегаты, обозначаемые символом «Vr», имеют переходную конструкцию. Они обладают признаками и рядных, и V-образных двигателей.

При расположении цилиндров напротив друг друга, то есть под углом 180 градусов, двигатели называются оппозитными.

Устройство двигателя внутреннего сгорания: описание основных узлов ДВС

В этом разделе рассмотрено назначение и конструктивное исполнение отдельных узлов поршневых двигателей.

Кривошипно-шатунный механизм

Поршни в цилиндрах движутся возвратно-поступательно. Кривошип вместе с шатунами преобразуют это движение во вращение вала. Механизм называется кривошипно-шатунным (КШМ). Состоит из П-образного вала, называемого коленчатым, узла цилиндров, головки блока цилиндров (ГБЦ) и креплений.

Газораспределительная система

ГБЦ регулирует подачу обогащённой смеси в цилиндры. Процесс происходит за счёт скоординированных во времени циклов открытия и закрытия группы клапанов, осуществляющих подачу смеси и выпуск отработанных газов. Кроме этого, газораспределительная система отводит наружу выхлопные газы. Управляет клапанами распределительный вал, который связан с коленвалом зубчатой или ремённой передачей. Вращаясь, распределительный вал заставляет открываться и закрываться нужные клапана в строго определённое время.

Вся система состоит из распредвала и клапанных групп. Ремонт головки часто вызывает затруднения, так как требует тщательной установки уплотнений. При неправильно установленных прокладках произойдёт подсос воздуха, возможна также утечка топлива. Это нарушает баланс топливной смеси.

Система питания

Внутрь цилиндров подаётся не чистое горючее, а порция смеси, состоящей из обогащённого воздухом топлива. Карбюратор смешивает бензин с воздухом, то есть обогащает топливо. Затем приготовленная смесь через коллектор, называющийся впускным, попадает в камеру.

Если ДВС оборудован инжектором, то бензин под высоким давлением подается сразу во впускной коллектор. Впрыск происходит через форсунки. Бензин и воздух смешиваются не в карбюраторе, а непосредственно во впускном коллекторе.

Топливо циркулирует в системе питания за счёт работы насоса. В карбюраторных двигателях установлены механические насосы. В инжекторных — электрические.

Инжекторные двигатели обычно оснащаются электронным зажиганием. Такое зажигание эффективнее свечного, так как воспламенением топливно-воздушной смеси управляет бортовой компьютер. Для его эффективной работы в автомобиле установлены специальные датчики, собирающие все необходимые данные для компьютера.

Зажигание

В двигателях с карбюратором всегда имеются так называемые свечи зажигания. Они генерируют вольтову дугу, поджигающую топливную смесь. В народе такую дугу обычно называют искрой. В таких автомобилях система зажигания состоит из свечей и аккумулятора.

В двигателях на дизельном топливе процесс возгорания смеси принципиально отличается. Она самовоспламеняется. Это стало возможным благодаря уникальным свойствам дизельного топлива. Дизтопливо через форсунки под высоким давлением подаётся в цилиндр. Предварительно воздух в камере цилиндра тоже сжимается и нагревается до 700 градусов. В таких условиях солярка мгновенно самовоспламеняется.

Выхлопная система

Вывод газов наружу осуществляется системой выпуска продуктов сгорания — выхлопной системой. Токсичные газы направляются сначала в выпускной коллектор, в котором осуществляется сбор выхлопных газов от всех цилиндров. Из коллектора газ, содержащий большое количество вредных веществ, выбрасывается наружу через глушитель.

Последние модели всех автомобилей теперь выпускаются только с каталитическими нейтрализаторами. Они сильно снижают токсичность выхлопных газов, приводя их в соответствие с экологическими нормами.

Система смазки

В автомобиле есть много деталей вращения. Во время работы двигателя трущиеся между собой детали активно изнашиваются. Чтобы уменьшить износ и увеличить КПД двигателя, в каждом автомобиле предусмотрена замкнутая система, созданная для циркуляции смазки. Подача масла в систему осуществляет масляный насос. Перед тем, как попасть в двигатель, масло проходит через фильтр, где очищается от накопившихся загрязнений. Через систему распределения масло подаётся в подшипники коленчатого вала и в газораспределительный механизм для смазки деталей распределительного вала. Затем отработанное масло поступает в картер — специально сконструированную ёмкость в виде поддона. Из картера масло опять забирается насосом и направляется на следующий цикл смазки.

В результате работы системы смазки фильтры засоряются, что снижает степень очистки. Недостаточный уровень очистки ухудшает характеристики масла. По мере засорения фильтров давление масла начинает повышаться. Для сброса давления и безопасной работы узлов автомобиля устанавливают предохранительные, или так называемые редукционные клапаны, срабатывающие при превышении давления масла. Эти клапаны срабатывают вследствие засорения фильтров. Своевременная замена масла и фильтров является непременным условием эффективной работы ДВС.

Во время работы мотора масло нагревается, что тоже плохо отражается на работе мотора. Все мощные двигатели работают со своей системой охлаждения масла. Обычно их называют масляными радиаторами.

Системы охлаждения

Во время продолжительной работы двигатели могут нагреться до достаточно высоких температур. Температура внешней поверхности цилиндров достигает нескольких сотен градусов. Никакие механизмы не могут эффективно работать при таких высоких температурах. Поэтому конструкторы разработали системы для охлаждения узлов автомобиля. Принцип работы таких систем заключается в передаче тепла от нагретых частей к охлаждающей жидкости. Заметим, что состав таких жидкостей и их свойства постоянно улучшаются производителями.

Самым узнаваемым элементом системы охлаждения стал радиатор, который обычно находится в начале моторного отсека, непосредственно перед двигателем. Такое расположение позволяет радиатору дополнительно охлаждаться встречным потоком воздуха. Для повышения эффективности работы радиатора впереди него установлен мощный вентилятор.

Радиатор понижает температуру самого охлаждающего агента после того, как тот отберёт тепло от цилиндров. Вся система охлаждения состоит из термостата, помпы, небольшой расширительной ёмкости и устройства обогрева салона.

Работа системы охлаждения регулируется термостатом. Если двигатель ещё не нагрелся до критических величин, то помпа прогоняет охлаждающую жидкость по так называемому «малому» кругу, то есть только в пределах самого двигателя. Когда термостат включается, то жидкость пропускается через радиатор, охлаждаясь при этом гораздо эффективнее.

Порог срабатывания термостата обычно составляет 90 градусов. В некоторых моделях автомобилей температура срабатывания термостата может быть установлена больше или меньше этой величины.

Долговременная работа любого автомобиля невозможна без эффективной системы охлаждения.

Четырехтактный ДВС

Число тактов работы — одна из важнейших характеристик любого ДВС. Далее приведено описание взаимодействия поршня с клапанами поочерёдно в каждом такте. Напомним, 1 цикл — это 4 такта.

В первом такте выполняется впуск смеси. Топливо смешивается с воздухом. Поршень двигается к наивысшей точке. В камере сгорания создаётся область низкого давления — разрежение. Впускной клапан открывает отверстие в камере для подачи смеси. Коленвал начинает первый оборот.

Во втором такте смесь сжимается. Впускной клапан закрывается. Поршень, достигнув наивысшей точки, сжимает обогащённую топливную смесь. Коленвал завершает первый оборот.

Рабочий ход выполняется в третьем такте. Обогащённая смесь поджигается. В бензиновых двигателях поджигание производится электрической дугой от свечи. В дизельных — топливо воспламеняется самостоятельно в процессе сжатия. Облако расширяющихся газов заставляет поршень двигаться вниз. Начало второго оборота коленвала.

В четвёртом такте происходит выпуск. Открывается выпускной клапан. Газы выводятся в коллектор, а затем выбрасываются наружу. Поршень начинает двигаться вверх. Вал завершает второй оборот.

Таким образом, за 1 рабочий цикл этот двигатель совершает 4 такта, во время которых вал проворачивается дважды.

Видео: Принцип работы четырёхтактного двигателя

Как работает двухтактный мотор

Выше было упомянуто, что поршневые двигатели делятся как на 4-тактные, так и на 2-тактные. Принцип работы вторых немного отличается от того, что был описан ранее. Да и само устройство такого агрегата значительно проще предыдущей конструкции. В двухтактном агрегате всего два окна в цилиндре — впускное и выпускное. Второе расположено чуть выше первого, и сейчас будет объяснено, для чего это.

Поршень при начале первого такта, до этого перекрывавший впускное окно, начинает двигаться наверх, в результате чего перекрывает собой окно впуска топлива. Поршень в это же время продолжает опускаться, что приводит к сжатию рабочей смеси. Как только деталь достигает нужного положения, на свече образуется первая искра, и созданная смесь тут же поджигается, воспламеняясь. Впускное окно к этому моменту уже открывается. Оно пропускает очередную порцию топлива и воздуха, продолжая работу механизма.

Начало второго такта характеризуется сменой направления движения поршня — он начинает перемещаться вниз. На него действуют газы, стремящиеся расширить имеющееся пространство. Поршень перемещается, открывая впускное окно, и оставшиеся после сгорания смеси газы уходят, пропуская внутрь новую порцию топлива.

Какая-то часть рабочей смеси также покидает цилиндр через открытый выпускной клапан. Поэтому становится понятным, почему двухтактные двигатели требуют такого количества топлива.

Не покатило – Картина дня – Коммерсантъ

История техники изобилует примерами поворотов разной степени крутизны и развилок, после которых далеко не все пути вели в счастливое будущее. Помните сверхзвуковые самолеты? Магистральный путь гражданской авиации, казалось бы, пролегал именно туда, к высоким скоростям. Это казалось настолько очевидным, что Boeing проектировал свой широкофюзеляжный 747 в расчете на то, что вскоре все их придется конвертировать в грузовые самолеты – именно поэтому кабину пилотов вынесли в «горб». Но грянувший нефтяной кризис в корне изменил ситуацию. Boeing 747 выпускают уже пятьдесят лет, и сделали в количестве более полутора тысяч экземпляров, а Ту-144 и Concorde построили 16 и 20 соответственно, при этом первый отлетал на регулярных линиях семь месяцев, а второй 26 лет. В автомобилестроении случались похожие истории – некоторые технические решения, пусть и продержались дольше сверхзвуковых лайнеров, так и не завоевали мир. Некоторые из них мы решили вспомнить.

Валерий Чусов, Александр Янковский


Хоть маслом, хоть духами
Газотурбинный двигатель

Предыдущая фотография

В 2010 году компания Jaguar сделала концепт-кар C-X75 с двумя газовыми турбинами, рассчитанными на дизельное топливо и приводившими в движение четыре электромотора. Запас хода на топливе – 900 километров плюс 110 на аккумуляторе. Скорость – более 300 км/ч, разгон до сотни – за три секунды. Машину планировали выпускать серийно совместно с Williams F1 – правда, уже c обычным поршневым двигателем. Но из-за финансового кризиса эти планы были отменены. Jaguar C-X75 можно увидеть в фильме «Спектр». Правда, сделанные для фильма семь экземпляров только выглядели как C-X75.

Первый работоспособный образец легкового автомобиля с турбиной был сделан компанией Rover в Великобритании в 1950 году, это был родстер JET1 с двигателем мощностью 100 л.с. Автомобиль совершенствовали, но до серии он так и не дошел.

Следующая фотография

1 / 3

В 2010 году компания Jaguar сделала концепт-кар C-X75 с двумя газовыми турбинами, рассчитанными на дизельное топливо и приводившими в движение четыре электромотора. Запас хода на топливе – 900 километров плюс 110 на аккумуляторе. Скорость – более 300 км/ч, разгон до сотни – за три секунды. Машину планировали выпускать серийно совместно с Williams F1 – правда, уже c обычным поршневым двигателем. Но из-за финансового кризиса эти планы были отменены. Jaguar C-X75 можно увидеть в фильме «Спектр». Правда, сделанные для фильма семь экземпляров только выглядели как C-X75.

Первый работоспособный образец легкового автомобиля с турбиной был сделан компанией Rover в Великобритании в 1950 году, это был родстер JET1 с двигателем мощностью 100 л.с. Автомобиль совершенствовали, но до серии он так и не дошел.

В 1963 году компания Chrysler получила 30 тысяч просьб предоставить автомобиль на время. Речь шла не о простой машине – компания сама разослала приглашения поучаствовать в испытаниях принципиально нового автомобиля. Это был Chrysler Turbine Car, первый автомобиль с газотурбинным двигателем, который можно назвать серийным. Разброс откликнувшихся по возрасту был от 12 до 83 лет. В конечном итоге отобрали 203 человека, это были автовладельцы, которые представляли различные регионы США, имели разный возраст и опыт владения автомобилями и использовали машины в разных условиях. Пятьдесят автомобилей испытывали больше года – каждому водителю машину выдавали на три месяца. Испытания закончились 28 января 1966 года. В серию новый двигатель не пошел, все автомобили были уничтожены – их просто сожгли. Как утверждало руководство Chrysler, компания не хотела, чтобы в специально разработанные и построенные итальянским ателье Ghia автомобили кто-то ставил другие двигатели. В музеях и у коллекционеров сохранилось девять Chrysler Turbine Car.

Газотурбинный двигатель представляет собой две крыльчатки: первая называется компрессор, вторая турбина. Они связаны общим валом. Между ними – камера сгорания, куда подают топливо. Компрессор нагнетает воздух, в котором сгорает топливо, и в итоге раскаленные газы создают огромное давление и вращают турбину. А она уже крутит компрессор, чтобы он продолжал подавать воздух для сгорания газов.

Преимущество газотурбинного двигателя – всеядность. Как утверждали в Chrysler, газотурбинный автомобиль можно заправлять хоть растительным маслом, хоть духами. Президент Мексики как-то раз заправил машину текилой – и она ездила!

Причин отказа от серийного производства Chrysler и не назвал. Скорее всего, сказался сразу комплекс причин, главными из которых были прожорливость двигателя и очень высокое содержание оксидов азота в отработавших газах. Эксперименты продолжались до конца семидесятых, но газотурбинные двигатели получили некоторое распространение только в военной технике и авиации.


Все вертится
Роторно-поршневой двигатель

Предыдущая фотография

Самым верным поклонником РПД оказалась японская Mazda, которая выпускала спортивную модель RX-8 до 2011 года и продавала ее до 2012-го.

NSU Ro 80 выпускали до 1977 года, но сделали сравнительно немного – 37 398 штук.

Следующая фотография

1 / 3

Самым верным поклонником РПД оказалась японская Mazda, которая выпускала спортивную модель RX-8 до 2011 года и продавала ее до 2012-го.

NSU Ro 80 выпускали до 1977 года, но сделали сравнительно немного – 37 398 штук.

Мотор, который теперь принято называть «двигателем Ванкеля», был представлен в январе 1960 года, а в 1964 году началось серийное производство первого серийного автомобиля с роторно-поршневым двигателем (РПД) – NSU Spider.

В РПД ротор в виде криволинейного треугольника вписан в «цилиндр», сечение которого называется «эпитрохоида». Ротор вращается не просто на валу, а обкатывается вокруг шестерни. Благодаря всей этой сложной геометрии грани ротора и стенки «цилиндра» формируют три камеры сгорания переменного размера, в которых последовательно происходят четыре такта: впуск, сжатие, рабочий ход и выпуск. В РПД нет клапанов – воздух и топливо поступают через окна сбоку, так же выводятся и отработавшие газы.

В 1967 году «Спайдер», выпущенный в количестве всего 2375 штук, заменила новая модель – первая специально спроектированная для РПД переднеприводная NSU Ro 80. Она получила титул «Автомобиль 1968 года» в Европе, но не благодаря роторному мотору, а скорее стильному дизайну и простору салона. Двигатель же в первое время потребовал больших расходов на гарантийные ремонты и подорвал репутацию модели. В итоге NSU в 1969 году была объединена с Audi. Зато сам двигатель привлек внимание всего автомобильного мира: лицензии на РПД купили GM, Citroen, Alfa Romeo, Porsche, Nissan, Mazda. ..

С РПД активно работали и в CCCР. Лицензию, правда, не покупали и обошлись своими силами. В 1980 году был выпущен ВАЗ-21018, и десяти конструкторам НАМИ разрешили купить этот автомобиль без очереди в обмен на отчеты об эксплуатации. Однако в основном машины с РПД использовали спецслужбы: благодаря высокой мощности эти обычные с виду «Жигули» и «Самары» могли с легкостью преследовать даже мощные иномарки.

Благодаря простой конструкции РПД – компактный, легкий и тихий двигатель. Поэтому его считали весьма перспективным. Однако уплотнения в местах контакта ротора с цилиндром, а также эксцентриковый механизм, на котором вращается ротор, работают с большой нагрузкой, сам двигатель склонен к перегреву, необходимо часто менять масло. К тому же у РПД довольно высокий расход топлива, и после нефтяного кризиса семидесятых это стало для него приговором.


Возьмите сразу блок
Стандартные лампы-фары

Предыдущая фотография

Lincoln Mark VII 1984-го модельного года стал первым за 44 года американским автомобилем со сменными лампами. А не фарами.

Следующая фотография

1 / 3

Lincoln Mark VII 1984-го модельного года стал первым за 44 года американским автомобилем со сменными лампами. А не фарами.

В 1936 году в США появились герметичные неразборные лампы-фары, объединявшие отражатель, рассеиватель и нити. Удобная конструкция стала популярной, а в 1940 году – и обязательной для всех американских автомобилей. В 1958 году у конструкторов появился выбор – ставить две фары диаметром семь дюймов (178 мм) или четыре фары диаметром 5? каждая (146 мм). Такие лампы-фары были двух видов: двухнитевые с дальним и ближним светом и однонитевые, только для дальнего света. В Европе на тотальную унификацию не пошли, так что дизайнеры получили возможность для создания разнообразия – именно благодаря этому в 1961 году появились прямоугольные фары. Но удержаться от подражания ведущей автомобильной державе мира было трудно. Так что лампы-фары ставили там на некоторые модели, более того, при экспорте автомобилей в США приходилось заменять фары и убирать аэродинамическую прозрачную защиту фар, что для автомобилей вроде Citroen DS становилось стилевой катастрофой.

Но в конце концов американцы все-таки устали от однообразия, и в 1975 году появились прямоугольные лампы для четырехфарного освещения размером 165х100 миллиметров, а затем и прямоугольные – 200х142 миллиметра. Однако действие стандарта не только не давало возможности разнообразить внешний вид автомобилей, но и закрывало путь развитию конструкции фар – например, применению поликарбоната для рассеивателей. В 1983 году требование об использовании стандартных лам-фар было отменено.


Даже не думай!
Спидометры, размеченные до 85 миль в час

Предыдущая фотография

Следующая фотография

1 / 3

Доктор Эммет Браун в знаменитом фильме «Назад в будущее» был просто вынужден поставить на DMC-12 цифровой спидометр – критическая скорость для перемещения во времени была 88 миль в час, а на продаваемых в США автомобилях в начале восьмидесятых спидометры заканчивались на 85 милях в час. Ограничение было введено национальным управлением по безопасности на автомагистралях NHTSA в сентябре 1979 года, и для этого были основания. В январе 1974 года в США был установлен общий предел скорости в 55 миль в час (89 км/ч) с целью экономии топлива, которое в это время стало дефицитом из-за нефтяного кризиса. Как это свойственно демократическим странам, федеральное правительство не запрещало устанавливать более высокие лимиты, но отказывало в финансировании тех дорог, где этот предел был выше. Но в 1979 году NHTSA решило, что раз нигде в стране нельзя ездить быстрее 55 миль в час, то и спидометры градуировать надо с учетом этого. Но оставили 30 миль в запасе, чтобы лихачи осознавали, насколько они нарушают правила.

Ограничение для спидометров было отменено уже в марте 1982 года, но производство автомобилей – процесс длительный, автопроизводители уже разместили заказы на 85-мильные спидометры, поэтому их ставили на машины в течение еще нескольких лет. Благо федеральное ограничение скорости в 55 миль в час дожило до 1987 года, когда на некоторых типах дорог лимит был повышен до 65 миль в час (105 км/ч), а полная свобода в определении пределов скорости была предоставлена штатам только в 1995 году.


Накинь ремешок
Автоматические ремни безопасности

Предыдущая фотография

Следующая фотография

1 / 2

Постепенно во всех штатах были приняты законы, обязывающие водителя и пассажиров использовать ремни. Исключение – Нью-Гемпшир. Законодатели объясняют эту «вольность» тем, что статистика ДТП тут вполне благополучная из-за невысоких скоростей. И несмотря на необязательность ремней, ими пристегиваются более 70 процентов водителей и пассажиров.

В 1973 году в США был предложен стандарт, предусматривавший блокировку зажигания, если водитель не пристегнулся. Однако это, во-первых, требовало усложнения конструкции автомобиля, и, во-вторых, публика была не готова к таким ограничениям свободы даже ради безопасности. Поэтому Конгресс это нововведение отменил, ограничившись сигнализацией о необходимости пристегнуться.

Автопроизводители решили этот вопрос по-своему. Они предложили ремни, которые пристегиваются автоматически. На Volkswagen Rabbit – под таким названием в США продавали Golf – 1975-го модельного года плечевой ремень крепился к раме двери, при ее открывании уезжал вперед, а при закрывании возвращался в район плеча водителя и переднего пассажира. Кроме того, был и поясной ремень, но его надо было пристегивать вручную.

Аналогичную конструкцию взяли на вооружение Volvo и японские производители – двигающиеся ремни можно увидеть на Subaru XT в фильме «Большой» 1988 года. А General Motors сделала трехточечные автоматические ремни, у которых и верхняя, и нижняя точки крепления располагались на двери.

Попытки обязать водителей и пассажиров пользоваться ремнями наталкивались на противодействие законодателей почти во всех штатах – дескать, народу не нравится. Тогда борцы за безопасность зашли с другой стороны: с 1990 года все новые автомобили должны были быть оборудованы либо подушкой для водителя, либо автоматическими ремнями. Чтобы водителю даже пальцем не пришлось шевелить, чтобы быть защищенным при ДТП – вот она, демократия! Подушки тогда стоили раз в восемь-десять дороже, чем ремни, поэтому понятно, что выбрали автомобильные компании.

А потом неумолимая статистика показала, что подушки без ремней значительно менее эффективны. И с 1995 года обязательной стала установка и ремней, и подушек. Естественно, ремни «с ручным управлением» стоили дешевле и не требовали обслуживания. В итоге автоматические ремни ушли в прошлое.


Отвори потихоньку калитку
«Исчезающие двери»

Предыдущая фотография

Следующая фотография

1 / 4

Сдвижные двери трудно назвать чем-то необычным – если мы говорим о фургонах или минивэнах. Но вот сделать легковую машину, в которой двери задвигаются внутрь кузова, удалось только двум компаниям.

Первой была американская Kaiser Frazer. Идея «исчезающих» в передних крыльях дверей пришла в голову дизайнеру Говарду Даррину и была им запатентована. А потому и модель, на которой эта идея была реализована, получила название Kaiser Darrin. Случилось это в 1952 году. Машина выпускалась два года, но построить и продать удалось лишь 435 экземпляров. Двери заедали, пластиковая крыша протекала, а сам автомобиль с 90-сильным мотором и ценой 3668 долларов в начале пятидесятых был слишком медленным для своей цены или слишком дорогим для своей скорости.

Немецкий родстер BMW Z1 с задвигающимися вниз дверями, несмотря на высокую цену в 88 тысяч дойчемарок, разошелся тиражом в восемь тысяч машин. Буква Z в индексе означала Zukunft, то есть «будущее». Машина стала первым проектом подразделения BMW Technik GmbH, созданного в 1985 году, которое занималось концепт-карами и перспективными разработками. Так что на Z1 отрабатывали множество новых решений: сварной стальной каркас с панелями из различных видов пластика, отработка аэродинамики не только верхней части, но и нижней – ровное днище и поперечно расположенный глушитель в форме антикрыла… Что-то потом пригодилось. Но только не опускающиеся вниз двери.


Дерни за веревочку
Система procon-ten

Предыдущая фотография

Следующая фотография

1 / 3

В поисках средства защиты пассажиров до появления пиротехнических преднатяжителей ремней Audi разработала систему Programmed Contraction-Tension. Тросики, соединенные с двигателем, при его смещении в случае фронтального столкновения оттягивали вперед рулевую колонку и подтягивали передние ремни безопасности. Система была разработана для Audi 100 (C3) и применялась также на Audi 80 (B3). Она была отмечена призом принца Майкла Кентского за безопасность движения. Это позволило Audi обходиться без довольно дорогостоящих в то время подушек безопасности. Но распространения система не получила, и с удешевлением преднатяжителей ремней, подушек и управляющей электроники procon-ten ушла в прошлое.


Будьте моим спутником
Автономная навигация

Предыдущая фотография

Следующая фотография

1 / 3

До появления спутниковой навигации водители обходились атласами и картами, и задачей человека была привязка автомобиля к месту на карте. Прибор под названием Iter Avto автоматизировал этот процесс простейшим образом: он представлял собой рулонную карту маршрута, которая проматывалась пропорционально скорости машины, для чего он был соединен со спидометром. General Motors в шестидесятые годы предлагала для определения положения автомобилей встраивать в дорожное полотно магниты, но реализация системы хотя бы на основных магистралях, разумеется, требовала слишком больших вложений. Позже предпринимались попытки определять положение автомобиля автономно: например, Toyota в 1980 году встраивала в модель Crown электронный компас. Первой навигационной системой, доступной всем желающим, стала в 1981-м Electro Gyro-Cator у Honda. Разработанная совместно c Alpine и компанией Stanley Electric система была основана на гироскопе, как в авиационных автопилотах. Полупрозрачная карта отображалась на шестидюймовом черно-белом дисплее, на который выводилась отметка о положении автомобиля и указания водителю. Эта опция стоила примерно четверть от цены автомобиля и поэтому была не очень популярной.

В системе Etak Navigator 1985 года карты хранились в электронном виде, на магнитофонных кассетах – и их можно было менять! Правда, для покрытия Лос-Анджелеса надо было четыре кассеты, так что использование системы было не очень простым. Бо?льшую емкость обеспечивал компакт-диск – в 1987 году Toyota Crown Royal Saloon стала первым серийным автомобилем с навигационной системой с цветным дисплеем. А в 1990-м Mazda Eunos Cosmo первым получил систему навигации, основанную на американской системе глобального позиционирования GPS – тогда еще Navstar. Автономные системы продолжали выпускать и в Японии, и в Европе, и в США – даже после того, как в 1995 году завершилось формирование группировки спутников GPS и в 1996 году Билл Клинтон приказал открыть доступ к ее сигналам не только военным. Правда, для гражданских точность сигнала была искусственно загрублена до 100 метров, так что наработки с гироскопами и компасами пригодились, чтобы уточнять положение автомобиля. В 2000 году точность для гражданских пользователей повысили до 20 метров, и автономные системы позиционирования стали практически не нужны.


Дайте два
Пара ДВС

В России в 1999 году фирма EL Motors построила по частному заказу купе с двумя силовыми агрегатами от мотоциклов Yamaha, каждый из которых приводил в движение одно из задних колес. В дизайне автомобиля использованы мотивы ЗАЗ-965. Он получил прозвище «Апельсин» за ярко оранжевый цвет.

Как сделать полный привод, если у вас есть автомобиль, у которого уже есть передний? Просто поставить сзади второй силовой агрегат. Примерно так рассуждали конструкторы Citroen, когда решили сделать полноприводную версию маленького 2CV. Сразу же решается вопрос и с мощностью, и с надежностью: если откажет один двигатель, второй позволит доехать до места. Подвеска у 2CV была одинаковая впереди и сзади, так что достаточно было просто развернуть второй двигатель. Управление было синхронизировано, и один из двигателей можно было отключить. Топливные баки разместили под передними сиденьями. Максимальная скорость на одном двигателе мощностью 13 л.с. составляла 65 км/ч, на двух – уже 105 км/ч. С декабря 1960 по 1967 год было выпущено 693 двухмоторных Citroen. Это единственный серийный легковой автомобиль с двумя двигателями. Но не первая и не последняя попытка использовать такую схему. В 1936 году Voisin показал модель V12 с двумя шестицилиндровыми двигателями, но не получил заказов. Джон Купер повторил идею французов на Mini Cooper Twin, но автомобиль оказался довольно капризным в управлении. В 1983 году по такой схеме были построены два Volkswagen Scirocco. AMG дооборудовала вторым двигателем сзади Mercedes-Benz A-Klasse, их сделали несколько штук.


Тут вы прокололись
Безвоздушные колеса

Предыдущая фотография

Следующая фотография

1 / 3

«Непневматическая шина» NPT сохраняла работоспособность, потеряв до 30 процентов протектора.

12 апреля 1917 года Ведомство по патентам и товарным знакам США зарегистрировало очередную заявку на изобретение. Его авторы, Чарли Юхринец и Джон Юхринец, предложили автомобильную шину новой конструкции. Пружинящим элементом в ней были внутренние витые пружины, словно лепестки ромашки, расходившиеся от ступицы к наружному ободу. Такой шине были не страшны проколы – а колесная резина тогда была очень ненадежна. Но шина на пружинах, видимо, оказалась еще менее надежной. К идее безвоздушных шин вернулись лет через сто, когда производители научились отливать из полимеров сложные конструкции. Заказчиками стали военные: менять пробитое колесо Humvee под огнем – то еще удовольствие. В 2002 году компания Resilient Technologies начала для Пентагона разработку, а в 2013-м совместно с Polaris запустила производство «непневматической шины» NPT. Принцип был тот же, что и сто лет назад, – пружинящие спицы между ступицей и внешним ободом, только на этот раз полимерные, сминаемые. Пионером технологической гонки стал и Michelin со своим Tweel, и Bridgestone с Bridgestone Air Free. Но все попытки оснастить безвоздушными шинами легковой автотранспорт пока безуспешны: эти шины по-прежнему не боятся проколов, но они недешевы, а главное, не умеют ездить быстро. Даже пионер технологии Michelin производит свои Tweel только для спецтехники, снабжая их маркировкой NHS (not high speed). На 2024 год намечен выход легковых Uptis, но, судя по видео, прошлогодние их испытания на Chevrolet Bolt EV тоже прошли на невысоких скоростях. Так что пока эти колеса в автомобильном мире не катят. Другое дело – автокары, сегвеи. Космическая колесная техника для NASA, наконец. Безвоздушное же пространство.


А гори оно все
Многотопливный двигатель

Предыдущая фотография

Следующая фотография

1 / 2

Еще в 1906 году Хессельман изобрел реверсивный механизм для судовых дизелей, адаптировав детище Рудольфа Дизеля ко всем этим морским «полный вперед», «полный назад». К слову, четвертый по счету такой двигатель приобрел Руаль Амундсен для своей антарктической экспедиции, его знаменитый «Фрам» стал первым полярным кораблем с дизельной, а не паровой машиной.

В 1925 году шведский инженер Йонас Хессельман разработал всеядный двигатель, умеющий потреблять любое углеводородное топливо – бензин, керосин, солярку, мазут, керосин, генераторный газ, низкосортное масло. Новый двигатель Хессельмана был своеобразным гибридом, компромиссом: рабочую смесь в камеры сгорания его цилиндров впрыскивал топливный насос высокого давления, как в дизеле, но степень сжатия была невысокой, поэтому воспламенялась смесь от свечи зажигания, как в бензиновом двигателе. Запускался двигатель обычно на бензине, а прогревшись, переключался на керосин или солярку. Топливных баков требовалось, соответственно, два. Более серьезный минус – солярка в цилиндрах сгорала не до конца, степень сжатия была рассчитана на сгорание бензина, так что дымили двигатели нещадно. Но владельцев шведских тяжелых грузовиков и автобусов – а в 1920–1930-х двигатели Хессельмана устанавливались на все: на Scania-Vabis, на Tidaholms Bruk, на Volvo – дым не смущал. Солярка была дешевле бензина, а двигатели Хессельмана были менее прожорливы, чем бензиновые, но еще и легче дизельных. А возможность заливать в бак грузовика все, что горит, была бесценна и в мирное время, и особенно, как вскоре выяснилось, в военное. Но вот парадокс: именно в войну эволюция дизельных двигателей пошла быстрее, они становились легче, компактнее. И если войну, фигурально выражаясь, двигатели Хессельмана выиграли, то конкуренцию проиграли. Последней от них отказалась Volvo, в 1947 году.


Не мытьем, так катанием
Встроенный умывальник

Предыдущая фотография

Следующая фотография

1 / 3

До 178 км/ч разгонял Horch 930S его 3,8-литровый 92-сильный V8. Показанный на Берлинском автосалоне 1939 года четырехдневный седан стал настоящим шоу-стоппером: футуристический «самолетный» экстерьер, распашные двери без центральной стойки, складные сиденья – новинка для того времени. Но апофеозом был встроенный умывальник – из правого переднего крыла аэродинамического (коэффициент лобового сопротивления – 0,43) кузова Horch 930S выдвигалась откидная раковина со смесителем. Двухсекционный бак вмещал 11 литров воды – не только холодной, но и горячей, через специальный змеевик она подогревалась выхлопными газами. До начала Второй мировой войны концерн Auto Union успел выпустить три экземпляра Horch 930S, еще семь машин через три года после конца войны были собраны из кузовных комплектов, сохранившихся на заводе в Цвиккау – уже советском. Почему идея встроенного рукомойника не получила продолжения в автопромном люксе, можно лишь гадать: технически-то устройство несложное. Но сегодня встроенный умывальник, а также душ и туалет – штатное оборудование разве что кемперов и туристических автобусов.


Поднимите мне веки
Складная оптика

Предыдущая фотография

Складной оптикой «заболели» даже мотоциклы – по одной такой модели выпустили Honda и Suzuki.

Следующая фотография

1 / 3

Складной оптикой «заболели» даже мотоциклы – по одной такой модели выпустили Honda и Suzuki.

«Американочки забираются в эти машины и сидят там целыми часами, не в силах выйти. В полном расстройстве чувств они нажимают кнопку, и фонари торжественно выползают из крыльев. Снова они касаются кнопки, и фонари прячутся в свои гнезда. И снова ничего не видно снаружи – голое сверкающее крыло». Это было описание Cord 810, и авторам «Одноэтажной Америки» Ильфу и Петрову повезло: они своими глазами увидели на Нью-Йоркском салоне 1935 года родоначальника автомобильной моды на складную оптику, продержавшейся 70 лет.

Складные фары были придуманы не для того, чтобы поражать «американочек», а для улучшения аэродинамики спортивных машин. Упомянутый Cord 810 разгонялся до 177 км/ч. Но широкое распространение эта автомобильная мода получила в пятидесятые. Одним из первых складные фары получил Chevrolet Corvette Stingray поколения C2. А в 1970-х начался настоящий бум: фары складывались у всех, от роскошных купе и суперкаров Ferrari и Lamborghini до массовых моделей Toyota, Honda… Помните в объявлениях: «Продается Mazda323, слепая»? Прятали переднюю оптику Porsche и BMW, Jaguar и Aston Martin – модному поветрию не поддался разве что Mercedes-Benz, если не считать концепта. В 1990-х складная оптика начала терять популярность – ужесточались требования безопасности, выступающие детали на капоте попали под запрет. В 2004-м были сняты с конвейера последние «прячущие глаза» автомобили, в Европе – один из «автомобилей Бонда» Lotus Esprit, в Новом Свете – Chevrolet Corvette модели C5.


Третий глаз
Центральная фара

Предыдущая фотография

Следующая фотография

1 / 2

В 1934 году посетители автосалона в Праге увидели необычный автомобиль. У Tatra 77 было три фары, одна располагалась в центре передка – радиаторной решетки автомобилю не полагалось, он был заднемоторным и с воздушным охлаждением. Центральная фара была поворотной, с тремя фиксированными положениями. Такую же схему световых приборов унаследовала и вышедшая через два года в серию легендарная «Татра 87». Средняя фара включалась кнопкой на ее приборной панели и служила дополнительным прожектором, опциональная поворотная гидравлика направляла ее свет вслед за поворотом рулевого колеса. В 1948 году в Северной Америке появился родственник «Татры»: автопромышленник Престон Такер выпустил свою первую и последнюю модель – Tucker 48. У «торпеды Такера», как ее еще называли, как и у Tatra, было три фары, и центральная так же «следила за дорогой», следуя повороту передних колес. Сегодня третья фара выглядела бы анахронизмом, современная головная оптика умеет «заглядывать за поворот».


Как работают 4 типа газотурбинных двигателей

Прямой эфир из кабины экипажа

Газотурбинные двигатели прошли долгий путь с 1903 года. Это был первый год, когда газовая турбина производила достаточную мощность, чтобы поддерживать свою работу. Дизайн был разработан норвежским изобретателем Эгидусом Эллингом, и он производил 11 лошадиных сил, что было огромным достижением в то время.

В наши дни газотурбинные двигатели бывают всех форм и размеров, и большинство из них производят много более 11 лошадиных сил. Вот 4 основных типа газотурбинных двигателей, а также плюсы и минусы каждого.

1) Турбореактивный двигатель

Википедия

Heinkel He 178, первый в мире турбореактивный самолет

Турбореактивные двигатели были первым из изобретенных типов газотурбинных двигателей. И хотя они выглядят совершенно иначе, чем поршневой двигатель в вашем автомобиле или самолете, они работают по той же теории: впуск , сжатие, мощность, выпуск .

Как работает турбореактивный двигатель?

Турбореактивные двигатели работают за счет пропускания воздуха через 5 основных секций двигателя:

Шаг 1: воздухозаборник
Воздухозаборник представляет собой трубу перед двигателем. Воздухозаборник может показаться простым, но он невероятно важен. Задача воздухозаборника — плавно направлять воздух на лопатки компрессора. На малых скоростях ему нужно минимизировать потери воздушного потока в двигатель, а на сверхзвуковых — замедлять воздушный поток ниже 1 Маха (воздух, поступающий в ТРД, должен быть дозвуковым, независимо от того, с какой скоростью летит самолет ).

Этап 2: Компрессор
Компрессор приводится в действие турбиной в задней части двигателя, и его работа заключается в сжатии поступающего воздуха, что значительно увеличивает давление воздуха. Компрессор представляет собой серию «вентиляторов», каждый из которых имеет лопасти все меньшего и меньшего размера. Когда воздух проходит через каждую ступень компрессора, он становится более сжатым.
Этап 3: Камера сгорания
Далее идет камера сгорания, где действительно начинается волшебство. Воздух высокого давления соединяется с топливом, и смесь воспламеняется. Когда топливовоздушная смесь сгорает, она проходит через двигатель к турбине. Турбореактивные двигатели работают на очень обедненной смеси, примерно 50 частей воздуха на 1 часть топлива (большинство поршневых двигателей работают в диапазоне от 6 к 1 до 18 к 1). Одна из основных причин, по которой турбины работают с таким обеднением, заключается в том, что для охлаждения турбореактивного двигателя необходим дополнительный поток воздуха.
Этап 4: Турбина
Турбина — это еще одна серия «вентиляторов», которые работают как ветряная мельница, поглощая энергию проходящего через нее воздуха с высокой скоростью. Лопатки турбины соединены с валом и вращают его, который также соединен с лопатками компрессора в передней части двигателя. «Круг жизни» турбореактивного двигателя почти завершен.

Этап 5: Выхлоп (также известный как «Я ухожу!»)
Топливно-воздушная смесь, сгоревшая на высокой скорости, выходит из двигателя через выхлопное сопло. Когда высокоскоростной воздух выходит из задней части двигателя, он создает тягу и толкает самолет (или то, к чему он прикреплен) вперед.

Турбореактивный двигатель на вынос:

  • Плюсы:
    • Относительно простая конструкция
    • Возможность очень высоких скоростей
    • Занимает мало места
  • Минусы:
    • Высокий расход топлива
    • Громко
    • Низкая производительность на малых скоростях

2) Турбовинтовой двигатель

Прямой эфир из кабины экипажа

King Air с турбовинтовыми двигателями

Следующие три типа газотурбинных двигателей представляют собой разновидности турбореактивных двигателей, и мы начнем с турбовинтовых. Турбовинтовой двигатель представляет собой турбореактивный двигатель, соединенный с воздушным винтом через систему зубчатых передач.

Как работает турбовинтовой двигатель?

Шаг 1 : Турбореактивный двигатель вращает вал, который соединен с коробкой передач.

Шаг 2 : Коробка передач замедляет вращение, и самая медленная передача соединяется с пропеллером

Шаг 3 : Пропеллер вращается в воздухе, создавая тягу точно так же, как ваша Cessna 172

Вынос турбовинтового двигателя:

  • Плюсы:
    • Очень экономичный
    • Наиболее эффективен на средней скорости 250-400 узлов
    • Наиболее эффективен на средних высотах 18 000–30 000 футов
  • Минусы:
    • Ограниченная скорость полета вперед
    • Системы зубчатых передач тяжелые и могут сломаться

3) Турбовентиляторный двигатель

Прямой эфир из кабины экипажа

Некоторые широкофюзеляжные турбовентиляторные двигатели могут развивать тягу более 100 000 фунтов

Турбовентиляторы сочетают в себе лучшее из обоих миров между турбореактивными и турбовинтовыми двигателями. И вы, вероятно, увидите эти двигатели, когда отправитесь в аэропорт на следующий рейс.

Как работает турбовентиляторный двигатель?

Турбовентиляторные двигатели работают путем прикрепления канального вентилятора к передней части турбореактивного двигателя. Вентилятор создает дополнительную тягу, способствует охлаждению двигателя и снижает уровень шума двигателя.

Шаг 1 : Входящий воздух разделяется на два отдельных потока. Один поток обтекает двигатель (перепускной воздух), а другой проходит через сердцевину двигателя.

Этап 2 : Байпасный воздух проходит вокруг двигателя и ускоряется канальным вентилятором, создавая дополнительную тягу.

Этап 3 : Воздух проходит через турбореактивный двигатель, продолжая создавать тягу.

Турбовентилятор на вынос:

  • Плюсы:
    • Экономичный
    • Тише турбореактивных двигателей
    • Они выглядят потрясающе
  • Минусы:
    • Тяжелее турбореактивных двигателей
    • Большая лобовая площадь, чем у турбореактивных двигателей
    • Неэффективен на очень больших высотах

USAF

ТРДД Pratt & Whitney F100 с форсажной камерой на F-16

4) Турбовальный двигатель

NASA

Вертолет Bell 206 с турбовальным двигателем

Турбовальные двигатели в основном используются на вертолетах. Самая большая разница между турбовальными и турбореактивными двигателями заключается в том, что турбовальные двигатели используют большую часть своей мощности для вращения турбины, а не для создания тяги в задней части двигателя.

Как работает турбовальный вал?

Турбовальные двигатели представляют собой турбореактивные двигатели с большим валом, соединенным с задней частью. А поскольку большинство этих двигателей используются на вертолетах, этот вал соединен с трансмиссией лопастей несущего винта.

Шаг 1 : Двигатель по большей части работает как турбореактивный.

Этап 2 : Приводной вал, прикрепленный к турбине, приводит в действие трансмиссию.

Этап 3 : Трансмиссия передает вращение от вала к лопасти ротора.

Шаг 4 : Вертолет, в основном неизвестными и магическими средствами, может летать по небу.

Вынос турбовального вала:

  • Плюсы:
    • Удельная мощность намного выше, чем у поршневых двигателей
    • Обычно меньше поршневых двигателей
  • Минусы:
    • Громко
    • Системы зубчатых передач, соединенные с валом, могут быть сложными и ломаться

4 типа двигателей, основанных на одной и той же базовой концепции

Газотурбинные двигатели прошли долгий путь развития за последние 100 лет. И хотя турбореактивные, турбовинтовые, турбовентиляторные и турбовальные двигатели имеют свои различия, они производят мощность практически одинаково: впуск, сжатие, мощность и выхлоп.


Станьте лучшим пилотом.
Подпишитесь, чтобы получать последние видео, статьи и викторины, которые помогут вам стать более умным и безопасным пилотом.

Зарегистрироваться >


  •  

    НАЗВАНИЕ

      • Тег
    • Автор
    • Дата

Это потрясающее видео двигателя General Electric J79 демонстрирует теорию, лежащую в основе форсажных форсунок и регулируемых выхлопных форсунок

14 сентября 2019 г. Военная авиация

Четыре скриншота из видеоролика, встроенного ниже, показывают J79 во время тестов на форсаже. (Изображение предоставлено AgentJayZ через Youtube).

Видео, подобные приведенному ниже, интересны по нескольким причинам. Они показывают грубую мощность реактивного двигателя, работающего при различных настройках дроссельной заслонки/тяги, дают приблизительное представление об оглушительном реве, создаваемом повторным нагревом (вы должны быть там, чтобы действительно понять, насколько сильным является звук) и, прежде всего, показывают почти завораживающий (по крайней мере, на мой взгляд) «танец» выхлопных сопел, перемещающихся в открытое и закрытое положения в зависимости от режима двигателя.

Это видео было снято несколько лет назад, поэтому оно существует уже некоторое время; еще одно из самых интересных — понять, как работают регулируемые выхлопные сопла.

В видео тестируется двигатель General Electric J79, осевой турбореактивный двигатель, разработанный в 50-х годах и используемый на нескольких типах истребителей и бомбардировщиков по всему миру. J79 был оснащен B-58 Hustler, F-104 Starfighter, F-4 Phantom II, A-5 Vigilante, IAI Kfir, а также сверхзвуковой крылатой ракетой SSM-N-9. Регул II. Это был довольно успешный двигатель: более 17 000 самолетов J79 было построено в США и по лицензии во многих других странах, эксплуатирующих самолеты с этим двигателем. Производство J79 продолжалось более 30 лет.

На видео видно несколько интересных деталей. Во-первых, вы можете видеть, как двигатель запускается, а затем тестируется при разных «положениях дроссельной заслонки»: по мере увеличения тяги сопла постепенно открываются, чтобы адаптировать выхлопную секцию и вместить обогащенные топливом повторно воспламененные газы. Если сопла не открывались после выбора форсажной камеры, высокое давление и температура могли привести к перегреву и выходу из строя лопаток турбины.

Двигатель J79 в разрезе (Изображение предоставлено GE через Wiki).

Согласно данным технического паспорта, максимальная тяга J79 составляла 11 905 фунтов силы (52,96 кН) всухую; 17 835 фунтов силы (79,33 кН) с форсажной камерой. AgentJayZ, который тестировал турбореактивный двигатель в видео выше, говорит, что расход топлива был около 35-40 галлонов в минуту на полной сухой мощности (132-151 литр в минуту), и 85-90 на форсаже (321-340 литров в минуту! ).

На отметке 04.40 вы также можете заметить большое белое облако в выхлопе: это туман несгоревшего топлива, вызванный неработающим зажиганием форсажной камеры.

Регулируемые выхлопные сопла регулируют противодавление и скорость (на основе эффекта Вентури, чем выше давление, тем ниже скорость и наоборот при дозвуковом потоке воздуха; при сверхзвуковом потоке происходит обратное).

Вот выдержка с сайта НАСА:

Большинство современных пассажирских и военных самолетов оснащены газотурбинными двигателями, которые также называют реактивными двигателями. Существует несколько различных типов газотурбинных двигателей, но все газотурбинные двигатели имеют некоторые общие детали. Все газотурбинные двигатели имеют 9Сопло 0017 для создания тяги, отвода выхлопных газов обратно в набегающий поток и установки массового расхода через двигатель. Сопло расположено ниже по потоку от силовой турбины.

Сопло — относительно простое устройство, представляющее собой трубку особой формы, по которой проходят горячие газы. Однако математика, описывающая работу сопла, требует тщательного обдумывания. Как показано выше, сопла бывают разных форм и размеров в зависимости от предназначения самолета. Простые турбореактивные и турбовинтовые двигатели часто имеют фиксированную геометрию сужающееся сопло . В турбовентиляторных двигателях часто используется кольцевое сопло . Основной поток выходит из центрального сопла, а вентиляторный поток выходит из кольцевого сопла. Смешение двух потоков обеспечивает некоторое увеличение тяги, и эти сопла также имеют тенденцию работать тише, чем сужающиеся сопла.

Форсажные ТРД и ТРДД требуют изменяемой геометрии сужающееся-расширяющееся – CD сопло [как то, что на видео – Авт.]. В этом сопле поток сначала сходится к минимальной площади или 9Горловина 0017, затем расширяется через расширяющуюся секцию к выходу справа. Поток дозвуковой до горловины, но сверхзвуковой после горловины. Из-за изменяемой геометрии эти сопла тяжелее, чем сопла с фиксированной геометрией, но изменяемая геометрия обеспечивает эффективную работу двигателя в более широком диапазоне расхода воздуха, чем простое сопло с фиксированной геометрией.

Следовательно, вообще говоря:

  • сопла открыты в состоянии покоя, при стоянке самолета на парковочном месте
  • при рулении самолета на земле на холостом ходу диаметр сечения уменьшается (сопла закрываются)
  • при выборе форсажной камеры форсунки открываются
  • в полете положение сопла остается на минимальном диаметре до тех пор, пока не будет выбрана форсажная камера

Вернувшись к J79, я имел возможность испытать эффект «пинка под зад» от двигателя F-104, взлетающего еще в 2000 году. Ускорение, которое форсаж давал Starfighter при взлете, было впечатляющим. Через летный шлем был слышен шум двигателя в кабине… После взлета, когда пилот, сидящий на переднем сиденье, отключил форсаж, самолет отреагировал резким снижением скорости и шумом двигателя, и первое, что я подумал, это то, что мы столкнулись с остановкой двигателя, и мне пришлось бы катапультироваться! Излишне говорить, что J79работал нормально, но я не привык и не был готов к разнице в тяге!

TF-104 (с Автором на заднем сиденье) взлетает на полном форсаже с авиабазы ​​Гроссето 27 ноября 2000 г. , с их длинным пламенем, светящимся в темноте.

F-104 взлетает ночью. Отчетливо видно пламя форсажной камеры двигателя J79. (Изображение предоставлено Aeronautica Militare).

 

Веб-сайт Facebook Twitter LinkedIn instagram

Дэвид Ченчотти — журналист из Рима, Италия. Он является основателем и редактором журнала The Aviationist, одного из самых известных и читаемых в мире блогов о военной авиации. С 1996 года он пишет статьи для крупных мировых журналов, в том числе Air Forces Monthly, Combat Aircraft и многих других, посвященных авиации, обороне, войне, промышленности, разведке, преступности и кибервойне. Он делал репортажи из США, Европы, Австралии и Сирии и летал на нескольких боевых самолетах разных ВВС. Он бывший 2-й лейтенант итальянских ВВС, частный пилот и выпускник компьютерной инженерии. Он написал пять книг и участвовал во многих других.

Связанные статьи

Как работают авиационные двигатели?

Назад к ресурсам

Современные самолеты приводятся в движение газотурбинными двигателями, которые пропускают воздух через ряд стадий, где он сжимается, воспламеняется и выбрасывается. Этот процесс создает выхлоп высокого давления, который используется для приведения в движение вращающихся частей двигателя и создания тяги.

Опубликовано: 30 августа 2017 г.
Автор: ehoffman

Работает на Air

Airbus A380 — самый большой в мире пассажирский самолет

Самолету требуется огромная мощность двигателя для взлета и полета. Полностью загруженный Airbus A380 — самый большой пассажирский самолет в эксплуатации — может весить более 500 тонн на взлете, для чего требуется четыре массивных двигателя, обеспечивающих 300 000 фунтов тяги.
Двигатели должны разгонять самолет достаточно быстро, чтобы создать достаточную подъемную силу для преодоления силы тяжести. Но в отличие от наземных транспортных средств, которые толкают землю с помощью приводных колес, самолеты создают тягу с помощью винтов или двигателей, которые толкают воздух.
Газотурбинные двигатели заполнены аэродинамическими профилями или «лопастями» различных размеров, прикрепленными к вращающейся оси. Лопасти перемещают воздух через различные ступени двигателя, сжимая и расширяя газ, создавая тягу, которая толкает самолет вперед.

Как выглядит газотурбинный двигатель?

Ниже приведена схема типичного газотурбинного двигателя. Воздухозаборник слева часто сопровождается большим вентилятором для увеличения всасывания. Затем воздух сжимается до меньшего объема перед тем, как смешаться с топливом в камере сгорания. Смесь воспламеняется искрой или пламенем, и горячий газ проходит через турбину, которая вращается для питания компрессора и вентилятора. Затем выхлоп высокого давления выходит из задней части двигателя, создавая тягу и толкая самолет вперед. Ступени газовой турбины более подробно описаны ниже.

Схема газотурбинного двигателя

Ступени газотурбинного реактивного двигателя

Большой впускной вентилятор

Вентилятор:  Вентилятор расположен в передней части двигателя и является основным воздухозаборником. Большие вращающиеся лопасти всасывают огромное количество воздуха, ускоряя газ и разделяя его на два отдельных потока. Часть воздуха направляется в заднюю часть двигателя для создания тяги, а остальная часть направляется в ядро ​​​​двигателя, где поступает на следующую ступень.
Компрессор:  Компрессор сжимает воздух, всасываемый лопастями вентилятора, сжимая его до меньшего объема и повышая давление. Секция компрессора имеет несколько рядов лопастей, которые нагнетают воздух во все более мелкие каналы. Сжатие воздуха увеличивает потенциальную энергию и концентрирует молекулы кислорода для более эффективного сгорания на следующем этапе.
Камера сгорания:  Камера сгорания подает топливо в сжатый воздух и воспламеняет смесь, создавая расширяющийся газ под высоким давлением. Это самая горячая часть двигателя, где энергия высвобождается при сгорании топлива, а температура может достигать 2000 градусов по Фаренгейту. Камера сгорания снабжена форсунками для впрыска топлива и воспламенителем, чтобы вызвать реакцию. После воспламенения постоянный поток топлива обеспечивает поддержание горения, а расширяющийся газ направляется вниз по потоку в секцию турбины.

Этот вид внутри реактивного двигателя показывает секции компрессора, камеры сгорания и турбины.

Турбина: Секция турбины представляет собой еще один набор вращающихся лопастей, которые приводятся в движение воздухом под высоким давлением, выходящим из камеры сгорания. Лопасти турбины ловят быстрый воздушный поток и вращаются, приводя в движение вращающийся вал, который вращает вентилятор и компрессор в передней части двигателя. Турбина по существу питает остальную часть двигателя, используя энергию камеры сгорания для поддержания постоянного впуска и сжатия воздуха. Воздух, проходящий через турбину, теряет энергию на вращающиеся лопасти, но то, что остается, перемещается в последнюю ступень выхлопа двигателя, где он выбрасывается для создания тяги.

Истребитель с включенным форсажем

Сопло: Сопло представляет собой конусообразный канал в задней части двигателя. Здесь воздушный поток от ядра двигателя и перепускаемый воздух из секции вентилятора выбрасываются для создания тяги. Сопло двигателя обычно сужается для ускорения выходящего газа, а воздух, выходящий из сопла, воздействует на двигатель, толкая самолет вперед.
В некоторых двигателях используется форсажная камера для создания дополнительной тяги. Форсажная камера впрыскивает больше топлива и воспламеняет смесь после того, как она прошла через турбину. Этот процесс значительно увеличивает скорость воздуха, выходящего из сопла, но потребляет избыточное топливо и используется только в течение коротких периодов времени на специализированных военных самолетах.

Как работает реактивный двигатель – краткое видео

Вот забавное видео, созданное CFM International, в котором анимированные частицы воздуха прослеживаются на каждой ступени турбовентиляторного двигателя с большой степенью двухконтурности.

Улучшение аэродинамического профиля

Один реактивный двигатель может иметь сотни лопастей в секциях вентилятора, компрессора и турбины. Эти лопасти различаются по размеру, форме и составу материала, но все они выполняют важные функции в работе двигателя. Учитывая экстремальные силы и температуры, присутствующие в газотурбинном двигателе, методы улучшения качества металла, такие как лазерная наплавка, имеют жизненно важное значение для безопасности и производительности двигателя и его компонентов.

Лопасти вентилятора бомбардировщика B-1 обработаны лазером для обеспечения устойчивости к ППП

Устойчивость к ППП: Повреждение посторонними предметами (ППП) представляет серьезную опасность для авиационных двигателей. Мощное всасывание, создаваемое вентилятором и компрессором, может затягивать твердые предметы, такие как куски льда или обломки взлетно-посадочной полосы, потенциально повреждая компоненты двигателя. Лазерная наплавка обеспечивает непревзойденную устойчивость к FOD и, как было показано, значительно предотвращает растрескивание и разрушение, связанные с FOD, в титановых лопастях вентилятора. Лазерная наплавка применялась более 20 лет для защиты важнейших компонентов двигателя бомбардировщика B-1.
Предотвращение усталостных трещин: Усталостное растрескивание является еще одной серьезной опасностью для лопаток авиационных двигателей. Поскольку компоненты вращаются с высокой скоростью, каждое лезвие испытывает растягивающее напряжение, которое повторяется в течение миллионов циклов. Если в металле развивается трещина, даже в микроскопическом масштабе, повторяющееся нагружение каждого цикла может постепенно расширять трещину, пока она не станет настолько большой, что лезвие сломается. Лазерная наплавка часто применяется к лопастям вентиляторов, компрессоров и турбин в местах, подверженных растрескиванию и усталости. Глубокие сжимающие остаточные напряжения, создаваемые лазерной наклепом, препятствуют зарождению и распространению трещин, продлевая срок службы лопаток и предотвращая неожиданные поломки.
На следующей неделе мы обсудим различные типы авиационных двигателей: от турбовентиляторных и турбовинтовых до прямоточных и ГПВРД.
Подпишитесь на нас в LinkedIn, чтобы не пропустить ни одной статьи или блога.
Свяжитесь с LSPT, чтобы узнать больше о лазерной обработке компонентов газотурбинного двигателя.

Назад к ресурсам

Хотите увидеть больше?

Расскажите нам о своем применении, материале или механизме отказа, и один из наших экспертов свяжется с вами. Наша обширная библиотека исследований и многолетний опыт дают нам уникальное преимущество в применении анализа конечных элементов, чтобы помочь диагностировать наилучшее приложение для вашей ситуации.

Контактная форма

Газовая турбина с одним валом, газовая турбина с двумя валами и газовая турбина с несколькими золотниками. Обсуждение трубопроводов

Основные принципы работы газовой турбины можно увидеть в приведенном выше видео. Газовые турбины поставляются с различным расположением вала в зависимости от области применения. В соответствии с этим газовую турбину можно разделить на одновальную, двухвальную или многовальную.

Одновальная газовая турбина – выделенная желтым цветом часть находится на одном валу

В газовых турбинах с одним валом турбина, компрессор и приводная нагрузка находятся на одном общем валу. Горячий газ из камеры сгорания приводит в действие турбину, турбина, в свою очередь, приводит в действие компрессор, используя часть энергии, а оставшаяся энергия используется для работы нагрузки (генератора, компрессора, насосов и т. д.). На практике около 80% мощности, развиваемой в турбине за счет сгорания, необходимо для привода компрессора, и только около 20% «полезной нагрузки» остается для привода нагрузки. Поскольку компрессор и турбина вращаются на одном валу, они работают с одинаковой скоростью. В одновальной газовой турбине силовая турбина обычно связана с ведомой нагрузкой (генератором или компрессором) через редуктор. Таким образом, компрессор и силовая турбина работают с фиксированной скоростью, которая представляет собой произведение скорости генератора на передаточное число.

Двухвальная газовая турбина — часть, выделенная желтым цветом, находится на 1-м валу, а выделенная синим — на 2-м валу.

Двухвальные газовые турбины имеют два номера турбины. Одна из них — турбина высокого давления (высокого давления), а другая — турбина низкого давления (турбина низкого давления или силовая турбина). Горячий газ из камеры сгорания приводит в действие турбины высокого и низкого давления. Турбина высокого давления приводит в движение только компрессор, так как они находятся на одном валу. Турбина низкого давления работает на втором валу и приводит в движение нагрузку, обычно со скоростью, отличной от скорости компрессора/турбины высокого давления. В двухвальной турбине компрессор и силовая турбина могут работать и работают с разными скоростями. Силовая турбина связана с нагрузкой и работает с регулируемой скоростью, но скорость компрессора зависит от нагрузки. При небольшой нагрузке он будет работать на холостом ходу, но по мере увеличения нагрузки он увеличивает свою скорость до полной нагрузки, когда обычно он будет работать намного быстрее, чем силовая турбина. Эта функция значительно улучшает экономию топлива и продлевает срок службы газовой турбины.

Ниже выделен отрывок из книги «HIH Saravanamutto, H. Cohen, GFC Rogers, 2013,  Теория газовых турбин , Пирсон». соотношение. Для сжатия в газовой турбине в основном используется осевой компрессор. При полной мощности плотность воздуха на заднем конце осевого компрессора намного выше, чем на входе. Лопасти ротора компрессора и размеры компрессора в настоящее время разработаны в соответствии с этим потоком и плотностью. Однако, когда компрессор работает со скоростью ниже расчетной, плотность воздуха сзади слишком низкая (не выше расчетной). Это приводит к чрезмерным скоростям и нарушению потока, что может вызвать сильную аэродинамическую вибрацию и изменение направления потока. Это состояние может существовать при малой мощности или во время пуска, вызывая остановку или перегрев газовой турбины. Это особенно серьезно при попытке получить соотношение давлений 8:1 в одном компрессоре.

Одним из способов решения этой проблемы является разделение компрессора на одну или несколько секций. В этом контексте мы имеем в виду механическое разделение, позволяющее каждой секции работать с разными скоростями вращения. Компрессор низкого давления приводится в действие турбиной низкого давления, а компрессор высокого давления — турбиной высокого давления. Мощность может отбираться либо от вала низкого давления, либо от отдельной силовой турбины. Показанная ниже конфигурация обычно называется многовальным или двухконтурным двигателем.

Газовая турбина с несколькими золотниками

Подводя итог вышеизложенному, можно сказать, что многовальные двигатели имеют более двух валов. Он имеет две секции компрессора, компрессор высокого и низкого давления. Есть также две турбины, турбина высокого и низкого давления. Компрессор низкого давления приводится в движение турбиной низкого давления на валу, который вращается концентрически внутри вала, используемого турбиной высокого давления для привода компрессора высокого давления. Эти два вала работают с разной скоростью. Энергия, оставшаяся в газе после этого процесса, используется для привода силовой турбины (на третьем, отдельном валу) или вал низкого давления используется как выходной вал.

Схема с двумя золотниками была в первую очередь разработана для авиационных двигателей, но есть много примеров производных от них мощности на валу. Текущие примеры включают SGT A35 (Industrial RB211) и GE LM 1600.

В одновальных двигателях стартер должен вращать газовый компрессор, турбину и редуктор. Но в случае двухвального двигателя силовая турбина, редуктор неподвижны до тех пор, пока газогенератор не достигнет примерной частоты вращения холостого хода. Таким образом, пусковой двигатель в случае двухвального двигателя должен приводить в действие только газовую турбину, что снижает требуемый общий пусковой крутящий момент по сравнению с газовой турбиной с одним валом.

В одновальных турбинах регулятор регулирует скорость, регулируя газовый регулирующий клапан или клапан жидкого топлива. В двухвальных ГТУ сам регулятор приводится от вала силовой турбины, но регулирует подачу топлива в газогенератор. Он работает с такой скоростью, чтобы подавать достаточно газа на силовую турбину, чтобы поддерживать ее правильную скорость. Таким образом, при увеличении нагрузки газогенератор разгоняется, но силовая турбина остается на постоянной скорости.

В случае электрических генераторов скорость нагрузки в основном остается постоянной. В таких случаях, когда газовая турбина должна приводить в действие генератор, вырабатывающий электроэнергию, часто указывается машина с одним валом, поскольку она может эффективно работать при постоянной скорости. Гибкость работы, т. е. скорость, с которой машина может приспосабливаться к изменениям нагрузки и скорости вращения, в данном случае не имеет значения.

В когенерационной установке или электростанции с комбинированным циклом одновальная газовая турбина имеет небольшой недостаток по сравнению с двухвальным двигателем. Это связано с тем, что при снижении нагрузки генератора постоянный расход воздуха и мощность компрессора в блоке с одним валом приводят к большему снижению температуры выхлопных газов. Это, в свою очередь, требует сжигания дополнительного топлива в котле-утилизаторе. Если бы это была двухвальная газовая турбина, сжигание лишнего топлива было бы ненужным, поскольку она может поддерживать оптимальную скорость для газогенератора даже при уменьшенной нагрузке.

Компрессор одновального двигателя вынужден вращаться со скоростью, кратной скорости нагрузки, фиксированной передаточным числом трансмиссии, так что снижение скорости нагрузки подразумевает снижение скорости компрессора. Это приводит к снижению массового расхода, а следовательно, мощности и крутящего момента. Но по причине, указанной в предыдущем абзаце, для двухвального двигателя даже при снижении нагрузки компрессор поддерживает постоянную скорость. Для фиксированных условий работы газогенератора снижение выходной скорости приводит к увеличению крутящего момента для двухвальных двигателей.

Двигатели с двумя валами, используемые для привода генератора, свободная силовая турбина может быть рассчитана на работу со скоростью генератора без редуктора.

В случае механических приводов, таких как компрессоры и насосы, нагрузка не всегда постоянна. Ехать нужно с разной скоростью. В тех случаях, когда важна гибкость работы, часто используется двухвальная конфигурация. Конфигурация с двумя валами обеспечивает большую гибкость в отношении скорости и мощности, чем система с одним валом, поскольку силовая турбина может работать с независимой скоростью. В этом типе силовая турбина может быть спроектирована для работы с той же скоростью, что и приводимое оборудование, что потенциально устраняет необходимость в редукторе и его потери, которые обычно составляют 2–4%.

Одновальная турбина не может обеспечить высокий крутящий момент, необходимый для запуска большого насоса или компрессора при полном давлении. Однако установка электродвигателя с частотно-регулируемым приводом (VSD) для облегчения пуска может позволить использовать такую ​​газовую турбину в поезде с большим насосом или компрессором. Преимущество двухвальной газовой турбины, как обсуждалось ранее, состоит в том, что требуемый крутящий момент стартера будет сравнительно меньше.

Каталожные номера:

«HIH Saravanamutto, H. Cohen, GFC Rogers, 2013, Теория газовых турбин , Pearson»

https://www.turbomachinerymag.com/view/choosing-gas-turbines-single-vs-two-shaft

Что такое двухтопливный двигатель и его преимущества для нефтяной и газовой промышленности?

Отдел новостей Cummins: Образование и интеллектуальное лидерство

Айтек Юксель, руководитель отдела контент-маркетинга, Power Systems

Каменный век не закончился, потому что в мире закончились камни, и нефтяной век не закончится, потому что у нас закончилась нефть 1 . Вместо этого нефтяной век закончится, когда мы (сообщества, компании и правительства) ускорим переход энергии к нашей конечной цели: 100% возобновляемой энергии.

В этом путешествии по переходу к энергетике есть гигантские шаги, которые мы все отмечаем, например, более широкое использование зеленого водорода в железнодорожных приложениях. Есть также постепенные шаги — те, которые ведут в правильном направлении, те, которые бросают вызов статус-кво, и те, которые приближают нас к нашей конечной цели.

Использование двухтопливных двигателей является одним из этих дополнительных шагов и правильным немедленным следующим шагом для нефтегазовой отрасли, направленным на снижение воздействия на окружающую среду и улучшение финансовых показателей. На этом пути отрасль уже использует технологии, начиная от микросетей и заканчивая двигателями со сверхнизким уровнем выбросов, и двухтопливные двигатели являются правильным дополнением к этому портфолио.

Технология двухтопливных двигателей зарекомендовала себя на протяжении многих лет при бурении и обслуживании скважин. Учитывая повышенный интерес к этим двухтопливным решениям, в этой статье описывается, что такое двухтопливные двигатели и их преимущества в нефтегазовой отрасли.

Что такое двухтопливный двигатель и как он работает?

Двигатели, которые могут работать на смеси двух различных видов топлива, называются двухтопливными двигателями. Часто дизельное топливо и природный газ используются вместе в двухтопливных двигателях. Часто двухтопливные двигатели, работающие на смеси дизельного топлива и природного газа, также могут работать на дизельном топливе, только если природный газ временно недоступен.

Помимо природного газа и дизельного топлива, некоторые двухтопливные двигатели могут также использовать различные смеси биодизеля, свалочного газа, биогаза и других видов топлива.

Все ли двухтопливные двигатели одинаковы?

Нет; различия между двигателями на дуэльном топливе выходят далеко за рамки « tomayto» и « tomahto» .

Хотя принципы работы двухтопливных двигателей одинаковы, для двухтопливных двигателей характерны значительные различия в совокупной стоимости владения (TCO) и времени безотказной работы. Такие факторы, как скорость замещения природного газа, качество природного газа, производимые выбросы и надежность оборудования, могут влиять на эффективность работы.

Коэффициент замещения — это ключевое слово, связанное с двухтопливными двигателями. Коэффициент замещения – это доля энергии топлива, обеспечиваемая природным газом. При сравнении двухтопливных двигателей необходимо учитывать два важных момента, касающихся коэффициентов замены:

  1. Коэффициент нагрузки: Важно сравнивать коэффициенты замены различных двигателей при одном и том же коэффициенте нагрузки, при котором ваши двигатели обычно работают. Строгое сравнение «максимальных» коэффициентов замены различных двигателей может ввести вас в заблуждение и помешать вам максимально использовать преимущества двухтопливных двигателей.
  2. Расход дизельного топлива: Рассмотрите оценку расхода дизельного топлива двигателями при сравнении коэффициентов замещения. Если двигатель обеспечивает лучшую экономию дизельного топлива, то этот двигатель начинает сравнение степени замещения с важным преимуществом.

Узнайте больше о том, как работают двухтопливные двигатели.

Преимущества двухтопливных двигателей в нефтяной и газовой промышленности

В нефтяной и газовой промышленности при бурении и обслуживании скважин часто можно увидеть двухтопливные двигатели, приводящие в действие оборудование. Это связано с финансовыми и экологическими преимуществами, которые подрядчики по бурению и обслуживанию скважин получают от двухтопливных двигателей. Давайте рассмотрим эти преимущества двухтопливных двигателей в нефтяной и газовой промышленности.

Двигатели, работающие на двух видах топлива, снижают воздействие нефтегазовой отрасли на окружающую среду

Природный газ часто называют «мостом к возобновляемому будущему» на рынках производства электроэнергии. Фактически, 40% электроэнергии, вырабатываемой коммунальными предприятиями в США, производится из природного газа. Остальное равномерно распределяется между углем, атомной энергетикой и возобновляемыми источниками энергии.

Экологические соображения являются ключевой причиной, по которой многие предприятия, в том числе операторы бурения и обслуживания скважин, предпочитают природный газ другим ископаемым видам топлива, — сказал Патрисио Эскобар, генеральный менеджер сегмента рынка нефти и газа Cummins Inc. природный газ имеет несколько важных экологических и эксплуатационных преимуществ».

Вот три из этих экологических соображений.

  • Уменьшенная переработка и транспортировка дизельного топлива: Дизельное топливо проходит долгий путь, чтобы добраться от устья скважины до вашего топливного бака. Используя доступный на месте газ в ваших двухтопливных двигателях, вы также уменьшаете потребность в этих операциях по переработке и доставке дизельного топлива на ваш объект. Это, в свою очередь, снижает связанное с этим воздействие на окружающую среду при транспортировке и переработке.
  • Сокращение сжигания в факелах: Еще одним важным экологическим преимуществом, достигаемым за счет использования природного газа на месте, является сокращение сжигания в факелах. Избыток природного газа, сжигаемого в факелах, можно повторно использовать для питания двухтопливных двигателей на буровой площадке.
  • Меньше оборудования, подлежащего утилизации и отправке на свалки: Двухтопливный комплект вместо новых двухтопливных двигателей также позволяет увеличить срок службы существующих двигателей. Благодаря решению, которое превращает существующий дизельный двигатель в двухтопливный, вы избегаете утилизации старых двигателей. Это приводит к тому, что меньше оборудования отправляется на слом, а значит, меньше оборудования отправляется на свалки.

Двухтопливные двигатели обеспечивают финансовую экономию за счет снижения расхода дизельного топлива

Стоимость топлива является одной из основных статей расходов при бурении и обслуживании скважин. Двухтопливные двигатели обеспечивают финансовую экономию в виде снижения эксплуатационных расходов (OpEx).

Вот как сокращаются операционные расходы.

  • Замена дизельного топлива на природный газ: Как упоминалось ранее, дизельное топливо проходит более длительный путь, чтобы достичь двигателей на буровой площадке. Этот путь включает в себя добычу нефти, транспортировку нефти, производство дизельного топлива на нефтеперерабатывающем заводе, хранение, транспортировку и доставку к автонасосу. Все эти шаги на пути к дизельному топливу сопряжены с дополнительными расходами. Между тем, природный газ, добываемый на устье скважины, может быть переработан на месте и доставлен к двигателям. Использование имеющегося природного газа вместо дизельного топлива позволяет подрядчикам по бурению и обслуживанию скважин экономить средства.

Двигатели, работающие на двух видах топлива, работают с характеристиками, подобными дизельным

Исторически сложилось так, что одной из основных причин, по которой дизельные двигатели были предпочтительным выбором для нефтегазовой отрасли, была их стабильная производительность. Дизельные двигатели известны своей долговечностью, а дизельное топливо обеспечивает очень высокую удельную мощность. Они все еще очень точны. Между тем, двигатели, работающие на природном газе, тоже изменились за эти годы. Давайте посмотрим на характеристики двигателя с трех точек зрения:

  • Удельная мощность: Удельная мощность — выходная мощность двигателя на единицу объема двигателя. Например, для двигателей большого рабочего объема вы часто увидите, что более крупные двигатели, работающие на природном газе, обеспечивают выходную мощность, сравнимую с меньшими дизельными двигателями. Другими словами, дизельные двигатели имеют более высокую удельную мощность, чем двигатели, работающие только на природном газе. Между тем, есть также дизельные двигатели, приспособленные для работы на двух видах топлива. Это в сочетании с электронным управлением внутри двигателя позволяет двухтопливному двигателю иметь плотность мощности, подобную дизельной, при работе в двухтопливной модели.
  • Переходная характеристика: Переходная характеристика — это способность двигателя реагировать на изменяющиеся потребности в мощности при эксплуатации. Для многих применений в нефтегазовой отрасли требуются переходные характеристики, с которыми двигатели, работающие на 100 % природном газе, часто с трудом справляются. Между тем, выбранные двухтопливные двигатели могут обеспечить сравнимые переходные характеристики с их дизельными альтернативами.
  • Оптимизированный рабочий диапазон: Двигатели часто работают в стандартном рабочем цикле в зависимости от применения, в котором они используются. Применение новой технологии, такой как двойное топливо, иногда может потребовать изменения этой схемы работы для достижения максимальной экономии топлива. Эта проблема решается, когда двухтопливный двигатель оптимизируется для обеспечения максимальной степени замещения (доли энергии топлива, обеспечиваемой природным газом) в идеальном рабочем диапазоне, необходимом для нефтегазовых приложений.

Если у вас уже есть двигатели, готовые к модернизации, двухтопливные комплекты сэкономят вам деньги.

Многие нефтегазовые предприятия уже используют двигатели, готовые к модернизации с использованием двухтопливных комплектов. Это отличная отправная точка, потому что теперь вы можете сэкономить деньги и помочь окружающей среде, выбрав двухтопливный комплект вместо нового двухтопливного двигателя.

  • Финансовые преимущества: Двухтопливный комплект стоит меньше, чем покупка нового двигателя, и требует минимальных изменений в существующем двигателе, что снижает затраты на интеграцию оборудования. Это снижает общий капитал, необходимый для модернизации вашего парка и достижения целей в области эксплуатации и устойчивого развития.

Хотите узнать больше о нефтегазовых перспективах? Вам также может понравиться: 

  • Буровые подушки с более низкими эксплуатационными расходами, уменьшенным углеродным следом и повышенной безопасностью

  • Сокращение выбросов парниковых газов двигателей в нефтегазовом секторе для повышения устойчивости

Чтобы узнать больше о решениях для нефтегазовой энергетики, посетите нашу веб-страницу.


Ссылки:
1 The Economist (24, 19 июля)99). Топливные элементы встречаются с большим бизнесом [Статья]. Получено с https://www. economist.com/

Теги

Нефть и газ

Получить вверх по течению

Подпишитесь, чтобы получать отраслевые новости, анонсы продуктов, информацию о технологиях и многое другое.

Адрес электронной почты

Айтек Юксель — руководитель отдела контент-маркетинга компании Cummins Inc., специализирующийся на рынках энергосистем. Айтек присоединился к компании в 2008 году. С тех пор он работал на нескольких маркетинговых должностях и теперь делится с вами опытом работы на наших ключевых рынках, от промышленных до жилых. Айтек живет в Миннеаполисе, штат Миннесота, с женой и двумя детьми.

Отдел новостей Cummins: Образование и интеллектуальное лидерство

Пунит Сингх Джавар, генеральный директор отдела глобального природного газа

Природный газ — отличное альтернативное топливо для экологически чистых автомобилей. Его преимущества часто рекламируются с точки зрения владельцев коммерческого флота, которые получают значительную экономию средств, или с более широкой экологической точки зрения. Но как насчет взглядов водителя? Прочтите, чтобы узнать о преимуществах эксплуатации двигателей, работающих на природном газе, для водителей.

Двигатели, работающие на природном газе, работают чище и тише

Когда мы говорим об экологически чистых автомобилях, мы обычно имеем в виду автомобили с низким уровнем выбросов. Автомобили, работающие на природном газе, безусловно, сокращают выбросы вашего автопарка. Они производят гораздо меньше NOx и твердых частиц, чем автомобили с дизельным двигателем. Выбросы современных автомобилей, работающих на природном газе, на 90% чище, чем действующие стандарты EPA.

Транспортные средства, работающие на природном газе, также чище в том смысле, что они никогда не создадут беспорядка при утечке или разливе топлива. Природный газ легче воздуха, поэтому любая утечка топлива из бортовых баков или стационарных резервуаров для хранения быстро рассеется. Это означает, что водители и механики никогда не прольют на себя природный газ. Они никогда не возвращаются домой с запахом дизельного топлива. Это также означает, что, например, в случае аварии нет риска скопления людей внутри или вокруг транспортных средств, что значительно повышает безопасность водителя.

Возможно, самое большое улучшение качества жизни водителей благодаря двигателям, работающим на природном газе, заключается в том, что они работают значительно тише, чем их бензиновые и дизельные аналоги. На холостом ходу двигатель, работающий на природном газе, может быть на десять децибел тише дизельного и таким же тихим, как автомобиль на ходу. Для большинства водителей работа с более тихим и плавным двигателем намного менее утомительна.

Характеристики и производительность двигателей, работающих на природном газе

Автомобили, работающие на природном газе, по ощущениям и характеристикам аналогичны дизельным автомобилям. Дизель был предпочтительным топливом для большегрузных транспортных средств, поскольку он обеспечивает крутящий момент, необходимый для буксировки тяжелых грузов. Двигатели, работающие на природном газе, могут тянуть тяжелые грузы, в том числе на крутых склонах. Водители, работающие на природном газе, сообщают, что им не приходится переключать передачи больше, чем если бы они ехали на дизельных автомобилях.

Природный газ также дает существенные преимущества водителям, работающим в холодных погодных условиях. Хотя автомобили, работающие на природном газе, не застрахованы от зимних проблем, они не сталкиваются с теми же проблемами, которые могут испортить день водителя грузовика по всему северному полушарию. Дизель превращается в желатиноподобное вещество, когда температура падает ниже 17,5°F. Природный газ, напротив, имеет температуру кипения -258 ° F, поэтому это никогда не будет проблемой даже в самых холодных зимних условиях.

Автомобили, работающие на природном газе, также позволяют избежать проблем, связанных с хранением и обращением с жидкостью для выхлопных газов дизельных двигателей (DEF). DEF в основном состоит из воды. Итак, когда становится холодно, DEF может замерзнуть, вызывая проблемы. Например, водители, которые заполняют свой бак DEF до отказа, могут столкнуться с трещиной в баке, когда DEF замерзнет и расширится за пределы емкости бака — то же самое происходит, когда банка газировки остается в морозильной камере слишком долго. . Автомобили, работающие на природном газе, не используют DEF, поэтому проблем с DEF не возникает.

Водители также любят экономить время, пользуясь автозаправочными станциями. Водители автопарков, эксплуатирующие дизельные автомобили, обычно заканчивают свою смену, ожидая своей очереди у топливного насоса, а затем ждут еще немного, пока их бак заполнится, прежде чем, наконец, припарковать свой автомобиль на ночь. Благодаря заправочным станциям водители природного газа могут заправляться, просто подъехав к специальному отсеку, подсоединив шланг и отсчитывая время на день — баллон природного газа их автомобиля затем заполняется без присмотра. Нет необходимости ждать, что делает этот процесс простым и быстрым для водителя. Есть дополнительные подробности о том, как двигатели природного газа сочетаются с дизельными двигателями.

Надежность двигателей, работающих на природном газе

Двигатели, работающие на природном газе, и двигатели на жидком топливе используют компоненты одного типа и имеют одинаковую архитектуру. С точки зрения надежности двигатели, работающие на природном газе, не уступают любым современным дизельным двигателям.

Итак, автомобили, работающие на природном газе, так же надежны, как автомобили с дизельным двигателем? Современные дизельные автомобили нуждаются в сложной системе доочистки, чтобы соответствовать нормам выбросов. К сожалению, эти системы требуют тщательного обслуживания и не всегда работают должным образом. Одним из примеров являются проблемы с DEF в холодную погоду. Дизельные сажевые фильтры (DPF) являются еще одним распространенным источником проблем для дизельных автомобилей. DPF отфильтровывают твердые частицы, но если их не очистить или заменить должным образом, они засорятся. Для сравнения, двигатели, работающие на природном газе, содержат очень мало NOx и сажи в своих выхлопных газах и, следовательно, не требуют таких систем доочистки. В лучшем случае можно использовать простой трехкомпонентный катализатор. В автомобилях, работающих на природном газе, меньше вероятность поломки и меньше поводов для беспокойства водителя. При правильном обслуживании двигатели, работающие на природном газе, проезжают миллионы миль и продолжают работать. Техническое обслуживание является одним из основных соображений, которые руководители автопарка должны учитывать при переходе на двигатели, работающие на природном газе.

Ваши водители еще не совсем готовы попробовать природный газ? Пусть они услышат отзывы водителей наших клиентов, и это должно развеять все сомнения.

Если вам подходят двигатели, работающие на природном газе, не забудьте также ознакомиться с нашими ответами на часто задаваемые вопросы о двигателях, работающих на природном газе. Эти ответы охватывают такие темы, как стоимость, практичность и возможность интеграции природного газа в коммерческий парк.


Никогда не пропустите последние новости и будьте впереди. Зарегистрируйтесь ниже, чтобы получать последние новости о технологиях, продуктах, отраслевых новостях и многом другом.

Бирки

Природный газ

Тяжелые грузовики

Автобус

Двигатели Cummins

Никогда не пропустите последние новости

Будьте в курсе последних новостей о новых технологиях, продуктах, отраслевых тенденциях и новостях.

Адрес электронной почты

Компания

Присылайте мне последние новости (отметьте все подходящие варианты):

Грузоперевозки

Автобус

Пикап

Строительство

Сельское хозяйство

Пунит Сингх Джавар является генеральным директором глобального газового бизнеса Cummins Inc. В этой должности он отвечает за концепцию продукта, финансовое управление и общую эффективность газового бизнеса. За свою 14-летнюю карьеру в Cummins Джавар наладил успешные отношения с рядом крупнейших клиентов Cummins. Джавар имеет обширный международный опыт работы на Ближнем Востоке, в Индии, Европе и США.

Отдел новостей Cummins: Образование и интеллектуальное лидерство

от Cummins Inc., мирового лидера в области энергетических технологий

Возможно, вы читали об альтернативных видах топлива в этом блоге или где-либо еще. Мы знаем, что это может сбивать с толку. Итак, вот удобный глоссарий, который поможет вам запомнить разницу между дизельным топливом, дизельным топливом из возобновляемых источников, биодизельным топливом и другими видами топлива.

Аммиак на пути к обезуглероживанию

Аммиак — это химическое вещество, широко используемое в промышленности в качестве прекурсора различных азотсодержащих веществ, таких как удобрения и взрывчатые вещества. Он также имеет множество других применений, начиная от использования в качестве средства для чистки стекол и реагента, используемого в системах очистки дымовых газов, и заканчивая использованием в качестве ракетного топлива (X-15, экспериментальный самолет с ракетным двигателем, который до сих пор удерживает рекорд скорости для пилотируемого самолета, работавшего на аммиаке).

Аммиак также исторически использовался в качестве моторного топлива. Например, во время Второй мировой войны бельгийская региональная автобусная компания переоборудовала часть своих автобусов для работы на аммиаке из-за нехватки дизельного топлива.

Зеленый аммиак на пути к обезуглероживанию

Почти весь производимый сегодня аммиак получают в результате химической реакции между водородом и азотом. Поскольку большая часть водорода, используемого для этой цели, производится из природного газа с использованием процесса, при котором выделяется значительное количество CO2, производство аммиака сопряжено с интенсивным выбросом CO2. Однако, если используется зеленый водород, аммиак можно производить без выбросов CO2 или с минимальными выбросами. Другими словами, можно получить зеленый аммиак.

Представляет интерес для предприятий, которые активно используют аммиак. Компании-производители удобрений, например, испанская Fertiberia, активно следуют этой стратегии.

В транспортном секторе зеленый аммиак рассматривается как энергоноситель, с которым легче обращаться и хранить, чем с зеленым водородом. Судоходная промышленность, в частности, проявила значительный интерес к использованию аммиака в двигателях крупных судов. Недавний опрос, проведенный регистром Ллойда, показывает, что участники отрасли ожидают значительного увеличения использования аммиака в судоходной отрасли в ближайшие 10 лет.

В Японии, где коммунальные предприятия ищут способы сохранить работу своих угольных электростанций, зеленый аммиак используется в качестве частичной замены угля в пилотных проектах. В долгосрочной перспективе сторонники зеленого аммиака видят способ превратить существующие электростанции в объекты с нулевым уровнем выбросов к 2050 году. таких как растительное масло, животные жиры или отработанное кулинарное масло с помощью химического процесса, известного как переэтерификация. Масла также можно смешивать с дизельным топливом для снижения выбросов CO2 и других загрязняющих веществ. Доступны смеси с различными пропорциями биодизеля. B20, содержащий 20 % биодизельного топлива, является распространенной смесью, которая выгодно сочетает в себе стоимость и выбросы. Может использоваться в большинстве двигателей без каких-либо модификаций. Многие дизельные двигатели Cummins Inc. могут работать на B20, и компания планирует сделать свои новые двигатели совместимыми с растущим ассортиментом биодизельных смесей. Помимо автомобилей, биодизельное топливо используется в целом ряде отраслей, от центров обработки данных до кораблей.

Дизельное топливо на пути к обезуглероживанию

Дизельное топливо — это ископаемое топливо, получаемое из нефти. Он относительно дешев, широко доступен и хорошо работает. Дизельные двигатели долговечны, надежны и могут обеспечить весь крутящий момент, необходимый для работы в тяжелых условиях. Инфраструктура, необходимая для производства, транспортировки и распределения дизельного топлива, доступна повсеместно. Дизель, однако, не лишен недостатков. Помимо выбросов парниковых газов, дизельные автомобили выделяют оксиды азота, угарный газ, сажу и другие загрязняющие вещества. Все это приводит к загрязнению воздуха и может нанести вред здоровью человека. Поэтому правила использования дизельного топлива ужесточаются в странах по всему миру. Дизель может уступить место альтернативным видам топлива, но он не собирается исчезать. Дизельные двигатели прошли долгий путь к очистке своих выбросов. И хотя ни одна система доочистки не может по-настоящему очистить выбросы CO2 от дизельных двигателей, существуют области применения, в которых имеет смысл компенсировать выбросы CO2 где-то еще, а не пытаться напрямую обезуглероживать приложение. При выборе следует оценивать способность альтернативных видов топлива снижать выбросы.

Возобновляемое дизельное топливо на пути к обезуглероживанию

Гидроочищенное растительное масло (HVO) или возобновляемое дизельное топливо производится из растительных жиров и масел. Его можно использовать в большинстве дизельных двигателей без модификации, во всех резервных генераторных установках Cummins и во многих двигателях Cummins, используемых на дорогах. Используемый в качестве замены дизельному топливу, он работает одинаково хорошо. С учетом выбросов, связанных с обработкой, транспортировкой и распределением, выбросы HVO на колесах примерно на 70% ниже, чем у дизельного топлива.

Использование HVO ограничено количеством, которое может быть произведено на существующих производственных предприятиях — около 550 миллионов галлонов в год в США. В настоящее время строится несколько новых заводов, что должно значительно увеличить количество доступного HVO и может привести к увеличению внедрения.
Существует ряд примеров компаний, успешно использующих альтернативные виды топлива. Например, такие компании, как Microsoft, перешли на топливо HVO для своих генераторов, поставляемых Cummins, которые обеспечивают резервным питанием их центры обработки данных в Де-Мойне, штат Айова (США), и Фениксе, штат Аризона (США).

Зеленый водород на пути к обезуглероживанию

Зеленый водород или водород, полученный с использованием возобновляемых источников энергии, вполне может стать экологически чистым энергоносителем будущего. Зеленый водород может заправлять как электромобили на топливных элементах, так и автомобили, оснащенные двигателем внутреннего сгорания, специально модифицированным для работы с водородом. Водород будет иметь большое значение для тяжелых коммерческих приложений, поэтому Cummins в настоящее время разрабатывает 15-литровый и 6,7-литровый водородный двигатель. Водородные топливные элементы Cummins уже используются в транспортных средствах по всему миру — от автобусов и грузовиков до поездов. Помимо того, что водород производится с использованием возобновляемых источников энергии, часть привлекательности водорода заключается в том, что основным отходом сгорания водорода или топливных элементов является вода, и хотя двигатели внутреннего сгорания, работающие на водороде, будут иметь выбросы NOx, их можно сократить до очень низкого уровня.

Природный газ на пути к обезуглероживанию

Природный газ использовался в качестве топлива в транспортных средствах на протяжении десятилетий и является наиболее широко используемым альтернативным топливом. Он работает так же, как дизельное топливо в транспортных средствах, и в некоторых случаях снижает выбросы парниковых газов и других загрязняющих веществ, таких как NOx и твердые частицы. Поэтому природный газ является популярным выбором для тяжелых транспортных средств, которые работают в городских условиях, таких как мусоровозы, автобусы и грузовики для доставки.

Природный газ также широко используется в стационарных установках. Природный газ, например, может использоваться в высокоэффективных системах когенерации, обеспечивающих электричество, тепло и, в некоторых случаях, охлаждение. Компания Cummins поставила оборудование для многочисленных систем когенерации, таких как система Университета Кларка в Массачусетсе (США), куда Cummins поставила QSV9 мощностью 2 МВт.Газогенератор 1Г.

Возобновляемый природный газ на пути к обезуглероживанию

Возобновляемый природный газ получают из биогаза, газа с высоким содержанием метана, образующегося в результате ферментации органических отходов, таких как коровий навоз, осадок сточных вод или органические отходы свалок. Должным образом обработанный возобновляемый природный газ практически неотличим от природного газа. Его можно использовать в любом двигателе, работающем на природном газе, и во многих промышленных приложениях, таких как производство электроэнергии, что обеспечивает снижение выбросов CO₂ на 97 % по сравнению с дизельным топливом. Возобновляемый природный газ уже используется в качестве основного топлива для производства электроэнергии в нишевых приложениях рядом с источниками возобновляемого природного газа. Компания Cummins осуществила один такой проект в Делавэре (США), где свалочный газ используется для питания комбинированной системы производства тепла и электроэнергии (ТЭЦ) для обеспечения промышленных потребителей экологически чистой энергией.

Смеси природного газа и водорода в процессе обезуглероживания

Зеленый водород можно смешивать с природным газом и вводить в существующие системы распределения природного газа. Это автоматически снижает углеродоемкость всех видов использования природного газа, обслуживаемых трубопроводом. Использование трубопроводных систем для распределения топливных смесей, содержащих водород, не ново и, например, уже много лет практикуется на острове Оаху на Гавайях (США). Различные экспериментальные схемы планируют заменить до 20% природного газа по объему в распределительных системах, а смешивание будет широко распространено в Европе в течение следующих 10 лет, и США не сильно отстают.

Метанол на пути к декарбонизации

Метанол, также известный как древесный спирт, является многообещающим энергоносителем, получаемым из водорода или биомассы. В отличие от водорода метанол представляет собой жидкость при температуре окружающей среды, что упрощает его хранение и обращение с ним. Его можно легко синтезировать из водорода с использованием хорошо известных промышленных процессов. Метанол — это универсальное топливо, которое сегодня используется в самых разных областях, включая автомобили Indy и грузовики-монстры.

Несколько пилотных проектов, предназначенных для производства метанола из уловленного CO₂ и зеленого водорода, запущены и запущены, и в ближайшие пять лет они будут введены в эксплуатацию. Развитие процесса будет связано с распространением технологий зеленого водорода и улавливания CO₂.

При выборе альтернативного топлива важно учитывать преимущества и недостатки альтернативного топлива и степень его распространения.

Теги

Устойчивое развитие

Альтернативные виды топлива

Возобновляемые источники энергии

Отдел новостей Cummins: Образование и интеллектуальное лидерство

Пунит Сингх Джавар, генеральный директор отдела глобального природного газа

Что такое возобновляемый природный газ?

Возобновляемый природный газ или RNG иногда называют биометаном или усовершенствованным биогазом. Анаэробное сбраживание, процесс, при котором бактерии расщепляют органическое вещество, производит биогаз. Биогаз может генерировать тепло и электричество при незначительной очистке. Дополнительная очистка удаляет загрязняющие вещества, такие как CO2 и азот. В этот момент биогаз становится возобновляемым природным газом — почти чистым метаном. Для многих приложений ГСЧ функционально идентичен стандартному природному газу. Большинство сетей распределения природного газа позволяют смешивать возобновляемый биогаз, и его используют двигатели, работающие на природном газе.

Вот некоторые из основных источников органического вещества, используемого для питания бактерий, производящих биогаз:
Органическое вещество, сбрасываемое на свалки, склонно к самопроизвольному брожению. По данным Агентства по охране окружающей среды, образующиеся в результате выбросы биогаза составляют почти пятую часть антропогенных выбросов метана в Соединенных Штатах. Метан фактически производит в 25 раз больше выбросов парниковых газов по сравнению с CO2. Это не только отличный источник топлива, но и улавливание метана на свалках также предотвращает выбросы мощных парниковых газов.

Фермы крупного рогатого скота и птицефермы, как правило, производят большое количество навоза — отличной закуски для бактерий, отвечающих за анаэробное пищеварение. Промышленное производство биогаза происходит из навоза с использованием, например, больших герметичных резервуаров для брожения, известных как метантенки.

Очистные сооружения производят много шлама. Это в основном то, что остается от сточных вод после удаления большей части чистой воды. Осадок сточных вод обычно вывозится на свалку или иногда используется в качестве удобрения; но из-за высокого содержания органического вещества он также может служить сырьем для производства биогаза. Многие очистные сооружения делают это и сами используют биогаз, например, для обогрева прудов для брожения.

Каковы преимущества использования возобновляемого природного газа в двигателях, работающих на природном газе?

При использовании в двигателе природный газ имеет аналогичные характеристики по сравнению с дизельным топливом, но работает тише и намного чище. Упрощенные системы доочистки обеспечивают практически нулевой уровень NOx. Однако природный газ остается ископаемым топливом, и его использование всегда приводит к выбросам CO2. Именно здесь проявляются дополнительные преимущества ГСЧ.

Содержание углерода в ГСЧ, напротив, не является ископаемым. Таким образом, сжигание ГСЧ является углеродно-нейтральным, поскольку не добавляет углерода в атмосферу. При учете общих выбросов углерода от скважины до колес использование ГСЧ остается чрезвычайно низкоуглеродным. В некоторых случаях, таких как использование свалочного газа, он может быть даже углеродоотрицательным, как упоминалось ранее.

Независимо от того, используется ли RNG для производства тепла и электроэнергии или для питания вашего автопарка, он помогает сократить чистые выбросы углерода. RNG классифицируется как усовершенствованное биотопливо в соответствии со стандартом возобновляемого топлива в Соединенных Штатах, что способствует той роли, которую двигатели, работающие на природном газе, играют в нашем будущем возобновляемых источников энергии.

Производство биогаза имеет и другие преимущества. После того, как с бактериями покончено и вода удалена, твердые вещества, оставшиеся в варочных котлах, можно использовать в качестве удобрения, мульчи или подстилки для животных. Исследователи даже оценивают использование этих твердых веществ для производства этанола — способ выжать еще больше энергии из исходного сырья.

Сельские районы теперь могут диверсифицировать свою экономику, помимо сельского хозяйства, производя биогаз и дигестат. Многие фермеры вложили средства в варочные котлы и, таким образом, могут производить и продавать биогаз и возобновляемый природный газ. В сельской местности, не охваченной распределительными сетями природного газа, это может сделать ГСЧ доступным для транспортировки и других целей. На крупной молочной ферме Fair Oaks Farm в Индиане RNG производится на месте. Затем RNG используется для заправки грузовиков, используемых фермой для доставки молока, которое она производит, своим клиентам. Молоковозы оснащены двигателем Cummins 9.литровые двигатели ISL G, работающие на природном газе. RNG также используется в других приложениях, таких как профессиональные грузовики, транзитные и школьные автобусы, а также грузовики средней грузоподъемности.

Чем РПГ отличается от других видов топлива?

Автомобили, работающие на природном газе, чище, тише и требуют меньше обслуживания, чем автомобили с дизельным двигателем, помимо прочих преимуществ. Транспортные средства RNG низкоуглеродны и даже иногда углеродно-отрицательны. В коммерческих целях RNG может быть наиболее широко используемым альтернативным топливом. NGVAmerica, торговая ассоциация, продвигающая использование природного газа в транспортных средствах, сообщает, что на RNG приходилось 64% использования природного газа на дорогах в 2021 году. Это безопасно, эффективно и относительно доступно, но руководители автопарков, которые хотят перейти на двигатели, работающие на природном газе нужно сделать дополнительные выводы.
Одно из соображений, связанных с ГСЧ, заключается в том, достаточно ли у нас ГСЧ для удовлетворения потребностей коммерческой мобильности. Хотя ГСЧ не может удовлетворить все энергетические потребности человечества, он может сыграть свою роль в обезуглероживании некоторых приложений коммерческой мобильности. В последние несколько лет наблюдался рост производства ГСЧ, и ожидается, что эта тенденция сохранится одними из самых быстрых темпов роста топлива в сегменте. По данным Международного энергетического агентства, в 2020 г. доля ГСЧ в производстве биотоплива составляла 1%, а к 2050 г. ожидается ее увеличение до 20%9.0003

Узнайте больше о том, как RNG сравнивает другие альтернативные виды топлива.


Никогда не пропустите последние новости и будьте впереди. Зарегистрируйтесь ниже, чтобы получать последние новости о технологиях, продуктах, отраслевых новостях и многом другом.

Бирки

Природный газ

Cummins Engines

Автобус

Тяжелые грузовики

Никогда не пропустите последние новости

Будьте в курсе последних новостей о новых технологиях, продуктах, отраслевых тенденциях и новостях.

Адрес электронной почты

Компания

Присылайте мне последние новости (отметьте все подходящие варианты):

Грузоперевозки

Автобус

Пикап

Строительство

Сельское хозяйство

Пунит Сингх Джавар является генеральным директором глобального газового бизнеса Cummins Inc. В этой должности он отвечает за концепцию продукта, финансовое управление и общую эффективность газового бизнеса. За свою 14-летнюю карьеру в Cummins Джавар наладил успешные отношения с рядом крупнейших клиентов Cummins. Джавар имеет обширный международный опыт работы на Ближнем Востоке, в Индии, Европе и США.

Отдел новостей Cummins: Образование и интеллектуальное лидерство

Пунит Сингх Джавар, генеральный директор отдела глобального природного газа

У руководителей автопарков, желающих перейти на двигатели, работающие на природном газе, есть множество соображений. Некоторые из ключевых факторов включают обучение водителей, техническое обслуживание и наличие стратегии заправки. При наличии эффективного плана перехода преимущества природного газа не заставят себя долго ждать для клиентов, водителей, техников по техническому обслуживанию, менеджеров автопарков и владельцев бизнеса.

Обучение водителей работе с двигателями, работающими на природном газе

Когда дело доходит до управления транспортным средством, водители увидят, что двигатели, работающие на природном газе, работают и ведут себя очень похоже на дизельные автомобили, к которым они привыкли. Однако есть некоторые отличия. Например, топливо измеряется не в галлонах, а в давлении в баке, поскольку это газ. Когда погода холоднее, показания давления топлива будут ниже. Однако это не означает, что топлива стало меньше. Таким образом, для интерпретации этих уровней требуется определенный уровень подготовки и опыта водителя. Также требуется дополнительное обучение по вопросам безопасности, таким как обнаружение утечек газа и безопасные методы заправки. Узнайте больше о том, как водители работают с двигателями, работающими на природном газе.

Принципы технического обслуживания двигателей, работающих на природном газе

Двигатели, работающие на природном газе, могут иметь ряд экономических преимуществ по сравнению с дизельными двигателями, например, отсутствие необходимости добавления дизельной выхлопной жидкости или полной регенерации. Во многом это связано с тем, что двигатели, работающие на природном газе, не требуют сложной системы очистки выхлопных газов. Чистый профиль сгорания природного газа означает, что такие системы не требуются. Таким образом, техническое обслуживание становится проще и дешевле.

Бригады по техническому обслуживанию также, как правило, получают более приятный опыт работы с двигателями, работающими на природном газе, по сравнению с дизельными двигателями. Дизельное топливо не проливается на одежду, а двигатель не покрывается копотью, что снижает потребность в моющих присадках и присадках к маслу.

При переходе на двигатели, работающие на природном газе, необходимо уделять особое внимание надлежащему обслуживанию автомобиля, работающего на природном газе, так как есть некоторые отличия от дизельных двигателей. Например, большинство двигателей, работающих на природном газе, зажигаются от искры и поэтому оснащены свечами зажигания. Очень важно заменять свечи зажигания в соответствии с рекомендованным графиком обслуживания. Во время установки необходимо следить за чистотой свечей зажигания и устанавливать их с правильным крутящим моментом. Должны использоваться только свечи зажигания, одобренные производителем, поскольку они тщательно протестированы и сертифицированы для каждого двигателя.

Поскольку двигатели, работающие на природном газе, работают при более высоких температурах, чем дизельные двигатели, важно использовать соответствующее моторное масло. По этой причине Valvoline Premium Blue One Solution Gen 2 является исключительно одобренным Cummins маслом как для двигателей, работающих на природном газе, так и для дизельных двигателей. При более высоких температурах к маслу предъявляются более высокие требования по устойчивости к окислению и нитрации. Использование специально разработанного масла для двигателей, работающих на природном газе, может увеличить рекомендуемый интервал обслуживания до 50%. Топливные фильтры следует опорожнять ежедневно и заменять каждые 1000 моточасов. Клапаны должны быть отрегулированы в соответствии с графиком технического обслуживания.

План заправки двигателей, работающих на природном газе

Местные заправочные станции также должны содержаться в хорошем рабочем состоянии для поддержания чистоты подачи топлива в двигатель. Это уменьшит потребности в техническом обслуживании двигателя и продлит эффективный срок службы автомобиля.

Природный газ является распространенным и экономичным источником топлива для современного автопарка, доступного в газообразном (СПГ) или сжиженном виде (СПГ). Инфраструктура для заправки природным газом не так распространена, как другие виды топлива, такие как дизельное топливо. Необходимо разработать план заправки транспортных средств, чтобы обеспечить успешный переход на природный газ в нашем возобновляемом будущем.

Автопарки, работающие на природном газе, особенно привлекательны для предприятий, построенных вокруг центрального депо, куда их транспортные средства могут возвращаться каждую ночь. Инфраструктура может быть построена для экономичной и эффективной заправки автопарка с помощью медленных заправочных станций. Заправочные станции с медленной заправкой обеспечивают преимущество в том, что в конце дня водитель может подключить подачу топлива к автомобилю и больше не беспокоиться об этом. Для каждого транспортного средства может быть предусмотрено несколько выделенных линий заправки, что означает, что водителям не придется ждать в очереди, чтобы заправиться. Также существуют решения для быстрой заправки, при которых природный газ сжимается на месте и хранится в резервуарах, чтобы его можно было быстро заправить в следующий прибывший автомобиль.

Если вам нужны двигатели, работающие на природном газе, не забудьте также ознакомиться с нашими ответами на часто задаваемые вопросы о двигателях, работающих на природном газе. Эти ответы охватывают такие темы, как стоимость, практичность и возможность интеграции природного газа в коммерческий парк.


Никогда не пропустите последние новости и будьте впереди. Зарегистрируйтесь ниже, чтобы получать последние новости о технологиях, продуктах, отраслевых новостях и многом другом.

Теги

Природный газ

Большегрузные автомобили

Автобус

Двигатели Cummins

Никогда не пропустите последние новости

Будьте в курсе последних новостей о новых технологиях, продуктах, отраслевых тенденциях и новостях.

Адрес электронной почты

Компания

Присылайте мне последние новости (отметьте все подходящие варианты):

Грузоперевозки

Автобус

Пикап

Строительство

Сельское хозяйство

Пунит Сингх Джавар является генеральным директором глобального газового бизнеса Cummins Inc. В этой должности он отвечает за концепцию продукта, финансовое управление и общую эффективность газового бизнеса. За свою 14-летнюю карьеру в Cummins Джавар наладил успешные отношения с рядом крупнейших клиентов Cummins. Джавар имеет обширный международный опыт работы на Ближнем Востоке, в Индии, Европе и США.

ГАЗОТУРБИННЫЕ КОМПРЕССОРЫ: Понимание остановки, помпажа

Ли С. Лэнгстон , почетный профессор, Университет Коннектикута

Осевые компрессоры используются в большинстве крупных газовых турбин, как в силовых установках, так и в авиационных реактивных двигателях. За последние 75 лет эти компрессоры постоянно совершенствовались, и сегодня КПД компонентов достигает более 90%. Тем не менее, какими бы продвинутыми они ни были, их работу необходимо тщательно контролировать, чтобы избежать эффекта кражи мощности 9.0336 срыв и конвульсивные эффекты полного разворота потока, вызванные помпажем.

Несмотря на то, что современная конструкция и системы управления подачей топлива способны уберечь газовую турбину, работающую от выработки электроэнергии, в рабочих условиях, способствующих остановке и помпажу, важно знать кое-что о каждом состоянии. Имея это в виду, давайте посмотрим, как работает осевой компрессор.

Основные сведения об осевых компрессорах

Эффективное сжатие газа в различных рабочих условиях — непростая задача. Около 50-70% мощности турбинного компонента газовой турбины используется для привода ее компрессора. Сравните это с паровой установкой, где только около 1% мощности турбины используется для питания насосов питательной воды для повторной подачи несжимаемой воды в котел.

Осевые компрессоры получили свое название потому, что воздух в газовом тракте течет более или менее прямолинейно в осевом направлении, параллельно оси вращения газовой турбины. Компрессор собирается поэтапно, каждая ступень состоит из кольца подвижных лопаток ротора (или лопаток), установленных на вращающемся диске или барабане, и расположенного ниже по потоку кольца неподвижных лопаток статора (или статоров), установленных на корпусе.

Лопасти воздействуют на газовый тракт воздушным потоком, увеличивая его статическое и полное давление, а также кинетическую энергию. Статоры устраняют скорость завихрения, вызванную лопастями, тем самым уменьшая кинетическую энергию, что также способствует увеличению статического давления и выравниванию потока для лопастей на следующей ступени.

Лопасти и статоры компрессора затем работают с потоком газового тракта, создавая то, что специалисты по аэродинамике называют неблагоприятным градиентом давления в направлении потока, то есть от низкого до высокого статического давления. Это аналогично проталкиванию воды вверх по наклонному каналу с помощью множества мелких и быстрых мазков кистью. Если уклон (аналогично степени сжатия компрессора) слишком крутой, вода течет назад, вниз по склону.

Напротив, газовый тракт в турбине работает в поле статического давления с уменьшением в осевом направлении. это называется благоприятный градиент давления : представьте себе, как вода течет кистью по наклонному каналу.

Многоступенчатые осевые компрессоры: основные сведения

Газовый тракт типичного одноконтурного шестиступенчатого осевого компрессора показан на рис. проходит через каждую из ступеней на пути к камере сгорания. Каждая ступень увеличивает как статическое, так и общее давление газового тракта.

Как правило, каждая ступень компрессора в промышленной газовой турбине (IGT) работает в диапазоне отношения давлений от более чем 1,0:1 до примерно 1,4:1. Чтобы рассчитать степень сжатия машины, просто умножьте степени давления для каждой ступени. Пример: Ссылаясь на рис. 1 и предполагая, что каждая ступень имеет степень сжатия 1,2:1, степень сжатия будет равна 1,2 в n-й степени, где «n» — количество ступеней, в данном случае шесть. Результат: 2,99:1.

Преимуществом высокой степени сжатия является максимальная производительность. Имейте в виду, что тепловой КПД газовой турбины увеличивается с увеличением степени сжатия. Для иллюстрации: В начале 1950-х годов осевой компрессор с 15 ступенями мог иметь общую степень повышения давления 4:1. Сегодня самая передовая газовая турбина GE класса F, газовая турбина 7FA.05 (231 МВт), оснащена 14-ступенчатым компрессором с общей степенью повышения давления 18,4:1.

Это представляет собой сокращение на одну ступень и почти пятикратное увеличение степени сжатия за семь десятилетий прогресса в разработке компрессоров. Соотношение давлений новейших рамных двигателей достигает 30:1; для авиационных машин примерно до 40:1. Такие степени сжатия соответствуют тепловому КПД газовой турбины в диапазоне от 35% до 45%. Самый ранний IGT (1939) имел КПД 18%.

Как видно из рис. 1, газовый тракт компрессора сужается при переходе от первой к шестой ступени. Учитывая, что средняя скорость газового тракта в осевом направлении для газотурбинного компрессора относительно постоянна, по мере увеличения давления и плотности воздуха в направлении потока лопатки и статоры становятся короче. Проблемы с концевым зазором могут возникать на ступенях высокого давления, потому что допустимые зазоры более значительны для более коротких аэродинамических профилей.

Компрессорная стойка

Инженер может начать проектирование осевого компрессора, используя диаграммы векторов скоростей только для IGV и первой ступени компрессора (рис. 2). Они определят необходимые углы потока воздуха на входе для лопаток и статоров, чтобы соответствовать желаемым условиям эксплуатации.

Результирующие линии обтекания лопатки компрессора показаны на рис. 3 (слева) для расчетного угла потока. (Эскиз статора был бы таким же, но без вращения.) Переходя от низкого давления на передней кромке лопасти к более высокому давлению на ее задней кромке, линии тока точно повторяют поверхности всасывания и нагнетания лопасти.

Обтекание лопатки контролируется ее пограничным слоем. Это очень тонкий, почти неизмеримый слой воздуха на поверхности лопатки, в котором сосредоточены эффекты вязкого трения. Скорость изменяется в пограничном слое от скорости линий тока сразу за его пределами до нуля (относительно поверхности лопасти) на поверхности лопасти.

Существование пограничного слоя было введено немецким инженером Людвигом Прандтлем в 1904 году — подходящее время, чтобы оказать глубокое влияние на конструкцию самолетов, а также турбомашин в прошлом веке и сегодня.

Пограничные слои очень чувствительны к условиям, вызванным неблагоприятными градиентами давления, которые создает компрессор. Таким образом, проектировщик заботится о том, чтобы не происходило отрыва пограничного слоя при расчетных углах входа воздуха.

При увеличении углов входа воздуха (измеренных в осевом направлении) может произойти расслоение пограничных слоев лопасти, как показано линиями тока вокруг лопасти справа на рис. 3. Здесь линии тока на стороне всасывания не следуют поверхность лопасти позади точки отрыва пограничного слоя. Эта лопатка компрессора заглох.

Сваливание немедленно увеличивает аэродинамические потери ступени: подъемная сила лопасти снижается, и желаемое увеличение давления не достигается. Больший угол входа воздуха, вызывающий срыв, мог быть вызван падением скорости воздуха, которое могло произойти из-за внезапного противодавления ниже по потоку, например, в результате блокировки камеры сгорания или турбины, или возмущения потока вверх по потоку. Другими причинами разделения могут быть шероховатость поверхности лезвия или чрезмерная утечка на кончике.

Когда одна лопасть застревает, это может привести к засорению верхнего потока, что отклонит поток приближающейся ступени (рис. 4). Это способствует увеличению углов потока воздуха для соседних проходов лопаток — в направлении, противоположном вращению. Если углы потока достаточно велики, эти лопасти также будут останавливаться, образуя так называемую ячейку . Если перемещается сама ячейка срыва, она становится вращающимся срывом, который вращается в направлении, противоположном вращению компрессора, примерно на половине скорости вала. Излишне говорить, что вращающиеся заклинивания могут значительно сократить срок службы лезвия из-за повышенного напряжения и вибрации, которые они вызывают.

Помпаж компрессора

Вращающийся срыв может превратиться в экстремальный случай отказа производительности компрессора, который называется помпаж.

По словам эксперта по компрессорам Айвора Дэя, срыв – это возмущение потока компрессора в тангенциальном направлении, а помпаж – это возмущение в осевом направлении. Во время остановленной работы средний поток воздуха через компрессор стабилен, но во время помпажа скорость потока будет быстро (миллисекунды, мс) пульсировать — иногда так сильно, что индуцируется обратный поток, часто сопровождаемый громким «хлопком».

В экстремальных случаях внезапное пламя, вызванное камерой сгорания, может вырваться из задней части машины (рис. 5) и, возможно, из впускного отверстия компрессора. Поэтому важно избегать перенапряжения.

Предотвращение опрокидывания, помпажа

Как объяснялось ранее, возникновение опрокидывания (и помпажа) можно проследить до поведения пограничного слоя на лопатках и статоре компрессора. Поскольку это результат базовой физики пограничных слоев, не было найдено «лекарства» для устранения остановки.

Когда OEM-производитель разрабатывает новый компрессор, он обычно тестируется, чтобы увидеть, когда он остановится, используя задним числом, чтобы определить, каких условий следует избегать. Затем системы управления двигателем, такие как Fadec (Full-Authority Digital Electric Control), программируются таким образом, чтобы рабочая точка компрессора находилась вдали от так называемых линий остановки или помпажа. Статоры с переменным шагом (для управления углами потока), продувки компрессора, обработка корпуса и контроль зазора наконечника используются для предотвращения заклинивания.

Изучение срыва и помпажа является очень активной областью исследований и разработок в мировом сообществе газовых турбин. По словам Роберта Маццауи из Trebor Systems LLC, который в 1980 году одним из первых сообщил о структурных нагрузках, вызванных помпажем, исследователи обнаружили, что тонкие модальные волны являются предшественниками вращающегося срыва, вызывающего помпаж. Есть надежда, что обнаружение таких волн позволит Fadec предотвратить сваливание и выброс.

Основная проблема заключается в том, что номинальный период времени, необходимый для срабатывания переменного статора или сброса, составляет около 200 мс. Это контрастирует с периодом времени развития вращающегося срыва и помпажа, который составляет порядка нескольких оборотов ротора. Один оборот ротора авиационной газовой турбины обычно составляет около 5 мс, в то время как для большого IGT он может достигать 20 мс. Трудность, связанная с тем, чтобы Fadec почувствовала предшественника и выполнила необходимую активацию для предотвращения срыва и выброса, становится очевидной, если принять во внимание несоответствие этих временных интервалов.

Несмотря на трудности обнаружения предвестников модальных волн, были достигнуты некоторые успехи в использовании Fadec для обнаружения надвигающегося срыва/скачка за достаточное время, чтобы либо предотвратить его возникновение, либо ограничить повторяющиеся всплески. Одним из примеров может служить двухконтурная авиационная газовая турбина, где первоначальный срыв возникает в потоке вентилятора из-за повреждения FOD или чрезмерного зазора или искажения потока из-за разделения входного отверстия гондолы.

Вот что может произойти: Остановка вентилятора приводит к потере пропускной способности, что приводит к увеличению частоты вращения нижнего ротора выше нормального уровня для настройки мощности двигателя. Более высокие, чем обычно, обороты ротора с низким золотником в сочетании с нормальной скоростью вращения ротора с высоким золотником поднимают рабочую линию компрессора низкого давления (бустера) до линии заклинивания, что приводит к вращению заклинивания и возможному помпажу.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *