Кпд поршневых двигателей внутреннего сгорания: КПД двигателя внутреннего сгорания. Сколько приблизительно равен, а также мощность в процентах

Содержание

Как рассчитать кпд двигателя внутреннего сгорания

Содержание

  1. Какой КПД у двигателя автомобиля
  2. КПД двигателя внутреннего сгорания – что это?
  3. Тепловая эффективность двигателя. Не такая страшная физика.
  4. Потери мощности — куда и почему
  5. Понятие теплового двигателя
  6. Сравнение КПД тепловых двигателей — бензиновый и дизельный
  7. КПД бензинового и дизельного двигателя
  8. Асинхронный двигатель и стирлинг
  9. КПД и мощность электродвигателя
  10. Определение КПД электродвигателя
  11. Максимальное значение кпд идеального двигателя
  12. КПД дизельного двигателя – заметная эффективность
  13. Это интересно
  14. Сравнение КПД двигателей – бензин и дизель
  15. КПД двигателя внутреннего сгорания – познаем эффективность в сравнении
  16. КПД парового двигателя
  17. Чем отличаются КПД бензинового и дизельного двигателя
  18. Формула работы в физике
  19. От чего зависит КПД дизельного двигателя
  20. Повышение эффективности электродвигателей
  21. КПД реактивного двигателя
  22. Резюме
  23. Относительный КПД действительного цикла с высоким давлением
  24. КПД бензинового и дизельного двигателя.
  25. Где теряется эффективность
  26. КПД двигателя внутреннего сгорания – что это такое?
  27. О топливной эффективности дизеля
  28. Сравнение КПД двигателей – бензин и дизель
  29. Видео

Какой КПД у двигателя автомобиля

Среди множества полезных характеристик, кпд двигателя имеет немаловажное значение. От этого показателя зависит продолжительность и эффективность силового агрегата.

КПД двигателя внутреннего сгорания – что это?

Во время работы, мотор превращает тепловую энергию, которая получилась от сгорания топлива, в механическую работу. Современные двигатели намного эффективнее, чем тем, которые были изготовлены лет 10 назад. Таким образом, коэффициент полезного действия рассчитывается на основании теххарактеристик, а также других показателей.

КПД это процентное отношение полезной работы к полной. Другими словами, это преобразование мощности, которая поступает на коленчатый вал двигателя, к мощности, которую получает поршень от сгорания топлива.

Все механизмы предназначены для выполнения определенной работы, которую называют полезной. Однако при этом часть энергии растрачивается. Для того чтобы выяснить эффективность работы, вполне подойдет формула кпд в физике: ɳ= А1/А2×100%, где А1 – полезная работа, выполненная машиной или двигателем, А2 – вся затраченная работа. При этом кпд обозначается символом η.

Эффективность кпд измеряется в процентах и зависит от различных потерь, которые происходят в процессе работы.

Тепловая эффективность двигателя. Не такая страшная физика.

Обычно, если кто-то слышит слоган «тепловая эффективность двигателя», они сразу же меняют тему. Вы можете говорить о двигателях об их мощности, об их расходе топлива или — вызывая уважение собеседников как эксперта — о рабочих системах, таких как Дизель, Отто, Ванкель и Аткинсон. Но термическая эффективность звучит как домашняя работа по физике, то есть вызывает отвращение и негативные реакции. Между тем все это сливается в одно ….

КПД двигателя — обозначается латинским символом η (eta) — это параметр, который характеризует данный двигатель и означает, сколько подаваемого тепла преобразуется в полезную работу. В случае двигателя внутреннего сгорания это преобразование тепловой энергии, возникающей в результате сгорания топлива, в механическую энергию, выделяемую двигателем в результате вращения коленчатого вала.

Значения этой эффективности различны для разных типов двигателей и, например, для двигателей с искровым зажиганием составляют около 0,30–0,36, а для дизельных двигателей — около 0,40–0,45. Это означает не что иное, как то, что при заливке в бак 50 литров топлива только 15-18 литров бензина и 20-22,5 литра дизельного топлива используются для привода компонентов автомобиля. Остальное безвозвратно потеряно.

Потери мощности — куда и почему

На выходе получаем, что кпд двигателя составляет всего 20-25%. Фактически, если автомобиль расходует 10 л бензина на 100км, то на работу уйдет всего 2 л, остальное составляют потери.

Понятие теплового двигателя

Такая машина работает по термодинамическому циклу. Это устройство, которое преобразует тепловую энергию в механическую, используя первый и второй законы термодинамики, описывающих преобразование тепла в работу.

Процесс сжигания топлива включает в себя химическую реакцию, называемую сгоранием, при которой топливо сгорает, потребляя кислород из воздуха с образованием углекислого газа и пара. В процессе своей работы такие агрегаты загрязняют атмосферу, поскольку топливо не сгорает полностью, несгоревшие частицы уносятся в атмосферу с выхлопными или дымовыми газами.

Модификации тепловых машин:

Сравнение КПД тепловых двигателей — бензиновый и дизельный

Несмотря на схожесть агрегатов, у них различные виды смесебразования.

При низких оборотах и большом рабочем объеме уровень КПД может возрасти до 50%.

КПД бензинового и дизельного двигателя

При этом стоит оговориться, что у бензиновых и дизельных машин КПД двигателя внутреннего сгорания различен: 20% против 40% (соответственно). Данный факт имеет место быть потому, что несмотря на то, что потери на обслуживание механики и нагрев планеты в бензиновых моторах и «дизелях» сопоставимы, количество сжигаемого в процессе горения топлива у дизельных двигателей выше.

Подводя итоги и вспомнив историю появления двигателя внутреннего сгорания, когда КПД составлял немногим более 5%, можно сказать, что инженеры шагнули далеко вперед, а учитывая факт того, что 100% КПД, а по сути идеального двигателя, им вряд ли удастся добиться, можно утверждать, что современные двигатели, скорее всего, достигли своего верха возможного КПД, поэтому неудивительно, что сегодня все чаще автомобилистам предлагаются машины с гибридными двигателями и электромобили, ведь КПД движка у них (электромобилей) – для справки – порядка 90%.

Асинхронный двигатель и стирлинг

Сегодня на рынке представлены асинхронные машины, большей частью которых являются элетрические. Асинхронный механизм преобразовывает электрическую энергию в механическую.

Основные их достоинства:

Формула кпд рассчитывается следующим образом: η = P2 / P1 = (P1 — (Pоб — Pс — Pмх — Pд)) / P1, где Роб =Pоб1 + Роб2 – общие потери в обмотках асинхронного мотора. Для большинства современных механизмов такого типа, коэффициент достигает 80 – 90%.

Еще одним двигателем внутреннего сгорания, который может работать от любого источника тепла, является двигатель Стирлинга.

Следует учесть, что такие механизмы используют на космических аппаратах и современных подводных лодках.

Он работает при любых температурах, не требует дополнительных систем для запуска, при этом их коэффициент полезного действия выше на 50-70, чем обычных двигателей.

КПД и мощность электродвигателя

КПД и мощность — это то, на что в первую очередь стоит обратить внимание при выборе асинхронного электродвигателя АИР. Суть работы любого эл двигателя заключается в том, что электрическая энергия, с сопутствующими преобразованию потерями, превращается в механическую. Чем меньше потери при протекании данного процесса, тем выше его КПД и тем эффективнее эл двигатель. Но, при всей важности коэффициента полезного действия, не стоит забывать о мощности мотора. Ведь даже при чрезвычайно высоком КПД и выдаваемой им мощности может быть недостаточно для решения необходимых вам задач. Поэтому при покупке очень важно знать не только, чему равен КПД электродвигателя, но и какую полезную мощность он сможет выдать на своем валу. Оба эти значения должны быть указаны производителем. Порой бывает и такое, что нет доступа к паспорту мотора (например, если вы покупаете его “с рук”, что крайне не рекомендуется делать) и приходится самостоятельно вычислять столь важные параметры. Для начала стоит определить: что такое коэффициент полезного действия, или попросту КПД. И так, это отношение полезной работы к затраченной энергии.

Определение КПД электродвигателя

Получается, для того чтобы определить этот параметр необходимо сравнить выдаваемую им энергию с энергией, необходимой ему чтобы функционировать. Вычисляется КПД с помощью выражения:

η=P2/P1 где η — КПД

P2- полезная механическая мощность электромотора, Вт P1- потребляемая двигателем электрическая мощность, Вт;

Коэффициент полезного действия это величина, находящаяся в диапазоне от 0 до 1, чем ближе ее значение к единице, тем лучше. Соответственно, если КПД имеет значение 0,95 — это показывает, что 95 процентов электрической энергии будут преобразованы им в механическую и лишь 5 процентов составят потери. Стоит отметить, что КПД не является постоянной величиной, он может меняться в зависимости от нагрузки, а своего максимума он достигает при нагрузках в районе 80 процентов от номинальной мощности, то есть от той, которую заявил производитель мотора. Современные асинхронные электродвигатели имеют номинальный КПД (заявленные производителем) 0,75 — 0,95. Потери при работе двигателя в основном обусловлены нагревом мотора (часть потребляемой энергии выделяется в виде тепловой энергии), реактивными токами, трением подшипников и другими негативными факторами. Под мощностью мотора понимают механическую мощь, которую он выдает на своем валу. В целом же мощность — это параметр, который показывает, какую работу совершает механизм за определенную единицу времени.

КПД электродвигателя это очень важный параметр определяющий, прежде всего эффективность использования энергоресурсов предприятия. Как известно КПД электродвигателя значительно снижается после его ремонта, об этом мы писали в этой статье. При уменьшении коэффициента полезного действия будут соответственно увеличены потери электроэнергии. В последнее время набирают популярность энергоэффективные электродвигатели разных производителей, в России популярны моторы производства ОАО «Владимирский электромоторный завод». Любые асинхронные электродвигатели представлены в каталоге продукции. Дополнительную полезную информацию Вы можете посмотреть в каталоге статей.

Максимальное значение кпд идеального двигателя

Как найти кпд двигателя, чье значение было бы идеальным и равнялось 100%. Возможно ли такое? Ответ на этот вопрос дал еще в 1824 г. инженер С. Карно. В своих разработках он придумал идеальную машину, где формула кпд теплового двигателя выглядит так: η=(T1 — Т2)/ T1.

В результате было выяснено, что достичь 100% коэффициента можно лишь в том случае, если температура охладителя будет равна абсолютному нулю, а это невозможно, поскольку она не может быть ниже температуры воздуха.

КПД дизельного двигателя – заметная эффективность

Дизель является одной из разновидностей двигателей внутреннего сгорания, в котором воспламенение рабочей смеси производится в результате сжатия. Поэтому давление воздуха в цилиндре намного выше, чем у бензинового двигателя. Сравнивая КПД дизельного двигателя с КПД других конструкций, можно отметить его наиболее высокую эффективность.

При наличии низких оборотов и большого рабочего объема показатель КПД может превысить 50 %.

Следует обратить внимание на сравнительно небольшой расход дизельного топлива и низкое содержание вредных веществ в отработанных газах. Таким образом, значение коэффициента полезного действия двигателя внутреннего сгорания полностью зависит от его типа и конструкции. Во многих автомобилях низкий КПД перекрывается различными усовершенствованиями, позволяющими улучшить общие технические характеристики.

Это интересно

Наукой обосновано, что коэффициент полезного действия любого механизма всегда меньше единицы. Это связано со вторым началом термодинамики.

Для сравнения, коэффициенты полезного действия различных устройств:

Наука и инженерная мысль не стоит на месте. постоянно изобретаются способы, как уменьшить теплопотери, снизить трение между частями агрегата, повысить энергоэффективность техники.

Сравнение КПД двигателей – бензин и дизель

Если сравнивать между собой КПД бензинового и дизельного двигателя, то следует отметить, что первый из них недостаточно эффективен и преобразует в полезное действие всего 25-30 % произведенной энергии. Например, КПД стандартного дизеля достигает 40 %, а применение турбонаддува и промежуточного охлаждения повышает это значение до 50 %.

Статья в тему: Срок службы масла в двигателе: по моточасам или по пробегу

Оба двигателя, несмотря на схожесть конструкции, имеют различные виды смесеобразования. Поэтому поршни карбюраторного мотора работают при более высоких температурах, требующих качественного охлаждения. Из-за этого тепловая энергия, которая могла бы превратиться в механическую, рассеивается без всякой пользы, понижая общее значение КПД.

Тем не менее, для того чтобы повысить КПД бензинового двигателя, принимаются определенные меры. Например, на один цилиндр могут устанавливаться два впускных и выпускных клапана, вместо конструкции, когда размещается один впускной и один выпускной клапан. Кроме того, в некоторых двигателях на каждую свечу устанавливается отдельная катушка зажигания. Управление дроссельной заслонкой во многих случаях осуществляется с помощью электропривода, а не обыкновенным тросиком.

Источник

КПД двигателя внутреннего сгорания – познаем эффективность в сравнении

КПД парового двигателя

Для приведения в действие силового агрегата необходимо преобразовать тепловую энергию, появляющуюся при сжигании топливовоздушной смеси, в механическую. Раньше применялись паровые двигатели, в которых сгорало твердое топливо (уголь, дрова), поршни приходили в движение под воздействием расширяющегося пара. Размеры таких силовых установок были в несколько раз больше по габаритам, чем современные двигатели, работающие на топливе другого вида.

В паровых машинах поршневого типа КПД не превышает значения 10%. В настоящее время такие устройства почти не применяются, т. к. считается, что не существует кардинальных способов увеличить их коэффициент полезного действия.

С целью увеличения данного показателя, применяют источники тепла, обладающие наименьшей стоимостью. Например, на больших ТЭЦ используется атомная энергия. Вдобавок, применяются современные технологии, при которых отработанное тепло не уходит бесполезно в атмосферу, а используется для отопительных систем в многоквартирных домах. Потери здесь составляют не больше 10 процентов. Современные паровые турбины обладают коэффициентом КПД, равным 50 – 60%.

Интересно: В развитых странах Европы (Швейцарии, Австрии) большой популярностью пользуются паровозы. Их используют в качестве туристического транспорта для перевозки пассажиров по горным дорогам. Благодаря многочисленным усовершенствованиям, экономические показатели паровозов часто соперничают как с электровозами, так и тепловозами.

Чем отличаются КПД бензинового и дизельного двигателя

В отличие от паровых механизмов, топливом для двигателей внутреннего сгорания служит бензин или солярка. Двигатели внутреннего сгорания бензиновый и дизельный имеют схожие конструкции. Однако образование топливовоздушных смесей у них происходит по-разному.

В карбюраторном агрегате элементы поршневой группы функционируют при сверхвысоких температурах. Соответственно, они нуждаются в более качественном охлаждении. При этом наблюдается большой расход тепловой энергии. Вследствие неэффективного рассеивания тепла в окружающей среде, понижается коэффициент полезного действия бензинового силового агрегата.

Роторно-поршневые тепловые двигатели обладают высоким КПД, его значение превышает 40%. Это намного выше бензиновых аналогов, но немного отстает от дизельных моторов.

Турбореактивные самолетные двигатели работают совершенно по другому принципу, который существенно отличается от автомобильных ДВС. Благодаря сравнительно высокому КПД, они пользуются большой популярностью в авиастроении. Чаще всего турбореактивные агрегаты устанавливаются на крупных лайнерах большой грузоподъемности.

Как написано в учебниках физики, чтобы найти КПД двигателя, нужно разделить значение выполненной работы на величину затраченной энергии. При расчете коэффициента полезного действия ДВС полезная работа делится на количество тепла, полученного при сгорании топлива.

Основные потери КПД в двигателях внутреннего сгорания происходят при:

При неполном сгорании эффективность снижается за счет выхода четвертой части объема топлива с отработавшими газами. Здесь потери КПД двигателя составляют почти 25%. Благодаря появлению инжекторов, работа топливных систем становится более эффективной, но не идеальной.

Часть тепловой энергии уходит на прогрев корпусных деталей двигателя, рабочих узлов, моторного масла, радиатора и пр. Тепло также уходит с выхлопными газами. На данном этапе потери КПД составляют не меньше 35 процентов.

Формула работы в физике

Для механической работы формула несложна: A = F x S. Если расшифровать, она равна приложенной силе на путь, на протяжении которого эта сила действовала. Например, мы поднимаем груз массой 15 кг на высоту 2 метра. Механическая работа по преодолению силы тяжести будет равна F x S = m x g x S. То есть, 15 x 9,8 x 2 = 294 Дж. Если речь идет о количестве теплоты, то A в этом случае равняется изменению количества теплоты. Например, на плите нагрели воду. Ее внутренняя энергия изменилась, она увеличилась на величину, равную произведению массы воды на удельную теплоемкость на количество градусов, на которое она нагрелась.

От чего зависит КПД дизельного двигателя

Если сравнивать эффективность бензинового и дизельного моторов, выяснится, что второй обладает лучшими показателями:

Конструкция и принцип работы дизелей способствуют наибольшей эффективности в сравнении с карбюраторными двигателями. Причины лучшего КПД дизельного двигателя:

В сравнении с дизелями, электрические двигатели считаются более эффективными. Двигатель с самым большим КПД – это электрический. При создании более долговечных аккумуляторных батарей, которым не страшны морозы, автомобильная промышленность постепенно перейдет на выпуск электромобилей в больших количествах.

Повышение эффективности электродвигателей

Электрические двигатели обладают некоторыми недостатками, которые плохо влияют на эффективность работы. Это слабый пусковой момент, высокий пусковой ток и несогласованность механического момента вала с механической нагрузкой. Это приводит к тому, что КПД устройства снижается.

Для повышения эффективности стараются обеспечить нагрузку двигателя до 75% и выше и увеличивать коэффициенты мощности. Также есть специальные приборы для регулирования частоты подаваемого тока и напряжения, что тоже приводит к повышению эффективности и росту КПД.

Одним из самых популярных приборов для увеличения КПД электродвигателя является устройство плавного пуска, которое ограничивает скорость роста пускового тока. Также уместно использовать и частотные преобразователи для изменения скорости вращения мотора путем изменения частоты напряжения. Это приводит к снижению расхода электроэнергии и обеспечивает плавный пуск двигателя, высокую точность регулировки. Также увеличивается пусковой момент, а при переменной нагрузке стабилизируется скорость вращения. В результате эффективность электродвигателя повышается.

КПД реактивного двигателя

Воздушно-реактивный тепловой мотор работает на химической энергии топливного состава. Его мощность расходуется на создание кинетической энергии ракеты и преодоление атмосферного сопротивления. Коэффициент полезного действия таких агрегатов минимальный, по своему значению он является самым маленьким, его значение не превышает даже 1%. Здесь более корректно обсуждать КПД не двигателя, а ракетного топлива, а также, насколько эффективно оно используется.

Резюме

При производстве современных двигателей внутреннего сгорания заводы-изготовители вкладывают большие средства в погоне за повышением КПД своей продукции хотя бы на несколько процентов. С этой целью, инженеры усовершенствуют и усложняют конструкции моторов, используют новые материалы для изготовления отдельных элементов.

Иногда случается, что финансовые затраты разработчиков нецелесообразны, в сравнении с полученным результатом в 2 – 3%. Поэтому бывает выгоднее подвергать стандартные двигатели различным форсированиям, доводкам, доработкам при помощи тюнинговых усовершенствований в небольших ремонтных мастерских. В результате чего увеличивается мощность и прочие тяговые характеристики силовых агрегатов.

Коэффициент полезного действия (КПД) – широко используемая характеристика эффективности некоторой системы или устройства. В нашем случае этой системой выступает двигатель внутреннего сгорания. Казалось бы, о какой эффективности может идти речь в мире современных моторов, разве она не равна 100 процентам? Но оказывается, как нет в нашем мире идеально черного или белого, так нет и машины, у которой вся энергия, получаемая от горения топлива, полностью переходит в механическую энергию, а последняя в свою очередь в полезную энергию прижимающую пилота автомобиля в его кресло.

Относительный КПД действительного цикла с высоким давлением

КПД г/а описывает отношение реально замеряемой работы в цилиндре (индикаторный цикл), совершаемой в результате создания давления в цилиндре, к работе теоретического цикла (рис. 2). Этот КПД включает потерн теплоты и потери на газообмен. Граничными условиями являются:

• реальный газ; • тепловые потери; • конечная скорость подвода и отвода теплоты; • неременная теплоемкость. Все параметры смесеобразования сильно влияют на процесс сгорания и,таким образом, на его совершенство.

Рис.4 Дизели очень сильно различаются по размерам и области применения. Отсюда следуют различия в их эффективности. Наибольший КПД достмга ется большими тихо ходными дизелями 7„ — теоретический КПД изменяется в зависимости от степени сжатия Читайте также: Перестал работать спидометр на ВАЗ-2110, что делать?

Далее, кроме тепла, выделяемого от горения, тепло выделяется и при самой работе двигателя, ведь все его части трутся, теряя тем самым часть своей энергии.

Подведя итог, получаем еще порядка 35-40% потерь энергии на образование тепла.

Ну, и третья группа потерь – это потери на обслуживание дополнительного оборудования. Помпа системы охлаждения, генератор, кондиционер и пр. – все они для своей работы тоже потребляют энергию. Энергия эта берется от работы двигателя – в размере порядка 10%.

Подведя итог, получаем, что, сжигая топливо, в реальности на «полезное» дело автомобиль затрачивает лишь четверть, а порой и вовсе пятую часть той энергии, которую вырабатывает его движок. Цифры средние, но разбежка в целом понятна.

КПД бензинового и дизельного двигателя.

При этом стоит оговориться, что у бензиновых и дизельных машин КПД двигателя внутреннего сгорания различен: 20% против 40% (соответственно). Данный факт имеет место быть потому, что несмотря на то, что потери на обслуживание механики и нагрев планеты в бензиновых моторах и «дизелях» сопоставимы, количество сжигаемого в процессе горения топлива у дизельных двигателей выше.

Подводя итоги и вспомнив историю появления двигателя внутреннего сгорания, когда КПД составлял немногим более 5%, можно сказать, что инженеры шагнули далеко вперед, а учитывая факт того, что 100% КПД, а по сути идеального двигателя, им вряд ли удастся добиться, можно утверждать, что современные двигатели, скорее всего, достигли своего верха возможного КПД, поэтому неудивительно, что сегодня все чаще автомобилистам предлагаются машины с гибридными двигателями и электромобили, ведь КПД движка у них (электромобилей) – для справки – порядка 90%.

Где теряется эффективность

Забегая вперёд можно констатировать, что для бензиновых двигателей КПД равен примерно 25 процентам. Почему так мало, и чем обусловлены такие цифры? Причины здесь в потерях: если взять некое количество топлива, и обозначить его ста процентами чистой энергии, передающейся мотору, то можно проследить все потери.

И что у нас остаётся в остатке? А всего 20%! Понятно, что это средний показатель, и бензиновые двигатели бывают более эффективными, но насколько – может ещё пять-семь процентов, не больше. Да и двигателей таких совсем немного. Итого из залитых десяти литров топлива, что автомобиль съедает на сто километров пробега, на полезную работу уходить всего два с половиной литра, а остальные семь-восемь литров попросту уходят в потери.

Читать дальше: Резина на трактор т 25

Лучшие двигатели внутреннего сгорания эффективны на 25%

КПД двигателя внутреннего сгорания – что это такое?

В первую очередь, мотор преобразует тепловую энергию, возникающую при сгорании топлива, в определенное количество механической работы. В отличие от паровых машин, эти двигатели более легкие и компактные. Они гораздо экономичнее и потребляют строго определенное жидкое и газообразное топливо. Таким образом, КПД современных двигателей рассчитывается на основании их технических характеристик и прочих показателей.

КПД (коэффициент полезного действия) представляет собой отношение фактически передаваемой мощности на вал двигателя к мощности, получаемой поршнем за счет действия газов. Если провести сравнение КПД двигателей различной мощности, то можно установить, что это значение для каждого из них имеет свои особенности.

Эффективный КПД двигателя зависит от различных механических потерь на разных стадиях работы. На потери влияет движение отдельных частей мотора и возникающее при этом трение. Это поршни, поршневые кольца и различные подшипники. Эти детали вызывают наибольшую величину потерь, составляющие примерно 65 % от их общего количества. Кроме того, потери возникают от действия таких механизмов, как насосы, магнето и прочие, которые могут дойти до 18 %. Незначительную часть потерь составляют сопротивления, возникающие в топливной системе во время процесса впуска и выпуска.

О топливной эффективности дизеля

ИЗ более высокого значения коэффициента полезного действия – следует и топливная эффективность. Так, например двигатель 1,6 литра может расходовать по городу всего 3 – 5 литров, в отличие от бензинового типа, где расход 7 – 12 литров. У дизеля намного больше крутящий момент, сам двигатель зачастую компактнее и легче, а так же в последнее время и экологичнее. Все эти положительные моменты, достигаются благодаря большему значению степени сжатия, есть прямая зависимость КПД и сжатия, смотрим небольшую табличку.

Однако не смотря на все плюсы у него также много и минусов.

Как становится понятно, КПД двигателя внутреннего сгорания далек от идеала, поэтому будущее однозначно за электрическими вариантами – осталось только найти эффективные аккумуляторы, которые не боятся мороза и долго держат заряд.

Читать дальше: Замена механизма стеклоподъемника ваз 2107

На этом заканчиваю, читайте наш АВТОБЛОГ.

(26 голосов, средний: 4,08 из 5)

Наверняка, многие автолюбители задавались вопросом о том, насколько мощность двигателя внутреннего сгорания соответствует полезности. Предполагается, что чем у силовой системы показатель КПД выше, тем она эффективнее. Если говорить абсолютными категориями, то на сегодняшний день самый высокий коэффициент у электрических двигателей, в некоторых моделях он достигает порядка 95 процентов. Что же до двигателей внутреннего сгорания, то у большинства из них, вне зависимости от типа топлива этот показатель весьма далёк от идеальных цифр.

КПД двигателя внутреннего сгорания

Конечно, современные двигатели гораздо эффективнее тех, что были разработаны и выпущены лет десять назад, обусловлено это объективными причинами развития технологий. В начале нулевых мотор объёмом в полтора литра выдавал в среднем около семидесяти лошадиных сил, и это было нормальным. Сегодня количество голов в табуне такого же объёма может достигать более 150. Каждый шажочек в плане увеличения КРД двигателя даётся производителям кропотливым трудом и перебором проб, ошибок и удач.

Сравнение КПД двигателей – бензин и дизель

Если сравнивать между собой КПД бензинового и дизельного двигателя, то следует отметить, что первый из них недостаточно эффективен и преобразует в полезное действие всего 25-30 % произведенной энергии. Например, КПД стандартного дизеля достигает 40 %, а применение турбонаддува и промежуточного охлаждения повышает это значение до 50 %.

Оба двигателя, несмотря на схожесть конструкции, имеют различные виды смесеобразования. Поэтому поршни карбюраторного мотора работают при более высоких температурах, требующих качественного охлаждения. Из-за этого тепловая энергия, которая могла бы превратиться в механическую, рассеивается без всякой пользы, понижая общее значение КПД.

Тем не менее, для того чтобы повысить КПД бензинового двигателя, принимаются определенные меры. Например, на один цилиндр могут устанавливаться два впускных и выпускных клапана, вместо конструкции, когда размещается один впускной и один выпускной клапан. Кроме того, в некоторых двигателях на каждую свечу устанавливается отдельная катушка зажигания. Управление дроссельной заслонкой во многих случаях осуществляется с помощью электропривода, а не обыкновенным тросиком.

Источник

Видео

КПД ДВИГАТЕЛЯ теплового 8 класс физика Перышкин

КПД двигателя и как его увеличить?

Урок 130 (осн). Тепловые двигатели, КПД теплового двигателя

Что такое КПД двигателя на самом деле

тюнинг двигателя — КПД ДВС. Тюнинг идеи

Работа газа и пара при расширении. Тепловые двигатели | Физика 8 класс #7 | Инфоурок

Принцип работы двигателя. 4-х тактный двигатель внутреннего сгорания (ДВС) в 3D

Тепловые двигатели и их КПД. 8 класс.

БЕНЗИН ИЛИ ДИЗЕЛЬ? НАГЛЯДНО СРАВНИВАЕМ ДВА ТИПА ДВИГАТЕЛЕЙ.

Физика 10 класс (Урок№25 — Тепловые двигатели. КПД тепловых двигателей.)

Возможности повышения эффективного кпд поршневых двс

1. Возможности повышения эффективного кпд поршневых двс

На экономичность двигателя оказывает воздействие большое количество факторов. В данном разделе мы рассмотрим лишь те из них, которые связаны с одним из наиболее ответственных элементов рабочего процесса двигателя – подводом теплоты в цикле. Именно он в основном и определяет пути совершенствования поршневого ДВС согласно требованиям, обозначенным в предыдущем разделе. В ДВС подвод тепла осуществляется, в основном путем сжигания углеводородных топлив в воздухе.

Эталоном совершенства тепловой машины, к которым относятся и поршневые двигатели внутреннего сгорания, является тепловая машина, в которой реализуется цикл Карно. Как известно, КПД этого цикла зависит от температуры горячего источника Т1 и температуры холодильника Т2:

.

Практическая реализация этого цикла затруднена, что объясняется целым рядом факторов, главными из которых являются:

1. Сложность осуществления изотермических подвода и отвода теплоты.

2. Современные конструкционные материалы имеют предел по температурному режиму, что ограничивает допустимую максимальную температуру цикла. Если учесть, что КПД цикла Карно максимально в сравнении с другими циклами лишь при условии одинаковых температурных диапазонов в цикле, то в реальных условиях при заданных материалах другие циклы могут иметь более высокую максимальную температуру вследствие значительно меньшего времени воздействия ее на стенки рабочей камеры.

Представляет интерес сравнение КПД цикла Карно с циклами, реализуемыми в современных поршневых ДВС. Условия сравнения должны быть следующими:

1. Так как в современных ДВС в качестве окислителя используется кислород атмосферы, то в циклах должна быть общая начальная точка цикла, соответствующая параметрам окружающей среды.

Рекомендуемые материалы

2. В связи с тем, что основной схемой двигателя является поршневой двигатель с жестким кривошипно – шатунным механизмом, необходимо сравнивать эти циклы при одинаковой степени сжатия.

Рис. 1.1. Термодинамические циклы поршневого ДВС: Vz – изохора минимального объема; Va – изохора максимального объема; а – общая начальная точка циклов, соответствующая параметрам окружающей среды, с – точка конца сжатия для различных циклов; z – точка конца подвода теплоты для различных циклов

Если рассмотреть эти циклы в T-S координатах, то видно, что лишь при количестве тепла подведенном в цикле стремящемся к нулю, КПД цикла Карно и  КПД с подводом теплоты при р = const становятся равными КПД цикла с изохорным подводом теплоты. Поэтому при указанных выше ограничениях более эффективен цикл с подводом тепла при постоянном объеме. Однако на практике, сокращать продолжительность меньше 40 – 50 градусов угла п. к.в. нецелесообразно ввиду сильного роста механической и тепловой нагрузки на двигатель. Таким образом, 40 – 50 град. является оптимальной продолжительностью сгорания.

Известно, что увеличение степени сжатия и показателя адиабаты рабочего тела приводит к однозначному росту термического КПД цикла. Для цикла с подводом теплоты при постоянном объеме термический КПД определяется по формуле:

 .

Ниже приведены примерные значения показателя адиабаты для идеального газа: одноатомного – 1,67; двухатомного – 1,4; трех- и многоатомного – 1,29. Отсюда, нетрудно вычислить прирост термического КПД при переходе рабочего тела от трехатомной структуры к двухатомной. К двухатомным молекулам принадлежат  кислород и азот, к трехатомным – продукты полного сгорания – углекислый газ и вода. Таким образом, все мероприятия, которые направлены на сокращение коэффициента остаточных газов в рабочей камере будут приводить к росту КПД. Это означает, что с точки зрения термического КПД необходимо стремиться к повышению коэффициента наполнения на режимах близких к полной нагрузке и к обеднению смеси, а, следовательно, отказу от дросселирования на частичных нагрузках.

Характер изменения индикаторного и эффективного КПД в зависимости от степени сжатия и способа регулирования нагрузки более сложен. На рис. 1.2 представлены характерные зависимости эффективного КПД безнаддувного четырехтактного двигателя с качественным регулированием нагрузки от степени сжатия при различных нагрузках, полученные при частоте вращения коленчатого вала, соответствующей максимальному крутящему моменту. Продолжительность сгорания – 80 град. п.к.в. Видно, что повышение степени сжатия выше определенного значения приводит к падению эффективного КПД двигателя. Это обусловлено двумя основными причинами. Во-первых, увеличением механических потерь (рис. 1.3), поскольку с повышением степени сжатия растет давление газов в цилиндре двигателя (рис.1.4). При увеличении коэффициента избытка воздуха относительная доля механических потерь возрастает, соответственно снижается значение степени сжатия, соответствующее максимальному эффективному КПД.

Во-вторых, повышение степени сжатия при неизменной продолжительности сгорания влечёт большее отклонение от изохорного подвода теплоты. Это легко понять, если ввести условную величину:

где

Vh – часть рабочего объёма двигателя, на которую распространяется процесс теплоподвода. При изохорном подводе теплоты (Vh=0) это выражение переходит в известное выражение для степени сжатия (расширения):

Отношение этих величин характеризует отклонение от изохорности подвода теплоты в зависимости от объема камеры сгорания:

Видно, что с уменьшением объема камеры сгорания, а, следовательно, с увеличением степени сжатия, отклонение от изохорности при постоянной продолжительности теплоподвода увеличивается. Как следствие, с повышением степени сжатия (при неизменной продолжительности сгорания) индикаторный КПД будет расти гораздо медленнее термического и, при определённых условиях, даже снижаться (рис. 1.3). По этой же причине практически не увеличиваются максимальные значения температуры цикла (рис. 1.4). При меньшей продолжительности сгорания рост индикаторного КПД будет продолжаться до более высоких значений степени сжатия.

Таким образом, варьирование степени сжатия в диапазоне от 12,5 до 20 практически не влияет на эффективный КПД двигателя на полной нагрузке. Если учесть, что большинство транспортных двигателей эксплуатируется на частичных режимах (меньше половины максимальной мощности) до 50 – 70% общего времени, а на режимах холостого хода до 40%, то можно констатировать, что снижение степени сжатия до значений 12,5 — 15 не повлечёт ухудшения экономичности. При этом уровень нагрузок на элементы двигателя (рис. 1.4) значительно уменьшится (до 30%).

К тому же высокие степени сжатия приводят к необходимости увеличения массы и габаритов двигателя, что в условиях применения его в автомобилях и тракторах, как правило, приводит к увеличению расхода топлива, а также – к перерасходу материалов и энергии при производстве, как двигателей, так и агрегатов, на которые они устанавливаются.

Рис.1.2. Зависимость эффективного КПД от степени сжатия при различных нагрузках

Рис.1.3. Зависимость механического (hm) и индикаторного (hi) КПД от степени сжатия при различных нагрузках

Рис. 1.4. Зависимости максимального давления и максимальной температуры цикла от степени сжатия.

На рис. 1.5 представлены характерные зависимости показателей четырехтактного двигателя от коэффициента избытка воздуха, полученные на режиме близком к холостому ходу (обороты двигателя n = 1000 об/мин и цикловая доза топлива постоянны). Рост эффективной мощности четырехтактного двигателя с увеличением коэффициента избытка воздуха объясняется ростом индикаторного КПД, а соответственно и индикаторной мощности, и снижением насосных потерь. В расчетах мощность насосных потерь включена в индикаторную мощность. Поэтому кривая 2 есть результат суммирования их влияний. Мощность механических потерь состоит только из потерь на трение. Увеличение с ростом коэффициента избытка воздуха индикаторного КПД является следствием относительного уменьшения количества продуктов сгорания, содержащих в основном трехатомные компоненты, которые обладают более высокой теплоемкостью.

На рис. 1.6 представлены зависимости показателей двухтактного двигателя с кривошипно-камерной продувкой от коэффициента избытка воздуха, полученные на режиме, близком к холостому ходу (обороты двигателя n = 2000 об/мин и цикловая доза топлива постоянны). Зависимость 2 на этом рисунке представляет собой, как и в случае с четырехтактным двигателем индикаторную мощность за вычетом мощности, затрачиваемой на насосные ходы двигателя. Поэтому мощность механических потерь определяется только потерями на трение.

Рис.1.5. Распределение мощностей при работе двигателя на режиме близком к холостому ходу: 1 – эффективная мощность; 2 – индикаторная мощность; 3 – мощность механических потерь; 4 – мощность насосных потерь двигателя

В случае двухтактного двигателя с кривошипно-камерной продувкой рост индикаторной мощности с увеличением коэффициента избытка воздуха практически компенсируется соответствующим ростом насосных потерь, что наряду с увеличением мощности механических потерь приводит к тому, что эффективная мощность изменяется меньше, чем в четырехтактном ДВС. Следовательно, менее значительно будет меняться и расход топлива.

Дросселирование на впуске вызывает рост относительного количества остаточных газов. Разбавление смеси остаточными газами может создать в цилиндре двигателя такие условия, когда воспламенение смеси или вообще прекращается, или сгорание развивается вяло. Отсюда вытекает необходимость обогащения смеси по мере дросселирования, поскольку максимумы скоростей воспламенения и распространения пламени лежат в области богатых смесей. Это приводит к выбросу в атмосферу продуктов неполного сгорания и перерасходу топлива. Поэтому, на практике, при переходе с количественного регулирования нагрузки двухтактного ДВС на качественное, выигрыш в топливной экономичности, видимо, будет более значительным.

Рис. 1.6. Зависимости показателей двигателя от коэффициента
избытка воздуха; режим, близкий к холостому ходу:
1 – эффективная мощность; 2 – индикаторная мощность; 3 – мощность механических потерь; 4 – мощность насосных потерь двигателя

Таким образом, как для двухтактных, так и четырехтактных двигателей в безнаддувном исполнении для повышения эффективного КПД необходимо, чтобы рабочий процесс позволял реализовать следующие основные требования:

1. Подвод теплоты в цикле, близкий к изохорному (40 – 50 град.пкв).

2. Отсутствие ограничений по степени сжатия (оптимальная находится в диапазоне 12 – 15).

3. Качественное регулирование – работа в широком диапазоне изменения коэффициента избытка воздуха (1 – 6).

4. Учитывая, что двигатели находятся в составе автомобилей, экономичность которых также зависит от массы и размеров, необходимо добавить требование высокой удельной мощности, которая зависит и от частоты вращения. Как показала практика, достаточным диапазоном эксплуатации по целому ряду причин является диапазон, реализованный в современных двигателях с искровым воспламенением.

Необходимо упомянуть еще об одном требовании к рабочему процессу поршневого ДВС, которое, по всей видимости, в будущем может стать определяющим.

Массовое использование ископаемых источников сырья для производства моторных топлив привело к истощению углеводородных ресурсов. В свете надвигающегося глобального топливного кризиса многие ведущие научно-исследовательские организации и предприятия энергетической отрасли мира ведут широкомасштабные исследования по предотвращению его возможных негативных последствий. Анализ современных подходов позволил выделить два лидирующих направления в этом вопросе:

1. Увеличение энергоэффективности использования ископаемых топливных ресурсов

2. Замена современных товарных топлив на возобновляемые альтернативные топлива.

В современных условиях вопрос увеличения эффективности производства механической энергии не может быть решён без рассмотрения полного цикла производства и потребления топлива, что может быть описано системой «перерабатывающий завод – топливо – двигатель » . С такой позиции можно установить взаимосвязь между эффективностью производства топлива и эффективностью его сжигания в традиционном поршневом ДВС. Так, например, увеличение коэффициента полезного действия бензинового двигателя обеспечивается за счёт повышения степени сжатия, что, в свою очередь, требует увеличения детонационной стойкости топлива, и, следовательно, существенное увеличение энергозатрат, усложнение производства и увеличение стоимости топлива.

Принципиальным решением этого вопроса могло бы стать использование нефтяных топлив широкого фракционного состава, что, по оценкам специалистов, должно значительно повысить эффективность переработки сырья за счёт отказа от дорогостоящих методов нефтепереработки, снижения требований к перерабатывающему оборудованию и экономии углеводородного сырья. Однако, традиционные типы поршневых двигателей не способны функционировать на таком топливе.

Осуществление второго пункта также имеет некоторые особенности. По данным ведущих двигателестроительных фирм мира, одним из наиболее предпочтительных альтернативных топлив, способным частично, а в перспективе и полностью, заменить традиционные нефтяные топлива, являются спирты, произведенные из лигноцеллюлозного сырья, в том числе биоэтанол. Объясняется это практически неисчерпаемой сырьевой базой (при производстве из органического сырья и отходов), простотой производства и хранения.

Тем не менее, как и в случае с традиционными топливами, анализ системы «перерабатывающий завод – топливо – двигатель » даёт более полное представление о перспективах внедрения этанола. В традиционных поршневых двигателях можно использовать только обезвоженный этанол (содержание воды менее 1%) ввиду  необходимости добавления бензина, что объясняется низкой испаряемостью и, как следствие низкими пусковыми свойствами этанола. При этом производство обезвоженного этанола значительно дороже обводненного – примерно в полтора-два раза. И если для производства обезвоженного этанола требуется специальное высокоорганизованное производство, то обводненный этанол можно производить, в том числе, и в условиях крупного сельскохозяйственного предприятия из отходов обычных посевных культур, без высоких требований к квалификации обслуживающего персонала.

В то же время, добавление в рабочую камеру двигателя воды является наиболее перспективным способом понижения токсичности отработавших газов. Этанол является наилучшим топливом, с точки зрения добавления воды, поскольку он образует с водой устойчивые смеси, а с товарными топливами вода не смешивается. Применение обводнённого этанола в качестве топлива для поршневого ДВС позволило бы одновременно радикально улучшить экологические характеристики двигателя, решить проблемы исчерпания источников углеводородного сырья и роста количества парниковых газов в атмосфере. Тем не менее, как уже отмечалось выше, воспламенять и сжигать обводнённый этанол в традиционных поршневых двигателях не представляется возможным.

Таким образом, как в случае с нефтяными топливами, так и в случае с альтернативными топливами производители вынуждены идти на компромисс между эффективностью производства топлива и эффективностью двигателя, функционирующего на этом топливе.

Обобщая вышесказанное, необходимо ещё раз отметить, что в современных условиях вопрос увеличения КПД производства механической энергии не может быть решён без рассмотрения полного цикла производства и потребления топлива. Анализ системы «перерабатывающий завод – топливо – двигатель » показывает, что существенного результата в этом вопросе можно добиться, если обеспечить эффективную работу поршневого двигателя внутреннего сгорания на дешёвых и простых в изготовлении видах топлива.

 Таким образом, еще одним требованием к рабочему процессу является возможность работы:

1. на любых современных товарных топливах (от дизельного топлива до высокооктановых бензинов;

2. на водных растворах этанола.

Рабочий процесс, реализующий все эти требования, обеспечит широкое применение нефтяных топлив широкого фракционного состава и водных растворов этанола в качестве моторного топлива и, одновременно, объединит лучшие качества дизелей и бензиновых двигателей. Широкое внедрение двигателя с таким рабочим процессом  позволит добиться существенного повышения эффективности производства топлив без ухудшения эффективности самого двигателя, что означает повышение энергоэффективности всей системы «перерабатывающий завод – топливо – двигатель » . С экономической точки зрения необходимо также, чтобы рабочий процесс реализовывался на базе традиционного поршневого ДВС, т.е. имелась возможность конвертирования традиционных поршневых двигателей (в том числе уже эксплуатируемых).

Традиционные бензиновые двигатели имеют к моменту воспламенения уже подготовленную, близкую к однородной, смесь. Это условие налагает два ограничения:

1. по максимальной (вблизи 10) степени сжатия, т.к. в однородных смесях при повышенных степенях сжатия возникает детонация,

2. по максимальному обеднению топливовоздушной смеси, т.к. в однородных смесях бедный концентрационный предел искрового воспламенения близок к составу с a » 1.

Эти же ограничения практически исключают возможность реализации работы на низкооктановых топливах. С другой стороны однородная стехиометрическая смесь, в сочетании  с искровым воспламенением позволяют реализовать высокую удельную мощность.

Дизели имеют к моменту самовоспламенения неоднородную смесь, что позволяет реализовать качественное регулирование и бездетонационное сгорание. Однако снижение степени сжатия в быстроходных безнаддувных модификациях до вышеуказанного оптимального диапазона приводит к ухудшению процессов воспламенения и сгорания (будет рассмотрено в последующих разделах).

Дизели позволяют осуществить многотопливный цикл при высоких степенях сжатия (более 20). Повышенные значения максимального давления и жесткости сгорания цикла при высоких степенях сжатия определяют высокие нагрузки на детали цилиндропоршневой группы, что приводит к увеличению механических потерь и требует более прочной конструкции двигателя. При использовании топлив с низкими цетановыми числами (например, бензинов) указанные явления усиливаются, поэтому время работы дизеля на резервных топливах по техническим условиям не превышает 10% от общего ресурса двигателя. Снижение степени сжатия в дизелях до уровня 12 – 15 позволило бы снизить массу и габариты двигателя без увеличения расхода топлива. Однако в традиционном дизеле снижение степени сжатия менее 15 приводит к ухудшению смесеобразования, воспламенения и сгорания.

В связи с ограничениями по максимальной частоте вращения и минимальному значению коэффициента избытка воздуха дизели имеют низкую, относительно поршневых ДВС с искровым воспламенением, литровую мощность. Вес и габариты дизеля из-за высоких степеней сжатия достаточно большие. Соответственно, остается относительно низкой удельная мощность, что в условиях применения его в автомобилях и тракторах, как правило, приводит к увеличению расхода топлива, а также приводит к перерасходу материалов и энергии при производстве, как двигателей, так и агрегатов, на которые они устанавливаются.

Решение вышеперечисленных задач выдвигает ряд проблем смесеобразования, воспламенения и сгорания, которые необходимо разрешить в целях достижения высоких экологических и экономических показателей как двигателя, так и системы «перерабатывающий завод – топливо – двигатель » в целом.

Вопросы для самоконтроля

1. Цикл Карно. Причины отсутствия практической реализации цикла Карно.

2. Обоснуйте преимущества цикла двигателя с изохорным подводом теплоты. При каких условиях они справедливы. Причины необходимости увеличения продолжительности теплоподвода до 40 –50 град. угла пкв.

3. Каково влияние продолжительности теплоподвода на КПД? Как влияет на КПД величина теплоподвода?

4. Объясните причины влияния свойств рабочего тела на КПД двигателя.

Вам также может быть полезна лекция «6 Гигиенические регламенты применения добавок, улучшающих внешний вид пищевых продуктов».

5. Назовите способы регулирования мощности в поршневых ДВС, их суть. В каких типах поршневых двигателей они применяются?

6. Охарактеризуйте поведение индикаторного КПД в зависимости от степени сжатия. Как влияют на него свойства рабочего тела, скоростной режим двигателя?

7.  Как изменяется зависимость индикаторного КПД от степени сжатия при различных нагрузках. Влияет ли способ регулирования мощности на их протекание?

8. Охарактеризуйте поведение эффективного КПД в зависимости от степени сжатия. Как влияют на него свойства рабочего тела, нагрузка, способ регулирования, скоростной режим двигателя?

9. Объясните причины влияния способа регулирования мощности на эффективный КПД двигателя. Влияет ли способ регулирования мощности на КПД при полной нагрузке?

10. Охарактеризуйте зависимость степени сжатия, соответствующей максимальному эффективному КПД, от нагрузки при качественном регулировании мощности.

Двигатель внутреннего сгорания имеет наибольший кпд

Известно, что эффективность работы автомобильного двигателя внутреннего сгорания находится в прямой зависимости от величины коэффициента полезного действия. КПД двигателя выражается в виде соотношения мощностей, передаваемых на коленвал и поршни. Современные ДВС отличаются наибольшей эффективность, в сравнении с устаревшими аналогами. Например, мотор объемом 1,6 л., раньше развивал мощность не более 70 лошадиных сил, а теперь этот параметр часто достигает 150 л. с.

КПД парового двигателя

Для приведения в действие силового агрегата необходимо преобразовать тепловую энергию, появляющуюся при сжигании топливовоздушной смеси, в механическую. Раньше применялись паровые двигатели, в которых сгорало твердое топливо (уголь, дрова), поршни приходили в движение под воздействием расширяющегося пара. Размеры таких силовых установок были в несколько раз больше по габаритам, чем современные двигатели, работающие на топливе другого вида.

В паровых машинах поршневого типа КПД не превышает значения 10%. В настоящее время такие устройства почти не применяются, т. к. считается, что не существует кардинальных способов увеличить их коэффициент полезного действия.

С целью увеличения данного показателя, применяют источники тепла, обладающие наименьшей стоимостью. Например, на больших ТЭЦ используется атомная энергия. Вдобавок, применяются современные технологии, при которых отработанное тепло не уходит бесполезно в атмосферу, а используется для отопительных систем в многоквартирных домах.

Потери здесь составляют не больше 10 процентов. Современные паровые турбины обладают коэффициентом КПД, равным 50 – 60%.

Интересно: В развитых странах Европы (Швейцарии, Австрии) большой популярностью пользуются паровозы. Их используют в качестве туристического транспорта для перевозки пассажиров по горным дорогам. Благодаря многочисленным усовершенствованиям, экономические показатели паровозов часто соперничают как с электровозами, так и тепловозами.

Чем отличаются КПД бензинового и дизельного двигателя

В отличие от паровых механизмов, топливом для двигателей внутреннего сгорания служит бензин или солярка. Двигатели внутреннего сгорания бензиновый и дизельный имеют схожие конструкции. Однако образование топливовоздушных смесей у них происходит по-разному.

В карбюраторном агрегате элементы поршневой группы функционируют при сверхвысоких температурах. Соответственно, они нуждаются в более качественном охлаждении. При этом наблюдается большой расход тепловой энергии.

Вследствие неэффективного рассеивания тепла в окружающей среде, понижается коэффициент полезного действия бензинового силового агрегата.

  • КПД бензинового двигателя равняется 25-30 %;
  • дизельного – 40 %;
  • с установкой турбонаддува достигает 50 процентов соответственно.

Роторно-поршневые тепловые двигатели обладают высоким КПД, его значение превышает 40%. Это намного выше бензиновых аналогов, но немного отстает от дизельных моторов.

Турбореактивные самолетные двигатели работают совершенно по другому принципу, который существенно отличается от автомобильных ДВС. Благодаря сравнительно высокому КПД, они пользуются большой популярностью в авиастроении. Чаще всего турбореактивные агрегаты устанавливаются на крупных лайнерах большой грузоподъемности.

Как написано в учебниках физики, чтобы найти КПД двигателя, нужно разделить значение выполненной работы на величину затраченной энергии. При расчете коэффициента полезного действия ДВС полезная работа делится на количество тепла, полученного при сгорании топлива.

Основные потери КПД в двигателях внутреннего сгорания происходят при:

  1. Неполном сгорании топлива в цилиндрах.
  2. Расходе тепла.
  3. Механических потерях.

При неполном сгорании эффективность снижается за счет выхода четвертой части объема топлива с отработавшими газами. Здесь потери КПД двигателя составляют почти 25%. Благодаря появлению инжекторов, работа топливных систем становится более эффективной, но не идеальной.

Часть тепловой энергии уходит на прогрев корпусных деталей двигателя, рабочих узлов, моторного масла, радиатора и пр. Тепло также уходит с выхлопными газами. На данном этапе потери КПД составляют не меньше 35 процентов.

Несмотря на смазывание трущихся поверхностей, энергия расходуется на преодоление сил трения. Это происходит при сопряжении таких элементов, как шатуны, цилиндры, поршни, маслосъемные, компрессионные кольца и т. д. При вырабатывании электричества генератор тоже отбирает немалую долю энергии двигателя. В результате механических потерь, КПД ДВС снижается еще на 20%.

КПД двигателя рассчитывается по специальным формулам, в которых участвуют показатели работы, энергии и потерь.

Интересно: Существуют некоторые методы повышения КПД бензиновых двигателей внутреннего сгорания:

  1. Цилиндры оснащаются двумя впускными, а также двумя выпускными клапанами, вместо привычных конструкций в одном экземпляре.
  2. Свечи зажигания комплектуются отдельными катушками зажигания.
  3. Вместо обыкновенного тросика управления дроссельной заслонкой, используется электрический привод.

От чего зависит КПД дизельного двигателя

Если сравнивать эффективность бензинового и дизельного моторов, выяснится, что второй обладает лучшими показателями:

  • замечено, что, бензиновые двигатели преобразуют только одну четвертую часть использованной энергии в механическую работу;
  • в то время, как дизельные – 40% соответственно;
  • при установке турбонаддува в дизеле, КПД газотурбинного двигателя возрастает до 50 и более процентов.

Конструкция и принцип работы дизелей способствуют наибольшей эффективности в сравнении с карбюраторными двигателями. Причины лучшего КПД дизельного двигателя:

  1. Более высокий показатель степени сжатия.
  2. Воспламенение топлива происходит по другому принципу.
  3. Корпусные детали нагреваются меньше.
  4. Благодаря меньшему количеству клапанов, снижены расходы энергии на преодоление сил трения.
  5. В конструкции дизеля отсутствуют привычные свечи, катушки зажигания, на которые требуется дополнительная энергия от электрогенератора.
  6. Коленчатый вал дизеля раскручивается с меньшими оборотами.

В сравнении с дизелями, электрические двигатели считаются более эффективными. Двигатель с самым большим КПД – это электрический. При создании более долговечных аккумуляторных батарей, которым не страшны морозы, автомобильная промышленность постепенно перейдет на выпуск электромобилей в больших количествах.

КПД реактивного двигателя

Воздушно-реактивный тепловой мотор работает на химической энергии топливного состава. Его мощность расходуется на создание кинетической энергии ракеты и преодоление атмосферного сопротивления. Коэффициент полезного действия таких агрегатов минимальный, по своему значению он является самым маленьким, его значение не превышает даже 1%. Здесь более корректно обсуждать КПД не двигателя, а ракетного топлива, а также, насколько эффективно оно используется.

Резюме

При производстве современных двигателей внутреннего сгорания заводы-изготовители вкладывают большие средства в погоне за повышением КПД своей продукции хотя бы на несколько процентов. С этой целью, инженеры усовершенствуют и усложняют конструкции моторов, используют новые материалы для изготовления отдельных элементов.

Иногда случается, что финансовые затраты разработчиков нецелесообразны, в сравнении с полученным результатом в 2 – 3%. Поэтому бывает выгоднее подвергать стандартные двигатели различным форсированиям, доводкам, доработкам при помощи тюнинговых усовершенствований в небольших ремонтных мастерских. В результате чего увеличивается мощность и прочие тяговые характеристики силовых агрегатов.

Поршневыми двигателями внутреннего сгорания (ДВС) называются двигатели, в которых топливо сжигается в цилиндрах, где возвратно-поступательно двигается поршень.

Несмотря на то, что цикл Карно имеет наивысший КПД, в реальных машинах он не реализуется. Дело в том, что цикл Карно, будучи сильно растянутым в координатах рv, связан с весьма большими значениями удельного объема и давления.

Рис. 43. Цикл Карно в координатах

pv

Отношение объема цилиндра к объему камеры сгорания

=vc/va (эта величина в поршневых ДВС называется степенью сжатия), работающего по циклу Карно, достигает 400,а давление в точке (а) – = 280 – 300 МПа.

Термодинамических циклы ДВС: цикл с подводом теплоты при постоянном объеме (цикл Отто),состоящий из двух изохор и двух адиабат (a1-b-c1-d-a1) и цикл с подводом теплоты при постоянном давлении (цикл Дизеля), состоящий из изобары a2b, изохоры с1d и двух адиабат bc1 и da2 (a2-b-c1-d- a2).

Полученные циклы имеют КПД меньше, чем КПД цикла Карно

Процесс (1–2) в цикле Отто характеризует адиабатное сжатие рабочего тела, процесс (2–3) изохорный подвод теплоты q1, процесс (3–4) — адиабатное расширение и процесс (4–1) — изохорный отвод теплоты q2.

Полезная работа в цикле равна разности подведенной и отведенной теплоты

и численно равна площади (1-2-3-4-1). Степень сжатия цикла весьма сильно влияет на КПД цикла. Чем выше степень сжатия, тем выше КПД цикла. Термический КПД цикла

.

Это значит, что КПД цикла Отто растет с увеличением степени сжатия.

Цикл Дизеля состоит из процесса адиабатного сжатия (1–2), изобарного подвода теплоты (2–3), адиабатного расширения (3–4) и изохорного отвода теплоты (4–1) (рис. 46). Степень сжатия в двигателях, работающих по циклу Дизеля, составляет

=14 – 18.

Сравним между собой циклы Отто и Дизеля при одинаковых параметрах точек (1) и (4) с помощью диаграммы Тs (рис. 46). Если в этих циклах будет одинаковая степень сжатия ε и одинаковое количество отводимой теплоты q2 , то КПД цикла Отто будет выше КПД цикла Дизеля.

КПД цикла Дизеля, в условиях одинакового максимально возможного давления, больше, чем КПД цикла Отто.

Подачу топлива можно осуществлять так, что одна его часть будет сгорать при постоянном объеме, а другая – при постоянном давлении. Такой цикл называется циклом смешанного сгорания топлива или циклом Тринклера .Цикл со смешенным подводом теплоты занимает по эффективности промежуточное положение между циклами Отто и Дизеля как в условиях сравнения при одинаковой степени сжатия ε, так и при сравнении по условию одинакового максимального давления в цилиндре двигателя.

Рис. 47. Цикл смешанного сгорания в координатах pv (а) и Ts(б)

Выведем уравнение для определения термического КПД смешанного цикла. Количество подводимой теплоты на изохоре (2–3) равно

, а в изобарном процессе (3–4) – . Количество отводимой теплоты q2 на изохоре (5–1) по абсолютной величине составляет . Следовательно, термический КПД цикла

.

Из уравнения видно, что КПД цикла со смешанным подводом теплоты растет с увеличением ε и λ и с уменьшением ρ. Если ρ = 1, то цикл со смешанным подводом теплоты превращается в цикл Отто, термический КПД которого находится из соотношения

Если λ = 1, то смешанный цикл превращается в цикл Дизеля, термический КПД которого находится из выражения

.

Изобретение относится к машиностроению, а именно к двигателестроению. Двигатель внутреннего сгорания содержит камеру сгорания, образованную внутренней поверхностью цилиндра и днищами поршней. Поршни разведены на некоторый угол, оптимальная величина которого составляет 35 — 60 o , фиксируются путем зацепления одинаковых шестерен, неподвижно закрепленных на концах коленчатых валов с центральной шестерней-маховиком, приспособленной для стартерного пуска двигателя и отбора мощности ее вала. Изобретение позволяет повысить КПД двигателя внутреннего сгорания. 4 з.п. ф-лы, 3 ил.

Изобретение относится к машиностроению, а точнее к двигателестроению и способу работы.

Может применено всюду, где ныне используются ДВС.

Главный недостаток современных ДВС — низкий КПД.

Для карбюраторных двигателей он составляет 25-30%, для дизельных — 35-40%. Столь низкий КПД объясняется тремя причинами: первая — рабочий такт начинается до прихода поршня в верхнюю мертвую точку (в.м.т.), т.е. с отрицательной работы; вторая — максимум давления в цилиндре при рабочем такте приходится на момент, когда поршень находится вблизи в.м.т., что очень существенно снижает эффективность преобразования тепловой энергии давления в механическую; третья — малой рабочей площадью, используемой для свершения крутящего момента (площадь нижнего днища поршня).

Известен двигатель внутреннего сгорания, камера сгорания которого образована внутренней поверхностью цилиндра и днищами поршней, последние имеют не взаимовстречное движение и они разведены на некоторый угол разбежки (см. пат. США N 3868931, F 02 B 75/04, 1975).

Однако этот двигатель имеет невысокий коэффициент полезного действия (КПД).

Технической задачей изобретения является повышение КПД двигателя.

Поставленная задача решается за счет того, что двигатель содержит камеру сгорания, образованную внутренней поверхностью цилиндра и днищами поршней, последние имеют не взаимовстречное движение, а разведены на некоторый угол (угол разбежки), при этом оптимальная величина его составляет от 35 до 60 градусов и фиксируется путем защепления одинаковых шестерен, неподвижно закрепленных на концах валов, с центральной шестерней-маховиком, приспособленной для пуска двигателя и отбора мощности с ее вала. Кроме того, один из поршней (рабочий), опережающий другой поршень (вспомогательный), имеет удлиненный шатун, величина которого определяется углом разбежки поршней и углом

для рабочего поршня. Объем камеры сгорания определяется как соотношением длин шатунов, так и изменением (увеличением) радиуса кривошипа вспомогательного поршня. Двигатель выполнен с увеличенной рабочей площадью за счет увеличения диаметра цилиндра, имеет максимальное сближение поршней, при этом в их днищах выполнены выемки, обеспечивающие необходимую степень сжатия. Рабочий такт в двигателе начинается с положительной работы, определяемой углом положения рабочего поршня при оптимальном угле разбежки поршней, величина которого устанавливается опытным путем для каждого типа двигателя и используемого топлива, обеспечивающим в итоге развития двигателем максимального крутящего момента.

Следует заметить, что при обратном движении оба поршня будут двигаться в одном направлении, причем у рабочего поршня линейная скорость будет возрастать, а у вспомогательного замедляться. Такое взаимное расположение при их максимальном сближении и создает необходимую степень сжатия, величина которой определяется путем соотношения длины шатунов и изменением (увеличением) радиуса кривошипа вспомогательного поршня.

Последнее делается с целью сглаживания линейных скоростей.

Известно, что в замкнутом объеме давление газа во всех направлениях одинаково на единицу площади. Следовательно, чем больше рабочая площадь в двигателе, тем более эффективно будет использоваться тепловая энергия давления. С этой целью в двигателе предусматривается некоторое увеличение диаметра цилиндра при максимально допустимом сближении поршней при рабочем такте с одновременным устройством выемок в днищах поршней с целью обеспечения необходимой степени сжатия. Таким приемом обеспечивается значительное превосходство рабочей площади над нерабочей.

В современных двигателях с одним поршнем в цилиндре начальная фаза рабочего такта, в лучшем случае, начинается при 50% доле рабочей площади с последующим ее уменьшением по мере удаления поршня от в.м.т.

В предлагаемом двигателе уравнение площадей произойдет только тогда, когда расстояние между поршнями составит половину диаметра цилиндра. А это существенно важно, если учесть, что 80% всей работы приходится на 60 градусов поворота коленчатого вала при рабочем такте. Оптимальные размеры цилиндра принимаются опытным путем в зависимости от типа двигателя и вида используемого топлива.

Принципиальная особенность работы двигателя заключается в следующем: наличие угла разбежки поршней позволяет до начала рабочего такта вывести рабочий поршень на некоторый заданный угол, при котором достигается максимальный крутящий момент. Необходимым условием для этого является, чтобы максимум деления в цилиндре совпадал с выходом вспомогательного поршня из в.м. т.

Оптимальная величина угла сдвижки поршней находится в пределах 35-60 градусов.

Повышение КПД в предлагаемом двигателе будет определяться следующими факторами: углом разбежки поршней и углом

для рабочего поршня, большей рабочей площадью и более эффективным способом преобразования тепловой энергии давления в механическую. Помимо этого следует отметить, что рабочий такт в новом двигателе будет начинаться с положительной работы, а на достижение необходимой степени сжатия будет затрачиваться меньше энергии по причине одностороннего направления движения поршней.

Данный принцип устройства двигателя и предлагаемый способ работы поршней может быть использован и при внешнем подводе тепловой энергии.

На фиг.1 схематически показан общий вид дизельного двигателя.

Он состоит из цилиндра 1; рабочего 2 и вспомогательного 3 поршней; форсунки 4; шатунов 5 и 6; выхлопных окон 7; продувочных щелей 8; коленчатых валов 9 и 10; одинаковых шестерен 11 и 12; центральной шестерни 13; вала отбора мощности 14.

На фиг. 2, 3 показаны возможные варианты положения поршней в момент начала рабочего такта. Обозначения см. фиг.1.

Из рисунка видно, что угол

для рабочего поршня составляет 20 градусов, вспомогательный поршень находится на расстоянии 15 градусов до его прихода в в.м.т. Сумма указанных углов дает угол разбежки поршней — 35 градусов.

Из теории известно, что крутящий момент определяется формулой

где P — сила давления поршня; R — радиус кривошипа; — угол поворота кривошипа; — угол поворота шатуна.

(см. «Автомобильные двигатели» под ред. М.С.Ховаха, Москва, «Машиностроение», 1977, стр. 346).

Если допустить, что максимум давления в обычном двигателе соответствует углу

в 15 o , то в нашем примере это произойдет при угле в 35 градусов. В этом случае геометрический множитель возрастет в два раза (cм. таблицу 3, стр. 575, «Автомобильные двигатели»). А если учесть, что и произведение также возрастет, то в целом итоговая величина крутящего момента еще больше увеличится.

При максимальном угле разбежки поршней геометрический множитель возрастет многократно, что в итоге превысит 100% значение КПД. Этот парадокс объясняется тем, что его величина для ныне эксплуатируемых двигателей явно завышена.

Соотношением диаметров шестерен коленчатых валов c центральной шестернью можно в больших пределах изменять передаточное число, что делает двигатель более универсальным и стабильным в работе.

Наиболее технологично простыми выглядят дизельные варианты двигателей. Что же касается двигателей с искровым зажиганием, то в этом случае клапаны и свеча зажигания должны устанавливаться в формкамере, устраиваемой в центральной части цилиндра.

Переход на новый тип двигателей помимо чисто экономических выгод позволит значительно оздоровить и экологическую обстановку, которая ныне приобретает катастрофический характер.

1. Двигатель внутреннего сгорания, содержащий камеру сгорания, образованную внутренней поверхностью цилиндра и днищами поршней, последние имеют не взаимовстречное движение, а разведены на некоторый угол (угол разбежки поршней), отличающийся тем, что оптимальная величина его составляет 35 — 60 o C и фиксируется путем зацепления одинаковых шестерен, неподвижно закрепленных на концах коленчатых валов, с центральной шестерней-маховиком, приспособленной для стартерного пуска двигателя и отбора мощности с ее вала.

2. Двигатель по п.1, отличающийся тем, что один из поршней (рабочий), опережающий в своем движении другой поршень (вспомогательный) имеет удлиненный шатун, величина которого определяется углом разбежки поршней и углом

для рабочего поршня.

3. Двигатель по п.1, отличающийся тем, что объем камеры сгорания определяется как соотношением длин шатунов, так и изменением (увеличением) радиуса кривошипа вспомогательного поршня.

4. Двигатель по п.1, отличающийся тем, что он выполнен с увеличенной рабочей площадью за счет увеличения диаметра цилиндра, имеет максимальное сближение поршней, при этом в их днищах выполнены выемки, обеспечивающие степень сжатия.

5. Двигатель по п.1, отличающийся тем, что рабочий такт в нем начинается с положительной работы, определяемой углом

положения рабочего поршня при оптимальном угле разбежки поршней, величина которого устанавливается опытным путем для каждого типа двигателя и используемого топлива, обеспечивающим в итоге развития двигателем максимального крутящего момента.

Расчетное исследование возможности реализации сверхвысокой степени сжатия в поршневом двигателе внутреннего сгорания

Архив

Приложение к журналу

Ключевые слова
Аннотации
Архив рубрик

Логин

Пароль

ВХОД

регистрация
забыли пароль?

Другие журналы

  • Аэрокосмический научный журнал
  • Инженерный вестник
  • Математика и математическое моделирование
  • Машины и установки: проектирование, разработка и эксплуатация
  • Молодежный научно-технический вестник
  • Радиооптика
  • Технологии инженерных и информационных систем

Расчетное исследование возможности реализации сверхвысокой степени сжатия в поршневом двигателе внутреннего сгорания


# 09, сентябрь 2013
DOI: 10. 7463/0913.0622287

Файл статьи: Sakulin_P.pdf (476.23Кб)

авторы: Сакулин Р. Ю., Ахтямов И. И., Шаяхметов В. А., Яковлев П. Б.


УДК 621.43.054

Россия, Уфимский государственный авиационный технический университет

[email protected]

[email protected]

[email protected]

[email protected]

 

Введение

Создание экологически безвредного и экономичного рабочего процесса поршневого двигателя внутреннего сгорания является одной из основных задач современного энергетического машиностроения. Из теории поршневых двигателей [1] известно, что с увеличением предварительного сжатия рабочего тела, уменьшается количество топлива, необходимое для получения единицы мощности. То есть для повышения эффективности перспективного рабочего процесса необходимо увеличение степени сжатия.

Такой способ повышения эффективности рабочего процесса уже был неоднократно использован на практике. Так, значение степени сжатия бензиновых автомобильных двигателей 30 – 40-х годов находилось в пределах 4 – 6. Современные двигатели с принудительным воспламенением имеют степень сжатия ≈ 11. Однако дальнейшее увеличение этого значения ограничено возникновением детонации.  

Двигатели с самовоспламенением работают при значениях степени сжатия ≈ 15 – 20, что  обеспечивает возгорание топлива. Уже при таких значениях степени сжатия значительно повышается максимальное давление и жесткость сгорания цикла. Это приводит к увеличению нагрузки на детали цилиндропоршневой группы и ужесточению требований к прочности конструкции двигателя, что, в свою очередь, вызывает рост механических потерь и увеличение массы двигателя. По этим причинам степень сжатия современных дизельных двигателей также ограничивается в районе 20.

Однако, не смотря на имеющиеся ограничения по степени сжатия для обоих типов поршневых двигателей, в настоящее время ведутся исследования возможности создания работоспособных двигателей со степенью сжатия более 25. Так, например, в работе [2] проведено численное исследование дизельного двигателя со степенью сжатия 30. Подвод теплоты здесь предлагается осуществить в начале процесса расширения. При этом условия в камере сгорания во время впрыска должны обеспечить самовоспламенение не только дизельного топлива, но и бензина.

Таким образом, при создании перспективного высокоэффективного рабочего процесса выбор степени сжатия является принципиальным вопросом, требующим решения на самых ранних этапах реализации проекта.

Цель работы заключается в выявлении преимуществ реализации сверхвысоких степеней сжатия и определении оптимального диапазона степеней сжатия перспективного высокоэффективного рабочего процесса. Для достижения поставленной цели необходимо исследовать влияние степени сжатия на эффективные показатели двигателя.

Методика исследования

В качестве объекта исследования был выбран четырехтактный одноцилиндровый дизельный двигатель YANMARL-100C (степень сжатия в серийном исполнении составляет 19,3). Расчеты проводились в системе имитационного моделирования ДВС «Альбея», разработанной на кафедре ДВС Уфимского государственного авиационного технического университета. Эта система позволяет определить индикаторные и эффективные показатели двигателя в любой момент времени [3, 4, 5].

Для подтверждения адекватности модели были проведены расчеты параметров цикла и эффективных показателей двигателя YANMARL-100C, которые были сопоставлены с данными экспериментального исследования и результатами индицирования. Условная продолжительность сгорания была определена из экспериментальных данных и составила 89 градусов угла п.к.в. Наилучшее совпадение расчётных и экспериментальных кривых давления и скорости нарастания давления в цилиндре было получено при значении показателя характера горения m = 0,1.

Из результатов сопоставления, представленных на рис. 1 и 2, видно, что используемая модель достаточно точно описывает исследуемый двигатель YANMARL-100C.  

 

 

Рис. 1. Сопоставление расчётной и экспериментальной кривых давления и скорости нарастания давления (dP/dφ) в цилиндре двигателя YANMARL-100C (n = 3100 об./мин., α = 1,36):

1. Давление в цилиндре, эксперимент.
2. Давление в цилиндре, расчёт.
3. Скорость нарастания давления (dP/dφ), эксперимент.
4. Скорость нарастания давления (dP/dφ), расчёт.

 

Рис. 2. Сопоставление расчётной и экспериментальной внешних скоростных характеристик двигателя YANMARL-100C:

1. Эксперимент. 2. Расчёт.

 

Для оценки влияния степени сжатия на эффективные показатели двигателя, необходимо  было корректно выбрать параметры характеристики выгорания. Показатель характера горения задавался двумя значениями: m = 0.1, соответствующее серийному исполнению двигателя, и m = 3, как наиболее типичное для бензиновых двигателей.

Условная продолжительность сгорания также задавалась значениями, характерными для современных бензиновых и дизельных двигателей (50 и 89 градусов угла поворота коленчатого вала (УПКВ) соответственно). Кроме того было дополнительно выбрано третье значение, соответствующее 30 градусам УПКВ. В традиционных двигателях сокращение продолжительности теплоподвода менее 40 – 50 градусов УПКВ вызывает сильный рост механической и тепловой нагрузки на двигатель [1], но в данном случае предполагалось, что при сверхвысоких степенях сжатия теплоподвод может начинаться после прохождения поршнем верхней мертвой точки. В таких условиях высокая скорость выгорания, а, соответственно и короткая условная продолжительность сгорания, будут благотворно влиять на эффективность рабочего процесса.     

При расчётах зависимостей параметров исследуемого двигателя от степени сжатия угол начала теплоподвода выбирался из условия получения максимального эффективного КПД. Частота вращения коленчатого вала, используемая в расчетах, равна 3100 об/мин, что примерно соответствует режиму наибольшей эффективности.

Обсуждение результатов

На рис. 3 и 4 представлены расчетные зависимости эффективного КПД от степени сжатия исследуемого двигателя при показателе характера горения m = 3 и 0,1 соответственно. Коэффициент избытка воздуха α = 1,36.

 

 

Рис. 3. Зависимость эффективного КПД от степени сжатия при показателе характера горения m = 3 и различных условных продолжительностях сгорания:
1. ϕz = 30 град. УПКВ, 2. ϕz = 50 град. УПКВ, 3. ϕz = 89 град. УПКВ.

 

 

Рис. 4. Зависимость эффективного КПД от степени сжатия при показателе характера горения m = 0.1 и различных условных продолжительностях сгорания:
1. ϕz = 30 град. УПКВ, 2. ϕz = 50 град. УПКВ, 3. ϕz = 89 град. УПКВ.

 

Во всех рассматриваемых условиях при переходе в диапазон сверхвысоких степеней сжатия (до значения 30) наблюдается снижение эффективного КПД цикла. Так, при повышении степени сжатия с 19,3 до 30 и значении показателя характера горения m = 3 эффективный КПД цикла падает на 14,3%, 14,4% и 18,3%  для условной продолжительности сгорания ϕz = 30, 50 и 89 градусов УПКВ соответственно. Для значения m = 0,1 падение эффективного КПД составляет 15,9%, 16,1% и 17,8% с тем же соответствием.

В то же время понижение степени сжатия исследуемого двигателя с 19,3 до 15 не вызывает понижения эффективного КПД цикла, а, напротив, ведет к его увеличению. Так при значении показателя характера горения m = 3 и ϕz = 30 градусов УПКВ отмечается рост эффективного КПД цикла на 4,2%. При значениях условной продолжительности сгорания ϕz = 50 и 89 градусов УПКВ рост составляет 4,1% и 6,1% соответственно. Аналогичная картина наблюдается и при значении показателя характера горения m = 0,1: рост эффективного КПД цикла на 5,1%, 5,3% и 6,1% соответственно для ϕz = 30, 50 и 89 градусов УПКВ.

В случае снижения степени сжатия с 19,3 до 12,5 и значении показателя характера горения m = 3 рост эффективного КПД составил 4,4%, 4,4% и 7,4% для ϕz = 30, 50 и 89 градусов УПКВ соответственно. При значении m = 0,1 соответствующее повышение эффективного КПД составило 5,1%, 5,3% и 6,1%.  

Необходимо ещё раз обратить внимание на то, что при проведении расчетов угол начала теплоподвода выбирался из условия получения максимального эффективного КПД. Значения угла начала теплоподвода представлены в таблице 1.

 

Таблица 1.

Значения угла начала теплоподвода в расчетах зависимости эффективного КПД от степени сжатия исследуемого двигателя ( n = 3100 об/мин, α = 1,36), градус до ВМТ.

m

ϕz

градусов УПКВ

Степень сжатия

10

12.5

15

17.5

20

30

3

30

8

6

6

5

4

2

50

19

18

16

14

14

11

90

43

40

37

36

34

30

0. 1

30

3 после ВМТ

6после ВМТ

7 после ВМТ

7 после ВМТ

8 после ВМТ

9 после ВМТ

50

1

2 после ВМТ

3 после ВМТ

4 после ВМТ

5 после ВМТ

7 после ВМТ

90

6

4

2

1

0

3 после ВМТ

 

Как следует из рис. 3 и 4, наибольшие значения эффективного КПД наблюдаются при  показателе характера горения m = 3 и при значении условной продолжительности сгорания ϕz = 30. Для режима с данными параметрами характеристики выгорания были проведены расчеты зависимости эффективного КПД от степени сжатия исследуемого двигателя при различных коэффициентах избытка воздуха (рис. 5).

 

Рис. 5. Зависимость эффективного КПД от степени сжатия при различных коэффициентах избытка воздуха (m = 3, ϕz = 30):
1. α = 1,36.     2. Α = 2.         3. α = 3.          4. α = 4.

 

Точно так же, как и на полной нагрузке (α = 1,36) на частичных нагрузках наблюдается падение эффективного КПД при повышении степени сжатия с 19,3 до 30. При этом с понижением нагрузки это падение усиливается: для α = 2 снижение эффективного КПД составляет 23,1%, для α = 3 – 39,5% и для α = 4 – 67,1%.

На частичных нагрузках сохраняется тенденция увеличения эффективного КПД при снижении степени сжатия. При изменении степени сжатия с 19,3 на 15 эффективный КПД возрастает на 8%, 15,2% и 25,7% соответственно для α = 2, α = 3 и α = 4. В случае изменении степени сжатия с 19,3 на 12,5 эффективный КПД возрастает на 9,5%, 19,4% и 33,3% соответственно для α = 2, α = 3 и α = 4.

Падение эффективного КПД двигателя с повышением степени сжатия выше определенного значения может быть объяснено двумя основными причинами: увеличением механических потерь и увеличением отклонения от изохорного процесса подвода теплоты.

 Увеличение механических потерь с ростом степени сжатия (рис. 6) является следствием повышения давления газов в цилиндре двигателя (рис. 7). При увеличении коэффициента избытка воздуха относительная доля механических потерь возрастает, соответственно снижается значение степени сжатия, соответствующее максимальному эффективному КПД.

Влияние отклонения от изохорного подвода теплоты на эффективный КПД двигателя описано в работе [6]. Сущность этого явления заключается в том, что с уменьшением объема камеры сгорания, а, следовательно, с увеличением степени сжатия, увеличивается изменение объёма за единицу времени. Таким образом, при движении поршня вниз от верхней мертвой точки, у двигателя с высокой степенью сжатия объём рабочей камеры будет увеличиваться быстрее, чем у двигателя с низкой степенью сжатия. Как следствие, с повышением степени сжатия (при постоянной продолжительности теплоподвода) индикаторный КПД будет расти гораздо медленнее термического и, при определённых условиях, даже снижаться (рис. 6). По этой же причине практически не увеличиваются максимальные значения температуры цикла (рис. 7).   

 

 

Рис. 6. Зависимость механического (ηm) и индикаторного (ηi) КПД от степени сжатия при различных коэффициентах избытка воздуха (m = 3, ϕz = 30).

 

Рис. 7. Зависимости максимального давления и максимальной температуры цикла от степени сжатия при α = 1,36 (m = 3, ϕz = 30):
1. Максимальное давление, Мпа. 2. Максимальная температура, К/1000.

 

Выводы

Таким образом, в условиях исследуемого двигателя переход на сверхвысокие степени сжатия  вызывает падение эффективного КПД как на полной нагрузке, так и на частичных режимах. В то же время понижение степени сжатия до значений 12 – 15 влечет рост эффективного КПД, значительно усиливающийся с понижением нагрузки. Учитывая, что транспортный двигатель эксплуатируется на частичных режимах (меньше половины максимальной мощности) до 50 — 70% общего времени, а на режимах холостого хода до 40% [7], можно сделать вывод, что снижение степени сжатия до значений 12 — 15 может привести к значительному повышению экономичности. При этом уровень нагрузок на элементы двигателя (рис. 7) может быть ощутимо понижен (до 30%).

Данный вывод подтверждается результатами, полученными в работе [7], где исследовался дизель со специальной системой зажигания с рядом последовательных искр. Было отмечено, что при снижении степени сжатия до 12, топливная экономичность дизеля возрастала.

Поддержка

Исследование выполнено при поддержке Министерства образования и науки Российской Федерации, соглашение 14.B37.21.0316.

Список литературы

1. Двигатели внутреннего сгорания. Теория поршневых и комбинированных двигателей: учебник для втузов по специальности «Двигатели внутреннего сгорания» / Д.Н. Вырубов, Н.А. Иващенко, В.И. Ивин и др.; Под ред. А.С. Орлина, М.Г. Круглова. 4-е изд., перераб. и доп. М.: Машиностроение, 1983. 372 с.

2. Ложкин М.Н., Коломиец П.В., Терехов А.П. Расчетная оценка рабочего цикла поршневого двигателя внутреннего сгорания с высокой степенью сжатия и подводом тепла в начале процесса расширения // Вектор науки ТГУ. 2011. № 2(16). С. 87-89.

3. Губайдуллин И.С. Моделирование рабочих процессов двигателей внутреннего сгорания в интерактивной системе имитационного моделирования «Альбея». Уфа: УГАТУ, 1997. 43 с.

4. Загайко С.А. Моделирование механических потерь ДВС в системе имитационного моделирования «Альбея». Уфа: УГАТУ, 1996. 74 с.

5. Горбачев В.Г. Система имитационного моделирования «Альбея» (ядро). Руководство пользователя. Руководство программиста: учеб. пособие. Уфа: УГАТУ, 1995. 112 с.

6. Гарипов М.Д., Назмутдинова Г.Р., Сакулин Р.Ю. Расчетное исследование влияния степени сжатия на эффективные показатели дизельного двигателя // Вестник УГАТУ. 2012. Т. 16, № 2. С. 138-141.

7. Phatak R.G., Komiyama K. Investigation of a spark- assisted diesel engine : SAE Technical Paper № 830588. 1983. 8 p. DOI: 10.4271/830588

Поделиться:

 

 

ЮБИЛЕИ

14 января 2017 год. Камышная Э.Н., доцент кафедры ИУ-4 МГТУ им. Н.Э.Баумана

29 января 2016 год Шахнов В.А., член-корреспондент РАН, д.т.н., профессор МГТУ им. Н.Э.Баумана

ФОТОРЕПОРТАЖИ

 

СОБЫТИЯ

Всероссийская олимпиада студентов «Я — профессионал» 2022

Юбилейный, V сезон всероссийской олимпиады студентов «Я – профессионал» запущен!

 

НОВОСТНАЯ ЛЕНТА

26. 05.2022
Всероссийская олимпиада студентов «Я — профессионал»

15.06.2018
Искусcтвенный интеллект научит горожан экономить время

19.01.2017
На сайте ВАК размещена справочная информация об изданиях, входящих в международные реферативные базы данных и системы цитирования

4.01.2017
На сайте ВАК размещена обновленная информация, о перечне рецензируемых научных изданий

19.12.2016
В МГТУ им.Н.Э.Баумана состоялся региональный этап Всероссийского Конкурса «IT-Прорыв»

© 2003-2022 «Наука и образование»
Перепечатка материалов журнала без согласования с редакцией запрещена
 Тел.: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)

Кпд двс автомобиля

Главная » Блог » Кпд двс автомобиля

Кпд двс в среднем

Известно, что эффективность работы автомобильного двигателя внутреннего сгорания находится в прямой зависимости от величины коэффициента полезного действия. КПД двигателя выражается в виде соотношения мощностей, передаваемых на коленвал и поршни. Современные ДВС отличаются наибольшей эффективность, в сравнении с устаревшими аналогами. Например, мотор объемом 1,6 л., раньше развивал мощность не более 70 лошадиных сил, а теперь этот параметр часто достигает 150 л. с.

КПД парового двигателя

Для приведения в действие силового агрегата необходимо преобразовать тепловую энергию, появляющуюся при сжигании топливовоздушной смеси, в механическую. Раньше применялись паровые двигатели, в которых сгорало твердое топливо (уголь, дрова), поршни приходили в движение под воздействием расширяющегося пара. Размеры таких силовых установок были в несколько раз больше по габаритам, чем современные двигатели, работающие на топливе другого вида.

В паровых машинах поршневого типа КПД не превышает значения 10%. В настоящее время такие устройства почти не применяются, т. к. считается, что не существует кардинальных способов увеличить их коэффициент полезного действия.

С целью увеличения данного показателя, применяют источники тепла, обладающие наименьшей стоимостью. Например, на больших ТЭЦ используется атомная энергия. Вдобавок, применяются современные технологии, при которых отработанное тепло не уходит бесполезно в атмосферу, а используется для отопительных систем в многоквартирных домах. Потери здесь составляют не больше 10 процентов. Современные паровые турбины обладают коэффициентом КПД, равным 50 – 60%.

Интересно: В развитых странах Европы (Швейцарии, Австрии) большой популярностью пользуются паровозы. Их используют в качестве туристического транспорта для перевозки пассажиров по горным дорогам. Благодаря многочисленным усовершенствованиям, экономические показатели паровозов часто соперничают как с электровозами, так и тепловозами.

Чем отличаются КПД бензинового и дизельного двигателя

В отличие от паровых механизмов, топливом для двигателей внутреннего сгорания служит бензин или солярка. Двигатели внутреннего сгорания бензиновый и дизельный имеют схожие конструкции. Однако образование топливовоздушных смесей у них происходит по-разному.

В карбюраторном агрегате элементы поршневой группы функционируют при сверхвысоких температурах. Соответственно, они нуждаются в более качественном охлаждении. При этом наблюдается большой расход тепловой энергии. Вследствие неэффективного рассеивания тепла в окружающей среде, понижается коэффициент полезного действия бензинового силового агрегата.

  • КПД бензинового двигателя равняется 25-30 %;
  • дизельного – 40 %;
  • с установкой турбонаддува достигает 50 процентов соответственно.

Роторно-поршневые тепловые двигатели обладают высоким КПД, его значение превышает 40%. Это намного выше бензиновых аналогов, но немного отстает от дизельных моторов.

Турбореактивные самолетные двигатели работают совершенно по другому принципу, который существенно отличается от автомобильных ДВС. Благодаря сравнительно высокому КПД, они пользуются большой популярностью в авиастроении. Чаще всего турбореактивные агрегаты устанавливаются на крупных лайнерах большой грузоподъемности.

Как написано в учебниках физики, чтобы найти КПД двигателя, нужно разделить значение выполненной работы на величину затраченной энергии. При расчете коэффициента полезного действия ДВС полезная работа делится на количество тепла, полученного при сгорании топлива.

Основные потери КПД в двигателях внутреннего сгорания происходят при:

  1. Неполном сгорании топлива в цилиндрах.
  2. Расходе тепла.
  3. Механических потерях.

При неполном сгорании эффективность снижается за счет выхода четвертой части объема топлива с отработавшими газами. Здесь потери КПД двигателя составляют почти 25%. Благодаря появлению инжекторов, работа топливных систем становится более эффективной, но не идеальной.

Читайте также:  Как замерить зазор между поршнем и цилиндром

Часть тепловой энергии уходит на прогрев корпусных деталей двигателя, рабочих узлов, моторного масла, радиатора и пр. Тепло также уходит с выхлопными газами. На данном этапе потери КПД составляют не меньше 35 процентов.

Несмотря на смазывание трущихся поверхностей, энергия расходуется на преодоление сил трения. Это происходит при сопряжении таких элементов, как шатуны, цилиндры, поршни, маслосъемные, компрессионные кольца и т. д. При вырабатывании электричества генератор тоже отбирает немалую долю энергии двигателя. В результате механических потерь, КПД ДВС снижается еще на 20%.

КПД двигателя рассчитывается по специальным формулам, в которых участвуют показатели работы, энергии и потерь.

Интересно: Существуют некоторые методы повышения КПД бензиновых двигателей внутреннего сгорания:

  1. Цилиндры оснащаются двумя впускными, а также двумя выпускными клапанами, вместо привычных конструкций в одном экземпляре.
  2. Свечи зажигания комплектуются отдельными катушками зажигания.
  3. Вместо обыкновенного тросика управления дроссельной заслонкой, используется электрический привод.

От чего зависит КПД дизельного двигателя

Если сравнивать эффективность бензинового и дизельного моторов, выяснится, что второй обладает лучшими показателями:

  • замечено, что, бензиновые двигатели преобразуют только одну четвертую часть использованной энергии в механическую работу;
  • в то время, как дизельные – 40% соответственно;
  • при установке турбонаддува в дизеле, КПД газотурбинного двигателя возрастает до 50 и более процентов.

Конструкция и принцип работы дизелей способствуют наибольшей эффективности в сравнении с карбюраторными двигателями. Причины лучшего КПД дизельного двигателя:

  1. Более высокий показатель степени сжатия.
  2. Воспламенение топлива происходит по другому принципу.
  3. Корпусные детали нагреваются меньше.
  4. Благодаря меньшему количеству клапанов, снижены расходы энергии на преодоление сил трения.
  5. В конструкции дизеля отсутствуют привычные свечи, катушки зажигания, на которые требуется дополнительная энергия от электрогенератора.
  6. Коленчатый вал дизеля раскручивается с меньшими оборотами.

В сравнении с дизелями, электрические двигатели считаются более эффективными. Двигатель с самым большим КПД – это электрический. При создании более долговечных аккумуляторных батарей, которым не страшны морозы, автомобильная промышленность постепенно перейдет на выпуск электромобилей в больших количествах.

КПД реактивного двигателя

Воздушно-реактивный тепловой мотор работает на химической энергии топливного состава. Его мощность расходуется на создание кинетической энергии ракеты и преодоление атмосферного сопротивления. Коэффициент полезного действия таких агрегатов минимальный, по своему значению он является самым маленьким, его значение не превышает даже 1%. Здесь более корректно обсуждать КПД не двигателя, а ракетного топлива, а также, насколько эффективно оно используется.

Резюме

При производстве современных двигателей внутреннего сгорания заводы-изготовители вкладывают большие средства в погоне за повышением КПД своей продукции хотя бы на несколько процентов. С этой целью, инженеры усовершенствуют и усложняют конструкции моторов, используют новые материалы для изготовления отдельных элементов.

Иногда случается, что финансовые затраты разработчиков нецелесообразны, в сравнении с полученным результатом в 2 – 3%. Поэтому бывает выгоднее подвергать стандартные двигатели различным форсированиям, доводкам, доработкам при помощи тюнинговых усовершенствований в небольших ремонтных мастерских. В результате чего увеличивается мощность и прочие тяговые характеристики силовых агрегатов.

Коэффициент полезного действия (КПД) – широко используемая характеристика эффективности некоторой системы или устройства. В нашем случае этой системой выступает двигатель внутреннего сгорания. Казалось бы, о какой эффективности может идти речь в мире современных моторов, разве она не равна 100 процентам? Но оказывается, как нет в нашем мире идеально черного или белого, так нет и машины, у которой вся энергия, получаемая от горения топлива, полностью переходит в механическую энергию, а последняя в свою очередь в полезную энергию прижимающую пилота автомобиля в его кресло.

Читайте также:  Как поставить гидроусилитель руля на газель

Что такое КПД двигателя внутреннего сгорания.

Отношение полезной энергии к полной (затраченной), выраженное в процентном отношении, и есть искомый КПД двигателя внутреннего сгорания. Разберемся, куда же теряется энергия.

На что тратиться полезная энергия?

Первый пункт здесь – это потери, возникающие непосредственно при горении топлива, ведь все топливо в двигателе никогда не сгорает, часть его улетает в выхлопную трубу. Эта часть, в среднем, составляет около 25%.

Следующим местом (точнее явлением), куда исчезает энергия, является тепло, выделяемое при горении. Возможно, кто-то из вас еще помнит со времен, проведенных на школьной скамье, что для получения тепла требуется энергия, соответственно, образуемое тепло – это есть потери энергии. Здесь стоит заметить, что тепла при работе двигателя внутреннего сгорания образуется с излишком, что требует внедрения серьезной системы охлаждения.

Далее, кроме тепла, выделяемого от горения, тепло выделяется и при самой работе двигателя, ведь все его части трутся, теряя тем самым часть своей энергии.

Подведя итог, получаем еще порядка 35-40% потерь энергии на образование тепла.

Ну, и третья группа потерь – это потери на обслуживание дополнительного оборудования. Помпа системы охлаждения, генератор, кондиционер и пр. – все они для своей работы тоже потребляют энергию. Энергия эта берется от работы двигателя – в размере порядка 10%.

Подведя итог, получаем, что, сжигая топливо, в реальности на «полезное» дело автомобиль затрачивает лишь четверть, а порой и вовсе пятую часть той энергии, которую вырабатывает его движок. Цифры средние, но разбежка в целом понятна.

КПД бензинового и дизельного двигателя.

При этом стоит оговориться, что у бензиновых и дизельных машин КПД двигателя внутреннего сгорания различен: 20% против 40% (соответственно). Данный факт имеет место быть потому, что несмотря на то, что потери на обслуживание механики и нагрев планеты в бензиновых моторах и «дизелях» сопоставимы, количество сжигаемого в процессе горения топлива у дизельных двигателей выше.

Подводя итоги и вспомнив историю появления двигателя внутреннего сгорания, когда КПД составлял немногим более 5%, можно сказать, что инженеры шагнули далеко вперед, а учитывая факт того, что 100% КПД, а по сути идеального двигателя, им вряд ли удастся добиться, можно утверждать, что современные двигатели, скорее всего, достигли своего верха возможного КПД, поэтому неудивительно, что сегодня все чаще автомобилистам предлагаются машины с гибридными двигателями и электромобили, ведь КПД движка у них (электромобилей) – для справки – порядка 90%.

Видео.

Среди множества характеристик различных механизмов в автомобиле решающее значение имеет КПД двигателя внутреннего сгорания. Для того чтобы выяснить суть этого понятия, необходимо точно знать, что представляет собой классический двигатель внутреннего сгорания.

КПД двигателя внутреннего сгорания – что это такое?

В первую очередь, мотор преобразует тепловую энергию, возникающую при сгорании топлива, в определенное количество механической работы. В отличие от паровых машин, эти двигатели более легкие и компактные. Они гораздо экономичнее и потребляют строго определенное жидкое и газообразное топливо. Таким образом, КПД современных двигателей рассчитывается на основании их технических характеристик и прочих показателей.

КПД (коэффициент полезного действия) представляет собой отношение фактически передаваемой мощности на вал двигателя к мощности, получаемой поршнем за счет действия газов. Если провести сравнение КПД двигателей различной мощности, то можно установить, что это значение для каждого из них имеет свои особенности.

Читайте также:  Официальный сайт автосалона лада

Эффективный КПД двигателя зависит от различных механических потерь на разных стадиях работы. На потери влияет движение отдельных частей мотора и возникающее при этом трение. Это поршни, поршневые кольца и различные подшипники. Эти детали вызывают наибольшую величину потерь, составляющие примерно 65 % от их общего количества. Кроме того, потери возникают от действия таких механизмов, как насосы, магнето и прочие, которые могут дойти до 18 %. Незначительную часть потерь составляют сопротивления, возникающие в топливной системе во время процесса впуска и выпуска.

Больше всего КПД снижается из-за тепловых потерь. Силовая установка прогревает все элементы системы, включая охлаждающую жидкость, радиатор охлаждения и отопителя, вместе с этим теряется тепло. Часть теряется вместе с выхлопными газами. В среднем на тепловые потери приходится до 35% от КПД, а на топливной эффективности ещё 25%. Ещё около 20% занимают механические потери, т.е. на элементы, создающие трение (поршни, кольца и т. д.). Снизить трение помогают качественные моторные масла, но полностью исключить этот фактор невозможно.

Учитывая низкий КПД двигателя можно представить потери более наглядно, например, на количестве топлива. При среднем расходе топлива 10 литров на сто километров пробега на прохождение этого участка уходит лишь 2-3 литра топлива, остальное потери. У дизеля потери меньше, как и к ДВС с газобаллонным оборудованием. Если вопрос высокого КПД двигателя принципиален, то есть на варианты с коэффициентом 90%, но это электромобили и авто с двигателем гибридного типа. Как правило, их стоимость несколько выше и из-за специфики эксплуатации (нужна регулярная подзарядка и ограничен запах хода) такие машины в нашей стране пока редкость.

Сравнение КПД двигателей – бензин и дизель

Если сравнивать между собой КПД бензинового и дизельного двигателя, то следует отметить, что первый из них недостаточно эффективен и преобразует в полезное действие всего 25-30 % произведенной энергии. Например, КПД стандартного дизеля достигает 40 %, а применение турбонаддува и промежуточного охлаждения повышает это значение до 50 %.

Оба двигателя, несмотря на схожесть конструкции, имеют различные виды смесеобразования. Поэтому поршни карбюраторного мотора работают при более высоких температурах, требующих качественного охлаждения. Из-за этого тепловая энергия, которая могла бы превратиться в механическую, рассеивается без всякой пользы, понижая общее значение КПД.

Тем не менее, для того чтобы повысить КПД бензинового двигателя, принимаются определенные меры. Например, на один цилиндр могут устанавливаться два впускных и выпускных клапана, вместо конструкции, когда размещается один впускной и один выпускной клапан. Кроме того, в некоторых двигателях на каждую свечу устанавливается отдельная катушка зажигания. Управление дроссельной заслонкой во многих случаях осуществляется с помощью электропривода, а не обыкновенным тросиком.

КПД дизельного двигателя – заметная эффективность

Дизель является одной из разновидностей двигателей внутреннего сгорания, в котором воспламенение рабочей смеси производится в результате сжатия. Поэтому давление воздуха в цилиндре намного выше, чем у бензинового двигателя. Сравнивая КПД дизельного двигателя с КПД других конструкций, можно отметить его наиболее высокую эффективность.

При наличии низких оборотов и большого рабочего объема показатель КПД может превысить 50 %.

Следует обратить внимание на сравнительно небольшой расход дизельного топлива и низкое содержание вредных веществ в отработанных газах. Таким образом, значение коэффициента полезного действия двигателя внутреннего сгорания полностью зависит от его типа и конструкции. Во многих автомобилях низкий КПД перекрывается различными усовершенствованиями, позволяющими улучшить общие технические характеристики.

Каков КПД автомобиля?

Да простит меня читатель, если я задам ему детский вопрос: каков КПД у автомобильного двигателя? «Совсем профессор от жизни отстал», – скорее всего подумает он и ответит, что из учебника физики следует: КПД бензинового двигателя достигает примерно 25 %, а дизельного – приближается к 40 %.

А может, не будем верить печатному слову, а лучше убедимся в этом сами. Заправим бак топливом «по горлышко» и проедем по городу, разумеется, без происшествий и «пробок», 100 км. А затем дольем бак из мерного сосуда снова до прежнего уровня. Если ваш автомобиль весит около тонны и работает на бензине, то долить придется в среднем около 10 л; для автомобиля той же массы с дизельным двигателем потребуется примерно 7 л солярки. Так как научные расчеты производятся не в литрах, даже не в поллитрах, а в килограммах, то для бензина, с учетом его плотности, это составит 7 кг, а для солярки – чуть больше 5 кг. При сжигании эти килограммы топлива выделят (можете проверить по справочнику!) 323 и 250 МДж энергии, соответственно. А затратит ваш автомобиль при движении со скоростью 50—60 км/ч (и это еще хорошо для города!) в среднем 25 МДж, о чем мы уже говорили выше. Поделим эту полезную работу на затраченную энергию и получим КПД для бензинового двигателя 7-8 %, а для дизеля – 10 %. Вот вам теория – 25 и 40 %, а вот суровая правда жизни – 7,5 и 10 %! Конечно, кое-что теряется и в трансмиссии, но это крохи по сравнению с потерями в двигателе.

Так что ж, врут авторы учебников? Нет, не врут, но лукавят. Тот КПД, что в них указан, относится к одному единственному режиму работы, называемому оптимальным.

Зависимость КПД двигателя внутреннего сгорания от мощности

А как, собственно, в научных институтах получают этот расход топлива? Испытуемый двигатель (не будем уточнять: оснащенный дополнительными системами – вентилятором, компрессором, генератором и т. д. или нет) устанавливают на специальный стенд, где его нагружают сопротивлениями, попросту – тормозят. Изменяют подачу топлива, момент сопротивления, частоту вращения, ведут строгий учет расхода топлива. Зная момент сопротивления и частоту вращения, можно определить мощность, а умножая эту мощность на время, получить работу в киловатт-часах. Правильнее, конечно, было бы выразить ее в джоулях. Так вот – 1 кВт·ч равен 3,6 МДж. Теперь, зная расход топлива в килограммах, можем отнести его к произведенной двигателем работе и получить так называемый удельный расход топлива. Чем современнее двигатель, тем меньше удельный расход топлива при наибольшей мощности и тем больше его КПД. Вот откуда эти 25 и 40 %!

А какова мощность, расходуемая двигателем при движении автомобиля со средней скоростью 50—60 км/ч? Оказывается, для оговоренной массы автомобиля она составляет около 4 кВт. Трудно в это поверить, но автомобиль с двигателем около 100 кВт тратит при этой скорости всего 4 % мощности. И какой КПД вы еще хотите получить при этом? Особенно с учетом привода от двигателя множества всяких дополнительных агрегатов.

Что же делать? Если попробовать ехать на нашем автомобиле при оптимальном режиме работы двигателя, то это составит около 180 км/ч, что не всегда нужно. Да и, честно говоря, при такой скорости почти все топливо уйдет на взбалтывание воздуха, или, по-научному, на аэродинамические потери.

Можно пойти по другому пути, поставив на наш автомобиль двигатель мощностью 5 кВт, то есть в 20 раз меньшей мощности. Тогда при скорости 60—70 км/ч наш автомобиль покажет рекордную экономичность, а двигатель – именно тот КПД, что указан в учебниках. Но, увы, такая скорость движения никого не устроит, не говоря уже о том, что разгоняться наш автомобиль будет медленнее товарного поезда.

Как же разрешить это противоречие, неужели никто об этом раньше не думал? Да нет же, думали. Уже чуть ли не полвека прошло с тех пор, как была предложена концепция так называемого «гибридного» силового агрегата. Предлагалось включать двигатель только при оптимальном режиме, чтобы запасать выработанную им «экономичную», а к тому же и «экологичную» энергию в накопителе, и выключать двигатель, когда он переполняется энергией (пусть отдохнет!), то есть использовать для движения автомобиля именно эту, самую дешевую и чистую энергию!

На заре автомобилизма и даже гораздо позже, в 50-е годы прошлого века, у нас в стране, когда дороги были не так загружены, эту энергию накапливали в самой массе автомобиля. Делалось это так: автомобиль разгоняли примерно до 80 км/ч почти на полной мощности двигателя, а следовательно, и при максимальном КПД. После этого двигатель выключали, а коробку передач ставили в нейтраль. На автомобилях тех лет делать это еще разрешалось. И автомобиль шел с неработающим двигателем и отключенной трансмиссией накатом чуть ли не целый километр, пока скорость не падала ниже 30 км/ч. Затем опять включалась трансмиссия, запускался двигатель и разгон повторялся. И так автомобиль ехал всю дорогу.

Такое движение по научному называется «регулярным импульсивным циклом». Благодаря этому циклу передовые водители-«стахановцы» тех лет экономили до 30 % топлива. При этом энергия двигателя, работающего почти в оптимальном режиме, накапливалась в массе самого автомобиля, как в аккумуляторе, и шла она на движение автомобиля накатом. Конечно же, никакой регулировки скорости движения такого автомобиля-накопителя произвести было невозможно. Его трансмиссия была отключена, разогнанный автомобиль был накопителем и потребителем собственной энергии. Как если бы поставить раскрученное колесо или маховик на ребро и дать ему возможность свободно катиться.

Конечно же, не это было моей целью. Автомобиль должен нести в себе накопленную кинетическую энергию, но при этом быть управляемым, причем лучше всего, чтобы скорость изменялась плавно и бесступенчато, а для этого нужен вариатор.

Следующая глава

КПД двигателя внутреннего сгорания:3 фактора, влияющих на мощность

Вопрос о том, насколько мощность соответствует КПД двигателя внутреннего сгорания, интересует практически каждого автолюбителя. В идеале чем выше КПД, тем эффективнее должна быть силовая система. Если же переходить от теории к практике, КПД в районе 95 % наблюдается только у электрических двигателей. Если рассматривать двигатели внутреннего сгорания вне зависимости от типа используемого топлива, то об идеальных цифрах можно только рассуждать.

Разумеется, эффективность современных двигателей существенно повысилась, если сравнивать с моделями, которые были выпущены всего 10 лет назад. Выпускаемые в начале 2000 годов 1,5-литровые моторы были рассчитаны на 70 лошадиных сил, к данному параметру претензий не было. Сегодня же при аналогичном объёме речь идет о 150 лошадиных силах и более.

Производители теряют много времени, сил и ресурсов, чтобы медленно, но уверенно продвигаться в сторону увеличения КПД.

Изначально рассмотрим, что такое КПД и как данное понятие рассматривать в аспекте автомобильного двигателя. Коэффициент полезного действия представлен показателем, с помощью которого отображается эффективность конкретного механизма относительно превращения полученной энергии в полезную работу. Показатель отображается в процентном соотношении.

В случае с двигателем внутреннего сгорания речь идет о преобразовании тепловой энергии, которая является продуктом сгорания топлива в цилиндрах мотора. КПД в данном случае отображает фактически реализуемую механическую работу, которая напрямую зависит от того, сколько поршень получит энергии от сгорания топлива. Также на данный параметр влияет итоговая мощность, которую установка отдаёт на коленчатом вале.

От чего зависит КПД

Ошибочно полагать, что КПД дизельного или бензинового двигателя может хоть как-то приблизиться к 100 %. На самом деле итоговый параметр во многом зависит от потерь:

  1. Потери при сгорании топлива стоит рассматривать первостепенно. Всё топливо, которое поступает в мотор, не может полностью сгорать, поэтому его часть просто улетает в выхлопную трубу. Потери в данном случае составляют около 25 %.
  2. Тепловые потери находятся на втором месте по значению. Получение тепла невозможно без энергии. Следовательно, энергия теряется при образовании тепла. Поскольку в случае с двигателем внутреннего сгорания тепло образуется с избытком, возникает необходимость в эффективной системе охлаждения. Однако тепло выделяется не только при сгорании топлива, но также во время работы самого мотора. Это происходит за счёт трения его деталей, поэтому часть энергии он теряет самостоятельно. На эту группу потерь приходится около 35 — 40 %.
  3. Последняя группа потерь имеет место в ходе обслуживания дополнительного оборудования. Расход энергии может идти на кондиционер, генератор, помпу системы охлаждения и прочие установки. Потери в данном случае составляют 10 %.

Страшно представить, что у нас остаётся, поскольку в случае с бензиновыми агрегатами это в среднем 20 %, в иных не более 5 — 7 % дополнительно. Следовательно, заливая 10 литров топлива, которые уходят за 100 км пробега, всего 2,5 литра уходит на полезную работу, тогда как остальные 7 — 8 литров считаются пустыми потерями.

Коэффициент полезного действия: дизель или бензин?

Сравнивая коэффициент полезного действия бензинового и дизельного силового агрегата, о низкой эффективности первого стоит сказать сразу. КПД бензинового мотора составляет всего 25 — 30 %. Если речь идет о дизельном аналоге, показатель в данном случае составляет 40 %. О 50 % может идти речь при установленном турбокомпрессоре. КПД на уровне 55 % допустим при условии использования на дизельном ДВС современной системы топливного впрыска в сочетании с турбиной (читайте о том, как работает турбина).

Несмотря на то, что силовые установки конструктивно похожи, разница в производительности существенная, на что влияет принцип образования рабочей топливно-воздушной смеси и дальнейшая реализация воспламенения заряда. Также существенным фактором является вид используемого топлива. Оборотистость бензиновых силовых агрегатов более высока, если сравнивать с дизельными вариантами, но потери намного больше, поскольку полезная энергия расходуется на тепло. Как итог, эффективность преобразования энергии бензина в механическую работу намного ниже, а большая её часть просто рассеивается в атмосфере.

Крутящий момент и мощность

Если взять как основу одинаковый показатель рабочего объёма, мощность бензинового двигателя превосходит дизельный, но для её достижения обороты должны быть более высокими. Вместе с увеличением оборотов возрастают и потери, расход топлива повышается. Сам крутящий момент также не стоит упускать из виду, поскольку это сила, передающаяся на колёса от мотора, именно она и заставляет автомобиль двигаться. Таким образом, максимальный показатель крутящего момента бензиновыми двигателями достигается на более высоких оборотах.

Дизельный двигатель с аналогичными показателями способен на низких оборотах достичь максимума крутящего момента, а для реализации полезной работы расходуется меньше солярки. Следовательно, КПД дизельного двигателя выше, а топливо расходуется более экономно.

Если сравнивать с бензином, то солярка образует тепло в большей степени при более высокой температуре сгорания топлива. Также наблюдается более высокий параметр детонационной стойкости.

Эффективность бензина и солярки

Находящиеся в составе дизельного топлива углеводороды более тяжёлые, чем бензиновые. Во многом меньший коэффициент полезного действия бензинового мотора обусловлен особенностями сгорания бензинового топлива и его энергетической составляющей. Преобразование тепла в полезную механическую энергию в дизельном двигателе происходит более полноценно, следовательно, сжигание одинакового количества топлива за единицу времени позволяет дизелю выполнить больше работы.

Не стоит также упускать из виду создание необходимых для полного сгорания смеси условий и особенности впрыска. Подача топлива в дизельных моторах происходит отдельно от воздуха, поскольку впрыскивание осуществляется непосредственно в цилиндр на завершающем этапе такта сжатия, а не во впускной коллектор. Как итог, удаётся достичь более высокой температуры, а сгорание каждой порции топлива происходит максимально полноценно.

Повышение КПД двигателя

Топливная эффективность и КПД современных двигателей находятся на своём максимальном уровне, поскольку все усовершенствования, которые только могли иметь место в автомобильной инженерии, уже произошли. Тем не менее, производители стремятся повышать коэффициент полезного действия, но результат, который они получают, никак не сопоставим с огромными ресурсами, усилиями и временем, которое тратят для достижения цели. Итогом является увеличение КПД лишь на 2 — 3 %.

Частично именно эта ситуация стала причиной появления полноценной индустрии так называемого тюнинга двигателя в любой крупной стране. Речь идёт о многочисленных полукустарных мастерских, мелких фирмах и отдельных мастерах, которые доводят традиционные моторы массовых брендов для более высоких показателей, как в плане тяги, так и мощности или КПД. Это может быть форсирование, доработка, доводка и другие ухищрения, определяемые, как тюнинг.

Например, используемый впервые в 20-х годах турбонаддув воздуха, который поступает в двигатель, применяется и сейчас. Такое устройство было запатентовано ещё в 1905 году швейцарским инженером Альфредом Бюхи. В начале Второй мировой войны наблюдалось массовое внедрение систем прямого впрыска топлива в цилиндры поршневых моторов военной авиации. Следовательно, те передовые технические ухищрения, которые мы считаем современными, известны уже более 100 лет.

Выводы

В качестве итога стоит напомнить о том, что инженерам удалось шагнуть далеко вперёд от первых двигателей с КПД в районе 5 %. К тому же, изобретение идеального мотора с КПД под 100 % пока не представляется возможным, поэтому современные силовые установки находятся на пике своей эффективности. Единственный вариант для тех, кто принципиально нуждается в двигателе с 90-процентным КПД — это покупка электромобиля или машины с гибридным двигателем.

Пожалуйста, оцените этот материал!

(5 оценок, среднее: 5,00 из 5) Загрузка…

Если Вам понравилась статья, поделитесь ею с друзьями!

Дизельный мотор и бензиновый: сравнение КПД

Коэффициент полезного действия (КПД) является величиной, которая в процентном отношении выражает эффективность того или иного механизма (двигателя, системы) касательно преобразования полученной энергии в полезную работу.

Что касается двигателя внутреннего сгорания (ДВС), такой силовой агрегат осуществляет преобразование тепловой энергии. Данная высвобождающаяся энергия является результатом сгорания топлива в цилиндрах двигателя. КПД мотора представляет собой фактически совершенную механическую работу, которая состоит в соотношении полученной поршнем энергии от сгорания топлива и конечной мощности, которая отдается установкой на коленчатом валу ДВС.

Почему КПД дизеля выше

Показатель КПД для различных двигателей может сильно отличаться и зависит от ряда факторов. Бензиновые моторы имеют относительно низкий КПД благодаря большому количеству механических и тепловых потерь, которые возникают в процессе работы силового агрегата данного типа.

Вторым фактором выступает трение, возникающее при взаимодействии сопряженных деталей. Большую часть расхода полезной энергии составляет приведение в движение поршней двигателя, а также вращение деталей внутри мотора, которые конструктивно закреплены на подшипниках. Около 60% энергии сгорания бензина расходуется только на обеспечение работы этих узлов.

Дополнительные потери вызывает работа других механизмов, систем и навесного оборудования. Также учитывается процент потерь на сопротивление в момент впуска очередного заряда топлива и воздуха, а далее выпуска отработавших газов из цилиндра ДВС.

Если сравнить дизельную установку и мотор на бензине, дизельный двигатель имеет заметно больший КПД сравнительно с бензиновым агрегатом. Силовые агрегаты на бензине имеют КПД на отметке около 25-30% от общего количества полученной энергии.

Другими словами, из потраченных на работу двигателя 10 литров бензина только 3 литра израсходованы на выполнение полезной работы. Остальная энергия от сгорания топлива разошлась на потери.

Что касается КПД атмосферного дизельного агрегата, то этот показатель составляет около 40%. Установка турбокомпрессора позволяет увеличить отметку до внушительных 50%. Использование современных систем топливного впрыска на дизельных ДВС в сочетании с турбиной позволило добиться КПД около 55%.

Такая разница в производительности конструктивно схожих бензиновых и дизельных ДВС напрямую связана с видом топлива, принципом образования рабочей топливно-воздушной смеси и последующей реализацией воспламенения заряда. Бензиновые агрегаты более оборотистые по сравнению с дизельными, но большие потери связаны с расходами полезной энергии на тепло. Получается, энергия бензина менее эффективно превращается в полноценную механическую работу, а большая доля попросту рассеивается системой охлаждения в атмосферу.

Мощность и крутящий момент

При одинаковом показателе рабочего объёма, мощность атмосферного бензинового мотора выше, но достигается при более высоких оборотах. Двигатель нужно «крутить», потери возрастают, увеличивается расход топлива. Также необходимо упомянуть крутящий момент, под которым в буквальном смысле понимается сила, которая передается от мотора на колеса и движет автомобиль. Бензиновые ДВС выходят на максимум крутящего момента при более высоких оборотах.

Аналогичный атмосферный дизель выходит на пик крутящего момента при низких оборотах, при этом расходует меньше солярки для выполнения полезной работы, что означает более высокий КПД и экономию топлива.

Солярка образует больше тепла по сравнению с бензином, температура сгорания дизтоплива выше, показатель детонационной стойкости более высокий. Получается, у дизельного ДВС произведённая полезная работа на определенном количестве топлива больше.

Энергетическая ценность солярки и бензина

Дизельное топливо состоит из более тяжелых углеводородов, чем бензин. Меньший КПД бензиновой установки сравнительно с дизелем также заключаются в энергетической составляющей бензина и особенности его сгорания. Полное сгорание равного количества солярки и бензина даст больше тепла именно в первом случае. Тепло в дизельном ДВС более полноценно преобразуется в полезную механическую энергию. Получается, при сжигании одинакового количества топлива за единицу времени именно дизель выполнит больше работы.

Также стоит учитывать особенности впрыска и создание надлежащих условий для полноценного сгорания смеси. В дизель топливо подается отдельно от воздуха, впрыскивается не во впускной коллектор, а напрямую в цилиндр в самом конце такта сжатия. Результатом  становится более высокая температура и максимально полноценное сгорание порции рабочей топливно-воздушной смеси.

Итоги

Конструкторы постоянно стремятся повысить КПД как дизельного, так и бензинового двигателя. Увеличение количества впускных и выпускных клапанов на один цилиндр, активное применение систем изменения фаз газораспределения, электронное управление топливным впрыском, дроссельной заслонкой и другие решения позволяют существенно повысить коэффициент полезного действия. В большей мере это касается дизельного двигателя.

Благодаря таким особенностям современный дизель способен  полностью сжечь насыщенную углеводородами порцию дизтоплива в цилиндре и выдать большой показатель крутящего момента на низких оборотах. Низкие обороты означают меньшие потери на трение и возникающее в результате трения сопротивление. По этой причине дизельный мотор сегодня является одним из наиболее производительных и экономичных типов ДВС, КПД которого зачастую превышает отметку в 50%.

Какой КПД дизельного двигателя? Дизельный и бензиновый двигатель

КПД дизельного двигателя представляет собой отношение мощности, которая подается на коленчатый вал, к мощности, получаемой поршнем благодаря давлению газов, образующихся при воспламенении используемого топлива.

То есть эта величина является той энергией, которая преобразовывается из тепловой или термической энергии в механическую величину.

Бензиновые двигатели обладают принудительным зажиганием воздушно-топливной смеси искрой свечи.

Типы систем питания

Карбюраторный вариант предполагает смешивание воздуха и бензина во впускном трубопроводе карбюратора. В последнее время выпуск таких вариантов двигателей существенно снижается из-за несущественной экономичности подобных двигателей, их несоответствия экологическим нормам современности.

В вариантах впрысковых двигателей подача топлива происходит с помощью одного инжектора (форсунки) в центральный трубопровод.

В случае распределительного впрыска топливо попадает внутрь двигателя несколькими инжекторами. В таком случае увеличивается максимальная мощность, что существенно увеличивает КПД дизельного двигателя.

При этом снижаются расходы бензина и токсичность обработанных газов за счет фиксированной дозировки топлива электронными системами управления автомобильным двигателем.

Рассуждая над тем, каков КПД современного дизельного двигателя, необходимо знать о системе впрыска бензиновой смеси в камеру хранения. Если подача топлива осуществляется порциями, это гарантирует работу двигателя на обедненных смесях, что помогает снижать расход топлива, уменьшать выброс в атмосферу вредных газов.

Особенности дизельных двигателей

КПД бензинового и дизельного двигателя существенно отличаются между собой. Дизели являются теми двигателями, в которых после сжатия нагретая топливно-воздушная смесь воспламеняется. Они намного экономичнее бензиновых аналогов из-за большей степени сжатия, способствующей полному сгоранию воздушно-топливной смеси.

Достоинства дизелей

КПД дизельного двигателя можно увеличить при создании сопротивления движения воздуха из-за отсутствия дроссельной заслонки, но это приводит к повышению расхода топлива.

Наибольший крутящий момент развивают дизели на небольшой частоте вращения коленчатого вала.

Устаревшие конструкции дизельных двигателей от бензиновых аналогов отличаются определенными недостатками:

  • большим весом и ценой при равной мощности;
  • повышенным шумом, создаваемым при сгорании топлива в цилиндрах;
  • меньшими оборотами коленчатого вала, повышенными инерциальными нагрузками.

Принцип деятельности

КПД современного дизельного двигателя определяется отношением полезной работы, совершаемой двигателем, к полной работе. Почти у всех автомобильных двигателей предполагается четыре такта:

  • впуск топливно-воздушной смеси;
  • сжатие;
  • рабочий ход;
  • выпуск отработанных газов.

Эффективность дизельного двигателя

КПД дизельного двигателя в процентах составляет порядка 35-40 процентов. Учитывая, что для бензинового агрегата показатель составляет до 25 %, дизель явно лидирует.

Если воспользоваться турбонаддувом, вполне модно увеличить КПД дизельного двигателя до 53 процентов.

Несмотря на сходство типа работы, дизель справляется с поставленной перед ним задачей намного качественнее и результативнее. Так как у него меньшее сжатие, воспламенение топлива происходит по другому принципу. Он будет меньше нагреваться, в результате чего на охлаждении происходит неплохая экономия. В дизеле нет свечей и катушек зажигания, следовательно, нет необходимости тратить дополнительную энергию генератора.

Для повышения эффективности работы бензинового двигателя добавляют пару выпускных и впускных клапанов, а на каждую свечу устанавливают отдельную катушку зажигания. Для управления дроссельной заслонкой используется электрический привод.

Эффективность топлива

Расчет КПД дизельного двигателя позволяет определить целесообразность его применения.

Дизель считается одним из вариантов двигателя внутреннего сгорания, для которого характерно после сжатия воспламенение рабочей смеси.

Для того чтобы выявить суть функционирования бензинового двигателя, и то, какой КПД дизельного двигателя, проводят математические расчеты.

Потери КПД

Сгорает не все топливо, некоторая его часть теряется вместе с выхлопными газами (теряется до 25 процентов КПД). В процессе функционирования двигатель тратит часть энергии на корпус, радиаторы, жидкость. Это приводит к дополнительной потере КПД. На все места, где существует трение: кольца, шатуны, поршни, потребляется дополнительная энергия, что негативно отражается на коэффициенте полезного действия.

Вариант определения

В технической документации можно найти информацию о мощности двигателя внутреннего сгорания. После заливки в него топлива и работы на максимальных оборотах в течение нескольких минут остатки топлива сливают. Вычтя из начального объема конечный результат, вооружившись плотностью, можно посчитать массу топливной смеси.

В настоящее время максимальной эффективностью обладает электрический силовой агрегат. Его КПД может достигать 95%, что является превосходным результатом. Если первые моторы при объеме двигателя 1,6 литра развивали не больше 70 лошадиных сил, то в наши дни этот показатель доходит до 150 лошадиных сил.

КПД – величина отношения мощности, подаваемой на коленчатый вал двигателя, к величине, получаемой от сгорания газовой смеси поршнем. В зависимости от того, какое топливо используется для работы автомобильного двигателя, КПД может варьироваться в диапазоне от 20 до 85 процентов. Безусловно, производители топливных систем ищут способы их улучшения, позволяющие существенно увеличить итоговую величину двигателя внутреннего сгорания.

Для снижения механических потерь от нагрузки генератора, трения в настоящее время в промышленности используют смазки. Но, несмотря на подобные достижения, полностью справиться с силой трения пока еще не удалось никому.

Даже после усовершенствований бензинового двигателя удалось добиться изменения у него коэффициента полезного действия до 20 процентов, только в некоторых случаях удается повышать КПД до 25 %.

Более высокий показатель коэффициента полезного действия свидетельствует о топливной эффективности. К примеру, при объеме дизельного двигателя 1,6 литра в городском цикле расход топлива составляет не более 5 литров. У бензинового аналога эта величина достигает 12 л. Сам дизельный агрегат гораздо легче и компактнее, к тому же считается более экологичным вариантом, чем бензиновый двигатель.

Эти положительные технические характеристики гарантируют дизелям более продолжительный эксплуатационный срок службы.

Заключение

Помимо многочисленных плюсов, есть у него и несколько недостатков, о которых также следует упомянуть. КПД двигателя внутреннего сгорания гораздо меньше 100 процентов, к тому же агрегат не выдерживает резкого понижения температуры воздуха.

Коэффициент полезного действия представляет собой величину, которая в процентном соотношении демонстрирует результативность функционирования механизма относительно преобразования тепловой энергии в полезную работу. ДВС осуществляет подобную деятельность, осуществляя преобразование тепловой энергии. Высвобождается она в результате сгорания в цилиндрах топливной смеси. КПД дизельного мотора является фактически совершенной механической работой, состоящей из отношения энергии, полученной от сгорания топлива, и мощности, отдаваемой установкой на коленчатом валу двигателя.

Эффективность работы современного дизельного агрегата определяется множеством различных факторов. В первую очередь, необходимо отметить тепловые и механические потери, возникающие в ходе работы двигателя такого типа. Кроме того, свою долю вносит в разнообразные потери и сила трения, которая появляется при тесном соприкосновении этих многочисленных деталей.

Основная часть расходуемой полезной энергии приходится на приведение в движение поршня, вращение внутри мотора различных деталей. Более 60 процентов сгорающего топлива требуется для обеспечения работы всех узлов автомобильного двигателя. При дополнительных потерях появляются существенные проблемы с дееспособностью навесного оборудования, разнообразных систем, механизмов.

Благодаря модернизации системы впрыска удалось внести позитивные изменения в значение коэффициента полезного действия, минимизировать потери.

Роторно-волновой двигатель с высоким КПД

Роторно-волновой двигатель с расчетным механическим КПД – 97 % имеет высокий ресурс по износу деталей и ресурсу двигателя в целом – будут изнашиваться только подшипники, которые имеют большой запас по износу.

Технология ожидает финансирования!

Описание роторно-волнового двигателя

Роторно-волновой двигатель имеет следующий принцип работы

Роторно-волновой двигатель в сравнении с лопаточными и поршневыми машинами

Преимуществароторно0волнового двигателя

Роторно-волновой двигатель может применяться

Описание роторно-волнового двигателя:

Роторно-волновой двигатель – это объемная машина, воспроизводящая последовательность работы газотурбинного двигателя. В нем совершенно устранено возвратно-поступательное движение рабочих органов, ротор полностью уравновешен и вращается с постоянной угловой скоростью. Рабочее тело, как и в турбине, движется вдоль оси двигателя, траектория движения – винтовая линия. В конструкции отсутствует вредное пространство, ограничивающее рост степени сжатия рабочего тела. Из-за отсутствия уплотнительных элементов и, соответственно трения в проточной части, снимаются ограничения по ресурсу и числам оборотов двигателя.

В основе кинематики РВД лежит сферический механизм, где оси его основных деталей пересекаются в одном месте – центре воображаемой сферы.

Установленный с минимальным зазором конический винтовой ротор совмещает вращение с противоположным ему планетарным обкатыванием по внутренним огибающим корпуса. Накладывая два эти вида движения на любые сечения ротора (кроме центра – точки его перегиба), можно увидеть, что они совершают в определенной последовательности равные угловые колебания в пазах корпуса, образуя волны, которые последовательно перекатываются по ходу винтовых поверхностей корпуса. Аналогичный процесс можно видеть на море, наблюдая в ветреную погоду за перемещением волн в «стоячей воде».

В компрессорном отсеке формирование и движение волн начинается от периферии по направлению к центру, а в расширительном отсеке – наоборот – от центра к периферии.

1 – Ротор; 2 – Корпус; 3 – Вал отбора мощности; 4 – Шарнир равных угловых скоростей; 5 – Эксцентрик; 6 – Блок шестерен. А – впускное окно, Б – выпускное окно, В – компрессорный отсек, Г – камера сгорания, Д – расширительный отсек, φ – угол наклона ротора.

Ротор (1) и вал отбора мощности (3) соединяются между собой в центре двигателя шарниром Гука (4), который можно назвать шарниром равных угловых скоростей (ШРУСом). Необходимое ротору «дополнительное» обкатывание по внутренним огибающим корпуса задается вспомогательным устройством – так называемым «генератором волн». Его основной элемент – вращающийся на основном валу эксцентрик (5), с приводом через блок шестерен (6) все от того же вала. Эксцентрик, наклоняя ротор от 3 до 6 градусов, обеспечивает угловое качание сечениям ротора в пределах от 12 до 24 градусов. В такой комплектации расчетный механический КПД двигателя составит – 97 %.

Возможность использования регенеративных схем теплообмена в РВД способствует максимальной степени выделения в работу  химической энергии сгорания топлива:

Как и в газовой турбине, газ в РВД перемещается между рабочими отсеками: от компрессора к ресиверу, далее в совмещенную или разделенную  камеру сгорания с камерой расширения, используя режим непрерывного течения  порций газа по каналам, при давлениях и температурах аналогично происходящих в камерах сгорания ДВС. Каждая порция газа, двигаясь в общем потоке, представляет из себя непрерывно изменяющийся в объеме, замкнутый капсулированный объем.

С началом вращения, винтовые поверхности ротора начинают открывать внутренние полости винтовых каналов компрессорного отсека, засасывая и них воздух двумя потоками, смещенными относительно друг друга на 180 градусов. За один оборот ротора в оба канала компрессорного отсека засасываются и отсекаются от впускного тракта по две порции воздуха. При дальнейшем повороте, каждая порция воздуха начнет самостоятельно перемещаться к центру двигателя, непрерывно сокращаясь в объеме за счет уменьшения шага и амплитуды самого витка. Процесс сжатия будет продолжаться до тех пор, пока все уменьшающийся объем со сжатым воздухом не подойдет к камере сгорания. В этот момент процесс внутреннего сжатия воздуха в компрессорном отсеке закончится, наступает следующий этап – выталкивание сжатого воздуха в камеру сгорания тыльной стороной витка, ближе других находящегося к центру ротора. Этот процесс сопровождается непрерывным распыливанием топлива в воздушном потоке с последующим его сгоранием в общей камере, куда и выталкиваются все порции воздуха. Для первоначального поджигания топливовоздушной смеси в камере устанавливается запальная свеча. После запуска дальнейшее поджигание смеси должно поддерживаться газами, оставшимися от предыдущих циклов в общей камере сгорания. Последние, с высокой температурой и давлением покидая камеру сгорания, заполняют на роторе винтовые каналы расширительных отсеков, расположенных по другую сторону от центра ротора (точки, где шаг и амплитуда угловых колебаний равна нулю). С поворотом последнего происходит увеличение объемов расширительных отсеков за счет чего и осуществляется рабочий ход. На момент максимального расширения, кромки наружных витков ротора открываются и газы сначала свободно, а затем принудительно выдавливаются в выпускной коллектор. Интервал выпуска отработанных газов из очередной камеры расширения составит 180 градусов. Часть полученной в цикле мощности возвращается телом ротора в компрессорный отсек.

Роторно-волновой двигатель в сравнении с лопаточными и поршневыми машинами:

ДВСГТУРоторно-волновой двигатель
Полный цикл рабочего тела осуществляется в одном цилиндре (вспомогательные такты заставляют конструировать органы газораспределения)Процессы цикла распределены между отдельными агрегатами (отсутствие органов газораспределения) Процессы цикла распределены между отдельными агрегатами (отсутствие органов газораспределения)
 Высокое давление и температура сгорания топливо-воздушной смесиНизкое давление и температура сгорания топливо-воздушной смесиВысокое давление и температура сгорания топливо-воздушной смеси
 Оптимальная работа при а (коэфф. избытка воздуха), близких к 1.Оптимальная работа с а от 3+5 и вышеОптимальная работа при а , близких  к 1
‘Хорошая экономичностьНизкая экономичностьВысокая экономичность
Оптимальный диапазон реализуемых мощностей от 0,1 до 1000 кВтОптимальная мощность от 1000 до 100000 кВтОптимальная мощность от 1 до 100000 кВт
Каждый тип объемной машины работает на своем сорте топливаПотребляет любой вид жидкого или газообразного топливаПотребляет любое жидкое, газообразное, твердое распыленное топливо
Двигатель работает с охлаждениемДвигатель работает без охлажденияДвигатель работает без охлаждения
Работа сопровождается неполным расширением отработанных газовПолное расширение отработанных газовПолное расширение отработанных газов
Эффективное глушение выхлопаНеэффективное глушение выхлопаОтсутствие необходимости глушениявьшюпа
Высокий вес силовой установки: 1+20 кг/кВтНизкий вес силовой установки: до 0,1 кг/кВтВес силовой установки в пределах 0,1+0,25 кг/кВт
При движении звеньев механизма в цепи присутствуют «мертвые точки». Для их преодоления устанавливается маховикОтсутствие «мертвых точек» при движении механизмаОтсутствие «мертвых точек» при движении механизма
Неполное уравновешивание инерционных сил и их моментовНеуравновешенных сил и моментов не возникаетПолное уравновешивание инерционных сил, или вообще неуравновешенных сил не возникает
Большие потери на трение (15+20%)Низкие потери на трение (2+4%)Низкие потери на трение (3+6%)
Выбраны резервы роста эффективного КПДВыбраны резервы роста эффективного КПДСуществует тенденция роста эффективного кпд

– роторно-волновой двигатель имеет неограниченную мощность, малые габариты и вес (0.25-0.40 кг/кВт), высокую экономичность, свободу выбора топлива;

– рабочий процесс для камеры постоянного горения, позволяет, не останавливая двигатель, подавать в него любой вид жидкого, газообразного или даже твердого распыленного топлива;

– высокий ресурс по износу деталей и ресурсу двигателя в целом. В двигателе будут изнашиваться только подшипники, а для них ресурс в 30 – 40 тыс. рабочих часов не предел;

– роторно-волновой двигатель не имеет ограничений по ресурсу и числам оборотов из-за отсутствия уплотнительных элементов и, соответственно трения в проточной части;

– ротор вращается с постоянной угловой скоростью и уравновешивается;

– вместо клапанов, или окон, в конструкции используются каналы неограниченной пропускной способности для непрерывного поступления воздуха в рабочие отсеки двигателя;

– в РВД газовые силы, действующие на ротор, постоянны и непрерывны, что делает ненужной установку маховика, а в некоторых случаях и противовесов, применяемых для полного уравновешивания двигателя;

– расчетный индикаторный КПД простого цикла РВД в адиабатном исполнении и умеренной степени сжатия равной 15 со степенью расширения 36 составит – 51 %. Расход топлива в этом случае может составить 171 г/кВт, при удельном весе силовой установки 0,15 – 0,25 кг/кВт;

– расчетный механический КПД двигателя составляет – 97 %.

Роторно-волновой двигатель может применяться:

– в легких вертолетах, самолетах и дирижаблях;

– в быстроходных катерах, экранопланах;

– в мощных вездеходах, передвижных электростанциях;

– в приводном оборудовании для нефтегазового комплекса.

карта сайта

автомобильный двигатель на катере высокие обороты при запуске двигателя высокий кпд теплового двигателя газовые турбины авиационных двигателей газовый и бензиновый двигатели двигатели работающие на газовом топливе для катера купить с высоким кпд двигатель на приору 16 клапанов новый двигатель ваз 2112 16 клапанов цена новый новый двигатель ваз 2110 8 клапанов цена газовое оборудование на дизельный двигатель роторно поршневой двигатель купить роторный двигатель внутреннего сгорания стационарные двигатели для катеров катера купить характеристика газового двигателя роторного двигателя купить двигатель ваз 2107 инжектор цена новый в цилиндре двигателя внутреннего сгорания давление двигатель внутреннего сгорания характеристики кпд работа совершенная двигателем внутреннего сгорания купить двигатель приора 16 клапанов купить новый двигатель фольксваген свечи для газовых двигателей устройство газового двигателя мощность двигателя катера новые двигатели на автомобили рабочие циклы система седунова вихрова паровой самый

comments powered by HyperComments

ГЛАВА 3.

ДЕЙСТВИТЕЛЬНЫЕ ЦИКЛЫ, МОЩНОСТЬ, КПД ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ Четырехтактный двигатель. Теоретические индикаторные диаграммы были построены нами без учета потерь, которые всегда бывают при работе двигателя. Так, например, при всасывании карбюратор, всасывающий клапан и всасываю­щий патрубок оказывают гидравлическое сопротивление дви­жению газов и тем большее, чем больше скорость газа во всасывающей системе. По этой причине действительное дав­ление всасывания всегда получается ниже атмосферного и за­висит от длины и проходного сечения трубы, плавности пере­ходов, точности изготовления клапанов и клапанных седел, сопротивлений в карбюраторе и обтекаемой формы деталей, встречающихся на пути потока. Это учитывается пунктирной кривой а1;b1; на диаграмме рис. 11, т. е. заряд поступает в ци­линдр пониженной плотности. Понижению его плотности спо­собствует также и нагрев смеси от горячих деталей.

Таким образом, весовое количество заряда в цилиндре понижается, что учитывается коэффициентом наполнения ηv . Коэффициент наполнения показывает, какое по весу количество свежего заряда заполнило цилиндр по срав­нению с тем, которое могло бы вместиться, если бы темпера­тура и давление заряда были равны атмосферным условиям.

Для современных быстроходных легких двигателей коэф­фициент наполнения при полном открытии дросселя находится в пределах 0,8—0,9, т. е. цилиндр двигателя наполняется только на 80—90% от полного объема при нормальных усло­виях(1).

На ηv в известной степени влияет избыток топлива, пони­жающий температуру всасывания и. сгорания, а вместе с ни­ми и температуру цилиндра, поршня и головки. Смесь, содержащая в себе больше топлива, чем требуется для нормальной смеси, называется богатой. Однако работа на богатой смеси неэкономична, так как часть топлива из-за недостатка воздуха сгорает не полностью и уходит наружу с отработанными газами в виде сажи, а отчасти окиси угле­рода СО. Влияет на и род топлива. Каждый вид топлива имеет свою скрытую теплоту парообразования, от которой зависят температура и количество засасываемой смеси. Например, применение в качестве топлива спирта повышает ηv на 5—10% по сравнению с бензином. Так как количество выделенной тепловой энергии, а сле­довательно, и мощность двигателя находятся в прямой зави­симости от весового заряда цилиндра, то в задачу водителя входит использовать все факторы, способствующие увеличе­нию ηv. Рассмотрим влияние фаз газораспределения на наполне­ние цилиндра. В быстроходных двигателях, когда циклы следуют друг за другом очень быстро, всасываемая смесь по трубопроводу движется со скоростью примерно 100 м/сек. С закрытием впускного клапана, в силу инерции движущихся газов, к на­чалу впуска следующего цикла перед клапаном образуется некоторое давление (поджатие) смеси, превосходящее атмо­сферное. В этот момент снова начнет открываться впускной клапан и поджатая смесь с силой устремляется в цилиндр; таким образом можно получить лучшее наполнение цилинд­ра. Поэтому чаще всего в зависимости от быстроходности двигателя начало впуска производят с опережением от 8 до 40°, а в гоночных машинах доводят его до 75° и выше. Такое опережение впуска обычно устанавливается опытным путем. Закрытие впускного клапана также осуществляют не в НМТ, как в теоретическом цикле, а позднее, примерно на 45—70°, давая больше времени на заполнение цилиндра. Таким спо­собом период заполнения удлиняется от 220 до 290° по пово­роту коленчатого вала вместо 180° теоретического цикла, что увеличивает коэффициент наполнения ηv . Следующим фактором, влияющим на наполнение цилинд­ра, являются остаточные газы от предыдущего цикла. В четырехтактных двигателях сгоревшие газы частично задержи­ваются в так называемом вредном пространстве, т. е. в ка­мере сжатия Vc . Так как такт сжатия следует непосредственно за тактом всасывания, то фактически сжатие смеси начинается не в НМТ, а с запозданием, равным концу выпуска, что дает не­которую потерю части хода. Кроме того, на протяжении хо­да сжатия мы имеем дополнительную потерю тепла как на нагрев стенки и головки цилиндра, так и днища поршня, что отражается понижением давления сжатия (пунктирная кривая ac1; на диаграмме рис. 11).

Сжатие смеси необходимо для того, чтобы ускорить про­цесс ее сгорания и получить большую силу давления на пор­шень как при вспышке, так и во время рабочего хода. Уве­личение рабочего давления повышает мощность двигателя. Чем выше степень сжатия в двигателе, тем больше мощность его, тем меньше удельный расход топлива, т. е. расход на 1 л. с. ч., тем выше термический коэффициент полезного действия двигателя. Однако увеличение степени сжатия воз­можно только до определенного предела, зависящего в основ­ном от температуры самовоспламенения рабочей смеси и от возникновения детонации(2) в двигателе. Как самовоспламене­ние, так и детонация нежелательны: они нарушают нормаль­ную работу двигателя. У современных быстроходных двига­телей степень сжатия достигает обычно 5—8, а давление конца сжатия порядка 7,5—11 кг/см². При этом температура достигает 270—350°.

Горение смеси в действительности не происходит мгновен­но, а требует от 1/300 до 1/600 доли секунды, поэтому воспла­менение смеси производят с некоторым опережением c1. Во время расширения, вследствие большой разности тем­ператур между стенкой и газами, часть тепла теряется в стенки и давление понижается. Все переходы давлений от такта сжатия к такту расширения происходят плавно, без резких пиков и всецело зависят от величины опережения за­жигания (рис. 11, пунктирная кривая c1c2z1e1). Величина снижения давлений за ход расширения зависит от интенсивности охлаждения стенок цилиндра, его диаметра и числа оборотов; чем больше число оборотов и больше диа­метр цилиндра, тем выше линия давления расширения на индикаторной диаграмме. Не доходя примерно 50—70° до НМТ по ходу расширения для лучшей очистки цилиндра, производят опережение выпуска: выпускной клапан откры­вается, отработанные газы с критической скоростью (ско­ростью звука) вытекают из цилиндра и давление резко па­дает, что изображено на диаграмме линией е1a1. Выпуск отработанных газов всегда происходит при повы­шенном давлении порядка 1,1—1,2 см², а температура газов в конце выпуска достигает примерно 500—600°. Закрытие выпускного клапана для лучшей очистки цилиндра от сгорев­ших газов производят также не в ВМТ, как в теоретическом цикле, а значительно позже. Для быстроходных двигателей запоздание выпуска доводят до 30—40°, а для гоночных до 55° и выше. Полезно здесь отметить, что вблизи ВМТ клапан впуска и клапан выпуска оказываются некоторое время од­новременно открытыми, так как впускной клапан открывает­ся до прихода в ВМТ, а выпускной закрывается после ВМТ. Такое перекрытие нередко достигает в моторах величины 60°, доходя в гоночных моторах до 100—120°.

Подобные диаграммы можно получить и непосредственно с работающего двигателя при помощи прибора, называемого индикатором, откуда эти диаграммы и получили свое название индикаторных.

Индикаторные диаграммы характеризуют работу поршня за один цикл двигателя, где по оси ординат отложены давле­ния в цилиндре в килограммах на квадратный сантиметр, а по оси абсцисс — объемы в кубических сантиметрах в опреде­ленном масштабе. Измерив площадь диаграммы при помощи какого-либо способа и помножив на масштаб, взятый для ее изображения, получим работу двигателя за один цикл.

Чаще всего площадь диаграммы приводят к равновели­кому прямоугольнику, у которого основание равно ходу поршня в выбранном нами масштабе, а высота равна средне­му давлению на ходе поршня (линия кл). Это давление полу­чило название среднего индикаторного давле­ния и имеет большое значение при подсчете индикаторной мощности двигателя и при сравнении различных двигателей друг с другом.

Двухтактный двигатель. Действительная индикаторная ди­аграмма двухтактного двигателя, подобно индикаторной диа­грамме четырехтактного двигателя, также сильно отличается от теоретической вследствие опережения зажигания смеси в цилиндре, гидравлических потерь в окнах и трубопроводах, утечки тепла в стенки цилиндра и потерь на продувку в мо­мент расширения и сжатия (см. рис. 15). В конце хода сжатия для получения рабочего хода порш­ня, как уже говорилось, необходимо смесь поджечь. Сгора­ние топлива не происходит мгновенно, а требует для себя, хотя и очень короткого (около 1/зоо доли секунды), време­ни, за которое поршень успеет продвинуться примерно на 8—9% своего рабочего хода. Это приводит к сильному снижению как максимального, так и среднего давления по ходу поршня, т. е. к потере мощности двигателя и к непол­ному сгоранию смеси. Чтобы лучше использовать теплоту, заключенную в то­пливе, надо дать больше времени для ее сгорания, а для этого поджигают смесь значительно раньше прихода поршня в ВМТ, или, как говорят, с некоторым опережением, тем большим, чем быстроходнее двигатель (линия с2с3). Очень раннее зажигание делать также нежелательно, так как работа двигателя становится жесткой (жесткий ход). Появляются толчки, крутящий момент на валу становится неравномерным, а иногда это вызывает даже обратный по­ворот коленчатого вала и остановку двигателя. Зажигание производят с таким расчетом, чтобы получить максимальное давление спустя 10—20° после ВМТ. Для этого опережение зажигания в быстроходных двигателях обычно делают в пределах 30—45° до ВМТ. Рабочая диаграмма получается с опережением полнее, а мощность больше, чем при воспламенении смеси в ВМТ. Практически опережение зажигания осуществляют или от руки, поворотом специального рычажка, или при помощи ав­томатического регулятора, устанавливаемого на магнето и увеличивающего! опережение зажигания с ростом числа обо­ротов двигателя. Такие регуляторы установлены на послед­них наших отечественных конструкциях подвесных лодочных моторов ЛММ-6 и ЛМР-6. Одной из значительных потерь, искажающих теоретиче­скую диаграмму, является потеря на ходе поршня благодаря наличию продувочных и выпускных окон. Так как в двухтактных двигателях очистка цилиндров от сгоревших газов и наполнение их свежей смесью происходят через соответствующие окна, то с начала открытия последних до момента закрытия давление в цилиндре устанавливается близким к атмосферному и процесс сжатия начинается не сразу после НМТ, а только с момента закрытия окон; то же самое и рабочий ход заканчивается не в НМТ, как это мы рассматривали в идеальном цикле, а раньше, с момента на­чала открытия их. Таким образом, на протяжении высоты окон получается потеря рабочего хода. Высота этих окон от­нимает около 10—15% рабочего хода поршня.

Продолжительность открытия каждого ряда окон, очевид­но, определяется его высотой: чем выше окно, тем длиннее путь, проходимый поршнем вдоль окна, а следовательно, и больший период времени окно остается открытым. Время, или период, того или иного процесса, выраженное в градусах по­ворота коленчатого вала, носит название фазы процесса, или фазы газораспределения. Фазы газораспределе­ния обычно изображаются круговыми диаграммами. Такого рода диаграмма для мотора ЛМР-6 приведена на рис. 16.

Из рис. 16,а видно, что при движении поршня вверх пер­выми закрываются продувочные окна, а выпускные еще открыты и выпуск газов продолжается, вследствие чего часть засосанной смеси вылетает наружу. Это уменьшает коэффи­циент наполнения ?v и снижает мощность двигателя. На уве­личение наполнения двигателя сильно влияет процесс всасы­вания. Значительно лучшее наполнение картера смесью по­лучается при золотниковом распределении, когда всасывание может начинаться сразу после закрытия продувочных окон, а поджатие смеси сразу после прохождения поршнем ВМТ, как изображено на диаграмме (рис. 16,6), и происходит на всем остальном ходе поршня, до нового открытия продувочных окон. На рис. 17 приведен ряд конструкций золотникового уп­равления впуском. Дисковый золотник представляет собой диск со сквозным окном для впуска воздуха. Своей шлифованной стороной он все время прижимается при посредстве слабой пружины к торцу одной из боковых стенок картера, на которой прорезано всасывающее окно. При вращении зо­лотника его окно набегает на окно картера, периодически со­общая последний с атмосферой.

Рис. 16. Круговые диаграммы газораспределения с поршневым и золотниковым впуском смеси: а — поршневое распределение; б — золотниковое распределение

Иногда золотники изготовляются в виде пустотелого бара­бана с окном на цилиндрической поверхности. Цилиндрические золотники для свободного вращения выполняются с некото­рым зазором. При сжатии смесь через зазор частично будет протекать в картер; цилиндрические золотники применяются только на быстроходных двигателях, где влияние зазора не­значительно. Гидравлические потери и понижение давления на протя­жении рабочего хода примерно остаются такими же, как и у четырехтактного двигателя. Сумма всех перечисленных потерь в индикаторной диа­грамме двухтактного двигателя составляет приблизительно 8—10% от диаграммы теоретического цикла, а потому для определения работы цикла можно пользоваться последней, уменьшая ее на указанный процент. Определять площадь диаграммы можно или при помощи специального прибора (планиметра), или вычертив ее на миллиметровке и подсчитав число миллиметров, заключен­ных внутри диаграммы. Площадь умножают на масштаб диаграммы и получают действительную работу цилиндра за один цикл. Продолжительность отдельных фаз по углу поворота ко­ленчатого вала в современных двухтактных подвесных мото­рах колеблется в пределах: для всасывающих окон 100— 115°, для продувочных 86—115°, для выхлопных 110—135°. Делая сводку всех явлений в цилиндре двухтактного дви­гателя за полный цикл, мы получим такую картину: 1-й такт — ход поршня к ВМТ: над поршнем сжатие смеси/под поршнем всасывание смеси.

Рис. 17. Конструкции золотников для впуска рабочей смеси в картер: а — дисковый золотник; б — цилиндрический золотник двухцилиндрового двигателя; в — цилиндрический золотник, приводимый от шестерни, свя­занной с коленчатым валом; г — цилиндрический золотник четырехци­линдрового двигателя

2-й такт — ход поршня к НМТ: над поршнем сгорание и расширение/под поршнем сжатие смеси Чистота заряда в двухтактных двигателях зависит от качества продувки. Количество отработанных газов после продувки колеблется в весьма широких пределах: от 3% для двухтактных двигателей с прямоточной продувкой при наличии избыточного воздуха или смеси при продувке и до­стигает 40—50% при камерной продувке. Мощность двигателя и коэффициент полезного действия. Из механики известно, что мощность есть работа, совершае­мая в единицу времени. Работа за один полный цикл выра­жается произведением среднего индикаторного давления рi на рабочий объем цилиндра. Зная число оборотов двигателя в минуту и среднее инди­каторное давление, легко подсчитать его мощность по формулам: Получаемая мощность носит название индикаторной мощности двигателя. Она дает представление о работе газа, переданной поршню. Из приведенных формул видно, что индикаторная мощ­ность возрастает: 1) с увеличением литража двигателя Vs ; 2) с увеличением числа оборотов коленчатого вала дви­гателя n; 3) с увеличением среднего индикаторного давления рi ; 4) с увеличением числа цилиндров i. Индикаторную мощность нельзя полностью использовать, для полезной работы из-за существующих потерь в самом двигателе, или так называемых «механических потерь», кото­рые учитываются механическим коэффициентом полезного-действия. Мощность, которой мы можем располагать в дей­ствительности на коленчатом валу, называется «эффектив­ной мощностью». Таким образом, под механическим коэффициентом полезного действия понимают отношение эффектив­ной мощности двигателя, т. е. мощности, действительно полу­чаемой на валу двигателя Ne к индикаторной, т. е. мощ­ности, передаваемой газами поршню двигателя Ni : Так как при различном числе оборотов ηm неодинаков, то принято относить к двигателю только ηm , получающий­ся при максимально достижимой мощности Nemaks Механические потери в двигателе можно подразделить на три основных вида: 1. На потери при трении всех движущихся частей двига­теля: поршня, поршневых колец, подшипников. Величина этого вида потерь является самой большой и в основном за­висит: а) от состояния поверхностей трущихся деталей, б) от давления между ними и в) от характера и качества смазки и равняется примерно 55—65% от общего количества меха­нических потерь. 2. На потери при приведении в действие вспомогательных механизмов (магнето, насосы) обычно падает от 6 до 18% от общего количества потерь. 3. На потери при наполнении цилиндра свежей смесью и очистку его от отработанных газов, так называемые «гидрав­лические», или «насосные потери», падает все остальное. По­следние потери слагаются из сопротивлений во всасываю­щем трубопроводе, в карбюраторе и во впускных окнах. Сю­да относят трение газов о шероховатую поверхность каналов. Обычно механические потери на основании практических данных принимаются равными 10—25% от индикаторной мощности, т. е. к гребному винту может быть подведено лишь 90—75% мощности, передаваемой газами поршням двигателя. Эффективная мощность подобно индикаторной может быть выражена соответственными формулами: величина Pеf входящая в формулу эффективной мощно­сти, носит название среднего эффективного да­вления (по аналогии со средним индикаторным давлени­ем). Она в действительности не может быть замеренной на двигателе и является условной. Ее получают вычислением из формулы мощности, если известны: литраж двигателя, обо­роты и мощность, развиваемая двигателем на гребном валу. Когда двигатель построен, эффективная мощность, а следова­тельно, и среднее эффективное давление определяются испы­танием мотора или его двигателя на тормозном станке, где обычно замеряется развиваемый двигателем крутящий мо­мент, а по крутящему моменту определяют уже эффектив­ную мощность по формуле где Мк выражен в кгм, а эффективное давление уже по­лучается из ранее приведенных формул мощности в кило­граммах на квадратный сантиметр. Среднее эффективное давление является важной величиной, им часто пользуются при сравнении различных двигателей между собой. Для двухтактных двигателей подвесных моторов обычно­го типа величина среднего эффективного давления при мак­симальной мощности колеблется в пределах от 4 до 6 кг/см² и для спортивных и гоночных—от 7 до 12 кг/см². С увеличением числа оборотов механические потери силь­но возрастают, требуя затраты полезной энергии, а заряд ци­линдра уменьшается. Потери возрастают не прямо пропор­ционально числу оборотов двигателя, а с некоторым превы­шением и, наконец, достигают величины прироста мощности; это соответствует максимальной мощности, после чего с дальнейшим ростом числа оборотов мощность двигателя на­чинает убывать.

Рис. 18. Типовой график внешней характеристики двигателя: Ni и Nе — мощность; Мк — крутящий момент; Се — удельный расход топлива на 1 л. с. ч.; ηm — механический КПД двигателя

Диаграммы, показывающие изменение эффективной мощ­ности, в зависимости от числа оборотов при полном откры­тии дросселя получили название характеристик дви­гателей. Часто на этом же графике изображают кривые расхода топлива, изменения pt от числа оборотов, измене­ния крутящего момента Mk , механический КПД ηm , удель­ный расход топлива Се и другие данные, характеризующие двигатель. Такая диаграмма изображена на рис. 18. Если эффективную мощность двигателя разделить на пол­ный рабочий объем двигателя, выраженный в литрах, то мы получим так называемую литровую мощность, т. е. мощность, отнесенную к одному литру рабочего объема, двигателя. Литровая мощность характеризует полноту использования объема всех цилиндров двигателя. Для гоночных моторов в настоящее время, литровая мощ­ность достигает величины 60—70 л. с, а в отдельных случа­ях бывает и значительно больше. Двухтактные двигатели, уступая в экономичности четы­рехтактным двигателям, обладают, в свою очередь, такими преимуществами, как отсутствием клапанов и распределитель­ного механизма, повышенной литровой мощности, простотой конструкции и ухода за ним, меньшим удельным весом и де­шевизной двигателя в изготовлении. Чем проще двигатель, тем меньше причин для его неисправности, тем он надежнее. Здесь необходимо отметить и еще одно важное преимущест­во двухтактных двигателей: большую равномерность крутя­щего момента, так как в четырехтактных двигателях за счет инерции маховика осуществляются три такта, а в двухтакт­ном всего один. Поэтому для установления равномерности крутящего момента требуются маховики значительно мень­шего веса, что дополнительно снижает общий вес двухтакт­ного двигателя примерно на 10—20% и даже больше.

(1) Нормальными атмосферными условиями называется атмосферное давление 1 кг/см² и температура +15°.

(2) О детонации см. главу 6.

Вперед

Оглавление Назад

Смотрите также

  • Какие шины хорошие на зиму
  • Уаз 3159 барс
  • Ваз 2107 прокладка гбц инжектор
  • Подогреватель двигателя своими руками
  • Коммутатор зил 130 бесконтактный
  • Эпоксидный грунт боди
  • Посторонний шум в панели приоры
  • Ваз 2114 снятие заднего бампера
  • Спойлер это кто
  • Дистиллированная вода в домашних условиях
  • Ваз 2107 схема двигателя

КПД двигателя внутреннего сгорания – познаем эффективность в сравнении

Известно, что эффективность работы автомобильного двигателя внутреннего сгорания находится в прямой зависимости от величины коэффициента полезного действия. КПД двигателя выражается в виде соотношения мощностей, передаваемых на коленвал и поршни. Современные ДВС отличаются наибольшей эффективность, в сравнении с устаревшими аналогами. Например, мотор объемом 1,6 л. , раньше развивал мощность не более 70 лошадиных сил, а теперь этот параметр часто достигает 150 л. с.

КПД парового двигателя

Для приведения в действие силового агрегата необходимо преобразовать тепловую энергию, появляющуюся при сжигании топливовоздушной смеси, в механическую. Раньше применялись паровые двигатели, в которых сгорало твердое топливо (уголь, дрова), поршни приходили в движение под воздействием расширяющегося пара. Размеры таких силовых установок были в несколько раз больше по габаритам, чем современные двигатели, работающие на топливе другого вида.

В паровых машинах поршневого типа КПД не превышает значения 10%. В настоящее время такие устройства почти не применяются, т. к. считается, что не существует кардинальных способов увеличить их коэффициент полезного действия.

С целью увеличения данного показателя, применяют источники тепла, обладающие наименьшей стоимостью. Например, на больших ТЭЦ используется атомная энергия. Вдобавок, применяются современные технологии, при которых отработанное тепло не уходит бесполезно в атмосферу, а используется для отопительных систем в многоквартирных домах. Потери здесь составляют не больше 10 процентов. Современные паровые турбины обладают коэффициентом КПД, равным 50 – 60%.

Интересно: В развитых странах Европы (Швейцарии, Австрии) большой популярностью пользуются паровозы. Их используют в качестве туристического транспорта для перевозки пассажиров по горным дорогам. Благодаря многочисленным усовершенствованиям, экономические показатели паровозов часто соперничают как с электровозами, так и тепловозами.

Подробнее о потерях

Если забегать вперед, то можно уверенно сказать что КПД бензинового двигателя находится в пределах от 20 до 25 %. И на это много причин. Если взять поступающее топливо и пересчитать его на проценты, то мы как бы получаем «100% энергии», которая передается двигателю, а дальше пошли потери:

1) Топливная эффективность

. Не все топливо сгорает, небольшая его часть уходит с отработанными газами, на этом уровне мы уже теряем до 25% КПД. Конечно, сейчас топливные системы улучшаются, появился инжектор, но и он далек от идеала.

2) Второе это тепловые потер
и
. Двигатель прогревает себя и множество других элементов, такие как радиаторы, свой корпус, жидкость которая в нем циркулирует. Также часть тепла уходит с выхлопными газами. На все это еще до 35% потери КПД.

3) Третье это механические потери

. НА всякого рода поршни, шатуны, кольца – все места, где есть трение. Сюда можно отнести и потери от нагрузки генератора, например чем больше электричества вырабатывает генератор, тем сильнее он тормозит вращение коленвала. Конечно, смазки также шагнули вперед, но опять же полностью трение еще никому не удалось победить – потери еще 20 %

Таким образом, в сухом остатке, КПД равняется около 20%! Конечно из бензиновых вариантов есть выделяющиеся варианты, у которых этот показатель увеличен до 25%, но их не так много.

ТО есть если ваш автомобиль расходует топлива 10 литров на 100 км, то из них всего 2 литра уйдут непосредственно на работу, а остальные это потери!

Конечно можно увеличить мощность, например за счет расточки головки, смотрим небольшое видео.

Если вспомнить формулу то получается:

От чего зависит КПД дизельного двигателя

Если сравнивать эффективность бензинового и дизельного моторов, выяснится, что второй обладает лучшими показателями:

  • замечено, что, бензиновые двигатели преобразуют только одну четвертую часть использованной энергии в механическую работу;
  • в то время, как дизельные – 40% соответственно;
  • при установке турбонаддува в дизеле, КПД газотурбинного двигателя возрастает до 50 и более процентов.

Конструкция и принцип работы дизелей способствуют наибольшей эффективности в сравнении с карбюраторными двигателями. Причины лучшего КПД дизельного двигателя:

  1. Более высокий показатель степени сжатия.
  2. Воспламенение топлива происходит по другому принципу.
  3. Корпусные детали нагреваются меньше.
  4. Благодаря меньшему количеству клапанов, снижены расходы энергии на преодоление сил трения.
  5. В конструкции дизеля отсутствуют привычные свечи, катушки зажигания, на которые требуется дополнительная энергия от электрогенератора.
  6. Коленчатый вал дизеля раскручивается с меньшими оборотами.

В сравнении с дизелями, электрические двигатели считаются более эффективными. Двигатель с самым большим КПД – это электрический. При создании более долговечных аккумуляторных батарей, которым не страшны морозы, автомобильная промышленность постепенно перейдет на выпуск электромобилей в больших количествах.

Энергетическая ценность солярки и бензина

Дизельное топливо состоит из более тяжелых углеводородов, чем бензин. Меньший КПД бензиновой установки сравнительно с дизелем также заключаются в энергетической составляющей бензина и особенности его сгорания. Полное сгорание равного количества солярки и бензина даст больше тепла именно в первом случае. Тепло в дизельном ДВС более полноценно преобразуется в полезную механическую энергию. Получается, при сжигании одинакового количества топлива за единицу времени именно дизель выполнит больше работы.

Также стоит учитывать особенности впрыска и создание надлежащих условий для полноценного сгорания смеси. В дизель топливо подается отдельно от воздуха, впрыскивается не во впускной коллектор, а напрямую в цилиндр в самом конце такта сжатия. Результатом становится более высокая температура и максимально полноценное сгорание порции рабочей топливно-воздушной смеси.

Резюме

При производстве современных двигателей внутреннего сгорания заводы-изготовители вкладывают большие средства в погоне за повышением КПД своей продукции хотя бы на несколько процентов. С этой целью, инженеры усовершенствуют и усложняют конструкции моторов, используют новые материалы для изготовления отдельных элементов.

Иногда случается, что финансовые затраты разработчиков нецелесообразны, в сравнении с полученным результатом в 2 – 3%. Поэтому бывает выгоднее подвергать стандартные двигатели различным форсированиям, доводкам, доработкам при помощи тюнинговых усовершенствований в небольших ремонтных мастерских. В результате чего увеличивается мощность и прочие тяговые характеристики силовых агрегатов.

О топливной эффективности дизеля

ИЗ более высокого значения коэффициента полезного действия – следует и топливная эффективность. Так, например двигатель 1,6 литра может расходовать по городу всего 3 – 5 литров, в отличие от бензинового типа, где расход 7 – 12 литров. У дизеля намного , сам двигатель зачастую компактнее и легче, а так же в последнее время и экологичнее. Все эти положительные моменты, достигаются благодаря большему значению , есть прямая зависимость КПД и сжатия, смотрим небольшую табличку.

Однако не смотря на все плюсы у него также много и минусов.

Как становится понятно, КПД двигателя внутреннего сгорания далек от идеала, поэтому будущее однозначно за электрическими вариантами – осталось только найти эффективные аккумуляторы, которые не боятся мороза и долго держат заряд.

На этом заканчиваю, читайте наш АВТОБЛОГ.

Понятие коэффициента полезного действия (КПД) может быть применено к самым различным типам устройств и механизмов, работа которых основана на использовании каких-либо ресурсов. Так, если в качестве такого ресурса рассматривать энергию, используемую для работы системы, то результатом этого следует считать объем полезной работы, выполненной на этой энергии.

В общем виде формулу КПД можно записать следующим образом: n = A*100%/Q. В данной формуле символ n применяется в качестве обозначения КПД, символ A представляет собой объем выполненной работы, а Q — объем затраченной энергии. При этом стоит подчеркнуть, что единицей измерения КПД являются проценты. Теоретически максимальная величина этого коэффициента составляет 100%, однако на практике достигнуть такого показателя практически невозможно, так как в работе каждого механизма присутствуют те или иные потери энергии.

Анализ теплового цикла

Тепловой цикл включает в себя четыре термодинамических базовых процесса. Вначале происходит преобразование состояния рабочего тела, а затем, возвращение его в исходное состояние: сжатие, получение тепла, расширение и отвод тепла.

Каждый из этих процессов осуществляется по следующей схеме, которая определяет условия реализации цикла:

  1. Изотермический — работа выполняется при постоянной температуре.
  2. Изобарический — рабочий цикл реализуется при постоянном давлении.
  3. Изометрический — тепловой процесс протекает при постоянном объеме
  4. Адиабатический — цикл осуществляется при постоянной энтропии.

Для того чтобы процесс был максимально приближен к обратимому, есть два способа перемещения поршня: изотермический — это означает, что тепло постепенно поступает или выходит из резервуара при температуре, бесконечно отличающейся от температуры газа в поршне, и адиабатический, при котором теплообмен вообще не происходит, газ действует, как пружина.

Таким образом, когда подводится тепло и газ расширяется, температура газа должна оставаться такой же, как и у источника тепла, при этом газ расширяется изотермически. Точно так же позже он будет сжиматься в цикле изотермически, с выделением тепла.

Чтобы выяснить эффективность, нужно проследить за полным циклом двигателя, выяснить, сколько он работает, сколько тепла забирается из топлива и сколько энергии теряется при подготовке к следующему циклу.

Характеристики теплового цикла, связанного с тепловым двигателем, обычно описываются с помощью двух диаграмм изменения состояния: диаграммы PV, показывающей соотношение давление-объем, и диаграммы TS, демонстрирующей пару температура-энтропия.

Для постоянной массы газа работа теплового двигателя представляет собой повторяющийся цикл, и его PV-диаграмма будет выглядеть замкнутой фигурой.

Где теряется эффективность

Забегая вперёд можно констатировать, что для бензиновых двигателей КПД равен примерно 25 процентам. Почему так мало, и чем обусловлены такие цифры? Причины здесь в потерях: если взять некое количество топлива, и обозначить его ста процентами чистой энергии, передающейся мотору, то можно проследить все потери.

  • Для начала следует разобрать топливную эффективность. Все мы в курсе, что топливо сгорает не полностью, и некоторая его часть просто выходит в виде отработанных газов и вместе с ними. А это уже потеря примерно четверти эффективности, то есть – минус 25%. Даже инжектор и другие современные системы не решают этого вопроса, хоть и стали очень эффективными.
  • Далее идут тепловые потери. Мотор греет себя, воздух, другие элементы и узлы, к примеру, радиатор, охлаждающую жидкость, свой корпус, а также выхлоп. В этом месте эффективность теряет ещё около 35%.
  • Немало процентов забирают механические потери. Это поршни, шестерни, кольца, подшипники и прочие элементы и узлы, где присутствует трение. Сюда же относим и нагрузки генератора, который при выработке электроэнергии заметно тормозит коленвал. Несмотря на то, что смазочные материалы стали гораздо эффективнее, вынь да положь ещё двадцать процентов потерь.

И что у нас остаётся в остатке? А всего 20%! Понятно, что это средний показатель, и бензиновые двигатели бывают более эффективными, но насколько – может ещё пять-семь процентов, не больше. Да и двигателей таких совсем немного. Итого из залитых десяти литров топлива, что автомобиль съедает на сто километров пробега, на полезную работу уходить всего два с половиной литра, а остальные семь-восемь литров попросту уходят в потери.

Лучшие двигатели внутреннего сгорания эффективны на 25%

Мощность и КПД

Мощность механизма или устройства равна работе, совершаемой в единицу времени. Работа(A) измеряется в Джоулях, а время в системе Си – в секундах. Но не стоит путать понятие мощности и номинальной мощности. Если на чайнике написана мощность 1 700 Ватт, это не значит, что он передаст 1 700 Джоулей за одну секунду воде, налитой в него. Это мощность номинальная. Чтобы узнать η электрочайника, нужно узнать количество теплоты(Q), которое должно получить определенное количество воды при нагреве на энное количество градусов. Эту цифру делят на работу электрического тока, выполненную за время нагревания воды.

Величина A будет равна номинальной мощности, умноженной на время в секундах. Q будет равно объему воды, умноженному на разницу температур на удельную теплоемкость. Потом делим Q на A тока и получаем КПД электрочайника, примерно равное 80 процентам. Прогресс не стоит на месте, и КПД различных устройств повышается, в том числе бытовой техники.

Напрашивается вопрос, почему через мощность нельзя узнать КПД устройства. На упаковке с оборудованием всегда указана номинальная мощность. Она показывает, сколько энергии потребляет устройство из сети. Но в каждом конкретном случае невозможно будет предсказать, сколько конкретно потребуется энергии для нагрева даже одного литра воды.

Например, в холодной комнате часть энергии потратится на обогрев пространства. Это связано с тем, что в результате теплообмена чайник будет охлаждаться. Если, наоборот, в комнате будет жарко, чайник закипит быстрее. То есть КПД в каждом из этих случаев будет разным.

На что тратиться полезная энергия?

Первый пункт здесь – это потери, возникающие непосредственно при горении топлива, ведь все топливо в двигателе никогда не сгорает, часть его улетает в выхлопную трубу. Эта часть, в среднем, составляет около 25%.

Следующим местом (точнее явлением), куда исчезает энергия, является тепло, выделяемое при горении. Возможно, кто-то из вас еще помнит со времен, проведенных на школьной скамье, что для получения тепла требуется энергия, соответственно, образуемое тепло – это есть потери энергии. Здесь стоит заметить, что тепла при работе двигателя внутреннего сгорания образуется с излишком, что требует внедрения серьезной системы охлаждения.

Далее, кроме тепла, выделяемого от горения, тепло выделяется и при самой работе двигателя, ведь все его части трутся, теряя тем самым часть своей энергии.

Подведя итог, получаем еще порядка 35-40% потерь энергии на образование тепла.

Ну, и третья группа потерь – это потери на обслуживание дополнительного оборудования. Помпа системы охлаждения, генератор, кондиционер и пр. – все они для своей работы тоже потребляют энергию. Энергия эта берется от работы двигателя – в размере порядка 10%.

Подведя итог, получаем, что, сжигая топливо, в реальности на «полезное» дело автомобиль затрачивает лишь четверть, а порой и вовсе пятую часть той энергии, которую вырабатывает его движок. Цифры средние, но разбежка в целом понятна.

КПД парового двигателя

Для приведения в действие силового агрегата необходимо преобразовать тепловую энергию, появляющуюся при сжигании топливовоздушной смеси, в механическую. Раньше применялись паровые двигатели, в которых сгорало твердое топливо (уголь, дрова), поршни приходили в движение под воздействием расширяющегося пара. Размеры таких силовых установок были в несколько раз больше по габаритам, чем современные двигатели, работающие на топливе другого вида.

В паровых машинах поршневого типа КПД не превышает значения 10%. В настоящее время такие устройства почти не применяются, т. к. считается, что не существует кардинальных способов увеличить их коэффициент полезного действия.

С целью увеличения данного показателя, применяют источники тепла, обладающие наименьшей стоимостью. Например, на больших ТЭЦ используется атомная энергия. Вдобавок, применяются современные технологии, при которых отработанное тепло не уходит бесполезно в атмосферу, а используется для отопительных систем в многоквартирных домах. Потери здесь составляют не больше 10 процентов. Современные паровые турбины обладают коэффициентом КПД, равным 50 – 60%.

Интересно: В развитых странах Европы (Швейцарии, Австрии) большой популярностью пользуются паровозы. Их используют в качестве туристического транспорта для перевозки пассажиров по горным дорогам. Благодаря многочисленным усовершенствованиям, экономические показатели паровозов часто соперничают как с электровозами, так и тепловозами.

 

 

Чем отличаются КПД бензинового и дизельного двигателя

В отличие от паровых механизмов, топливом для двигателей внутреннего сгорания служит бензин или солярка. Двигатели внутреннего сгорания бензиновый и дизельный имеют схожие конструкции. Однако образование топливовоздушных смесей у них происходит по-разному.

В карбюраторном агрегате элементы поршневой группы функционируют при сверхвысоких температурах. Соответственно, они нуждаются в более качественном охлаждении. При этом наблюдается большой расход тепловой энергии. Вследствие неэффективного рассеивания тепла в окружающей среде, понижается коэффициент полезного действия бензинового силового агрегата.

  • КПД бензинового двигателя равняется 25-30 %;
  • дизельного – 40 %;
  • с установкой турбонаддува достигает 50 процентов соответственно.

Роторно-поршневые тепловые двигатели обладают высоким КПД, его значение превышает 40%. Это намного выше бензиновых аналогов, но немного отстает от дизельных моторов.

Турбореактивные самолетные двигатели работают совершенно по другому принципу, который существенно отличается от автомобильных ДВС. Благодаря сравнительно высокому КПД, они пользуются большой популярностью в авиастроении. Чаще всего турбореактивные агрегаты устанавливаются на крупных лайнерах большой грузоподъемности.

Как написано в учебниках физики, чтобы найти КПД двигателя, нужно разделить значение выполненной работы на величину затраченной энергии. При расчете коэффициента полезного действия ДВС полезная работа делится на количество тепла, полученного при сгорании топлива.

Основные потери КПД в двигателях внутреннего сгорания происходят при:

  1. Неполном сгорании топлива в цилиндрах.
  2. Расходе тепла.
  3. Механических потерях.

При неполном сгорании эффективность снижается за счет выхода четвертой части объема топлива с отработавшими газами. Здесь потери КПД двигателя составляют почти 25%. Благодаря появлению инжекторов, работа топливных систем становится более эффективной, но не идеальной.

Часть тепловой энергии уходит на прогрев корпусных деталей двигателя, рабочих узлов, моторного масла, радиатора и пр. Тепло также уходит с выхлопными газами. На данном этапе потери КПД составляют не меньше 35 процентов.

Формула работы в физике

Для механической работы формула несложна: A = F x S. Если расшифровать, она равна приложенной силе на путь, на протяжении которого эта сила действовала. Например, мы поднимаем груз массой 15 кг на высоту 2 метра. Механическая работа по преодолению силы тяжести будет равна F x S = m x g x S. То есть, 15 x 9,8 x 2 = 294 Дж. Если речь идет о количестве теплоты, то A в этом случае равняется изменению количества теплоты. Например, на плите нагрели воду. Ее внутренняя энергия изменилась, она увеличилась на величину, равную произведению массы воды на удельную теплоемкость на количество градусов, на которое она нагрелась.

От чего зависит КПД дизельного двигателя

Если сравнивать эффективность бензинового и дизельного моторов, выяснится, что второй обладает лучшими показателями:

  • замечено, что, бензиновые двигатели преобразуют только одну четвертую часть использованной энергии в механическую работу;
  • в то время, как дизельные – 40% соответственно;
  • при установке турбонаддува в дизеле, КПД газотурбинного двигателя возрастает до 50 и более процентов.

Конструкция и принцип работы дизелей способствуют наибольшей эффективности в сравнении с карбюраторными двигателями. Причины лучшего КПД дизельного двигателя:

  1. Более высокий показатель степени сжатия.
  2. Воспламенение топлива происходит по другому принципу.
  3. Корпусные детали нагреваются меньше.
  4. Благодаря меньшему количеству клапанов, снижены расходы энергии на преодоление сил трения.
  5. В конструкции дизеля отсутствуют привычные свечи, катушки зажигания, на которые требуется дополнительная энергия от электрогенератора.
  6. Коленчатый вал дизеля раскручивается с меньшими оборотами.

В сравнении с дизелями, электрические двигатели считаются более эффективными. Двигатель с самым большим КПД – это электрический. При создании более долговечных аккумуляторных батарей, которым не страшны морозы, автомобильная промышленность постепенно перейдет на выпуск электромобилей в больших количествах.

Повышение эффективности электродвигателей

Электрические двигатели обладают некоторыми недостатками, которые плохо влияют на эффективность работы. Это слабый пусковой момент, высокий пусковой ток и несогласованность механического момента вала с механической нагрузкой. Это приводит к тому, что КПД устройства снижается.

Для повышения эффективности стараются обеспечить нагрузку двигателя до 75% и выше и увеличивать коэффициенты мощности. Также есть специальные приборы для регулирования частоты подаваемого тока и напряжения, что тоже приводит к повышению эффективности и росту КПД.

Одним из самых популярных приборов для увеличения КПД электродвигателя является устройство плавного пуска, которое ограничивает скорость роста пускового тока. Также уместно использовать и частотные преобразователи для изменения скорости вращения мотора путем изменения частоты напряжения. Это приводит к снижению расхода электроэнергии и обеспечивает плавный пуск двигателя, высокую точность регулировки. Также увеличивается пусковой момент, а при переменной нагрузке стабилизируется скорость вращения. В результате эффективность электродвигателя повышается.

КПД реактивного двигателя

Воздушно-реактивный тепловой мотор работает на химической энергии топливного состава. Его мощность расходуется на создание кинетической энергии ракеты и преодоление атмосферного сопротивления. Коэффициент полезного действия таких агрегатов минимальный, по своему значению он является самым маленьким, его значение не превышает даже 1%. Здесь более корректно обсуждать КПД не двигателя, а ракетного топлива, а также, насколько эффективно оно используется.

Резюме

При производстве современных двигателей внутреннего сгорания заводы-изготовители вкладывают большие средства в погоне за повышением КПД своей продукции хотя бы на несколько процентов. С этой целью, инженеры усовершенствуют и усложняют конструкции моторов, используют новые материалы для изготовления отдельных элементов.

Иногда случается, что финансовые затраты разработчиков нецелесообразны, в сравнении с полученным результатом в 2 – 3%. Поэтому бывает выгоднее подвергать стандартные двигатели различным форсированиям, доводкам, доработкам при помощи тюнинговых усовершенствований в небольших ремонтных мастерских. В результате чего увеличивается мощность и прочие тяговые характеристики силовых агрегатов.

Коэффициент полезного действия (КПД) – широко используемая характеристика эффективности некоторой системы или устройства. В нашем случае этой системой выступает двигатель внутреннего сгорания. Казалось бы, о какой эффективности может идти речь в мире современных моторов, разве она не равна 100 процентам? Но оказывается, как нет в нашем мире идеально черного или белого, так нет и машины, у которой вся энергия, получаемая от горения топлива, полностью переходит в механическую энергию, а последняя в свою очередь в полезную энергию прижимающую пилота автомобиля в его кресло.

Относительный КПД действительного цикла с высоким давлением

КПД г/а описывает отношение реально замеряемой работы в цилиндре (индикаторный цикл), совершаемой в результате создания давления в цилиндре, к работе теоретического цикла (рис. 2). Этот КПД включает потерн теплоты и потери на газообмен. Граничными условиями являются:

• реальный газ; • тепловые потери; • конечная скорость подвода и отвода теплоты; • неременная теплоемкость. Все параметры смесеобразования сильно влияют на процесс сгорания и,таким образом, на его совершенство.

Рис.4 Дизели очень сильно различаются по размерам и области применения. Отсюда следуют различия в их эффективности. Наибольший КПД достмга ется большими тихо ходными дизелями 7„ — теоретический КПД изменяется в зависимости от степени сжатия Читайте также: Как выбрать свечи зажигания, или не мучай свой автомобиль

Далее, кроме тепла, выделяемого от горения, тепло выделяется и при самой работе двигателя, ведь все его части трутся, теряя тем самым часть своей энергии.

Подведя итог, получаем еще порядка 35-40% потерь энергии на образование тепла.

Ну, и третья группа потерь – это потери на обслуживание дополнительного оборудования. Помпа системы охлаждения, генератор, кондиционер и пр. – все они для своей работы тоже потребляют энергию. Энергия эта берется от работы двигателя – в размере порядка 10%.

Подведя итог, получаем, что, сжигая топливо, в реальности на «полезное» дело автомобиль затрачивает лишь четверть, а порой и вовсе пятую часть той энергии, которую вырабатывает его движок. Цифры средние, но разбежка в целом понятна.

КПД бензинового и дизельного двигателя.

При этом стоит оговориться, что у бензиновых и дизельных машин КПД двигателя внутреннего сгорания различен: 20% против 40% (соответственно). Данный факт имеет место быть потому, что несмотря на то, что потери на обслуживание механики и нагрев планеты в бензиновых моторах и «дизелях» сопоставимы, количество сжигаемого в процессе горения топлива у дизельных двигателей выше.

Подводя итоги и вспомнив историю появления двигателя внутреннего сгорания, когда КПД составлял немногим более 5%, можно сказать, что инженеры шагнули далеко вперед, а учитывая факт того, что 100% КПД, а по сути идеального двигателя, им вряд ли удастся добиться, можно утверждать, что современные двигатели, скорее всего, достигли своего верха возможного КПД, поэтому неудивительно, что сегодня все чаще автомобилистам предлагаются машины с гибридными двигателями и электромобили, ведь КПД движка у них (электромобилей) – для справки – порядка 90%.

Где теряется эффективность

Забегая вперёд можно констатировать, что для бензиновых двигателей КПД равен примерно 25 процентам. Почему так мало, и чем обусловлены такие цифры? Причины здесь в потерях: если взять некое количество топлива, и обозначить его ста процентами чистой энергии, передающейся мотору, то можно проследить все потери.

  • Для начала следует разобрать топливную эффективность. Все мы в курсе, что топливо сгорает не полностью, и некоторая его часть просто выходит в виде отработанных газов и вместе с ними. А это уже потеря примерно четверти эффективности, то есть – минус 25%. Даже инжектор и другие современные системы не решают этого вопроса, хоть и стали очень эффективными.
  • Далее идут тепловые потери. Мотор греет себя, воздух, другие элементы и узлы, к примеру, радиатор, охлаждающую жидкость, свой корпус, а также выхлоп. В этом месте эффективность теряет ещё около 35%.
  • Немало процентов забирают механические потери. Это поршни, шестерни, кольца, подшипники и прочие элементы и узлы, где присутствует трение. Сюда же относим и нагрузки генератора, который при выработке электроэнергии заметно тормозит коленвал. Несмотря на то, что смазочные материалы стали гораздо эффективнее, вынь да положь ещё двадцать процентов потерь.

И что у нас остаётся в остатке? А всего 20%! Понятно, что это средний показатель, и бензиновые двигатели бывают более эффективными, но насколько – может ещё пять-семь процентов, не больше. Да и двигателей таких совсем немного. Итого из залитых десяти литров топлива, что автомобиль съедает на сто километров пробега, на полезную работу уходить всего два с половиной литра, а остальные семь-восемь литров попросту уходят в потери.

Читать дальше: Резина на трактор т 25

Лучшие двигатели внутреннего сгорания эффективны на 25%

КПД двигателя внутреннего сгорания – что это такое?

В первую очередь, мотор преобразует тепловую энергию, возникающую при сгорании топлива, в определенное количество механической работы. В отличие от паровых машин, эти двигатели более легкие и компактные. Они гораздо экономичнее и потребляют строго определенное жидкое и газообразное топливо. Таким образом, КПД современных двигателей рассчитывается на основании их технических характеристик и прочих показателей.

КПД (коэффициент полезного действия) представляет собой отношение фактически передаваемой мощности на вал двигателя к мощности, получаемой поршнем за счет действия газов. Если провести сравнение КПД двигателей различной мощности, то можно установить, что это значение для каждого из них имеет свои особенности.

Эффективный КПД двигателя зависит от различных механических потерь на разных стадиях работы. На потери влияет движение отдельных частей мотора и возникающее при этом трение. Это поршни, поршневые кольца и различные подшипники. Эти детали вызывают наибольшую величину потерь, составляющие примерно 65 % от их общего количества. Кроме того, потери возникают от действия таких механизмов, как насосы, магнето и прочие, которые могут дойти до 18 %. Незначительную часть потерь составляют сопротивления, возникающие в топливной системе во время процесса впуска и выпуска.

О топливной эффективности дизеля

ИЗ более высокого значения коэффициента полезного действия – следует и топливная эффективность. Так, например двигатель 1,6 литра может расходовать по городу всего 3 – 5 литров, в отличие от бензинового типа, где расход 7 – 12 литров. У дизеля намного больше крутящий момент, сам двигатель зачастую компактнее и легче, а так же в последнее время и экологичнее. Все эти положительные моменты, достигаются благодаря большему значению степени сжатия, есть прямая зависимость КПД и сжатия, смотрим небольшую табличку.

Однако не смотря на все плюсы у него также много и минусов.

Как становится понятно, КПД двигателя внутреннего сгорания далек от идеала, поэтому будущее однозначно за электрическими вариантами – осталось только найти эффективные аккумуляторы, которые не боятся мороза и долго держат заряд.

Читать дальше: Замена механизма стеклоподъемника ваз 2107

На этом заканчиваю, читайте наш АВТОБЛОГ.

(26 голосов, средний: 4,08 из 5)

Наверняка, многие автолюбители задавались вопросом о том, насколько мощность двигателя внутреннего сгорания соответствует полезности. Предполагается, что чем у силовой системы показатель КПД выше, тем она эффективнее. Если говорить абсолютными категориями, то на сегодняшний день самый высокий коэффициент у электрических двигателей, в некоторых моделях он достигает порядка 95 процентов. Что же до двигателей внутреннего сгорания, то у большинства из них, вне зависимости от типа топлива этот показатель весьма далёк от идеальных цифр.

КПД двигателя внутреннего сгорания

Конечно, современные двигатели гораздо эффективнее тех, что были разработаны и выпущены лет десять назад, обусловлено это объективными причинами развития технологий. В начале нулевых мотор объёмом в полтора литра выдавал в среднем около семидесяти лошадиных сил, и это было нормальным. Сегодня количество голов в табуне такого же объёма может достигать более 150. Каждый шажочек в плане увеличения КРД двигателя даётся производителям кропотливым трудом и перебором проб, ошибок и удач.

Сравнение КПД двигателей – бензин и дизель

Если сравнивать между собой КПД бензинового и дизельного двигателя, то следует отметить, что первый из них недостаточно эффективен и преобразует в полезное действие всего 25-30 % произведенной энергии. Например, КПД стандартного дизеля достигает 40 %, а применение турбонаддува и промежуточного охлаждения повышает это значение до 50 %.

Оба двигателя, несмотря на схожесть конструкции, имеют различные виды смесеобразования. Поэтому поршни карбюраторного мотора работают при более высоких температурах, требующих качественного охлаждения. Из-за этого тепловая энергия, которая могла бы превратиться в механическую, рассеивается без всякой пользы, понижая общее значение КПД.

Тем не менее, для того чтобы повысить КПД бензинового двигателя, принимаются определенные меры. Например, на один цилиндр могут устанавливаться два впускных и выпускных клапана, вместо конструкции, когда размещается один впускной и один выпускной клапан. Кроме того, в некоторых двигателях на каждую свечу устанавливается отдельная катушка зажигания. Управление дроссельной заслонкой во многих случаях осуществляется с помощью электропривода, а не обыкновенным тросиком.

http://xn—-8sban6b6a.xn--p1ai/rukovodstvo/kpd-dvs-avtomobilya.html
Источник http://xn--34-6kc4bzaa.xn--p1ai/sovety/kpd-avto.html

Преимущества поршневых двигателей в производстве электроэнергии

Многие эксперты считают, что электростанции, построенные с поршневыми двигателями, являются идеальным дополнением к прерывистым возобновляемым источникам энергии. Реципиентные установки чрезвычайно гибки. Помещения могут быть рассчитаны практически на любой вариант использования; двигатели отличаются высокой надежностью, возможностью быстрого запуска и остановки, могут работать на различных жидких и газообразных топливах; агрегаты очень эффективны (особенно при включении в теплоэлектроцентрали) в широком диапазоне нагрузок; а заводы относительно недороги и могут быть построены быстро с минимальным риском задержки.

Все в энергетике (да и во всем мире) знакомы с поршневыми двигателями. В конце концов, именно они приводят в действие большинство транспортных средств, на которых люди ездят или ездят каждый день. Но поршневые двигатели — это не то, что приходит на ум большинству людей, когда речь идет о производстве электроэнергии. Более типичная электростанция использует турбины для вращения генераторов, приводимых в движение паром или природным газом.

«Часто клиенты имеют давнюю предвзятость в отношении турбин и считают, что многодвигательной установке потребуется значительно больше обслуживающего персонала», — сказал 9 Юкка Лехтонен, вице-президент по управлению технологиями и продуктами Wärtsilä Energy. 0003 POWER , отметив, что недостаточное знакомство с технологией является препятствием для ее более широкого внедрения. «На самом деле, персонал для эксплуатации и обслуживания реципиентной установки примерно такой же, как и для газотурбинной установки аналогичного размера».

Помимо неправильного представления о рабочей силе, есть и другие вещи, в которых люди ошибаются в отношении рецептурных заводов. Многие люди думают, что поршневые двигатели подвержены высоким выбросам; в конце концов, кто не видел дизельный грузовик, мчащийся по дороге с клубами черного дыма из выхлопной трубы? Однако производители оригинального оборудования (OEM) уделяют этому вопросу пристальное внимание.

«В настоящее время наибольшей заботой наших клиентов являются выбросы и особенно поиск решений по сокращению выбросов CO 2 , — сказал д-р Тилман Тюткен, глава отдела продаж электростанций MAN Energy Solutions в Европе. «Наши двигатели оснащены новейшим оборудованием для снижения выбросов, которое сводит уровень выбросов к минимуму. Кроме того, они также подготовлены к будущему, нейтральному по отношению к CO 2 , поскольку они могут работать на синтетическом топливе, полученном из возобновляемых источников энергии с использованием технологии Power-to-X. Например, двухтопливные и газовые двигатели также смогут работать на углеродно-нейтральном синтетическом природном газе в будущем без дополнительной технической адаптации, что сделает их перспективными инвестициями для клиентов».

Гибкость — ключ к успеху

Агенты по недвижимости часто говорят, что три самых важных атрибута недвижимости — это местоположение, местоположение и еще раз местоположение. Сегодня тремя наиболее важными атрибутами электростанции могут быть гибкость, гибкость и гибкость. И реципиентные растения обладают этой чертой.

Лехтонен отметил, что поршневые двигатели обеспечивают гибкую диспетчеризацию. Их можно запускать несколько раз в день без штрафов за обслуживание. Минимальное время безотказной работы двигателей Wärtsilä составляет одну минуту, минимальное время простоя — пять минут, а минимальная стабильная нагрузка — 10 %. Эти функции делают двигатели идеальными для балансировки возобновляемых источников энергии, использования возможностей вспомогательных услуг и оптимизации требований к диспетчеризации в реальном времени.

Поршневые двигатели также отличаются топливной гибкостью (см. врезку «Газовые двигатели предлагают множество преимуществ»). Они могут работать с очень широким спектром жидких и газообразных топлив. Распространены природный газ и мазут, но двигатели также могут быть сконфигурированы для работы на различных видах биотоплива и биогаза, а также на углеродно-нейтральном синтетическом топливе, как отмечалось ранее. Кроме того, некоторые децентрализованные электростанции с двигателями используют сжиженный природный газ (СПГ). Тюткен отметил, что многие обычные двигатели, работающие на жидком топливе, можно легко переоборудовать для работы на двух видах топлива, что дает владельцам гибкость при планировании.

Газовые двигатели предлагают множество преимуществ

Карлос Ланге, генеральный директор и президент компании INNIO, в портфель которой входят бренды газовых двигателей Waukesha и Jenbacher, рассказал POWER , что газовые двигатели обладают рядом преимуществ. Он сказал, что газовые двигатели дополняют возобновляемые источники энергии, балансируя и разделяя производство и потребление энергии. Кроме того, газовые двигатели могут работать не только на природном газе, но и на множестве других газов, включая биогаз, свалочный газ, канализационный газ, синтетические газы и водород. Более того, они позволяют децентрализованно производить электроэнергию и тепло прямо в точке потребления.

Сообщается, что INNIO имеет около 6000 биогазовых двигателей, установленных по всему миру и преобразующих биогаз и биометан в электричество и тепло. Предоставляя индивидуальные энергетические решения, которые повышают электрическую эффективность, более высокую выходную мощность, более длительный срок службы, более низкие выбросы и топливную гибкость для установленного парка электроэнергетической компании, газовые двигатели помогают операторам станции идти в ногу с меняющимися рыночными условиями и удовлетворять новые отраслевые потребности и задачи. срок службы активов.

Удаленный доступ к оборудованию также может быть чрезвычайно полезным. Ланге сказал, что до трех четвертей недавно поставленных газовых двигателей подключены к решению INNIO myPlant для управления производительностью активов (APM), облачной усовершенствованной платформе Интернета вещей (IoT), которая обеспечивает безопасный удаленный мониторинг активов двигателей.

Ланге отметил, что производство электроэнергии становится все более децентрализованным, и сказал, что газовые двигатели лежат в основе этой глобальной трансформации энергетики. Утверждается, что решения INNIO для распределенного питания идеально подходят для создания экологически чистого и безопасного будущего с нейтральным выбросом углерода.

По словам Ланге,

Комбинированные теплоэлектроцентрали (ТЭЦ) могут достигать общего КПД до 95%. Это выгодно как оператору, так и окружающей среде. По его словам, в некоторых случаях инвестиции в ТЭЦ могут окупиться за три-четыре года.

В качестве примера Ланге упомянул завод в Германии. В январе 2020 года Stadtwerke Kiel заменила угольную электростанцию ​​одной из самых современных и гибких в Европе ТЭЦ с газовым двигателем (рис. 1). Было установлено двадцать газовых двигателей Jenbacher J920 FleXtra общей электрической мощностью 190 МВт и тепловой мощностью 192 МВт. И электроэнергия, и тепло от электростанции поступают в электросеть и сеть централизованного теплоснабжения, которыми управляет Stadtwerke Kiel, помогая поддерживать стабильность сети по всей Северной Германии.

1. Stadtwerke Kiel заменила угольную электростанцию ​​на 20 газовых двигателей Jenbacher J920 FleXtra общей электрической мощностью 190 МВт и тепловой мощностью 192 МВт. Предоставлено: Stadtwerke Kiel

По всей Японии газовые двигатели Waukesha обеспечивают высокоэффективную базовую/непрерывную мощность для ТЭЦ, а также быстродействующее аварийное резервное питание, сказал Ланге. Вырабатываемое тепло и электроэнергия в основном используются для горячего водоснабжения. По его словам, эти генераторные установки двойного назначения Waukesha помогают удовлетворить потребности клиентов в балансе между высокой эффективностью и быстрым запуском.

Размер завода по производству рецептур также может быть гибким. Объекты могут быть построены буквально с любой мощностью МВт с использованием среднеоборотных двигателей мощностью примерно от 1 МВт до 20 МВт каждый. Это делает станции идеальными для распределенной генерации, требующей мощности менее 50 МВт, и для более крупных станций мощностью в сотни МВт (рис. 2).

2. Реципиентные установки бывают всех размеров. Завод Quisqueya в Доминиканской Республике включает 24 многотопливных двигателя Wärtsilä Flexicycle 50DF общей мощностью 430 МВт. Предоставлено: Wärtsilä

Джим Уильямс-младший, директор NorthWestern Energy по тепловым и ветровым генерациям, сказал, что гибкость также распространяется на возможности «правильного размера» производства электроэнергии в любой момент времени. Для справки: в июне компания NorthWestern Energy подписала соглашение с Caterpillar Inc., согласно которому известный OEM-производитель машин и двигателей поставит комплексное решение для энергоснабжения, включающее шесть газогенераторных установок Cat G20CM34 (рис. 3) для новой электростанции мощностью 58 МВт. будет построен недалеко от Гурона, Южная Дакота.

3. N Компания NorthWestern Energy строит электростанцию ​​мощностью 58 МВт недалеко от Гурона, Южная Дакота, , которая будет включать шесть газогенераторных установок Cat G20CM34. Двигатели заменят турбины внутреннего сгорания, работающие в настоящее время на электростанции Huron. Предоставлено: Caterpillar Inc.

Уильямс объяснил концепцию правильного расчета: «Допустим, нам нужны дополнительные 20 МВт мощности в системе. Если единственным способом удовлетворить эту потребность является большая турбина внутреннего сгорания мощностью от 50 до 60 МВт, нам придется снизить мощность двигателя, что было бы чрезвычайно неэффективно и более дорого для наших клиентов. С другой стороны, имея флот из 9- Генераторные установки мегаватт, такие как те, что мы устанавливаем в Гуроне, мы можем постепенно увеличивать или уменьшать нашу мощность в меньших блоках, что позволяет нам максимально эффективно удовлетворять потребности в электроэнергии».

Эффективность, надежность и отказоустойчивость

Поршневые двигатели не только универсальны, но и очень эффективны. «Современные среднескоростные реципиентные установки с простым циклом имеют чистую теплотворную способность в диапазоне 8 000–8 400 БТЕ/кВтч (HHV [более высокая теплотворная способность], измеренная на стороне высокого напряжения повышающих трансформаторов). Это означает примерно на 10% меньшее потребление топлива на МВтч, чем у самой передовой газовой турбины на основе авиационного двигателя», — сказал Лехтонен.

Tütken также хвастался эффективностью поршневых двигателей в широком диапазоне нагрузок и условий эксплуатации. «Двигатели силовых установок могут достигать КПД более 50% в однотактном режиме», — сказал он. «В рамках когенерационной электростанции вы даже можете получить эффективность системы до 95%».

Кроме того, двигатели менее чувствительны к высоте, температуре окружающей среды и влажности, чем другие технологии. Например, исследования показали, что эффективность газовой турбины снижается примерно на 1% при повышении температуры на каждые 10 градусов выше условий Международной организации по стандартизации или ISO. Это может привести к снижению выходной мощности газовых турбин при некоторых условиях на 5-10%. В то же время поршневые двигатели сохраняют номинальную эффективность и выходную мощность в более широком диапазоне условий окружающей среды.

Чтобы компенсировать снижение производительности, OEM-производители газовых турбин используют различные методы охлаждения впускного воздуха и повышения производительности турбины, включая испарительные охладители и механические охладители. Однако охлаждение приточного воздуха требует дополнительных энергозатрат, а эффективность систем охлаждения сильно зависит от влажности окружающей среды. Для поршневых двигателей не требуется расход воды. Реципиентные установки используют радиаторное охлаждение с замкнутым контуром, и для увеличения выходной мощности никогда не требуется впрыск воды.

Когда дело доходит до надежности, двигатели трудно превзойти. «Коэффициент вынужденного простоя составляет менее 1% на единицу, а это означает, что для многоблочной установки вероятность остановки всех двигателей одновременно из-за простоя бесконечно мала (по сравнению с одновальной установкой). Кроме того, техническое обслуживание может быть поэтапным, чтобы обеспечить максимальную пропускную способность онлайн в любой момент времени», — сказал Лехтонен.

Компания Williams также отметила преимущество многодвигательной установки. «Когда одна высокопроизводительная турбина отключается для технического обслуживания или ремонта, мы теряем все возможности по выработке электроэнергии на этой станции. В качестве альтернативы, управляя парком из нескольких газогенераторных установок, у нас есть дополнительные единицы, которые могут компенсировать слабину, если одна из них отключится», — сказал он.

Возможность запуска двигателя из полностью обесточенного состояния — еще одно преимущество, которое невозможно переоценить. Многие владельцы заводов выбрали поршневые двигатели из-за устойчивости, которую обеспечивает это преимущество в суровых погодных условиях или других стихийных бедствиях (см. врезку «Преимущества островного режима»).

Преимущества островного режима

Генераторная станция Humboldt Bay компании Pacific Gas and Electric (PG&E’s) в Эврике, штат Калифорния, объект, введенный в эксплуатацию в 2010 году с 10 двигателями Wärtsilä 18V50DF, в июне завершил реконфигурацию, которая позволит отделить части округа Гумбольдт от более крупной сети и обеспечить исключительное электроснабжение. от станции, когда источники передачи, которые импортируют, экспортируют и стабилизируют электроэнергию в близлежащие районы, подвергаются воздействию. В PG&E заявили, что с помощью завода теперь возможно «островить» 20 городов, включая Эврику, Аркату, Мак-Кинливиль и Фортуну, а также некоторые племенные общины.

«Это важная веха не только для округа Гумбольдт, где клиенты получат непосредственную выгоду, но и для всех клиентов в нашей зоне обслуживания, которые выиграют, поскольку мы ищем инновационные решения для снижения воздействия отключений электроэнергии в целях общественной безопасности [PSPS] «Энди Веси, генеральный директор коммунальной компании PG&E, заявил в заявлении о завершении проекта.

PSPS — это одна из мер, принятых некоторыми калифорнийскими коммунальными службами для снижения риска лесных пожаров в периоды высоких температур, сильной засухи и сильных ветров. В определенных ситуациях компании будут отключать электроэнергию в отдельных районах, чтобы снизить риск отказа оборудования и возникновения лесного пожара. Жертвы лесных пожаров подали иски против PG&E на миллиарды долларов, что вынудило компанию объявить о банкротстве 29 января., 2019. Компания вышла из главы 11 1 июля 2020 года и предприняла ряд шагов, чтобы избежать проблем в будущем.

«Наши жители и предприятия испытывали трудности во время аварийных отключений, даже когда в округе Гумбольдт не было угрозы лесных пожаров», — говорится в заявлении первого окружного инспектора округа Гумбольдт Рекса Бона. «Руководство PG&E ответило на наши призывы убедиться, что в следующий раз они сделали все возможное, чтобы уменьшить воздействие».

В зависимости от ситуации, до 67 000 потребителей, которые могли потерять электроэнергию, когда районы за пределами округа Гумбольдт столкнулись с экстремальными погодными условиями, теперь могут оставаться под напряжением за счет изоляции с помощью реципиентной установки. В PG&E заявили, что размер зоны, находящейся под напряжением, можно масштабировать в зависимости от масштабов потенциального события PSPS и других условий, которые могут повлиять на сеть в данный момент.

Надежный выбор для электрогенераторов

Реципиентные установки часто имеют стандартизированную модульную конструкцию, которая сводит к минимуму время строительства, что делает их возведение намного быстрее, чем газовую турбину с комбинированным циклом или паро/котельную установку. Типичные сроки выполнения варьируются от года до 18 месяцев для проектов «под ключ». Ввод в эксплуатацию обычно занимает от одного до двух месяцев в зависимости от размера установки.

«Как и в случае с каждой новой электростанцией, которую мы планируем построить, мы провели исчерпывающую оценку текущей и ожидаемой потребности в электроэнергии для территории, обслуживаемой электростанцией Huron. Мы также провели опрос, чтобы оценить все доступные технологии и выбрать сочетание, которое лучше всего соответствует нашим потребностям», — сказал Уильямс 9.0003 POWER , отметив, что поршневые двигатели были самым дешевым средством удовлетворения требований портфеля NorthWestern Energy к достаточности ресурсов.

«В данном конкретном случае технология поршневого двигателя станет лучшим решением. Это дает нам быстрый ввод в эксплуатацию, надежность и энергетические блоки нужного размера, которые нам нужны для экономически эффективного покрытия периодического дефицита для наших клиентов. Это также дает нам некоторую страховку для удовлетворения пиковых нагрузок на электроэнергию в условиях современного динамичного рынка электроэнергии. Если мы увидим всплеск цен на электроэнергию, мы сможем быстро запустить точное количество генераторных установок с поршневым двигателем, которое нам необходимо, чтобы минимизировать затраты для наших клиентов», — заключил он. ■

Аарон Ларсон — исполнительный редактор POWER.

сравнение технологий распределенной генерации

Резюме:
  • Распределенная генерация приближает электроэнергию и тепло к потребителю.
  • Микротурбины требуют минимального обслуживания, очень гибки в отношении топлива, малочувствительны к изменению состава топлива и имеют очень низкий уровень выбросов NOx.
  • Поршневые двигатели являются наиболее популярной технологией. Они имеют высокий электрический КПД, низкие капитальные затраты и могут работать на обычном и биотопливе.

Введение

Централизованная генерация – крупномасштабное производство электроэнергии на объектах, часто удаленных от потребителей. Они связаны с конечными потребителями через передающие и распределительные сети, в которых часть произведенной мощности рассеивается. Экономия за счет масштаба часто делает это решение наиболее экономически конкурентоспособным, и по этой причине именно так в настоящее время вырабатывается и распределяется большая часть энергии.

Технологии распределенной генерации, наоборот, направлены на приближение электрической и тепловой энергии к потребителю. Это означает более низкие потери при распределении, более высокую гибкость и возможность использования отработанного тепла. Это также позволяет потребителям, которые приобретают контроль над своим энергоснабжением, стать потребителями. В этой статье основное внимание уделяется маломасштабным (<1 МВт) технологиям распределенной генерации, основанным на тепловой энергии, а именно поршневые двигатели внутреннего сгорания (ДВС) и микрогазовые турбины (МГЦ).

Поршневые двигатели внутреннего сгорания

На сегодняшний день поршневые двигатели внутреннего сгорания являются наиболее распространенной технологией производства электроэнергии. Это хорошо известная и проверенная технология, дешевая, универсальная и эффективная. Развитие этой технологии поддерживалось огромной автомобильной промышленностью, которая за последнее столетие значительно расширилась.

Их устройство довольно простое: поршень перемещается внутри цилиндра в осевом направлении, изменяя тем самым его объем. Цилиндр закрыт с одной стороны самим поршнем, а с другой стороны головкой цилиндра, которая обычно удерживает клапаны. Комплект колец, установленных в поршне, герметизирует зазор между цилиндром и поршнем.

Поршневые двигатели внутреннего сгорания в основном используют циклы Отто или Дизеля. Термодинамический цикл состоит из сжатия, воспламенения и расширения. Перед каждым циклом свежий воздух и топливо поступают в цилиндр, и при его завершении выбрасываются продукты сгорания. Все это происходит благодаря впускному и выпускному клапанам, расположенным на головке блока цилиндров, которая движется синхронно с поршнем. Сгорание осуществляется при постоянном объеме в поршневом двигателе, работающем по циклу Отто (например, автомобильные бензиновые двигатели). Для дизельных двигателей мы должны различать малые и большие двигатели. В больших дизельных двигателях, работающих с низкой скоростью вращения, сгорание происходит при постоянном давлении, в то время как в меньших и более быстрых двигателях сгорание происходит частично при постоянном объеме и частично при постоянном давлении (Хейвуд, Основы двигателя внутреннего сгорания).

Рис. 1: Поршневой двигатель: цикл Отто. На этом изображении показаны 4 фазы цикла двигателя: впуск, сжатие, расширение (сразу после зажигания) и выпуск. Источник: WikimediaCommons

Газовые микротурбины

Концептуально газовые микротурбины очень похожи на газовые турбины, и обе они имеют одни и те же термодинамические принципы. Оба они работают по циклу Брайтона, который, как и циклы Отто и Дизеля, состоит из сжатия, нагревания и расширения. Тепло может поставляться путем сжигания или путем теплообмена, как в рекуператорах или машинах с внешним нагревом.

Как «большие», так и микротурбины работают непрерывно, в то время как поршневые двигатели, как следует из названия, работают циклически. Тем не менее, некоторые важные аспекты микрогазовых турбин отличают их от более крупных газовых турбин. Первое отличие заключается в выходной мощности, поскольку все коммерческие микротурбины имеют мощность от 2 кВт до 400 кВт. Их размер влияет как на их конфигурацию, так и на компоненты:

  • Из-за более низкой скорости потока в микрогазовых турбинах используются центробежные и радиальные турбомашины соответственно для компрессора и турбины. Большинство коммерческих продуктов имеют одноступенчатое сжатие и расширение, за исключением Aurelia Turbines. Другие проекты двухконтурных микротурбин находятся в разработке (Capstone C370, ICR Tec ICR350)
  •  Радиальные турбины не могут быть охлаждены, поэтому температура на входе в турбину ограничена максимальной температурой, которую может выдержать выбранный материал, около 950°C. Более крупные двигатели с охлаждением лопаток находятся в диапазоне от 1200°C до 1700°C.
  •  Уменьшение степени сжатия и умеренная температура на входе в турбину приводят к низкому тепловому КПД (приблизительно 15%). Поэтому газовые микротурбины часто используют рекуперативный цикл для рекуперации тепла выхлопных газов и повышения тепловых характеристик. Это повышает эффективность примерно до 30%.
  •   Низкие температуры камеры сгорания газовых микротурбин приводят к чрезвычайно низким выбросам NOx, что делает ненужным внедрение решений по снижению выбросов NOx.
  •   Микрогазовые турбины работают с высокой переменной частотой вращения вала. Поэтому электричество вырабатывается быстроходным генератором (синхронным генератором на постоянных магнитах и ​​силовой электроникой).

Видео: Принцип работы газовой микротурбины. Предоставлено Ansaldo Energia.

Сравнение

Капитальные и эксплуатационные затраты

Капитальные затраты в основном зависят от технологии и применения. Например, для производства электроэнергии требуется только более простая и дешевая конфигурация по сравнению с комбинированным производством тепла и электроэнергии (в когенерационных установках мощность и тепло производятся одновременно). Для этих технологий большая часть производимого тепла исходит от остаточного тепла выхлопных газов двигателя.

Сосредоточив внимание только на генераторных установках, поршневые двигатели, как правило, относительно дешевы и доступны , тогда как микротурбины обычно требуют более высоких капитальных затрат ( рис. 2 ).

Эксплуатационные расходы делятся на расходы на энергию и расходы на техническое обслуживание. Первое обычно имеет тенденцию быть самой большой стоимостью при рассмотрении всего срока службы системы. Это в основном зависит от использования топлива, поэтому предпочтение отдается технологии с наивысшей эффективностью: ДВС (см. следующую главу: Эффективность и стоимость энергии ). И наоборот, поршневые двигатели требуют частое техническое обслуживание (например, замена масел и фильтров) в дополнение к капитальному техническому обслуживанию и капитальному ремонту. Микротурбины, имеющие очень мало движущихся частей и основанные на передовых технологиях подшипников, не требуют замены масла или фильтров, а интервалы их технического обслуживания достаточно велики (примерно 8000 часов). В результате микротурбины обычно имеют более низкие затраты на техническое обслуживание и более высокую доступность. Однако, поскольку ДВС являются очень распространенной технологией, квалифицированная рабочая сила для обслуживания доступна и дешева. Это не относится к микротурбинам, особенно в географических районах с меньшим количеством установок. Это может увеличить затраты на техническое обслуживание MGT.

Рисунок 2: Общая установленная стоимость применения ТЭЦ для микротурбин и поршневых двигателей внутреннего сгорания. Источник: ICF International Inc. (2012 г.), SENTECH Incorporated (2010 г.), Каталог ТЭЦ Агентства по охране окружающей среды (2008 г.), Каталог ТЭЦ Агентства по охране окружающей среды (2015 г.).

Эффективность и стоимость энергии

Электрическая эффективность является очень важным аспектом для сравнения, поскольку она напрямую влияет на затраты на энергию, которые составляют большую часть общих затрат в течение срока службы оборудования. Он показывает, насколько эффективно двигатель преобразует энергию, содержащуюся в топливе, в электричество. Другими словами, чем выше КПД, тем меньше топлива требуется для получения того же выхода энергии.

Как правило, поршневые двигатели имеют более высокий КПД, чем микротурбины, что приводит к значительному снижению эксплуатационных расходов.

На рис. 3 показано сравнение заявленной ОЕМ эффективность ДВС и МГТ. Разница в эффективности между двумя технологиями кажется довольно заметной. Тем не менее, инновационные конструкции микротурбин с двумя золотниками, промежуточным охлаждением и более высокими температурами турбины, как в случае Aurelia Turbines и ICR Tec, пытаются преодолеть этот предел.

Рис. 3: Электрический КПД и номинальная мощность поршневых двигателей и микротурбин из каталогов OEM-производителей. Эффективность повышается с номинальной электрической мощностью для обеих технологий. Поршневые двигатели, как правило, имеют более высокий КПД по сравнению с микротурбинами.

Гибкость в выборе топлива

Поршневые двигатели, как правило, работают на дизельном топливе для небольших установок и на природном газе для более высоких установленных мощностей. Их также можно адаптировать для работы на биотопливе.

Микротурбины обычно работают на природном газе, отходах и биотопливе или даже на внешнем сгорании (например, Ansaldo A100E и B+K Clinx). Микротурбины демонстрируют очень высокую устойчивость к загрязняющим веществам, особенно сульфидам, и изменчивому составу топлива. Это делает их очень подходящими для использования с отходами, остаточным топливом, биотопливом и факельным газом.

Водород как чистое топливо постоянно приобретает все большее значение и пытается навязать свое присутствие на энергетическом рынке. В Европе Европейская комиссия выпустила водородную стратегию для климатически нейтральной Европы, инвестиционную стратегию для разработки водородной основы. Топливные элементы естественным образом подходят для водорода, тем не менее, микротурбины и двигатели внутреннего сгорания могут использовать их более низкая стоимость владения , чтобы потенциально играть роль на этом рынке.

В настоящее время многие компании, производящие микротурбины, заявляют, что их продукты уже могут сжигать водород в чистом виде или в смеси с природным газом. Сжигание чистого водорода является более сложной задачей для поршневого двигателя, учитывая различные физические и химические свойства h3. В настоящее время Scania и Westport Fuel Systems изучают возможность использования h3 в качестве топлива для большегрузного транспорта .

Выбросы и правила

Сравнение выбросов зависит от некоторых факторов, таких как топливо, применение и обработка выхлопных газов.

Общие выбросы CO2 в основном зависят от электрической эффективности только для производства электроэнергии. Для комбинированных систем производства тепла и электроэнергии используется общий коэффициент использования топлива, представляющий собой сумму электрического и теплового КПД. Это часто сравнивают с гипотетическими выбросами CO2, образующимися при раздельном производстве тепла и электроэнергии. ICE, как правило, работают лучше, чем MGT, благодаря их более высокий электрический КПД , как для производства только электроэнергии, так и для комбинированного производства тепла и электроэнергии.

Что касается выбросов NOx и CO, микротурбины работают достаточно хорошо по сравнению с двигателями внутреннего сгорания, которые часто нуждаются в очистке выхлопных газов, что значительно увеличивает общую стоимость установки. Кроме того, некоторые измерения на месте показали резкое увеличение выбросов NOx для ДВС, работающих на биогазе, по сравнению с природным газом. Для микротурбин таких измерений не обнаружено.

Действующие нормы, как правило, немного более строги в отношении выбросов NOx для малой установленной мощности, несмотря на то, что NOx потенциально опасны, особенно для производства электроэнергии на месте и в городских районах. Нынешняя структура норм NOx не позволяет преобразовать это техническое преимущество МГТ в коммерческое.

Рынок

Среди двух технологий поршневые двигатели, несомненно, являются наиболее успешными.

В США поршневых двигателей можно установить в десять раз больше, чем микротурбин для применения до 2 МВт ( Рисунок 4 ).

Рисунок 4: Комбинированные теплоэлектростанции мощностью менее 2 МВт в США (2018 г.). Источник: Базы данных по комбинированному производству тепла и электроэнергии и установке микросетей Министерства энергетики США

Одной из причин успеха поршневых двигателей является большая поддержка автомобильной промышленности, которая примерно столетие подталкивала технологическое и рыночное развитие. В результате ICE в настоящее время являются хорошо известной и широко распространенной технологией с поддерживающей и эффективной цепочкой создания стоимости, которая помогла разработать дешевый, надежный и эффективный продукт.

Наоборот, газовые микротурбины являются более новым продуктом, который появился на рынке немного позже.

Компания Capstone Green Energy была пионером в области микротурбин и до сих пор остается лидером рынка. Первоначально называвшаяся NoMac Energy Systems, компания была основана в 1988 с их продуктом, изначально предназначенным для преодоления калифорнийских отключений электроэнергии, когда их первые коммерческие единицы были проданы в 1998 году. Поэтому, когда первая микротурбина вышла на рынок микрогенерации, ДВС были, безусловно, устоявшейся технологией.

Устоявшиеся технологии могут формировать рынок, на котором они доминируют. Они могут влиять на коллективные предпочтения, согласовывать политику, использовать свою цепочку создания стоимости и технологические показатели, а также эффективно воздвигать барьеры для новых технологий. Обычно новые продукты должны стремиться к небольшим нишам, где они могут развиваться в защищенной среде и искать пробелы, где они могут использовать свои преимущества. Микротурбинам удалось занять свои ниши для применения с высоким спросом на тепло или нетрадиционные виды топлива с высоким уровнем загрязняющих веществ или переменным составом, такие как факельные газы в нефтегазовой отрасли. В этих случаях микротурбины достигли более высокого проникновения на рынок по сравнению с остальным рынком.

Заключение

Технологии децентрализованного производства электроэнергии имеют ряд преимуществ по сравнению с централизованным производством. В данной статье описаны технология и принципы работы поршневых двигателей внутреннего сгорания и микротурбин . Затем эти две технологии сравнивались с точки зрения затрат, эффективности, топливной гибкости, выбросов и рынка. ДВС оказались наиболее успешной технологией с точки зрения проданных единиц и установленной мощности благодаря их низким капитальным и эксплуатационным затратам, высокой доступности и способности работать на различных видах топлива. Микротурбины оказались подходящим решением для некоторых нишевых приложений с высоким потреблением тепла или там, где важную роль играют затраты на техническое обслуживание и состав топлива (например, нефть и газ).

Дополнительное примечание

Топливные элементы: Топливные элементы с протонно-обменной мембраной (PEM или PEFC) и твердооксидные топливные элементы (ТОТЭ) постепенно набирают обороты, в том числе благодаря полученным крупным инвестициям. Их высокая капитальная стоимость в настоящее время является одним из основных барьеров, но она может резко снизиться в последующие годы.

….

Характеристики производительности, эффективности и выбросов поршневых двигателей внутреннего сгорания, работающих на смесях водорода и природного газа

Показаны 1-4 из 73 страницы в этом отчете.

PDF-версия также доступна для скачивания.

Описание

Водород является привлекательным источником топлива не только потому, что он распространен и возобновляем, но и потому, что он производит почти нулевые регулируемые выбросы. Двигатели внутреннего сгорания, работающие на компримированном природном газе (СПГ), используются в различных отраслях промышленности в ряде мобильных и стационарных приложений. Хотя двигатели, работающие на сжатом природном газе, обладают многими преимуществами по сравнению с обычными бензиновыми и дизельными двигателями внутреннего сгорания, характеристики двигателей, работающих на сжатом природном газе, могут быть существенно улучшены в обедненной рабочей области. Бережливая работа имеет ряд преимуществ, наиболее заметным из которых является сокращение выбросов. Однако крайне низкая скорость распространения пламени СПГ сильно ограничивает обедненную… продолжение ниже

Информация о создании

Чепмен, Кирби С. и Патил, Амар 30 июня 2007 г.

Контекст

Этот отчет входит в состав сборника под названием: Управление научно-технической информации Технические отчеты а также предоставлено отделом государственных документов библиотек ЕНТ к Электронная библиотека ЕНТ, цифровой репозиторий, размещенный на Библиотеки ЕНТ. Его просмотрели 115 раз. Более подробную информацию об этом отчете можно посмотреть ниже.


Поиск
Открытый доступ

Кто

Люди и организации, связанные либо с созданием этого отчета, либо с его содержанием.

Авторы

  • Чепмен, Кирби С.
  • Патил, Амар
  • Соединенные Штаты. Министерство энергетики.

Издатель

Предоставлено

Библиотеки ЕНТ Отдел государственных документов

Являясь одновременно федеральной и государственной депозитарной библиотекой, отдел государственных документов библиотек ЕНТ хранит миллионы единиц хранения в различных форматах. Департамент является членом Программы партнерства по контенту FDLP и Аффилированного архива Национального архива.

О | Просмотрите этого партнера

Свяжитесь с нами

Исправления и проблемы Вопросы

какая

Описательная информация, помогающая идентифицировать этот отчет. Перейдите по ссылкам ниже, чтобы найти похожие элементы в электронной библиотеке.

Описание

Водород является привлекательным источником топлива не только потому, что он распространен и возобновляем, но и потому, что он производит почти нулевые регулируемые выбросы. Двигатели внутреннего сгорания, работающие на компримированном природном газе (СПГ), используются в различных отраслях промышленности в ряде мобильных и стационарных приложений. Хотя двигатели, работающие на сжатом природном газе, обладают многими преимуществами по сравнению с обычными бензиновыми и дизельными двигателями внутреннего сгорания, характеристики двигателей, работающих на сжатом природном газе, могут быть существенно улучшены в обедненной рабочей области. Бережливая работа имеет ряд преимуществ, наиболее заметным из которых является сокращение выбросов. Однако чрезвычайно низкая скорость распространения пламени в двигателях, работающих на сжатом природном газе, значительно ограничивает пределы работы двигателей, работающих на сжиженном природном газе. Водород, однако, имеет высокую скорость пламени и широкий рабочий предел, простирающийся в бедную область. Добавление водорода к двигателю, работающему на сжатом природном газе, делает его жизнеспособным и экономичным методом значительного увеличения предела работы на обедненных смесях и, таким образом, повышения производительности и сокращения выбросов. Однако недостатки водорода в качестве источника топлива включают более низкую удельную мощность из-за более низкой теплотворной способности на единицу объема по сравнению с СПГ, а также подверженность преждевременному зажиганию и детонации двигателя из-за широких пределов воспламеняемости и низкой минимальной энергии воспламенения. Однако сочетание водорода с КПГ устраняет недостатки, присущие каждому типу топлива. Цели настоящего исследования заключались в оценке возможности использования смесей водорода и природного газа в качестве топлива для обычных двигателей, работающих на природном газе. Эксперимент и анализ данных включали оценку производительности, эффективности и выбросов двигателя, а также подробные измерения ключевых физических параметров в цилиндрах. Это обеспечило подробную базу знаний о воздействии использования смесей водорода и природного газа. Четырехтактный безнаддувный двигатель на природном газе объемом 4,2 л V-6, соединенный с вихретоковым динамометром, использовался для измерения влияния смесей водорода и природного газа на рабочие характеристики, термодинамическую эффективность и выбросы выхлопных газов в поршневом четырехтактном двигателе. . Матрица испытаний варьировала нагрузку двигателя и соотношение воздух-топливо при открытии дроссельной заслонки 50% и 100% при коэффициентах эквивалентности 1,00 и 0,9. 0 для процентного содержания водорода 10%, 20% и 30% по объему. Кроме того, были проведены испытания при 100% открытии дроссельной заслонки, коэффициенте эквивалентности 0,98 и смеси водорода 20% для дальнейшего изучения изменений выбросов CO. Анализ данных показал, что использование топливной смеси водород/природный газ ухудшает работу двигателя из-за снижения крутящего момента на 1,5–2,0 %, но обеспечивает снижение выбросов CO на 36 %, NOX на 30 % и увеличение на 5 %. по тепловому КПД тормозов. Эти результаты согласуются с предыдущими результатами, опубликованными в открытой литературе. Дальнейшее снижение выбросов может быть достигнуто за счет увеличения угла опережения зажигания.

Предметы

Ключевые слова

  • Горение
  • Анализ данных
  • Динамометры
  • Вихревые токи
  • Эффективность
  • Двигатели
  • Распространение пламени
  • Газовое топливо
  • Водород
  • Зажигание
  • Двигатель внутреннего сгорания
  • База знаний
  • Природный газ
  • Производительность
  • Удельная мощность
  • Тепловая эффективность

Тематические категории ИППП

  • 03 Природный газ
  • 08 Водород
  • 33 передовых силовых установки

Язык

  • Английский

Тип вещи

  • Отчет

Идентификатор

Уникальные идентификационные номера для этого отчета в электронной библиотеке или других системах.

  • Номер гранта : ФК26-04НТ42234
  • https://doi.org/10.2172/927586
  • Отчет Управления научной и технической информации № : 927586
  • Ключ архивного ресурса : ковчег:/67531/metadc893475

Коллекция

Этот отчет является частью следующей коллекции связанных материалов.

Управление научно-технической информации Технические отчеты

Отчеты, статьи и другие документы, собранные в Управлении научной и технической информации.

Управление научной и технической информации (OSTI) — это офис Министерства энергетики (DOE), который собирает, сохраняет и распространяет результаты исследований и разработок (НИОКР), спонсируемых Министерством энергетики, которые являются результатами проектов НИОКР или другой финансируемой деятельности в DOE. лаборатории и объекты по всей стране, а также получатели грантов в университетах и ​​других учреждениях.

О | Просмотрите эту коллекцию

Какие обязанности у меня есть при использовании этого отчета?

Цифровые файлы

  • 73 файлы изображений доступны в нескольких размерах
  • 1 файл (. pdf)
  • API метаданных: описательные и загружаемые метаданные, доступные в других форматах

Когда

Даты и периоды времени, связанные с этим отчетом.

Дата создания

  • 30 июня 2007 г.

Добавлено в цифровую библиотеку ЕНТ

  • 27 сентября 2016 г., 1:39.

Описание Последнее обновление

  • 17 мая 2019 г. , 18:53

Статистика использования

Когда последний раз использовался этот отчет?

Вчерашний день: 0

Последние 30 дней: 1

Всего использовано: 115

Дополнительная статистика

Взаимодействие с этим отчетом

Вот несколько советов, что делать дальше.

Поиск внутри

Поиск

Начать чтение

PDF-версия также доступна для скачивания.

  • Все форматы

Цитаты, права, повторное использование

  • Ссылаясь на этот отчет
  • Обязанности использования
  • Лицензирование и разрешения
  • Связывание и встраивание
  • Копии и репродукции

Международная структура взаимодействия изображений

Мы поддерживаем IIIF Презентация API

Распечатать/поделиться

Полезные ссылки в машиночитаемом формате.

Архивный ресурсный ключ (ARK)

  • ERC Запись: /ark:/67531/metadc893475/?
  • Заявление о стойкости: /ark:/67531/metadc893475/??

Международная структура взаимодействия изображений (IIIF)

  • IIIF Манифест: /арк:/67531/metadc893475/манифест/

Форматы метаданных

  • УНТЛ Формат: /ark:/67531/metadc893475/metadata. untl.xml
  • DC РДФ: /ark:/67531/metadc893475/metadata.dc.rdf
  • DC XML: /ark:/67531/metadc893475/metadata.dc.xml
  • OAI_DC : /oai/?verb=GetRecord&metadataPrefix=oai_dc&identifier=info:ark/67531/metadc893475
  • МЕТС : /ark:/67531/metadc893475/metadata. mets.xml
  • Документ OpenSearch: /арк:/67531/metadc893475/opensearch.xml

Картинки

  • Миниатюра: /ark:/67531/metadc893475/миниатюра/
  • Маленькое изображение: /арк:/67531/metadc893475/маленький/

URL-адреса

  • В текст: /ark:/67531/metadc893475/urls. txt

Статистика

  • Статистика использования: /stats/stats.json?ark=ark:/67531/metadc893475

Чепмен, Кирби С. и Патил, Амар. Характеристики производительности, эффективности и выбросов поршневых двигателей внутреннего сгорания, работающих на смесях водорода и природного газа, отчет, 30 июня 2007 г .; Соединенные Штаты. (https://digital.library.unt.edu/ark:/67531/metadc893475/: по состоянию на 2 октября 2022 г.), Библиотеки Университета Северного Техаса, цифровая библиотека ЕНТ, https://digital.library.unt.edu; зачисление отдела государственных документов библиотек ЕНТ.

Моделирование поршневых двигателей внутреннего сгорания для производства электроэнергии и рекуперации тепла

Автор

Включено:

  • Юн, Кён Тхэ
  • Чо, Хиджин
  • Удача, Рохелио
  • Маго, Педро Х.

Зарегистрирован:

    Abstract

    В этом документе представлена ​​модель производства электроэнергии и рекуперации тепла для поршневых двигателей внутреннего сгорания (ДВС). Целью предлагаемой модели является предоставление реалистичных оценок карт производительности/эффективности как для выходной электрической мощности, так и для полезной тепловой мощности двигателей различной мощности для использования в процессе предварительного проектирования/моделирования ТЭЦ. Предлагаемая модель будет служить альтернативой постоянной эффективности двигателя или эмпирическим кривым эффективности, обычно используемым в современной литературе для моделирования систем ТЭЦ. Алгоритм расчета производительности/эффективности двигателя был закодирован в общедоступной библиотеке динамической компоновки FORTRAN (DLL), а удобный инструмент был разработан с использованием программирования на Visual Basic. Результаты моделирования с использованием предложенной модели сверяются с техническими данными производителя.

    Предлагаемое цитирование

  • Юн, Кён Тэ и Чо, Хиджин и Лак, Рохелио и Маго, Педро Дж., 2013. « Моделирование поршневых двигателей внутреннего сгорания для производства электроэнергии и рекуперации тепла «, Прикладная энергия, Elsevier, vol. 102(С), страницы 327-335.
  • Обработчик: RePEc:eee:appene:v:102:y:2013:i:c:p:327-335
    DOI: 10.1016/j.apenergy.2012.07.020

    как

    HTMLHTML с абстракциейпростой текстпростой текст с абстракциейBibTeXRIS (EndNote, RefMan, ProCite)ReDIFJSON

    Скачать полный текст от издателя

    URL-адрес файла: http://www.sciencedirect.com/science/article/pii/S0306261

    5326
    Ограничение на загрузку: Полный текст только для подписчиков ScienceDirect


    URL-адрес файла: https://libkey.io/10.1016 /j.apenergy.2012.07.020?utm_source=ideas
    Ссылка LibKey : если доступ ограничен и если ваша библиотека использует эту услугу, LibKey перенаправит вас туда, где вы можете использовать свою библиотечную подписку для доступа к этому элементу
    —>

    Поскольку доступ к этому документу ограничен, вы можете поискать другую его версию.

    Каталожные номера указаны в IDEAS

    как

    HTMLHTML с абстрактным простым текстомпростой текст с абстрактнымBibTeXRIS (EndNote, RefMan, ProCite)ReDIFJSON

    1. Фумо, Нельсон и Маго, Педро Дж. и Чамра, Луай М., 2009 г. « Операционная стратегия выбросов для комбинированных систем охлаждения, отопления и энергоснабжения «, Прикладная энергия, Elsevier, vol. 86(11), страницы 2344-2350, ноябрь.
    2. Карезана, Флавио и Брандони, Катерина и Феличиотти, Петро и Бартолини, Карло Мария, 2011 г. « Энергетический и экономический анализ микрокогенератора с регулируемой частотой вращения на базе ДВС «, Прикладная энергия, Elsevier, vol. 88(3), страницы 659-671, март.
    3. Ван, Цзянцзян и Чжай, Чжицян (Джон) и Цзин, Юинь и Чжан, Чунфа, 2010 г. « Оптимизация роя частиц для резервной системы охлаждения здания и системы энергоснабжения ,» Прикладная энергия, Elsevier, vol. 87(12), страницы 3668-3679, Декабрь.
    4. Мейбоди, Мехди Агаи и Бехния, Масуд, 2011 г. « Влияние налога на выбросы углерода на выбор размера двигателя внутреннего сгорания в системе ТЭЦ среднего масштаба ,» Прикладная энергия, Elsevier, vol. 88(12), страницы 5153-5163.
    5. Чо, Хиджин и Маго, Педро Дж. и Лак, Рохелио и Чамра, Луай М., 2009 г. » Оценка производительности систем ТЭЦ на основе эксплуатационных затрат, потребления первичной энергии и выбросов углекислого газа с использованием оптимальной схемы работы ,» Прикладная энергия, Elsevier, vol. 86(12), страницы 2540-2549, декабрь.

    Полные ссылки (включая те, которые не соответствуют элементам в IDEAS)

    Наиболее связанные элементы

    Это элементы, которые чаще всего цитируют те же работы, что и этот, и цитируются теми же работами, что и этот.

    1. Лю, Минси и Ши, Ян и Фанг, Фан, 2014 г. « Комбинированные системы охлаждения, отопления и энергоснабжения: обзор «, Обзоры возобновляемых и устойчивых источников энергии, Elsevier, vol. 35(С), страницы 1-22.
    2. Чжао, Синь и Чжэн, Вэнью и Хоу, Чжихуа и Чен, Хэн и Сюй, Ган и Лю, Веньи и Чен, Хунган, 2022 г. « Экономичная диспетчеризация мультиэнергетической системы с учетом сезонных колебаний на основе стратегии гибридной работы «, Энергия, Эльзевир, том. 238 (ПА).
    3. Лю, Минси и Ши, Ян и Фанг, Фан, 2012 г. « Новая стратегия эксплуатации систем ТЭЦ с гибридными чиллерами «, Прикладная энергия, Elsevier, vol. 95(С), страницы 164-173.
    4. Тянь, Чжэ и Ню, Цзидэ и Лу, Якай и Хэ, Шуньмин и Тянь, Сюэ, 2016 г. « Усовершенствование имитационной модели для распределенной системы ТЭЦ и ее влияние на оптимальные эксплуатационные расходы и стратегию ,» Прикладная энергия, Elsevier, vol. 165(С), страницы 430-444.
    5. Ли, Лунси и Му, Хайлинь и Гао, Вэйцзюнь и Ли, Мяо, 2014 г. « Оптимизация и анализ системы ЦТЭ на основе сопряжения энергетических нагрузок жилых и офисных зданий ,» Прикладная энергия, Elsevier, vol. 136(С), страницы 206-216.
    6. Рен, Хунбо и Чжоу, Вейшэн и Гао, Вэйцзюнь, 2012 г. » Оптимальный вариант распределенных энергосистем для комплексов зданий в различных климатических зонах Китая ,» Прикладная энергия, Elsevier, vol. 91(1), страницы 156-165.
    7. Ван, Цзянцзян и Чжай, Чжицян (Джон) и Цзин, Юинь и Чжан, Чуньфа, 2011 г. « Анализ влияния типов зданий и климатических зон на энергетические, экономические и экологические показатели систем БТЭЦ ,» Прикладная энергия, Elsevier, vol. 88(9), страницы 3097-3112.
    8. Ван, Цзянцзян и Чжай, Чжицян (Джон) и Цзин, Юинь и Чжан, Чунфа, 2010 г. « Оптимизация конструкции системы БТЭЦ для максимального энергосбережения и снижения воздействия на окружающую среду «, Энергия, Эльзевир, том. 35(8), страницы 3388-3398.
    9. Кан, Лигай и Ян, Цзюньхун и Ан, Цинсон и Дэн, Шуай и Чжао, Цзюнь и Ван, Хуэй и Ли, Зелин, 2017 г. » Влияние нагрузки в соответствии со стратегией эксплуатации на систему ТЭЦ с вспомогательным тепловым насосом, использующим грунт, с учетом налога на выбросы углерода и подачи электроэнергии в тарифе ,» Прикладная энергия, Elsevier, vol. 194(С), страницы 454-466.
    10. Цзян-Цзян, Ван и Чун-Фа, Чжан и Ю-Инь, Цзин, 2010 г. « Многокритериальный анализ комбинированных систем охлаждения, отопления и энергоснабжения в различных климатических зонах Китая ,» Прикладная энергия, Elsevier, vol. 87(4), страницы 1247-1259, апрель.
    11. Бьянки М. и Де Паскаль А. и Мелино Ф., 2013 г. » Анализ производительности интегрированной системы ТЭЦ с аккумулированием тепловой и электрической энергии для жилых помещений ,» Прикладная энергия, Elsevier, vol. 112(С), страницы 928-938.
    12. Гочжэн Ли, Руи Ван, Тао Чжан и Мэнцзюнь Мин, 2018 г. « Многоцелевой оптимальный дизайн интегрированной системы ТЭЦ на возобновляемых источниках энергии с использованием PICEA-g «, Энергии, МДПИ, вып. 11(4), страницы 1-26, март.
    13. Ли, Шэн и Суй, Цзюнь и Джин, Хунгуан и Чжэн, Цзяньцзяо, 2013 г. » Энергоэффективность полной цепочки для комбинированной системы охлаждения, нагрева и энергоснабжения, работающей на метаноле и солнечной энергии ,» Прикладная энергия, Elsevier, vol. 112(С), страницы 673-681.
    14. Сара Гаем Сигарчян, Андерс Малмквист и Виктория Мартин, 2018 г. « Оптимизация проектирования маломасштабной полигенерационной энергетической системы в различных климатических зонах в Иране », Энергии, МДПИ, вып. 11(5), страницы 1-19, май.
    15. Маганки, Марьям Мохаммади и Гобадиан, Барат и Наджафи, Голамхассан и Галогах, Реза Джанзаде, 2013 г. » Технологии и приложения микрокомбинированного производства тепла и электроэнергии (МТЭЦ) ,» Обзоры возобновляемых и устойчивых источников энергии, Elsevier, vol. 28(С), страницы 510-524.
    16. Джради М. и Риффат С., 2014 г. « Системы трех поколений: энергетическая политика, первичные двигатели, технологии охлаждения, конфигурации и стратегии эксплуатации », Обзоры возобновляемых и устойчивых источников энергии, Elsevier, vol. 32(С), страницы 396-415.
    17. Вэй, Дацзюнь и Чен, Алиан и Сун, Бо и Чжан, Чэнхуэй, 2016 г. Многокритериальный анализ оптимальной работы и энергетического взаимодействия комбинированной системы охлаждения и отопления ,» Энергия, Эльзевир, том. 98(С), страницы 296-307.
    18. Ван, Цзянцзян и Чжай, Чжицян (Джон) и Цзин, Юинь и Чжан, Чунфа, 2010 г. « Оптимизация роя частиц для резервной системы охлаждения здания и системы энергоснабжения ,» Прикладная энергия, Elsevier, vol. 87(12), страницы 3668-3679, декабрь.
    19. Ан, Хёнгук и Рим, Донхён и Фрайхаут, Джеймс Д., 2018 г. Оценка эффективности гибридных систем охлаждения для комбинированного охлаждения, нагревания и производства электроэнергии ,» Прикладная энергия, Elsevier, vol. 225(С), страницы 501-512.
    20. Мейбоди, Мехди Агаи и Бехния, Масуд, 2011 г. « Влияние налога на выбросы углерода на выбор размера двигателя внутреннего сгорания в системе ТЭЦ среднего масштаба ,» Прикладная энергия, Elsevier, vol. 88(12), страницы 5153-5163.

    Подробнее об этом изделии

    Ключевые слова

    Комбинированное производство тепла и электроэнергии; Двигатель внутреннего сгорания; Выработка энергии; рекуперация тепла;
    Все эти ключевые слова.

    Статистика

    Доступ и статистика загрузки

    Исправления

    Все материалы на этом сайте предоставлены соответствующими издателями и авторами. Вы можете помочь исправить ошибки и упущения. При запросе исправления укажите дескриптор этого элемента: RePEc:eee:appene:v:102:y:2013:i:c:p:327-335 . См. общую информацию о том, как исправить материал в RePEc.

    По техническим вопросам, касающимся этого элемента, или для исправления его авторов, названия, реферата, библиографической информации или информации для загрузки, обращайтесь: . Общие контактные данные провайдера: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/описание#описание .

    Если вы создали этот элемент и еще не зарегистрированы в RePEc, мы рекомендуем вам сделать это здесь. Это позволяет связать ваш профиль с этим элементом. Это также позволяет вам принимать потенциальные ссылки на этот элемент, в отношении которых мы не уверены.

    Если CitEc распознал библиографическую ссылку, но не связал с ней элемент в RePEc, вы можете помочь с помощью этой формы .

    Если вы знаете об отсутствующих элементах, ссылающихся на этот, вы можете помочь нам создать эти ссылки, добавив соответствующие ссылки таким же образом, как указано выше, для каждого ссылающегося элемента. Если вы являетесь зарегистрированным автором этого элемента, вы также можете проверить вкладку «Цитаты» в своем профиле RePEc Author Service, так как некоторые цитаты могут ожидать подтверждения.

    По техническим вопросам относительно этого элемента или для исправления его авторов, названия, реферата, библиографической информации или информации для загрузки обращайтесь: Кэтрин Лю (адрес электронной почты доступен ниже). Общие контактные данные провайдера: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Обратите внимание, что фильтрация исправлений может занять пару недель. различные услуги RePEc.

    Объемный КПД двигателя внутреннего сгорания – x-engineer.org

    Содержание

    • Определение
    • Формула
    • Пример
    • Калькулятор

    Определение

    Для теплового двигателя процесс сгорания зависит от соотношения воздух-топливо внутри цилиндра. Чем больше воздуха мы можем получить в камеру сгорания, тем больше топлива мы можем сжечь, тем выше выходной крутящий момент и мощность двигателя.

    Поскольку воздух имеет массу, он обладает инерцией. Кроме того, впускной коллектор, клапаны и дроссельная заслонка действуют как ограничители потока воздуха в цилиндры. К объемный КПД измеряем мощность двигателя для заполнения доступного геометрического объема двигателя воздухом. Его можно рассматривать как отношение объема воздуха, всасываемого в цилиндр (реального), к геометрическому объему цилиндра (теоретического).

    Вернуться назад

    Формула

    Большинство двигателей внутреннего сгорания, используемых в настоящее время на дорожных транспортных средствах, имеют фиксированный объемный объем (рабочий объем), определяемый геометрией цилиндра и кривошипно-шатунным механизмом. Строго говоря, общий объем двигателя V t [m 3 ] вычисляется как функция от общего количества цилиндров n c [-] и объема одного цилиндра V cyl [m 3 ] 900

    V t = n c · V cyl

    (1)

    Полный объем цилиндра равен сумме перемещенного (рабочего) объема V d 2 3 и габаритный объем V c 3 ] .

    V cyl = V d + V c

    (2)

    Рабочий объем очень мал по сравнению с рабочим объемом (например, соотношение 1:12), поэтому им можно пренебречь при расчете объемный КПД двигателя.

    Изображение: Основные параметры геометрии поршня и цилиндра двигателей внутреннего сгорания

    где:

    IV – впускной клапан
    EV – выпускной клапан
    ВМТ – верхняя мертвая точка
    НМТ – нижняя мертвая точка
    B – диаметр цилиндра
    S – ход поршня
    r – длина шатуна
    a – радиус кривошипа (вылет)
    x – расстояние между осью кривошипа и осью поршневого пальца
    θ – угол поворота коленчатого вала
    Vd – рабочий (рабочий) объем
    Vc – объемный просвет

    Объемный КПД η v [-] определяется как отношение фактического (измеренного) объема всасываемого воздуха V к 3 ] всасывается в цилиндр/двигатель и теоретический объем двигателя/цилиндра V d [m 3 ], во время цикла впуска двигателя.

    η v = V a / V d

    (3)

    Объемный КПД можно рассматривать также как КПД двигателя внутреннего сгорания для заполнения цилиндров всасываемым воздухом. Чем выше объемный КПД, тем больше объем всасываемого воздуха в двигатель.

    В двигателях с непрямым впрыском топлива (в основном бензиновых) всасываемый воздух смешивается с топливом. Поскольку количество топлива относительно мало (соотношение 1:14,7) по сравнению с количеством воздуха, мы можем пренебречь массой топлива для расчета объемного КПД.

    Фактический объем всасываемого воздуха может быть рассчитан как функция массы воздуха м a [кг] и плотности воздуха ρ a [кг/м 3 ] :

    V 1 a / ρ a

    (4)

    Замена (4) в (3) дает объемный КПД, равный: )

    (5)

    Обычно на динамометрическом стенде измеряется массовый расход всасываемого воздуха [кг/с] вместо воздушной массы [кг] . Следовательно, нам нужно использовать массового расхода воздуха для расчета объемной эффективности.

    M AF = (M A · N E ) / N R

    (6)

    Где:

    N E [ROT / S] — Скорость двигателя
    E . n r [-] – число оборотов коленчатого вала за полный цикл двигателя (для 4-тактного двигателя n r = 2 )

    Из уравнения (6) можно записать массу всасываемого воздуха как:

    m a = (m af · n r ) / N e

    2 (7) 90 Замена (7) в (5) дает объемную эффективность, равную:

    (8)

    Максимальный объемный КПД составляет 1,00 (или 100%). При этом значении двигатель способен всасывать в двигатель весь теоретический объем воздуха. Существуют особые случаи, когда двигатель специально рассчитан на одну рабочую точку, для которой объемный КПД может быть несколько выше 100 %.

    Если во впускном коллекторе измеряются давление p a [Па] и температура T a [K] , плотность всасываемого воздуха может быть рассчитана как:

    ρ a a = P A / (R A · T A )

    (9)

    Где:

    ρ A [кг / м 3 ] — DENAK a [Па] – давление воздуха на впуске
    T a [K] – температура всасываемого воздуха
    R a [Дж/кгK] – газовая постоянная для сухого воздуха (равна 286,9 Дж/кгK )

    Вернуться назад6

    Рассмотрим двигатель с воспламенением от сжатия (дизель) со следующими параметрами:

    V d = 3,8 л
    n r = 2
    p a = 1,5 бар
    T a R 9040 °C a = 286,9 Дж/кгK
    Н e = 1000 об/мин
    м af = 0,0375 кг/с

    Для вышеуказанных параметров двигателя рассчитайте объемный КПД .

    Шаг 1 . Рассчитайте плотность воздуха на входе , используя уравнение (9). Убедитесь, что все единицы измерения совпадают.

    ρ a = (1,5 · 10 5 ) / (286,9 · 313,15) = 1,67 кг/м 3

    0003 °C до K .

    Шаг 2 . Рассчитайте объемный КПД двигателя, используя уравнение (8).

    η v = (0.0375 · 2) / (1.67 · 3.8 · 10 -3 · 16.667) = 0.70 = 70.91 %

    The engine displacement was converted from L to m 3 and обороты двигателя с об/мин до об/с .

    Изображение: Функция объемного КПД давления воздуха на впуске и частоты вращения двигателя

    Объемный КПД двигателя внутреннего сгорания зависит от нескольких факторов, таких как:

    • геометрия впускного коллектора
    • давление воздуха на впуске
    • температура воздуха на впуске
    • массовый расход воздуха на впуске (который зависит от двигателя скорость)

    Обычно двигатели рассчитаны на максимальный объемный КПД при средних/высоких оборотах двигателя и нагрузке.

    Вы также можете проверить свои результаты, используя 9Калькулятор объемной эффективности 0004 ниже.

    вернуться назад

    Калькулятор

    V D [L] N R [-] P A [BAR]3333. a [J/kgK] N e [rpm] m a [kg/s]
    Air density, ρ a [кг/м 3 ] =
    Объемный КПД, η v [%] =

    Для любых вопросов, пожалуйста, используйте форму комментариев или замечаний относительно этого учебника.

    Не забудьте поставить лайк, поделиться и подписаться!

    Что такое поршневой генератор?

    Poplar Bluff, Миссури, 3 x 18 цилиндров, двухтопливный генератор FM-MAN 32/40, 6720 кВт при 720 об/мин, предоставлено Fairbanks Morse

    Все знают, что такое энергия солнца и ветра. Но спросите: «Что такое поршневой двигатель-генератор?» — и большинство людей озадачится. Тем не менее, эта опорная технология играет решающую роль в поддержании освещения. Мы определяем термин «генератор с поршневым двигателем» в этом отрывке из нового руководства по знаниям о микросетях «Генераторы с поршневым двигателем и микросети: последняя защита от отключения электроэнергии».

    Неотъемлемая часть энергетического сектора США и других стран, поршневые двигатели внутреннего сгорания почти мгновенно обеспечивают дополнительную энергию при относительно низких капитальных затратах. Это делает их важной частью обеспечения надежного и безопасного потока электроэнергии в сеть.

    Надежная реакция и способность работать на различных видах топлива делают поршневые двигатели незаменимыми для:

    ▶▶Поставки дополнительной пиковой мощности в электросеть в периоды высокого спроса

    и другие генерирующие источники с переменной мощностью

    ▶▶Обеспечение быстрого запуска резервной генерации в случае отключения региональной или местной сети

    Повышение эффективности сети

    Поршневые двигатели также играют роль в повышении эффективности центральной энергосистемы.

    В частности, они могут снизить пиковую нагрузку на сеть, временно вырабатывая электроэнергию для отдельного потребителя электроэнергии или группы потребителей. Это позволяет потребителям уменьшить или устранить свою зависимость от сети, когда она находится под нагрузкой, часто в жаркий летний день, в период, когда электроэнергия в сети может быть менее надежной и очень дорогой.

    Поршневые двигатели также могут использоваться на теплоэлектростанциях (ТЭЦ). Высокоэффективная ТЭЦ направляет побочное тепло выхлопных газов двигателя на полезные цели, такие как отопление и охлаждение зданий. В противном случае тепло ушло бы в атмосферу впустую. Поскольку ТЭЦ использует одно топливо для двух целей — выработки электроэнергии и тепла, — это считается не только игрой в области энергоэффективности, но и способом сокращения выбросов углекислого газа.

    Обеспечение надежности и безопасности

    Кроме того, поршневые двигатели могут обеспечивать возможность «запуска в обе стороны» — особенность технологии, которая играет жизненно важную роль в поддержании безопасности и надежности электросети. Пуск из черного состояния требуется, когда электростанция отключается во время неисправности или кризиса и нуждается во внешнем источнике питания, чтобы помочь ей снова запуститься. Во время отключения электроэнергии завод не может полагаться на центральную сеть для обеспечения электроэнергией. Поэтому вместо этого операторы электростанций обращаются к дизельным поршневым двигателям, которые можно быстро запустить для обеспечения необходимой электроэнергии.

    Поршневые двигатели также играют важную роль в обеспечении безопасности в сети, особенно аварийные дизель-генераторы. Они часто используются на атомных электростанциях для обеспечения мощности, необходимой для безопасного останова и обслуживания реактора в случае потери нормального внешнего питания, аварии с теплоносителем или других эксплуатационных аномалий.

    Как работают генераторы с поршневым двигателем

    Поршневой двигатель использует расширение газов для приведения в движение поршня внутри цилиндра и преобразует линейное движение поршня в круговое (или вращательное) движение коленчатого вала для выработки мощности.

    Существует несколько типов поршневых двигателей, классифицируемых не только по количеству «ходов» поршня, необходимых для завершения одного цикла сгорания (два или четыре), но и по типу сгорания (искровое зажигание или воспламенение от сжатия) и топлива — или топлива — потребляет двигатель.

    Четырехтактный или четырехтактный поршневой двигатель обычно используется в электроэнергетике. В их работе участвуют четыре такта: впуск, сжатие, рабочий ход и выпуск. Такт впуска расширяет камеру сгорания внутри цилиндра и всасывает воздушно-топливную смесь, а такт сжатия сжимает смесь, тем самым увеличивая ее энергетический потенциал.

    При искровом зажигании воздушно-топливная смесь воспламеняется свечой зажигания, и горение смеси приводит в движение поршень на рабочем такте. Затем открывается значение выхлопа, и поршень вытесняет выхлопные газы. При сгорании с воспламенением от сжатия (или дизельного топлива) более высокая степень сжатия создает дополнительное тепло во время такта сжатия, которое воспламеняет воздушно-дизельную смесь самостоятельно, без использования свечи зажигания.

    Как отмечалось выше, поршневые двигатели могут быть рассчитаны на сжигание различных видов топлива; некоторые работают только на дизельном топливе, а некоторые только на природном газе. Но многие из них имеют двухтопливную конструкцию, а это означает, что они могут работать как на газообразном, так и на жидком топливе.

    Мощность отдельных поршневых двигателей обычно колеблется от менее 1 МВт до 20 МВт, и часто группы или комплекты двигателей устанавливаются бок о бок, чтобы их можно было включать и выключать в зависимости от точных потребностей сетка варьируется. Таким образом, они могут вместе обеспечивать мощность 50, 100 или даже 200 МВт. Поршневые двигатели, установленные для обеспечения резервного питания или обеспечения надежности сети, обычно включаются автоматически, когда безобрывный переключатель обнаруживает временную потерю мощности или внезапное изменение напряжения. Двигатели также можно включать и управлять вручную.

    Прежде чем закончить, важно выделить несколько характеристик, которые делают генераторы с поршневым двигателем особенно эффективными в качестве «последней защиты» для поддержания подачи электроэнергии во время отключения сети.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *