Работа карбюраторного двигателя: Карбюраторный двигатель: устройство, принцип работы, характеристики

Содержание

Карбюраторный двигатель: устройство, принцип работы, характеристики

Карбюраторный двигатель — это отдельный вид двигателя внутреннего сгорания (ДВС) с наружным формированием смеси. В карбюраторном двигателе внутреннего сгорания горючая смесь по коллектору проходит в цилиндры двигателя и вырабатывается в карбюраторе.

Карбюратор — конструкция в системе питания двигателей внутреннего сгорания, которая служит для перемешивания бензина с воздухом, образовывает горючую смесь и корректирует ее потребление. На сегодняшний день карбюраторные системы заменяются инжекторными.

Смесь представляет собой пары бензина смешанные с воздухом. Когда она проходит в цилиндры двигателя происходит перемешивание с отработанными газами и образование рабочей смеси, которая в конкретный момент поджигается системой зажигания. Поджигание смеси производится благодаря тому, что бензин поступает в газообразном виде и имеется достаточное количество воздуха для горения.

Карбюраторные двигатели подразделяются на четырехтактные и двухтактные. Рабочий цикл четырехтактного карбюраторного двигателя складывается из четырех тактов, они состоят из четырех полуоборотов коленчатого вала; двухтактные же состоят из двух полуоборотов коленчатого вала. Двухтактные двигатели наиболее легкие и получили свое применение в мотоциклах, мотокультиваторах, бензопилах и в других аппаратах.

Двигатели этого типа делятся на два подтипа:

  • Атмосферные, где рабочая смесь проходит благодаря разреживанию в цилиндре при вбирающем движении поршня;
  • Двигатели с наддувом. В них запуск горючей смеси в цилиндр осуществляется под воздействием давления, которое производится компрессором для расширения мощности двигателя. В различные времена использовались спирт, газ, керосин, бензин, но наиболее используемыми остались бензиновые и газовые двигатели.

Устройство карбюраторного двигателя

Общее устройство наиболее простого карбюратора заключает в себе поплавковую камеру с поплавком, жиклёр с распылителем, диффузор и дроссельную заслонку.

Если рассмотреть строение двигателя Л-12/4, то в блоке имеется четыре цилиндра. Вращение коленвала происходит на трех подшипниках. Центральный подшипник прикреплен к валу втулкой. На передней части вала прикрепляется маховик, который приводит в действие детали механизма и скапливает кинетическую энергию, она нужна для движения коленвала в период подготовительных тактов.

Смазка деталей происходит благодаря разбрызгиванию, шестеренчатый насос помогает началу движения распредвала и подает масло, которое разбрызгивается черпаками, происходит зажигание. Радиатор оснащен вентилятором, который служит для охлаждения воды.

На картере установлен сапун, который снижает давление благодаря выпуску газов.

Также имеется глушитель, который уменьшает шум от выхода отработанных газов. Количество оборотов коленчатого вала в автоматическом режиме устанавливает регулятор.

У двигателей ГАЗ-МК верхний отдел картера сделан из чугуна вместе с устройством цилиндров, которые охвачены водяной рубашкой и перекрыты головкой из чугуна, где и расположены камеры сгорания. Также имеются разъемы для свечей зажигания.

Водяная рубашка подсоединена к системе охлаждения. Низ двигателя затянут стальным поддоном, который выполняет функцию емкости для масла. Также там закреплен масляный насос, который приводит в движение распредвал.

Вращение коленчатого вала происходит также на трех подшипниках. Их вкладыши заполнены баббитом, где имеются смазочные канавки.

Чугунные крышки подшипников прикрепляются к блоку двумя болтами.

Передний сальник коленвала сделан из двух частей и представляет сердечник, который окружен платиной асбеста. Поршни сделаны из алюминия и скреплены шатуном полым стальным пальцем. Маховик прикреплен к коленвалу. Распредвал вращается на трех подшипниках и приводится в движение двумя шестернями.

Клапаны двигателя находятся справа. Система питания включает в себя бензобак, бензопроводы, отстойник, карбюратор и воздушный фильтр.

Бензобак находится выше карбюратора, поэтому топливо поступает самотеком.

Уровень масла в картере определяется специальным щупом. Охлаждение двигателя водяное. Радиатор размещен с задней стороны двигателя, водяной насос — с передней стороны. Вода, которая двигается по трубкам радиатора, остывает при помощи воздушного потока от вентилятора.

Принцип работы карбюраторного двигателя

Принцип действия карбюраторного двигателя относительно простой и складывается из четырех тактов, которые совпадают с движением вверх и вниз в последовательности один за одним

:

  • Первый такт — впуск; клапан впуска отворяется и в цилиндр доставляется новая смесь от системы питания.
  • Второй такт — сжатие; поршень сдавливает горючую смесь в камере сгорания. Все клапаны прикрыты.
  • Третий такт — расширение; происходит возгорание сдавленной горючей смеси от свечи зажигания. Смесь сжигается достаточно быстро при неизменном объеме, который соответствует объему самой камеры сжатия. Это основная характерность работы карбюраторного двигателя. При перегорании формируются газы, которые двигают поршень книзу и передают движение коленвалу.
  • Четвертый такт — впрыск; коленвал вращается и выбрасывает из цилиндра отработанные газы через приоткрытый клапан выпуска.

На этом один рабочий цикл карбюраторного двигателя заканчивается.

При первом такте клапан впуска уже в открытом виде при подходе поршня и благодаря высокой скорости движения поршня рабочая смесь продвигается к цилиндру и еще какое-то время при поднятии поршня во втором такте.

Искра поджигает рабочую смесь до того, как в цилиндре образуется высокое давление. В четвертом такте клапан выпускает отработанные испарения, чем очищает цилиндр еще до подхода поршня. Однако выход газов не прекращается даже после подхода поршня. Затем происходит запуск новой порции рабочей смеси, которая опять проходит в цилиндр.

Отсюда следует, что в работе между первым и четвертым тактом единовременно открываются клапаны впуска и выпуска, то есть происходит перекрытие клапанов. За момент перекрытия цилиндр очищается и в нем происходит разрежение, которое помогает выгоднее заполнить цилиндр горючей смесью при первом такте.

В таком двигателе происходит наружное образование рабочей смеси с ее сжатием и вынужденным поджиганием. На сегодняшний день как топливо чаще используется бензин, но они могут отлично выполнять свою работу и на газу.

Также популярны дизельные двигатели, где поджигание происходит от сжатия, их принцип работы зависит от нагревания газа при сжатии. Когда сжатие повышается, температура также поднимается. В это время в камеру сгорания через форсунку происходит впрыск топлива, которое поджигается и от полученных газов поршень передвигается. Сгорание топлива происходит после начала движения поршня.

Выше указан принцип работы одноцилиндрового двигателя, но он не способен создать условия непрерывного вращения с одинаковой скоростью. Расширенные газы оказывают действие на коленвал для его 1/4 части оборота, оставшиеся ¾ оборота движения поршня происходят по инерции.

Для ликвидации такой недоработки двигатели делают многоцилиндровыми, что способствует наиболее равномерному вращению и неизменному крутящему моменту.

Характеристики карбюраторного двигателя

Работа двигателя определяется его мощностью, действенным давлением, крутящим моментом, скоростью и частотой вращения коленчатого вала и потребление топлива.

Мощность карбюраторного двигателя, а также его крутящий момент подчиняются скорости вращения коленвала и высоты давления.

Скоростная характеристика карбюраторного двигателя устанавливается наивысшей мощностью, которую реально получить от давления при разной частоте вращения коленвала.

При небольшой скорости движения коленчатого вала давление в цилиндрах невысокое и мощность двигателя, соответственно, тоже небольшая. При ускорении вращения коленвала и давление поднимается, так как горючая смесь сгорает быстрее.

Потребление топлива увеличивается при небольшой частоте вращения коленчатого вала, так как процесс сгорания проходит медленнее, теплоотдача большая, а при увеличении частоты вращения механические и тепловые затраты увеличиваются.

Скоростная характеристика дизельного двигателя определяется при недвижимой рейке топливного насоса, который дает высокую подачу топлива на конкретном режиме скорости и бездымной эксплуатации.

При заведенном двигателе автомобиля количество вращений коленвала меняется. Если беспричинно увеличивается потребление топлива, то происходит это благодаря ухудшению рабочего процесса двигателя.

Управление карбюратором

Как правило, действиями карбюратора руководит водитель автомобиля. На отдельных моделях карбюраторов применялись вспомогательные системы, которые немного автоматизировали управление карбюратором.

Для того чтобы управлять дроссельной заслонкой наиболее часто пользуются педалью газа, которая обуславливает ее подвижность при содействии системы тяг либо тросового привода. Тяга, как правило, лучше, однако механизм привода куда сложнее и сдерживает способность механизма по компоновке подкапотной площади. Привод тягами был популярен до 1970 года, потом стали чаще использоваться тросики из металла.

На старых машинах чаще предполагалась двойная система привода дроссельной заслонки карбюратора: вручную рычагом либо от ноги, при помощи педали. Если надавливать на педаль, то рычаг не двигается, а если перемещать рычаг, то педаль опускается.

Последующее открытие дросселя можно совершать педалью. Когда педаль опускается — дроссель остается в таком же положении, в котором зафиксировался при управлении рукой. К примеру, на «Волге» ГАЗ-21 на панели приборов был размещен рычаг для управления рукой, при его движении можно достичь постоянного функционирования холодного двигателя без действия воздушной заслонки либо применять «постоянный газ». На грузовиках «постоянный газ» применялся для облегчения передвижения задним ходом.

Воздушная заслонка может быть оснащена механическим либо автоматическим приводом. Если привод механический, то водитель закрывает ее при участии рычага. Автоматический привод очень популярен в других странах, а в России не «прижился» из-за своей ненадежности и недолгим сроком службы.

Регулировки карбюратора

Карбюратор — устройство, которое имеет наименьшее количество регулировок, но нуждается в хорошо отлаженной системе. Неорганизованная эксплуатация карбюратора сильно действует на функциональность двигателя в целом. При плохой регулировке карбюратора снижается экономичность двигателя и повышается токсичность отработанного газа.

Подходящие виды регулирования карбюратора:

  • “Винт количества” — функционирование на холостом ходу;
  • “Винт качества” — насыщенность рабочей смеси (как результат, повышение токсичности выхлопных газов) на холостом ходу.

В период использования нужно прослеживать дееспособность нижеуказанных узлов:

  1. Действие клапана и схема холостого хода.
  2. Работа насоса (запаздывание действия, объем и время впрыска бензина).
  3. Размеренность работы, беспрепятственное движение, возврат пружиной и нужная степень открытия дроссельной заслонки.
  4. Действие холодного запуска (закрывание воздушной и степень открывания дроссельной и воздушной заслонок)
  5. Деятельность поплавковой конструкции (необходимое количество топлива в поплавковой камере, непроницаемость клапана).
  6. Пропускная возможность жиклеров.

На работоспособность карбюратора воздействуют:

  • Система регулирования карбюратора.
  • Установка пропуска воздуха (воздушный фильтр, обогрев воздуха).
  • Система подачи топлива (бензонасос, фильтры, заборники).
  • Трубка для слива излишков бензина.
  • Непроницаемость впускного канала, который расположен за карбюратором.
  • Нарушение клапанного устройства.
  • Качество топлива.

Карбюраторный двигатель: устройство и принцип работы

Карбюраторный двигатель по причине своих отличных эксплуатационных характеристик пользуется популярностью на протяжении длительного времени.

Такие моторы сочетают простоту конструкции, надежность и ремонтопригодность. Особенностью силовых агрегатов данного типа является внешнее смесеобразование. Топливо смешивается с кислородом в карбюраторе и в последующем подается в камеру сгорания.

Фактически, карбюратор представляет собой устройство, где происходит приготовление топливной смеси за счёт смешивания жидкого топлива с воздухом.

Виды карбюраторов

  • В зависимости от способа образования смеси карбюраторы принято разделять на пульверизационные и испарительные. Первоначально популярностью пользовались испарительные модификации, однако впоследствии наибольшее распространение получили пульверизационные, которые обеспечивают максимально качественное разбрызгивание смеси в камере сгорания.
  • В зависимости от числа используемых смесительных камер принято выделять одно, двух и четырехкамерные модификации.
  • Также карбюраторы различаются в зависимости от способа и порядка открытия дроссельных заслонок. Так, заслонки в карбюраторах могут открываться принудительно и автоматически. При этом открытие заслонок на вторичной камере может проходить последовательно или параллельно. Всё это непосредственно влияет на конструкцию агрегата, обеспечивая приготовление качественной воздушно-топливной смеси и ее последующее полное сгорание в двигателе.
  • Наибольшей популярностью сегодня пользуются карбюраторы с нисходящим потоком и соответствующим направлением главного воздушного клапана.
  • Также существуют модификации карбюраторов с горизонтальным и восходящим воздушным потоком. Однако подобные разновидности по причине сложной конструкции не получили сегодня должного распространения и встречаются крайне редко.
  • В зависимости от типа камеры принято разделять барботажные, мембранно-игольчатые, поплавковые. На сегодняшний день барботажные карбюраторы уже не используются, а вот мембранно-игольчатые и поплавковые все еще распространены. Мембранные разновидности состоят из нескольких камер, которые соединяются игольчатым клапаном. Именно открытие и закрытие клапанов позволяет регулировать объем поступающей топливной смеси. Поплавковые разновидности имеют одну камеру сгорания с установленным внутри поплавком. Именно такой поплавок и регулирует работу запорного клапана, позволяя поддерживать постоянный уровень топлива в камере.

Устройство карбюратора

Несомненным преимуществом карбюратора является его простота конструкции, он состоит из двух элементов: поплавковой камеры 10 и смесительной камеры 8.

Топливо под давлением по трубке 1 подается в поплавковую камеру 10, где находится поплавок 3 и запорная игла 2. Такая игла фактически является простейшим клапаном, который регулирует уровень топлива в камере. Наличие такого клапана позволяет обеспечить постоянный уровень топлива в поплавковой камере в процессе работы двигателя, а, следственно, подача бензина в цилиндры осуществляется равномерно. А благодаря балансировочному отверстию (4) в поплавковой камере поддерживается атмосферное давление.

Затем топливо поступает через жиклёр 9 в распылитель 7. При этом количество топлива, которое выходит из распылителя, зависит от степени вакуума, образовавшегося в диффузоре и диаметре проходящего отверстия в жиклере.

При впуске давление в цилиндрах уменьшается. Воздух из окружающей среды поступает в цилиндр через смесительную камеру 8, где расположен диффузор 6 (трубка Вентури), и впускной трубопровод, который распределяет готовую смесь по цилиндрам.

Распылитель находится в самой узкой части диффузора, где, по закону Бернулли, скорость потока достигает мах значения, а давление падает до мin значения. Выход топлива из распылителя осуществляется за счёт разности давлений.

Управление карбюратором и дроссельной заслонкой 5 может выполняться исключительно механически через связь с педалью газа, так и различными автоматическими системами, которые устанавливались на поздних модификациях в карбюраторных двигателях. Наибольшее распространение получила система управления карбюратором с металлическим тросом, которая отличается простотой конструкции и надежностью.

Подача воздуха происходит путем открытия и закрытия воздушной заслонки. Такая заслонка на большинстве двигателей имеет полуавтоматических ход. В процессе эксплуатации работа используемой воздушной заслонки может нарушаться, что приводит к переобогащению смеси или ее обеднению. Именно поэтому в ходе эксплуатации такого карбюраторного двигателя необходимо регулярно производить осмотр и соответствующую регулировку воздушной заслонки и всего карбюратора.

Одной из разновидностей карбюраторов являются эмульсионные варианты, в которых в распылитель поступает уже не жидкое топливо, а эмульсия, полученная из воздуха и топлива. Считается, что эмульсионные карбюраторы обеспечивают максимальный коэффициент полезного действия, что достигается за счёт улучшенного распыления бензина в воздушной смеси.

Регулировка карбюратора

Карбюраторный двигатель отличается простотой конструкции, однако подобная система впрыска топлива неизменно требует исправной работы всех механизмов и узлов. Нарушение настройки карбюратора, а подобные проблемы неизменно возникают в процессе эксплуатации этого механизма, приводят к ухудшению приемлемости, экономичности, при этом отмечается увеличение показателей токсичности отработанных газов. Именно поэтому нужно пристально следить за состоянием работы карбюратора и при необходимости вносить соответствующие корректировки.

Автовладельцу при эксплуатации автомобиля с карбюраторным агрегатом доступно две регулировки путем изменения положения винта количества и винта качества. Винт количества отвечает за показатель оборотов на холостом ходу. Тогда как изменение положения винта качества позволяет регулировать степень обогащения топливно-воздушной смеси.

В редких случаях могут отмечаться серьезные поломки, в особенности при появлении неучтенного подсоса воздуха или же нарушении герметичности клапана и системы холостого хода. Всё это приводит к необходимости диагностики и ремонта карбюратора силами специалистов сервисного центра.

Преимущества и недостатки

Преимущества:

  • Если говорить о преимуществах карбюратора, то можем отметить простоту конструкции и надежность. В такой системе питания используются простые механизмы, которые управляются механически и практически не имеют подвижных частей. Фактически, ломаться в карбюраторе нечему, поэтому подобный узел отличается надежностью и долговечностью.
  • Если сравнивать карбюраторный мотор с инжекторным, то из преимуществ можно отметить лучшую работу при низких температурах и устойчивый запуск в жару и холод. Регулировка карбюратора не представляет сложности. Имеется два винта, изменение положения которых позволит внести необходимые корректировки в работу силового агрегата.

Однако и недостатки у двигателей данного типа всё же имеются:

  • В первую очередь это зависимость работы силового агрегата от качества топлива. При наличии в бензине липучих посторонних примесей, может забиваться распылитель, что приводит к неровной работе силового агрегата.
  • Следует сказать, что в сравнении с инжектором карбюраторные моторы существенно проигрывают в вопросах мощности. Карбюратор не способен обеспечить качественное разбрызгивание топлива в камере сгорания, соответственно в сравнении с инжектором такой мотор будет иметь увеличенный расход топлива, а также меньшие показатели мощности с одинакового объема.
  • В простоте карбюраторных двигателей кроются как преимущества, так и недостатки. Если в инжекторе можно внести программой какие-либо изменения в работу силового агрегата, то у карбюратора какая-либо регулировка работы системы питания двигателя существенно затруднена.

На сегодняшний день карбюраторные двигатели практически полностью вытеснены инжекторными агрегатами, которые отличаются улучшенными динамическими и топливно-экономическими показателями работы. Впрочем, многие автовладельцы по достоинству оценили простоту и надежность карбюраторных двигателей и с удовольствием используют машины с таким типом силовых агрегатов и по сей день.

Карбюраторный двигатель: описание,характеристики,фото,видео,принцип работы | АВТОМАШИНЫ

Карбюраторный двигатель — один из типов двигателя внутреннего сгорания с внешним смесеобразованием.

В карбюраторном двигателе топливно-воздушная смесь, поступающая по впускному коллектору в цилиндры двигателя, приготавливается в специальном приборе — карбюраторе. Также карбюраторные двигатели разделяются на двигатели без наддува или атмосферные, у которых впуск воздуха или горючей смеси осуществляется за счет разряжения в цилиндре при всасывающем ходе поршня; двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым турбокомпрессором, с целью увеличения заряда воздуха и получения повышенной мощности и КПД двигателя;

В качестве топлива для карбюраторного двигателя в разное время применялись спирт, керосин, лигроин, бензин. Наибольшее распространение получили бензиновые карбюраторные двигатели.

Карбюратор — устройство в системе питания карбюраторных двигателей внутреннего сгорания, предназначенное для смешивания бензина и воздуха, создания горючей смеси и регулирования её расхода. В настоящее время карбюраторные системы подачи топлива вытесняются инжекторными.

Простейший карбюратор состоит из четырёх основных элементов: поплавковой камеры (10) с поплавком (3), жиклёра (9) с распылителем (7), диффузора (6) и дроссельной заслонки (5).

Топливо по трубке (1) поступает из бака в поплавковую камеру (10). В поплавковой камере плавает пустотелый, обычно латунный поплавок (3), на который опирается запорная игла (2). Когда уровень топлива в поплавковой камере достигнет необходимой высоты, поплавок всплывёт настолько, что заставит запорную иглу перекрыть трубку (1), прекращая подачу топлива в поплавковую камеру. По мере расходования топлива его уровень в поплавковой камере понижается, поплавок опускается, и запорная игла снова открывает подачу топлива, таким образом в поплавковой камере поддерживается постоянный уровень топлива, что очень важно для правильной дозировки подачи топлива.

Из поплавковой камеры топливо поступает через жиклёр (9) в распылитель (7). Количество топлива, вытекающего из распылителя (7), зависит при прочих равных условиях от размеров и формы жиклёра.

При движении поршня в такте впуска давление в цилиндре снижается. При этом наружный воздух засасывается в цилиндр через карбюратор и впускной трубопровод, проходя через воздушную трубу (8) карбюратора, в которой находится диффузор (6). В самой узкой части диффузора помещается конец распылителя. В сужающейся части диффузора скорость потока воздуха увеличивается, а давление воздуха уменьшается.

Благодаря отверстию (4) в поплавковой камере поддерживается атмосферное давление, в результате под влиянием разности давлений происходит истечение топлива из распылителя. Топливо, вытекающее из распылителя, раздробляется струями воздуха, распыляется, частично испаряется и, перемешиваясь с воздухом, образует горючую смесь. Как правило, вместо одного диффузора используется двойной или даже тройной диффузор. Дополнительные диффузоры расположены концентрически в главном диффузоре и имеют небольшие размеры. Через них проходит только часть общего потока воздуха. Вследствие высокой скорости в центральной части при небольшом сопротивлении основному потоку воздуха достигается более качественное приготовление горючей смеси.

Количество горючей смеси, поступающей в цилиндры двигателя, а следовательно, и мощность двигателя регулируется дроссельной заслонкой (5), которая обычно приводится в движение педалью акселератора (или ручным приводом у мотоциклов и некоторых автомобилей).

Содержание статьи

Принцип работы карбюраторного двигателя

Принцип действия карбюраторного двигателя относительно простой и складывается из четырех тактов, которые совпадают с движением вверх и вниз в последовательности один за одним:

  • Первый такт — впуск; клапан впуска отворяется и в цилиндр доставляется новая смесь от системы питания.
  • Второй такт — сжатие; поршень сдавливает горючую смесь в камере сгорания. Все клапаны прикрыты.
  • Третий такт — расширение; происходит возгорание сдавленной горючей смеси от свечи зажигания. Смесь сжигается достаточно быстро при неизменном объеме, который соответствует объему самой камеры сжатия. Это основная характерность работы карбюраторного двигателя. При перегорании формируются газы, которые двигают поршень книзу и передают движение коленвалу.
  • Четвертый такт — впрыск; коленвал вращается и выбрасывает из цилиндра отработанные газы через приоткрытый клапан выпуска.

На этом один рабочий цикл карбюраторного двигателя заканчивается.

При первом такте клапан впуска уже в открытом виде при подходе поршня и благодаря высокой скорости движения поршня рабочая смесь продвигается к цилиндру и еще какое-то время при поднятии поршня во втором такте.

Искра поджигает рабочую смесь до того, как в цилиндре образуется высокое давление. В четвертом такте клапан выпускает отработанные испарения, чем очищает цилиндр еще до подхода поршня. Однако выход газов не прекращается даже после подхода поршня. Затем происходит запуск новой порции рабочей смеси, которая опять проходит в цилиндр.

Отсюда следует, что в работе между первым и четвертым тактом единовременно открываются клапаны впуска и выпуска, то есть происходит перекрытие клапанов. За момент перекрытия цилиндр очищается и в нем происходит разрежение, которое помогает выгоднее заполнить цилиндр горючей смесью при первом такте.

В таком двигателе происходит наружное образование рабочей смеси с ее сжатием и вынужденным поджиганием. На сегодняшний день как топливо чаще используется бензин, но они могут отлично выполнять свою работу и на газу.

Также популярны дизельные двигатели, где поджигание происходит от сжатия, их принцип работы зависит от нагревания газа при сжатии. Когда сжатие повышается, температура также поднимается. В это время в камеру сгорания через форсунку происходит впрыск топлива, которое поджигается и от полученных газов поршень передвигается. Сгорание топлива происходит после начала движения поршня.

 

Регулировки 

Карбюратор — устройство, имеющее минимум регулировок, но требующее исправной работы узлов и механизмов. Работоспособность карбюратора и его техническое состояние существенно влияют на работу двигателя. Нарушение регулировки карбюратора приводит к ухудшению экономичности, приёмистости двигателя, а также к увеличению токсичности отработавших газов.

Доступные регулировки самого карбюратора:

  1. «Винт количества» — обороты в режиме холостого хода
  2. «Винт качества» — обогащённость топливо воздушной смеси (и, как следствие, содержание токсичного угарного газа в выхлопных газах) в режиме холостого хода.

В процессе эксплуатации необходимо проверять и восстанавливать работоспособность следующих узлов:

  1. работа клапана (герметичность) экономайзера и системы холостого хода
  2. работа ускорительного насоса (задержка срабатывания, количество и время впрыска топлива, направленность топливного распылителя)
  3. плавность работы, свободный ход, возвращение пружиной и необходимый уровень приоткрытия закрытой ДЗ
  4. работу системы холодного запуска (закрытие воздушной, и приоткрытие дросельной и воздушной заслонок)
  5. работу устройства открытия второй ДЗ (если имеется)
  6. работу поплавкового механизма (уровень топлива в поплавковой камере, герметичность запорного клапана, отсутствие дефектов поплавка, и т.д.)
  7. работу эмульсионных колодцев и распылителей, пропускная способность жиклёров
  8. отсутствие неучтённых подсосов воздуха

Так же на работу карбюратора оказывают своё влияние:

  1. механизмы управления карбюратором
  2. устройство подачи воздуха (воздушный фильтр, система подогрева воздуха в холодное время года)
  3. система подачи топлива (бензонасос, бензофильтры, заборник, топливные магистрали, вентиляция бака)
  4. система вентиляции картера двигателя
  5. сливная трубка избытка топлива, впускного коллектора
  6. герметичность впускного тракта после карбюратора
  7. негерметичность/неисправность клапанного механизма
  8. качество и состав топлива

Характеристики 

Работа двигателя определяется его мощностью, действенным давлением, крутящим моментом, скоростью и частотой вращения коленчатого вала и потребление топлива.

Мощность карбюраторного двигателя, а также его крутящий момент подчиняются скорости вращения коленвала и высоты давления.

Скоростная характеристика карбюраторного двигателя устанавливается наивысшей мощностью, которую реально получить от давления при разной частоте вращения коленвала.

При небольшой скорости движения коленчатого вала давление в цилиндрах невысокое и мощность двигателя, соответственно, тоже небольшая. При ускорении вращения коленвала и давление поднимается, так как горючая смесь сгорает быстрее.

Потребление топлива увеличивается при небольшой частоте вращения коленчатого вала, так как процесс сгорания проходит медленнее, теплоотдача большая, а при увеличении частоты вращения механические и тепловые затраты увеличиваются.

Скоростная характеристика дизельного двигателя определяется при недвижимой рейке топливного насоса, который дает высокую подачу топлива на конкретном режиме скорости и бездымной эксплуатации.

При заведенном двигателе автомобиля количество вращений коленвала меняется. Если беспричинно увеличивается потребление топлива, то происходит это благодаря ухудшению рабочего процесса двигателя.

Управление 

Обычно работой карбюратора управляет водитель автомобиля. На некоторых моделях карбюраторов использовались дополнительные системы, частично автоматизировавшие управление им.

Для управления дроссельной заслонкой на автомобилях обычно используется педаль газа. Она может приводить её в движение при помощи системы тяг или тросового привода. Тяги в целом надёжнее, но конструкция привода получается сложнее и ограничивает возможности конструктора по компоновке подкапотного пространства. Привод тягами широко использовался в прежние годы, но начиная с 1970-х годов получила распространение система с металлическим тросиком. Системы с пневмо- или электромеханическим приводом распространения на карбюраторных двигателях не получили.

На старых автомобилях часто предусматривалась двойная система привода дроссельной заслонки карбюратора: от руки, рычажком или вытяжной рукояткой («постоянный газ»), и от ноги — педалью. Ручное и ножное управления связывалось между собой так, что при нажатии на педаль рукоятка ручного управления остаётся неподвижной, а при её вытягивании педаль опускается. Дальнейшее открытие дросселя можно было производить педалью. При отпускании педали дроссель остаётся в положении, установленном ручным управлением. Например, на «Волге» ГАЗ-21 на панели приборов справа от радиоприёмника была расположена рукоятка ручного управления дроссельной заслонкой, дублирующая педаль газа. Вытянув её, можно было добиться устойчивой работы холодного двигателя без использования воздушной заслонки, или использовать для установления «постоянного газа». На грузовых автомобилях режим «постоянного газа» служил в частности для упрощения движения задним ходом.

На мотоциклах и некотором числе автомобилей применяется ручное управление дросселем, осуществляемое специальной рукояткой на руле через тросик.

Воздушная заслонка может иметь механический или автоматический привод. В первом случае её закрывает водитель при помощи рукоятки, размещённой обычно на панели приборов. Автоматический привод широко применялся за границей, а в практике отечественного автопрома распространения практически не получил ввиду низкой надёжности, недолговечности и ненадёжной работы при характерных для климата большей части территории СССР/России больших перепадах температур. В этом случае воздушную заслонку закрывал биметаллический или церезиновый термоэлемент, обогреваемый жидкостью из системы охлаждения. По мере прогрева двигателя, термоэлемент нагревался, расширялся и открывал воздушную заслонку. В иных системах использовался электромеханический привод с датчиком температуры. Из отечественных автомобилей, такое пусковое устройство имели только карбюраторы отдельных моделей ВАЗ.

Очень широко распространён полуавтоматический привод воздушной заслонки. В этом случае она закрывается водителем вручную, а после пуска двигателя автоматически приоткрывается диафрагмой, работающей от возникающего во впускном коллекторе двигателя разрежения. Это предотвращало возможную остановку двигателя из-за переобогащения рабочей смеси и несколько снижало расход топлива на прогрев. Пусковую диафрагму имели практически все отечественные карбюраторы, разработанные после начала 1960-х годов. До этого некоторые модели использовали менее совершенный кулачковый механизм, немного приоткрывавший дроссельную заслонку при закрывании воздушной.

Очиститель карбюратора: описание,виды,чистка,фото,видео.
Жиклер карбюратора: описание,виды,замена,ремонт,фото,видео.
Как правильно разобрать и собрать карбюратор?

Система питания карбюраторных двигателей

Рабочий цикл четырехтактного карбюраторного двигателя

При рассмотрении рабочего цикла двигателя условно принято, что каждый такт начинается и заканчивается при нахождении поршня в ВМТ или НМТ.

Первый такт — впуск.

Поршень перемещается с ВМТ в НМТ. Освобождающаяся над поршневая полость цилиндра заполняется горючей смесью через открытый впускной клапан из-за возникающего разрежения. Горючая смесь, поступая в цилиндр, смешивается с остатками отработавших газов от предыдущего цикла, образует рабочую смесь. В конце такта давление в цилиндре составляет 0,07—0,95 МПа, температура — 350—390 К, коэффициент наполнения цилиндра — 0,6—0,7.

 

Работа четырехтактного одноцилиндрового карбюраторного двигателя

а — впуск в цилиндр горючей смеси; б — сжатие горючей смеси; в - расширение газов; г- выпуск отработавших газов; 1 — коленчатый вал; 2 — распределительный вал; 3-поршень; 4 — цилиндр; 5— впускной трубопровод; 6 — карбюратор; 7— впускной клапан; 8 — свеча зажигания; 9 — выпускной клапан; 10 — выпускной трубопровод; 11-шатун; 12 - поршневой палец; 13 - поршневые кольца

Второй такт — сжатие.

Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты. Объем над поршневой полости уменьшается. Рабочая смесь сжимается. Сжатие сопровождается повышением давления и температуры. Степень сжатия регламентируется детонационной стойкостью топлива. В конце такта давление составляет 1,2—1,7 МПа, а температура — 600—700 К.


Третий такт - расширение.

В начале такта при сгорании рабочей смеси, которая ооспл а меняется от искровою разряда свечи зажигания, выделяется значительное количество теплоты, резко увеличивается температура и давление. Вследствие давления газон поршень перемешается от ВМТ к НМТ. Газы расширяются и совершают полезную работу. В начале расширения давление газов составляет 4—6 МПа, температура — 2500—2800 К. В конце расширения давление н цилиндре составляет 0,3—0.5 МПа, температура - 1100-1800 К.


Четвертый такт     выпуск.

Поршень перемешается oт НМТ к ВМТ Через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра в выпускной трубопровод и в окружаюшую среду, В конце выпуска давление в цилиндре составляет 0,105—0,12 МПа, а температура — 85O-120O К.


Степень очистки цилиндра от отработавших газов характеризуется коэффициентом остаточных газов (отношение массы остаточных газов к массе свежего заряда). Для современных ДВС коэффициент остаточных газов составляет 0,08—0,2, он возрастает при увеличении частоты вращения коленчатого вала.


Рабочий цикл двигателя заканчивается четвертым тактом - выпуском. При дальнейшем движении поршня цикл повторяется в той же последовательности. Коленчатый вал в течение четырех тактов поворачивается на 720°, т. с. совершает два оборота.
В двигателях, работающих по четырехтактному циклу, полезная работа совершается только в период такта расширения (рабочего хода), когда поршень перемещается пол действием расширяющихся газов, поворачивая коленчатый вал на 180е Остальные три такта являются подготовительными и выполняются при поворачивании коленчатого вата на 540° за счет инерции маховика И работы других цилиндров (в многоцилиндровых двигателях).

Работа двигателя, рабочий цикл

Система питания карбюраторных двигателей.


Система питания карбюраторного двигателя




Система питания карбюраторного бензинового двигателя с искровым зажиганием служит для хранения топлива, его очистки от механических примесей, приготовления горючей смеси, а также для подачи горючей смеси в цилиндры двигателя и отвода из них отработавших газов. Кроме того, в функции системы питания входит очистка воздуха, используемого для приготовления горючей смеси.

Горючая смесь состоит из топлива и воздуха, соединенных в определенной пропорции и тщательно перемешанных друг с другом. При сгорании горючей смеси в цилиндрах двигателя выделяется тепловая энергия, преобразуемая затем в механическую энергию.

Система питания карбюраторного двигателя (Рис. 1) состоит из топливного бака 6, топливного насоса 7, воздушного фильтра 1, карбюратора 4, топливопроводов 5, впускного 2 и выпускного 3 трубопроводов, приемной трубы 8 глушителей и собственно глушителей 9 и 10.

Основным топливом, используемым для работы карбюраторных двигателей с принудительным воспламенением, является бензин – жидкий продукт переработки нефти, горючая смесь лёгких углеводородов.

***



Схема работы карбюраторной системы питания

Топливо (бензин) из бака подается насосом 7 по топливопроводам 5 в карбюратор 4. Через воздушный фильтр 1 в карбюратор поступает воздух. Приготовленная в карбюраторе из топлива и воздуха горючая смесь подается в цилиндры двигателя по впускному трубопроводу 2. Отработавшие газы отводятся из цилиндров двигателя в окружающую среду через выпускной трубопровод 3, приемную трубу 8 глушителей, основной 10 и дополнительный 9 глушители.

В системе питания бензиновых двигателей автомобилей обязательными элементами являются фильтры очистки топлива (у двигателей грузовых автомобилей - фильтры грубой и тонкой очистки), а также воздушный фильтр.

Топливо из бака через фильтры насосом подается к карбюратору, где смешивается в определенной пропорции с воздухом, поступающим через воздухоочиститель. Полученная горючая смесь из-за разрежения в цилиндрах двигателя с большой скоростью перемещается по впускному трубопроводу, при этом дополнительно перемешиваясь, и попадает в цилиндры двигателя, где и сгорает посредством искрового воспламенения от электрической свечи.

За счет давления образовавшихся при сгорании горючей смеси газов, воздействующих на детали и узлы кривошипно-шатунного механизма, осуществляется работа двигателя.

***

Автомобильный бензин


Главная страница


Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

Устройство и основные неисправности карбюраторов

Карбюраторные двигатели внутреннего сгорания, которые еще не так давно были вершиной автомобилестроения, практически отошли в прошлое – их заменили инжекторные системы. Но как показывает статистика, карбюраторы по-прежнему распространены, вот только сузились области их применения. Хоть инжекторы и принято считать более совершенными, грамотному автолюбителю хотя бы ради интереса стоит немного узнать об устройстве карбюраторных системах. Если же он владеет автомобилем с карбюратором, данный материал наверняка окажется для него еще и очень полезным. Об устройстве, эксплуатации, обслуживании и неисправностях карбюраторов – в материале АвтоПро.

Достоинства и недостатки

Говоря об отличиях карбюраторных систем от инжекторных даже знающие люди часто сводят дискуссию к обсуждению достоинств и недостатков первых. Конечно, переход на инжекторы не был спонтанным – ему предшествовали серьезные изменения в машиностроении, так и требования потенциальных покупателей к личному транспорту. Давайте рассмотрим, чем карбюратор может похвастать, а что является его слабой стороной:

  • Достоинства: простота, дешевизна, низкие требования к октановому числу топлива, относительно неплохая динамика;
  • Недостатки: низкий КПД, чувствительность к низким, а также очень высоким температурам, высокий расход топлива, невозможность соответствовать экологическим стандартом Евро.

Кстати, последнее является одной из серьезнейших причин, по которым на карбюраторы смотрят с опаской в странах Запада – он не соответствует даже самым «щадящим» требованиям экологических стандартов. На мотоциклы его, впрочем, ставят, но и экологические требования к данному виду транспорта менее жесткие. Не в пользу агрегата говорит и низкий коэффициент полезного действия. Десятая его часть уходит только на работу топливной системы. Отчасти недостатки карбюраторов компенсируются их «всеядностью» и простотой в ремонте.

Принцип работы

Карбюратор можно назвать сердцем питающей системы двигателя. Он отвечает за «приготовление» топливно-воздушной смеси, которая будет подана в цилиндры двигателя. Если вкратце, то суть работы этого агрегата в том, чтобы создавать топливовоздушную смесь. Кроме того, в карбюраторе имеется диффузор, который отвечает за подачу топлива – двигатель не всасывает его сам, как считают многие автолюбители. Также карбюратор позволяет двигателю нормально работать при разных режимах. Среди них:

  • Холостой ход;
  • Средние обороты;
  • Высокая (максимальная) нагрузка;
  • Введение в работу при полном охлаждение, как, например, после продолжительного нахождения на морозе.

Как несложно догадаться, карбюратор по-разному обогащает топливо и подает его в разных количествах – определенный состав топливовоздушной смеси и определенное ее количество будет соответствовать определенному режиму работы двигателя. Нормальную работу силового агрегата поддерживают и смежные с ним системы, как-то система охлаждения, электросистема и т.п. Здесь особенно важно понимать, что карбюратор должен быть четко откалиброван, ведь иначе вся система не будет работать в полную меру своих возможностей.

А что внутри агрегата

Вообще, карбюратор часто делят на две части. Одна поплавковая, а вторая – смесительная. Это вполне логичное упрощение, однако неопытного автолюбителя оно может навести не на тот след. Давайте попробуем разобраться с устройством агрегата, рассматривая все ключевые элементы, входящие в его состав. Для начала перечислим их, а уже потом рассмотрим в подробностях:

  1. Поплавковая камера;
  2. Система холостого хода;
  3. Главная дозирующая система;
  4. Экономайзер;
  5. Эконостат;
  6. Смесительная камера;
  7. Ускорительный насос.

Одним из самых важных элементов принято считать поплавковую камеру. Она работает так: когда двигатель потребляет топлива, камера начинает опустошаться, причем по мере движения находящегося в ней поплавка вниз открывается игольчатый канал. В работу включается уже топливный насос – как только объем топлива в камере будет достаточным, поплавок спровоцирует закрытие канала. Кстати, если в систему добавить достаточно мощный электрический бензонасос, агрегат будет быстрее набирать обороты за счет сгорания больших объемов топливовоздушной смеси (камера будет попросту наполняться быстрее).

Система холостого хода берет на себя задачу правильного дозирования топлива при, как несложно догадаться, холостых оборотах. Все просто: на холостых главная дозирующая система бездействует, поскольку требуемые объемы топлива невелики, так что работать должна узкоспециализированная система. Эту систему также можно отрегулировать в сторону большего или меньшего обогащения смеси. Главная дозирующая система заслуживает отдельного упоминания. Изучая ее, можно представить, чем могли вдохновляться инженеры, разрабатывавшие инжекторные системы. Если по-простому, то главная дозирующая система отвечает за дозировку горючего в случаях, когда автомобиль едет на средней скорости. Вот из каких элементов она состоит:

  • Жиклеры. Это дозирующий элемент, выполненный в виде резьбовой пробки с одним четко откалиброванным отверстием;
  • Главный распределитель. Понять его назначение легко по одному лишь названию;
  • Диффузор. Место сужения воздушного канала, за счет которого увеличивается скорость потока атмосферного воздуха.

Экономайзер включен как в однокамерный, так и двухкамерный карбюратор. Он обеспечивает еще более сильное обогащение горючего. Незаменим в тех случаях, когда автомобиль нужно разогнать до 110 и более километров в час. Здесь стоит отметить, что существуют экономайзеры принудительного холостого хода (сокращенно ЭПХХ), призванные обеднять топливовоздушную смесь. Обычный экономайзер своему названию не соответствует – он обогащает смесь, открывая дополнительный канал для подачи топлива. Работает в тандеме с дроссельной заслонкой и может иметь механический или же пневматический привод.


Эконостат можно назвать одним из самых простых элементов карбюраторной системы. Он представляет собой трубку, которая поднимает уровень топлива по мере роста числа оборотов коленчатого вала. Эконостат обогащает смесь кислородом. Напоминаем, что правильный состав смеси отвечает не только за мощностные показатели мотора, но и за его экономичность. Эконостат позволяет сделать карбюраторный автомобиль намного более экономичным в плане расхода топлива.

Смесительная камера, одновременно являющаяся нижней частью карбюратора, является той второй «половинкой» агрегата, которую относят к важнейшим компонентам карбюратора. И неудивительно: как и поплавковая, смесительная камера берет на себя основные задачи агрегата. Это главный воздушный тракт, включающий топливодозирующие элементы, дроссельную заслонку и, по сути, диффузор. Как уже было указано выше, карбюраторы бывает одно- и двухкамерными. Речь идет именно о количестве смесительных камер и дроссельных заслонок. Заслонки в карбюраторах с парой смесительных камер могут открываться или одновременно, или последовательно (зависит от устройства конкретного двигателя).

Ускорительный насос обязательно входит в состав карбюраторов. Без него автомобиль мог бы заглохнуть и не отвечал бы требованию повышенной динамики. Данный элемент карбюраторной системы включается в момент открытия дроссельной заслонки – в систему резко попадает дополнительное топливо, столь необходимое, например, при резком увеличении нагрузки на мотор. Кстати, в переходных системах ускорительный насос также обеспечивает переход из одного режима работы карбюратора в другой.

Основные неисправности

Как уже стало ясно, карбюратор отвечает и за смешивание топлива с воздухом, и за его подачу. Несмотря на достаточное простое устройство, карбюраторы не так уж редко выходят из строя, а также нуждаются в довольно частом обслуживании. К счастью, в силу той же простоты агрегат довольно легко чистить, хотя в некоторых случаях его приходится разбирать. Основные неисправности карбюратора почти аналогичны таковым у инжекторов, разница кроется в причинах. А если говорить о следствиях, то они могут быть такими:

  • Провалы при подгазовке. К примеру, автомобиль не сразу набирает скорость при воздействии на педаль «газа»;
  • Раскачивание. По сути, это провалы, в которых можно проследить периодичность;
  • Рывки и подергивания. Их легко прочувствовать, оказавшись за рулем автомобиля с карбюраторной системой, которая нуждается в ремонте и обслуживании. От провалов они отличаются быстротечностью;
  • Сниженная интенсивность разгона. Здесь все понятно из названия.

Также стоит помнить, что на неисправность агрегата может указывать ряд неприятных вещей, которые и не нуждаются в представлении: затрудненный пуск двигателя и плохая работа «на холодную»; снижение или завышение холостых; серьезно завышенный расход топлива; невозможность запуска двигателя. Заметьте, что такие неисправности могут встречаться и при неравномерной компрессии в цилиндрах, прогорании клапанов, износе распределительного вала, смещении фаз газораспределения. В случае проблем лучше проводить полную диагностику у специалиста. Если проблема крылась в карбюраторе, то его неисправность может быть вызвана чем-то из следующего:

  • Неправильная работа электромагнитного клапана;
  • Неисправность ЭПХХ, блока управления;
  • Деформация уплотнительного кольца;
  • Засорение каналов и жиклеров;
  • Дефекты экономайзера;
  • Неверная регулировка поплавковой системы;
  • Выход ускорительного насоса из строя.

Работы по выявлению источника проблем будет много. В подавляющем большинстве случаев система нуждается в промывке и продувке – каналы и жиклеры придут в норме и двигатель сможет работать нормально. Сложнее решать проблему повышенного расхода топлива, так как она может быть вызвать сразу рядом неисправностей. Крайне важна правильная регулировка механизмов системы – они должны работать в тандеме друг с другом, правильно формировать горючую смесь, дозировать и подавать ее. Также не забывайте, что система должна быть в достаточной мере герметичной.

Обслуживания карбюратора

Хоть карбюраторы и практически вытеснены инжекторными системами, они по-прежнему и в строю и, что очень радует, являются весьма дружелюбными по отношению к автолюбителю элементами двигательной установки. Поработать с карбюратором может даже неопытный автолюбитель, хотя и ему стоит обзавестись руководствами по обслуживанию конкретно его модели автомобиля (или найти информацию в сети). Перечень материалов и инструментов для работы с различными карбюраторами практически всегда один:

  • Средство для чистки карбюраторов;
  • Резиновые перчатки;
  • Ветошь;
  • Баллончик со сжатым воздухом;
  • Щетка с не слишком жесткой щетиной;
  • Защитные очки;
  • Объемная емкость для деталей;
  • Инструменты для снятия карбюратора (зависит от модели).

Проведите демонтаж карбюратора в соответствие с руководством. В большинстве случаев достаточно оттянуть возвратную пружину, отвести тяги, шланги, патрубки, ослабить хомуты, после чего открутить гайки. Мы все же советуем обратиться к руководствам, найти соответствующую информацию на форумах или даже видео-руководства – доступ к Всемирной паутине здесь будет очень кстати. После того как карбюратор снят, разберите его, поместите все детали в емкость, залейте в нее чистящее средство и оставьте так на несколько минут. После, продолжайте чистку уже с помощью щетки и баллончика с воздухом. Щетки с металлической щетиной для этой работы не подойдут – нужно взять обычную зубную щетку. Будьте особенно осторожны с жиклерами! Их лучше хорошенько продуть, а если проблему загрязнения это не решило, то крайне деликатно прочистить зубочисткой. При необходимости замените прокладки. В магазинах можно найти относительно недорогие ремкомплекты карбюраторов, куда входит все необходимое для ремонта. Если подвижные детали агрегата не повреждены, его можно будет быстро вернуть в строй. Не забывайте также о том, что после разборки, чистка, сборки и установки карбюратора его наверняка придется перенастроить.

Отдельно стоит рассказать об очистителях карбюратора. Волшебное средство, если так подумать – достаточно побрызгать спреем внутрь агрегата, и он очистятся от загрязнений. На самом деле очистители рекомендовано применять каждые 5-7 тысяч километров пробега. Если карбюратор не чистили долгое время, одного лишь спрея будет мало. Агрегат придется разбирать, а детали отмачивать в очистителе, после чего тереть щеткой. Категорически запрещено применение столь популярного WD-40, а также других очистных средств, в составе которых есть масло.

Подбор нового карбюратора

Несмотря на то, что карбюраторные системы являются крайне живучими, иногда они нуждаются не столько в капитальном ремонте, сколько в практически полной замене. К примеру, при полном закоксовывании воздушных и топливных каналов, при искривлении соединений и появлении серьезных механических повреждений карбюратора он нуждается в полной замене. Что здорово, не обязательно менять карбюратор на точно такой же – сегодня некоторые фирмы производят более экономичные, мощные и тихие аналоги. Однако при выборе нового агрегата нужно обращать внимание на:

  • Диффузор. При правильном подборе отдавать предпочтение стоит диффузорам, диаметр которых составляет не более чем 0,8 от диаметра смесительной камеры;
  • Главный топливный жиклер. Жиклер подходящей пропускной способности можно определить экспериментально, однако мы советуем для начала проконсультироваться со специалистом;
  • Воздушный жиклер. Аналогично;
  • Диаметр дросселя. Диапазон диаметров зависит от мощности отдельных цилиндров двигателя.

Также стоит уделить особое внимание подбору подходящего ускорительного насоса. Не забывайте и о том, что при выборе карбюратора стоит узнать как можно больше о фирме-производителе. Вот наиболее известные и надежные производители и поставщики:

Автолюбители также могут найти в продаже карбюраторы от различных малоизвестных фирм, заводы которых расположены в Китае, Турции, Таиланде и Индонезии. По качеству своей продукции они уступают вышеперечисленным фирмам, однако с учетом простоты и надежности карбюраторов, даже их товары могут приятно удивить. Одной из ключевых особенностей этих производителей также демократичная ценовая политика. Приятно радуют как ценой, так и ассортиментом чешские и польские фирмы. Как правило, в их каталогах можно найти не только сами агрегаты, но и все необходимое для их ремонта и обслуживания.

Вывод

Карбюратор – это тот агрегат, который встречается в автомобилях все реже. Многие считают его пережитком прошлого, но карбюраторы по-прежнему используются, к примеру, в газонокосилках и устанавливаются на мотоциклы. Пусть их золотая эпоха уже прошла, для многих автолюбителей они так и остаются символом надежности, простоты и неприхотливости. На самых современных автомобилях карбюраторы уже не найти, что во многом связано с низкой экологичностью, сложностью в эксплуатации при определенных погодных условиях, а также не слишком впечатляющим коэффициентом полезном действия данных агрегатов. К счастью, еще находящиеся в эксплуатации карбюраторные автомобили довольно легко обслуживать, ремонтировать, а в случае нужды и менять – богатство запчастей и новых агрегатов на рынке позволяет работать с карбюраторами и сейчас.

Работа и устройство карбюраторных двигателей

Работа и устройство карбюраторных двигателей  [c.181]

УСТРОЙСТВО и РАБОТА СИСТЕМЫ ПИТАНИЯ КАРБЮРАТОРНОГО ДВИГАТЕЛЯ. ПОДАЧА ТОПЛИВА,  [c.38]

Агрегаты системы питания. Основным агрегатом системы питания карбюраторного двигателя является карбюратор, служащий для приготовления горючей смеси из бензина и воздуха. Рассмотрим подробно работу и устройство карбюраторов, устанавливаемых на пусковых двигателях ПД-ЮУ и П-23М.  [c.62]


Каково общее устройство и принцип работы одноцилиндрового четырехтактного карбюраторного двигателя  [c.21]

Четырехтактные двигатели. Рассмотрим устройство и принцип работы одноцилиндрового четырехтактного карбюраторного двигателя (рис. 4). Основной его частью является цилиндр 3 с укрепленной на нем съемной головкой 1. Цилиндр и его головка имеют водяную рубашку 2, которая является составной частью жидкостной системы охлаждения двигателя. Циркулирующая в этой системе охлаждающая жидкость отводит тепло от стенок цилиндра и его головки.  [c.23]

Простейший карбюратор может приготовлять смесь необходимого состава только для одного скоростного или нагрузочного режима работы двигателя. Карбюраторный двигатель, особенно транспортный, работает на самых различных скоростных и нагрузочных режимах при частой их смене. Чтобы карбюратор мог надежно устанавливать требуемое соотношение между топливом и воздухом в горючей смеси при работе на любом режиме двигателя, он снабжается рядом систем и устройств главной дозирующей системой с корректированием подачи топлива с целью обеспечения необходимого состава смеси при работе двигателя на всех основных эксплуатационных режимах системой холостого хода для обеспечения устойчивой работы двигателя при малой нагрузке и на режиме холостого хода системой для обогащения смеси при работе двигателя на режиме максимальной мощности и близких к нему режимах (для этой цели в карбюраторе устанавливается экономайзер) устройством для обеспечения хорошей приемистости двигателя (ускорительный насос для подачи дополнительного количества топлива с целью обогащения  [c.227]

Для выявления основных особенностей двигателей быстрого сгорания рассмотрим устройство и работу четырехтактного карбюраторного двигателя (рис. 11-1).  [c.183]

Рассмотрим теперь для полноты картины устройство и работу двухтактного карбюраторного двигателя (рис. 11-3).  [c.185]

Назначение, устройство и работа приборов системы питания. Система питания карбюраторного двигателя служит для приготовления горючей смеси, подачи ее в цилиндры двигателя и отвода отработавших газов,  [c.48]

Для автомобильного карбюраторного двигателя характерны следующие основные режимы работы пуск двигателя, требующий вследствие плохого испарения топлива очень богатую смесь режим холостого хода и малых нагрузок, которому соответствует смесь с а = = 0,6...0,8 режим частичных нагрузок (а = 0,9...1,1) режим максимальной (полной) нагрузки (а=0,8...0,9) кроме того, резкое открытие дроссельной заслонки не должно сопровождаться ощутимым обеднением горючей смеси. Соответственна основным режимам работы двигателя в современном карбюраторе предусмотрены следующие системы и устройства пусковое устройство, система холостого хода, главное дозирующее устройство, экономайзер и ускорительный насос.  [c.51]


Приборы системы питания карбюраторных двигателей. Современные карбюраторы имеют ряд устройств и сг. стем, с помощью которых возможно приготовить горючую смесь нужного состава для всех режимов работы двигателя.  [c.53]

Общее устройство и основные параметры поршневых двигателей. Автомобильный поршневой двигатель представляет собой комплекс механизмов и систем, служащих для преобразования тепловой энергии сгорающего в его цилиндрах топлива в механическую работу. Такой двигатель имеет кривошипношатунный механизм, механизм газораспределения, системы охлаждения и питания, смазочную систему, а карбюраторные двигатели, кроме того систему зажигания.  [c.12]

Токсичность отработавших газов проверяют на двух режимах холостого хода. Такая последовательность диагностирования позволяет оценить работу системы холостого хода и главного дозирующего устройства. Объемная доля СО в отработавших газах в автомобилях с карбюраторными двигателями не должна превышать значений, указанных в табл. 47.  [c.149]

Система зажигания обеспечивает воспламенение рабочей смеси в камерах сгорания карбюраторного двигателя. На современных автомобилях применяются самые различные системы зажигания. Общим для них является то, что воспламенение смеси обеспечивается искрой высокого напряжения, возникающей между электродами свечи, ввернутой в головку блока цилиндров двигателя. Источником высокого напряжения служит катушка зажигания. Она работает, как трансформатор, и преобразует ток низкого напряжения, поступающий от аккумуляторной батареи или генератора, в ток высокого напряжения. Высокое напряжение подается к электродам свечи по специальным высоковольтным проводам. В системах зажигания обязательно присутствуют устройства, обеспечивающие распределение импульсов высокого напряжения по свечам в порядке работы цилиндров, подачу их в определенный момент времени и регулирование опережения зажигания в зависимости от режима работы двигателя.  [c.74]

В нем изложены устройство, принципы работы и рабочие циклы многоцилиндровых четырехтактных и двухтактных двигателей с воспламенением от сжатия, а также карбюраторных двигателей. Приведены их основные энергетические и экономические показатели. Описаны системы питания, смазки и охлаждения двигателей.  [c.2]

В настоящем труде изложены устройство и принципы работы четырехтактных и двухтактных двигателей с воспламенением от сжатия (дизелей), а также карбюраторных двигателей.  [c.4]

Карбюратор. Карбюраторные двигатели работают на легком жидком топливе. Рабочая смесь приготовляется в специальном устройстве — карбюраторе, принцип действия которого основан на распыли-вании топлива потоком воздуха, засасываемого в двигатель и протекающего через карбюратор с большой скоростью.  [c.219]

Анализатор двигателя К-461 (рис. 3.11) предназначен для проверки электрооборудования и оценки работы цилиндров карбюраторных двигателей автомобилей. Стенд состоит из осциллографа и устройств для измерения угла опережения зажигания, угла замкнутого состояния контактов прерывателя, напряжения, сопротивления, частоты вращения.  [c.63]

Свечи зажигания предназначены для воспламенения рабочей смеси в цилиндрах карбюраторных двигателей. Кроме того, они могут быть использованы на дизельных двигателях для облегчения их запуска (электрофакельные устройства) или при работе предпусковых подогревателей, отопителей и т. д.  [c.128]

Материал изложен в такой последовательности устройство, работа и техническое обслуживание приборов системы питания карбюраторных двигателей, затем рассмотрены эти же вопросы по дизельным двигателям и двигателям, работающим на газе. Ремонт топливной аппаратуры описан в одной главе для всех этих двигателей.  [c.4]


Главнейшее назначение вентиляционных устройств в автотранспортных зданиях заключается в удалении отработавших газов, химический состав которых зависит от сорта применяемого топлива, состояния двигателя и режима его работы. Из компонентов отработавших газов наибольшую опасность для человека представляют у карбюраторных двигателей при обычном бензине окись углерода и при этилированном бензине окись углерода и аэрозоли свинца, а у дизельных двигателей — окись углерода, окислы азота и альдегиды.  [c.361]

Приспособление автомобильных карбюраторных двигателей для работы на генераторном газе заключается в повышении степени сжатия путем установки на двигатель головок с меньшим объемом камер сгорания и отдельно впускного трубопровода со смесительным устройством и пусковым карбюратором.  [c.65]

Рис. 4. Устройство и работа четырехтактного карбюраторного двигателя
Важным свойством жидких топлив, по которому они прежде всего различаются, является их способность к испарен и ю. Некоторые из них — бензин и керосин — легко испаряются при невысокой температуре, поэтому приготовление необходимой для работы двигателя горючей смеси, т. е. смеси паров топлива и воздуха, может быть произведено вне цилиндра двигателя. Это внешнее смесеобразование происходит в особом устройстве двигателя — карбюраторе. Двигатели, использующие этот метод смесеобразования, называются карбюраторными двигателями.  [c.179]

Двухтактный рабочий процесс карбюраторного двигателя может быть осуществлен по различным схемам. Широко распространены двухтактные двигатели с кривошипно-камерной продувкой схема устройства и работы такого двигателя представлена на рис. 93. По этой схеме работает пусковой бензино-182  [c.182]

Поршневые продувочные насосы. Цилиндр двухтактного двигателя с отдельным поршневым продувочным насосом (фиг. 25) является первой из появившихся конструкций. В зависимости от устройства рабочего цилиндра (см. фиг. 1) и схемы продувки длина трубопроводов между продувочным насосом и цилиндром получается различной. При наличии коротких трубопроводов имеется возможность добиться высокого объемного к. п. д. Однако в карбюраторных двигателях использовать этот высокий объемный к. п. д. не представляется возможным, так как (по крайней мере в случае работы с симметричной диаграммой распределения) приходится ориентиро-438  [c.438]

Электрооборудование трактора. Оно включает в себя источники электроэнергии (электрогенераторы, аккумуляторы) и приборы, с помощью которых освещаются путь трактора при работе в ночное время, рабочее место тракториста и контрольные приборы световые и звуковые сигналы приспособления для зажигания рабочей смеси в цилиндрах карбюраторных двигателей, а в ряде случаев и устройства для запуска основного или пускового двигателей трактора.  [c.16]

Двигатель внутреннего сгорания состоит из механизмов и систем, выполняющих различные функции. Рассмотрим устройство и принцип работы двигателя внутреннего сгорания на примере четырехтактного одноцилиндрового карбюраторного двигателя (рис. 6). В цилиндре 3 находится поршень с поршневыми кольцами, соединенный с колен-  [c.16]

Рабочий цикл у двигателя, работающего на газе, такой же, как и у карбюраторного, но устройство и работа приборов системы питания существенно отличаются.  [c.132]

В книге рассмотрен вариант системы для карбюраторного двигателя. Система для инжекторного двигателя отличается газосмесительным устройством, которое устанавливают на дроссельный узел. В общем виде устройство представляет собой распылитель, выполненный по типу трубки Вентури. Этот вариант предназначен для работы в инжекторной системе питания без обратной связи. Кроме того, как уже упоминалось, в систему управления двигателем дополнительно подключаются эмуляторы или реле отключения топливного насоса и хлопушка .  [c.12]

Работа с некоторым недостатком воздуха при а 0,85 ч- 0,9 характеризуется максимальной скоростью сгорания смеси. Продукты неполного сгорания топлива в карбюраторном двигателе при таком значении сс содержат значительное количество окиси углерода и водорода (соответственно 5—10 и 2—5% объема выпускных газов). Кроме того, в выпускных газах находятся в небольших количествах окислы азота (О—0,8 жз/./г), углеводороды (0,2—3,0 мг л), альдегиды (0—0,2 мг/л). Эти продукты бесцветны, не дают нагара и, таким образом, не препятствуют эксплуатации автомобильных карбюраторных двигателей в городских условиях при не очень большой плотности движения. Однако при высоких концентрациях эти продукты высокотоксичны и вредно действуют на человека и окружающую природу. Поэтому в настоящее время разрабатываются меры и устройства для нейтрализации продуктов сгорания.  [c.275]

Принцип пуска иа бензине заключается в том, что при пуске двигатель с воспламеиением от сжатия переводят на работу по принципу карбюраторного двигателя, причем топливом служит бензин. Для уменьшения степени сжатия увеличивают камеру горения путем включения в пространство сжатия особой полости А, выполненной в головке двигателя. Такое устройство имеется, например, в одном из тракторных двигателей ХТЗ (см. фиг. 243 и 206).  [c.212]

На явлениях взаимоиндукции и самоиндукции основано устройство и работа катушки зажигания с механическим прерывателем, преобразующей ток низкого напряжения в ток высокого напряжения, используемый для зажигания рабочей смеси в карбюраторных двигателях.  [c.122]


Пусковые свойства карбюраторного двигателя определяются >ф-фективностью работы пусковых устройств и системы холостого хода карбюратора и мощностью лектричвской искры.  [c.186]

Количество топлива, вытекаюш,его из жиклера 4, зависит главным образом от перепада давлений в поплавковой камере и диффузоре, поэтому для поддержания атмосферного дав.)1ения в корпусе поплавковой ка.меры имеется отверстие 3 для сообщения камеры с атмосферой. Количество горюче смеси, попадающей в цилиндры двигателя, зависит от степени открытия дроссельной заслонки 6, которая является лавным органом, регулирующим работу карбюраторного двигателя. Рассмотрев принцип действия простейшего карбюратора, можно сделать вывод о назначении его основных устройств. Поплавковая камера 11, поплавок 10 и игольчатый клапан 2 служат для подаер-жания в процессе работы постоянного уровня в распылителе. Уровень топлива поддерживается на 3 — 4 мм ниже устья распылителя, что устраняет возможность вытекания топлива при неработающем двигателе и обеспечивает постоянное сопротивление при высасывании топлива из распылителя во время работы.  [c.136]

Горючие смеси, необходимые для работы карбюраторного двигателя, приготавливаются в смесеобразующем устройстве карбюратора и впускном трубопроводе двигателя. Время, отводимое на приготовление смесей, определяется рабочим процессом двигателя. Для современных двигателей это время чрезвычайно мало и составляет 0,007—0,015 с.  [c.52]

На этих машинах дизельные и карбюраторные двигатели работают спаренно, причем карбюраторные используются для запуска дизельных в отдельных случаях для запуска основного двигателя используется электростартер. В табл. 42—45 приведены характеристики указанных двигателей, в том числе пусковых устройств.  [c.100]

Смесеобразование в дизельном двига-хеле менее совершенно, чем в карбюраторном. Это объясняется тем, что время, отведенное на смесеобразование в дизельном двигателе, очень ограничено. Достаточно сказать, что у некоторых дизельных двигателей угол опережения впрыска составляет 4—8°, а в связи с этим время на смесеобразование приблизительно в 45 — 70 раз меньше, чем у карбюраторных двигателей такой же быстроходности. В силу этого, несмотря на различные устройства, улучшаюш,ие смесеобразование, впрыснутое топливо распределяется в воздухе неравномерно. Для обеспечения более полного сгорания впрыснутого топлива дизельные двигатели работают с довольно высоким коэффициентом избытка воздуха.  [c.385]

Особенности устройства и работы стартера СТЮЗ. Этот стартер устанавливают на двигатели ЯМЗ-236 и ЯМЗ-238 (автомобили МАЗ и КрАЗ). Он отличается от стартеров карбюраторных двигателей конструкцией привода и, вследствие большой мощности, увеличенными размерами деталей. Обмотка возбуждения у него разделена на две параллельные ветви, провода обмотки имеют увеличенное сечение, в каждом щеткодержателе установлено по две щетки соответственно удлинен коллектор. Электродвигатель стартера рассчитан на напряжение 24 в.  [c.136]

Анализатор двигателя К461. Предназначен для проверки электрооборудования и оценки работы цилЙ1 ров 4-, 6- и 8-цилиндровых, карбюраторных двигателей автомобилей. Анализатор объединяет в себе осциллограф и устройства для измерения напряжения постоянного тока сопротивления постоянному току частоты вращения при отключении цилиндpioв угла опережения зажигания угла замкнутого состояния контактов прерывателя.  [c.217]

Роторно-шестеренчатые нагнетатели широко используются для устройства наддува в четырехтактных двигателях в тех случаях, когда создаваемый ими шум является допустимым (двигатели гоночных и спортивных автомобилей). В двухтактных двигателях роторно-шестеренчатые нагнетатели используются в стационарных установках и в умеренно быстроходных автомобильных двигателях. Роторношестеренчатый нагнетатель, представляющий собой воздуходувную машину, начинает работать с достаточной производительностью лишь при высоком числе оборотов (вследствие отно- Схема коловратного нагнетателя сительно больших потерь в зазорах ошегр из), между лопастями), а двухтактный двигатель нуждается в наибольшем коэффициенте избытка продувочного воздуха именно в диапазоне низких чисел оборотов. Поэтому между коленчатым валом двигателя и нагнетателем приходится вводить повышенную передачу, что в быстроходных (в частности, в карбюраторных) двигателях может привести к чрезмерно высокому числу оборотов ротора, опасному для нагнетателя. Все это связано со снижением механического и термического к. п. д. Недостатком роторно-шестеренчатого нагнетателя является также то, что он не обеспечивает поджатия . В стационарных установках существуют наиболее благоприятные условия для использования роторно-шестеренчатых нагнетателей, чем и объясняется их увеличиваюп ееся применение в стационарных двухтактных дизелях, где удается органически вписывать их в конструкцию двигателя.  [c.441]

Д. Д. Пример установки Д. Д. с наддувом по системе Бюхи показан на фиг. 32. Двигатель— компрессорный, 4-тактный, простого действия, 6-цилиндровый. Выхлопные трубы в от отдельных цилиндров соединены в 2 группы выхлопными коллекторами /, по к-рым газы подводятся к турбине д. Воздуходувка сидит на одном валу с турбиной. Сжатый воздух поступает по трубопроводу а, через воздушный коллектор с и всасывающие клапаны й в цилиндры двигателя. При испытаниях двигатель допускал при давлении наддува 0,48 а1(1) возмоншость нагрузки до значений среднего эффективного давления = 9,4 а1, а среднее индикаторное давление = 11,2 at против обычного предела p = Ъ,О а1 в двигателе данного типа, но без наддува. Расход топлива для указанной предельной нагрузки составлял 184 г/Н е -час. Подробнее о наддуве Д. Д. и описание конструкций нагнетателей и турбин см. Нагнетатели авиационных двигателейи Турбины газовые. Высокая ценность дизельных топлив и ограниченность их ресурсов обусловили изыскание возможностей применения в Д. Д. утяжеленных дизельных топлив, получающихся после отгонки из нефти легких фракций, служащих в качестве топлива для карбюраторных двигателей. Применение тяжелых топлив (см. Дизельное топливо) вызывает необходимость устройств для подогрева топлива и более тщательной очистки, т. к. обычный отстой примесей для вязких продуктов является недостаточным. Подогрев топлива осуществляется либо отходящей из двигателя водой либо паром от котла-утилизатора. Наиболее соверщенным методом очистки топлива, обязательным при работе на утяжеленном тошпиве бескомпрессорных Д. Д., является центрифугирование при помощи центробежных сепараторов. При применении тяжелого топлива обычно имеет местО нек-рое повышение удельных расходов топлива, а также увеличение износа цилиндровых втулок двигателя за счет повышения нагаро-образований в цилиндре, загорания поршневых колец и т. в.  [c.194]


Как работает карбюратор?

Как работает карбюратор? - Объясни это

Реклама

Криса Вудфорда. Последнее изменение: 2 февраля 2021 г.

Топливо плюс воздух равны движению - это фундаментальная наука, лежащая в основе большинства транспортных средств. которые путешествуют по суше, морю или небу. Легковые автомобили, грузовики и автобусы превращают топливо в энергию, смешивая его с воздухом и сжигая металлические цилиндры внутри их двигателей. Сколько именно топлива и воздуха потребность двигателя меняется от момента к моменту, в зависимости от того, как долго он работал, как быстро вы идете, и множество других факторы.В современных двигателях используется система электронного управления. называется впрыск топлива , чтобы регулировать топливно-воздушную смесь, чтобы ровно с той минуты, когда вы поворачиваете ключ, до времени, которое вы переключаете двигатель снова выключится, когда вы доберетесь до места назначения. Но пока эти были изобретены умные устройства, практически все двигатели полагались на гениальные устройства для смешивания воздуха и топлива, называемые карбюраторами (пишется «карбюратор» в некоторых странах часто сокращается до просто «карбюратор»). Какие они и как работают? Давайте посмотрим внимательнее!

Иллюстрация: Карбюраторы в двух словах: они добавляют топливо (красный) к воздуху (синий), чтобы получилась смесь, подходящая для горения в цилиндрах.Цилиндры современных автомобилей более эффективно питаются от систем впрыска топлива, которые потребляют меньше топлива и меньше загрязняют окружающую среду. Но вы по-прежнему найдете карбюраторы в двигателях старых автомобилей и мотоциклов, а также в компактных двигателях газонокосилок и бензопил.

Как двигатели сжигают топливо

Двигатели - вещи механические, но они тоже химические вещи: они разработан на основе химической реакции под названием сгорание : когда вы сжигаете топливо в воздухе, вы выделяете тепловую энергию и производите углерод диоксид и вода как отходы.Чтобы эффективно сжигать топливо, вы нужно использовать много воздуха. Это относится и к автомобильному двигателю. что касается свечи, костра на открытом воздухе, угля или дрова в чьем-то доме.

С костром вам никогда не придется беспокоиться о том, что у вас слишком много или слишком мало воздуха. При пожарах внутри помещений запас воздуха сокращается, и гораздо важнее. Недостаток кислорода вызовет пожар в помещении (или даже устройство для сжигания топлива, такое как газовая печь центрального отопления (котел), чтобы производить опасные загрязнения воздуха, в том числе токсичные угарный газ.

Иллюстрация: Теоретически двигателю автомобиля требуется в 14,7 раз больше воздуха, чем топлива, если воздушно-топливная смесь должна гореть должным образом. Это называется стехиометрической смесью, и она состоит из 94 процентов воздуха и 6 процентов топлива. На практике соотношение может быть другим.

С автомобильным двигателем все немного сложнее. Если у тебя есть достаточно атомов кислорода, чтобы сжечь все ваши атомы топлива, это называется стехиометрическая смесь . (Стехиометрия - это часть химии, эквивалент в аптеке, чтобы убедиться, что у вас ровно достаточно каждого ингредиента прежде чем приступить к приготовлению по рецепту.) В случае автомобильного двигателя соотношение обычно составляет около 14,7 частей воздуха на 1 часть топлива (хотя это действительно зависит от того, из чего состоит топливо). Слишком много воздуха и недостаточно топлива означает, что двигатель горит "обедненный", при слишком большом количестве топлива и недостатке воздуха называется горящий «богатый». Слишком много воздуха (слегка бедная смесь) дает лучшую экономию топлива, а немного меньше (слегка богатая смесь) дает лучшие характеристики. Слишком много воздуха так же плохо, как и слишком много воздуха. маленький; оба по-разному вредны для двигателя.

«Карбюратор называют« сердцем »автомобиля, и нельзя ожидать, что двигатель будет работать правильно, выдавать надлежащую мощность или работать плавно, если его« сердце »не выполняет свои функции должным образом».

Эдвард Кэмерон, The New York Times, 1910

Что такое карбюратор?

Бензиновые двигатели

рассчитаны на то, чтобы всасывать точно необходимое количество воздуха, поэтому топливо горит должным образом, независимо от того, запускается ли двигатель с холодного или нагревается на максимальной скорости.Получение правильной топливно-воздушной смеси - это работа умного механического устройства под названием карбюратор : трубка, через которую воздух и топливо попадают в двигатель через клапаны, смешивая их вместе в разных количествах, чтобы удовлетворить широкий спектр различных условия вождения.

Вы можете подумать, что «карбюратор» - довольно странное слово, но оно происходит от глагола «карбюратор». Это химический термин, означающий обогащение газа путем соединения его с углеродом. или углеводороды. Итак, технически карбюратор - это устройство, насыщающее воздух (газ) топливом. (углеводород).

Кто изобрел карбюратор?

Карбюраторы используются с конца 19 века. века, когда они были впервые разработаны пионером автомобильной промышленности (и Основатель Mercedes) Карл Бенц (1844–1929). Были раньше попытки «карбюрирования» другими способами. Например, французский пионер двигателей Жозеф Этьен Ленуар (1822–1900) первоначально использовал вращающийся цилиндр. с прикрепленными губками, которые погружались в топливо, когда они поворачивались, вытащив его из контейнера и подмешав в воздух, они это сделали.[1]

На приведенной ниже схеме, которую я раскрасил, чтобы облегчить восприятие, показан оригинал. Конструкция карбюратора Benz с 1888 года; основной принцип работы (объясненный во вставке ниже) остается неизменным и по сей день.

Изображение: очень упрощенная схема оригинального карбюратора Карла Бенца из его патент 1888 года. Топливо из бака (синий, D) поступает в так называемый генератор (зеленый, A). внизу, где он испаряется. Топливный пар проходит через серую трубу и встречает поступающий воздух. вниз по той же трубе, которая выходит из атмосферы через перфорацию вверху.Воздух и топливо смешиваются в красной камере (F), затем проходят через клапан (бирюзовый, G) в цилиндр H, где они сжечь, чтобы получить силу. Иллюстрация из патента США 382,585: Карбюратор Карла Бенца. 8 мая 1888 г., любезно предоставлено Управлением по патентам и товарным знакам США.

Как работает карбюратор?

Фото: На типичный карбюратор особо не на что смотреть! Фото Дэвида Хоффмана любезно предоставлено ВМС США.

Карбюраторы довольно сильно различаются по конструкции и сложности. Самый простой из возможных - по существу большой вертикальный воздуховод над цилиндрами двигателя с горизонтальный топливопровод, присоединенный с одной стороны.Когда воздух течет вниз трубу, она должна проходить через узкий перегиб посередине, который заставляет его ускоряться и заставляет его давление падать. Это изломано секция называется Вентури . Падающее давление воздуха создает эффект всасывания, который втягивает воздух через топливопровод на сторона.

Иллюстрация: Эффект Вентури: когда жидкость течет в более узкое пространство, ее скорость увеличивается, но давление падает. Это объясняет, почему ветер свистит между зданиями и почему лодки, плывущие параллельно друг другу, часто сталкиваются друг с другом.Это пример закона сохранения энергии: если бы давление не упало, жидкость, втекая в узкое сечение, набирала бы дополнительную энергию, что нарушило бы один из самых основных законов физики.

Воздушный поток втягивает топливо, чтобы присоединиться к нему, что нам как раз и нужно, но как мы можем регулировать топливовоздушную смесь? Карбюратор имеет два поворотных клапаны над и под трубкой Вентури. Вверху есть клапан под названием дроссель , который регулирует, сколько воздуха может проходить в.Если заслонка закрыта, через трубу проходит меньше воздуха, и Вентури всасывает больше топлива, поэтому двигатель становится более богатым топливом. смесь. Это удобно, когда двигатель холодный, при первом запуске и работает довольно медленно. Под трубкой Вентури есть второй клапан назвал дроссель . Чем больше открыта дроссельная заслонка, тем больше воздух проходит через карбюратор и чем больше топлива он затягивает из трубу в сторону. При поступлении большего количества топлива и воздуха двигатель высвобождает больше энергии и производит больше мощности, и машина едет быстрее.Вот почему открытие дроссельной заслонки заставляет машину ускоряться: это эквивалент дуть на костер, чтобы подать больше кислорода и сделать его горят быстрее. Дроссель соединен с педалью акселератора в машине или дроссельной заслонке на руле мотоцикла.

Впуск топлива в карбюратор немного сложнее, чем мы описывали до сих пор. К топливной трубе прикреплен миниатюрный топливный бак, называемый поплавковая камера подачи (небольшая емкость с поплавком и клапаном внутри).По мере того, как камера подает топливо в карбюратор, уровень топлива опускается, и поплавок падает вместе с ним. Когда поплавок опускается ниже определенного уровня, он открывает клапан, позволяющий подавать топливо. в камеру, чтобы заправить ее из основного бензобака. Когда камера заполняется, поплавок поднимается, закрывает клапан, и подача топлива снова отключается. (В поплавковая подающая камера работает как унитаз, с поплавком эффективно выполняет ту же работу, что и шаровой кран - клапан, который помогает наполнять унитаз после промывки используйте необходимое количество воды.Что общего у автомобильных двигателей и туалетов? Больше, чем вы могли подумать!)

Итак, вот как это все работает:

  1. Воздух поступает в верхнюю часть карбюратора из воздухозаборника автомобиля, проходя через фильтр, очищающий его от мусора.
  2. При первом запуске двигателя дроссель (синий) можно настроить так, чтобы он почти блокировал верхнюю часть трубы, чтобы уменьшить количество поступающего воздуха (увеличивая содержание топлива в смеси, поступающей в цилиндры).
  3. В центре трубки воздух проходит через узкий изгиб, называемый трубкой Вентури. Это заставляет его ускориться и заставляет его давление падать.
  4. Падение давления воздуха вызывает всасывание в топливопроводе (справа), всасывая топливо (оранжевый цвет).
  5. Дроссель (зеленый) - это клапан, который поворачивается для открытия или закрытия трубы. Когда дроссельная заслонка открыта, в цилиндры поступает больше воздуха и топлива, поэтому двигатель производит больше мощности, а автомобиль едет быстрее.
  6. Смесь воздуха и топлива стекает в цилиндры.
  7. Топливо (оранжевый) подается из мини-топливного бака, называемого камерой поплавковой подачи.
  8. Когда уровень топлива падает, поплавок в камере опускается и открывает клапан наверху.
  9. Когда клапан открывается, в камеру поступает больше топлива из основного бензобака. Это заставит поплавок подняться и снова закрыть клапан.

Если вам понравилась эта статья ...

... вам могут понравиться мои книги. Мой последний Breathess: почему загрязнение воздуха имеет значение и как оно влияет на вас.

Узнать больше

На сайте

Книги

Для читателей постарше
Для младших читателей
  • Car Science Ричард Хаммонд. Дорлинг Киндерсли, 2007. От материалов, из которых они сделаны, до того, как они рассекают воздух, эта книга объясняет науку, которая заставляет машины двигаться (в возрасте 9–12 лет).

Видео

  • Карбюраторы - объяснение: это видео с сайта Engineering Explained охватывает почти то же самое, что и моя статья, но рассказывает нам о том, что происходит.Он также распространяется на карбюраторы со второй трубкой Вентури.
  • Карбюраторы поплавкового типа, объясненные Пимпинпенцем. Хороший четкий обзор поплавкового карбюратора с игольчатым клапаном.

Статьи

Патенты

Для получения более подробной технической информации посетите эти:

  • Патент США 382,585: Карбюратор Карла Бенца. 8 мая 1888 года. Оригинальное устройство для смешивания топлива с воздухом, изобретенное в конце 19 века пионером автомобилестроения Карлом Бенцем.
  • Патент США 1520261: Карбюратор Джорджа Ф.Риттер и др., Tillotson Manufacturing. 23 декабря 1924 года. Типичный карбюратор начала 20 века.
  • Патент США 1 938 497: Карбюратор Чарльза Н. Пога. 5 декабря 1933 г. Эта конструкция предназначена для испарения большего количества топлива и обеспечения большей мощности двигателя.
  • Патент США 4 501 709: Карбюратор Вентури с регулируемым приводом от Тадахиро Ямамото и Тадаки Оота, Nissan. 26 февраля 1985 г. В этом более современном типе карбюратора размер трубки Вентури автоматически изменяется для поддержания постоянного уровня всасывания.

Список литературы

  1. ↑ Газовые и нефтяные двигатели: Практическое пособие по внутреннему сгоранию Двигатель Уильяма Робинсона. Э. и Ф. Spon, 1890, с.175.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Крис Вудфорд 2009, 2021. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Поделиться страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис. (2009/2021) Карбюраторы. Получено с https://www.explainthatstuff.com/how-carburetors-work.html. [Доступ (укажите дату здесь)]

Подробнее на нашем сайте...

Понимание того, как работают карбюраторы

АВТО ТЕОРИЯ

Все бензиновые двигатели для работы должны сжигать топливо. Вопреки распространенному мнению, жидкий бензин не горит - горит только пар, поэтому жидкость должна быть преобразована в пар, прежде чем она попадет в камеру сгорания. Газовые двигатели должны работать с соотношением воздух-топливо где-то между 9: 1 и 16: 1, в зависимости от температуры, скорости и нагрузки.В новых автомобилях эту работу выполняют системы впрыска топлива, но в течение первых 75 лет (или около того) прошлого века карбюратор был устройством, которое подавало пары топлива в цилиндры.

Многие люди думают, что карбюраторы безнадежно сложны и с ними невозможно работать, но это потому, что они не понимают теории работы. Поэтому в этой статье мы построим карбюратор. Погнали!

Автомобильный двигатель - это не что иное, как воздушный насос. Поскольку он может создавать сжатие, когда клапаны закрыты, он также может создавать разрежение, когда поршень опускается, а впускной клапан открыт.Когда двигатель проворачивается, движущийся поток воздуха входит через впускной коллектор, который проходит от каждого цилиндра к верхней части двигателя. Мы будем использовать этот воздушный поток, чтобы заставить карбюратор работать.

Рупор, поплавковая чаша и вентиляционное отверстие


Во-первых, нам нужна простая круглая металлическая трубка, которую мы назовем воздушным рожком. Затем мы прикрепляем к рогу таз для подачи газа. Внутри унитаза мы должны предусмотреть поплавок (как в унитазе). Этот поплавок будет управлять игольчатым клапаном, так что, когда чаша заполняется, движение поплавка вверх перекрывает поток газа.Поплавковая чаша должна быть выпущена в атмосферу, чтобы газ выходил наружу при повышении давления, потому что невентилируемая чаша, когда она горячая, может вызвать проблемы с запуском.

Затем нам нужно соединить чашу с воздушным рожком с помощью небольшой трубки, называемой выпускной трубкой, и сопло на конце трубки должно быть расположено выше уровня газа в чаше. Газ не будет выходить, если мы не создадим вакуум в воздушном рожке. Создавая сужение (ограничение) в воздушном рупоре, движущийся воздух будет ускоряться, создавая дополнительный локальный вакуум.В физике это называется «принципом Вентури». Это сужение карбюратора поэтому называется трубкой Вентури. Во многих современных карбюраторах используется трубка Вентури внутри трубки Вентури, чтобы еще больше ускорить поток воздуха и помочь распылить газ. Газоразрядная трубка помещена во «вторичную» трубку Вентури на нашем чертеже.

Наша трубка теперь оснащена трубкой Вентури и выпускной трубкой.


На этом этапе нашей конструкции бензин будет втягиваться в трубку и выходить из сопла, но капли будут несколько большими.Поскольку нам нужно сделать капли как можно меньше - для распыления - нам нужно добавлять воздух в топливо, когда оно движется через сопло. Для этой цели к основной газоразрядной трубке присоединяется небольшая трубка, называемая «отводом воздуха».

Добавление стравливающего воздуха приводит к тому, что капли топлива становятся намного меньше.


Тем не менее, наш двигатель не работает должным образом, потому что мы ничего не сделали для поддержания надлежащего соотношения воздух-топливо (помните?). Однако это легко исправить, поскольку все, что нам нужно сделать, это предусмотреть дозирующее отверстие - «жиклер» - в газоразрядной трубке.Размер сопла рассчитывается инженерами, проектировавшими двигатель, в соответствии с внутренней динамикой двигателя. С этим жиклером двигатель сможет работать с постоянной скоростью 2500 или более оборотов в минуту.

Главный нагнетательный жиклер контролирует количество топлива, поступающего в нагнетательную трубку.


К сожалению, на этом этапе конструкции нашего карбюратора двигатель не запускается! В холодном состоянии двигателю нужна смесь, богатая бензином, чтобы было произведено достаточно пара для запуска.Решение простое, поскольку нам нужно лишь частично перекрыть подачу воздуха в двигатель. Если мы поместим пластину на верхнюю часть воздушного рожка, вакуум от такта впуска будет вытягивать больше газа из выпускной трубки, обеспечивая правильную стартовую смесь. Эта пластина называется «дроссельной заслонкой», и ею можно управлять вручную или автоматически. Теперь наш двигатель запустится, но по-прежнему не будет работать ни на чем, кроме широко открытого, потому что мы не предусмотрели никакого способа регулирования его скорости. Не беспокоиться!

Дроссель: A.Дроссельная заслонка открыта, воздух проходит через воздушный рожок. B. Дроссельная заслонка закрыта. Вакуум из всасывающего патрубка на нагнетательном патрубке.


Если мы поместим пластину в нижнюю часть трубы - под трубкой Вентури и над ее креплением к двигателю - повернем ее от центральной линии и подключим к ней надлежащее соединение, теперь мы сможем контролировать количество воздушно-топливной смеси, достигающей цилиндров в любой момент времени. Это наша дроссельная заслонка, широко известная как дроссельная заслонка или акселератор. На этом этапе наш базовый карбюратор еще не готов.Мы не можем простаивать без остановки; у него будет небольшая мощность на скоростях чуть выше холостого хода; и всякий раз, когда дроссельная заслонка быстро открывается, будет "плоская точка", пока двигатель не разовьет скорость.

Дроссельная заслонка регулирует подачу топливной смеси. Показаны в широко открытом, полуоткрытом и закрытом положениях.


Вернуться к работе. К настоящему времени должно быть ясно, что правильный карбюратор должен содержать ряд отдельных устройств топливной системы. Поплавок, воздушная заслонка и дроссельная заслонка - это три из них, но нам все еще нужны другие, чтобы обеспечить необходимое соотношение воздух / топливо для работы двигателя в других условиях.Разберем их по категориям:

1. Холостой ход. Соотношение 12: 1 является обычным для нормального холостого хода.
2. Низкая скорость. Передаточное число 16: 1 необходимо для работы с неполным дросселем (30-65 миль в час).
3. Высокая скорость. Передаточное число 13: 1 необходимо для работы на полном газу.
4. Полное ускорение: необходимо соотношение 14: 1.
5. Холодный пуск. Требуется соотношение 8: 1.

Мы позаботились о двигателях для запуска и работы на полностью открытой дроссельной заслонке. Теперь давайте создадим несколько схем для решения других проблем.

Контур холостого хода: Если мы создадим дополнительный проход от основной выпускной трубки и проведем его ниже дроссельной заслонки и выйдем через отверстие в воздушном роге, вакуум двигателя будет втягивать топливо для холостого хода. Обычно карбюраторы имеют регулирующий клапан, позволяющий изменять количество топлива для достижения наилучшего холостого хода, обычно называемого винтом (винтами) "смеси холостого хода". Без такой регулировки двигатель на холостом ходу работал бы слишком богато, поскольку происходит то, что топливо капает в двигатель в процессе «контролируемой утечки».«

Теперь нам нужно заставить двигатель работать плавно при частичном открытии дроссельной заслонки. Как только дроссельная заслонка открывается после положения холостого хода, требуется больше топливной смеси. Однако воздушного потока через трубку Вентури по-прежнему не хватает, чтобы топливо вытягивалось через главное выпускное сопло. Если мы воспользуемся тем проходом, который мы разработали для контура холостого хода, и просверлим несколько отверстий чуть выше закрытого положения дроссельной заслонки, дополнительное топливо будет вытягиваться из них при открытии пластины. Когда каждое отверстие открывается, течет больше топлива, обеспечивая питание до тех пор, пока не заработает основное нагнетательное сопло.Дела налаживаются, но -

У нашего карбюратора теперь есть цепь холостого хода, и когда дроссельная заслонка частично открыта, дополнительное топливо всасывается через отверстие низкой скорости.


У нас осталась одна дополнительная проблема - "ровная точка" при резком ускорении. Это происходит из-за кратковременного отсутствия вакуума, когда дроссельная заслонка внезапно открывается. Чтобы компенсировать это, в большинстве карбюраторов была разработана схема ускорительного насоса. Этот контур обычно управляется соединением с насосной камерой в карбюраторе.Когда акселератор опускается, топливо распыляется в воздушный рупор или трубку Вентури. Другой, несвязанный тип цепи ускорения - это схема реактивного двигателя. В этой системе используется поршень, удерживаемый под вакуумом, который при уменьшении вакуума сжимается пружиной, тем самым перекачивая топливо.

Наконец-то у нас есть карбюратор, который очень хорошо управляет двигателем, но только относительно маленьким. Здесь мы показали карбюратор с одним цилиндром Вентури. По мере того, как двигатели становились более крупными, производители модифицировали системы карбюратора, чтобы лучше распределять топливо по нескольким цилиндрам, тем самым производя больше мощности.К началу 1960-х годов эпоха одноствольного карбюратора почти закончилась.

На многих автомобилях используются двух- и четырехкамерные карбюраторы, а в некоторых других используется несколько карбюраторов (два четырехбаллонных, три двухцилиндровых и т. Д.) Многоствольные карбюраторы такие же, как и одинарные. Они просто используют обычные поплавковые чаши, штуцеры и другие элементы в одном корпусе для повышения эффективности. В восстановлении любого из них нет ничего загадочного. Все, что вам нужно запомнить, - это распознать каждую цепь в карбюраторе и не забыть ни одной детали! Здесь есть все внешнее оборудование для таких вещей, как быстрый холостой ход, срабатывание дроссельной заслонки, ускорение кондиционера, вакуумный отбор и предварительный нагрев смеси.

Потратьте немного больше времени на изучение руководства по эксплуатации вашего автомобиля, чтобы ознакомиться со всем, а затем перейти к нему. Бояться нечего.

data-matched-content-ui-type = "image_card_stacked" data-matched-content-rows-num = "3" data-matched-content-columns-num = "1" data-ad-format = "autorelaxed">

Как работает карбюратор?

Посмотрите видео, чтобы лучше рассмотреть эти части.

Карбюратор работает «нормально» при полностью открытой дроссельной заслонке. В этом случае дроссельная заслонка параллельна длине трубки, позволяя максимальному потоку воздуха проходить через карбюратор. Воздушный поток создает хороший вакуум в трубке Вентури, и этот вакуум всасывает отмеренное количество топлива через жиклер. Вы можете увидеть пару винтов в правом верхнем углу карбюратора на фото 1. Один из этих винтов (помеченный «Hi» на корпусе цепной пилы) регулирует, сколько топлива поступает в трубку Вентури при полном открытии дроссельной заслонки.

Когда двигатель работает на холостом ходу, дроссельная заслонка почти закрыта (положение дроссельной заслонки на фотографиях - это положение холостого хода).Через трубку Вентури проходит недостаточно воздуха для создания вакуума. Однако на задней стороне дроссельной заслонки очень много вакуума (потому что дроссельная заслонка ограничивает воздушный поток). Если просверлить крошечное отверстие на стороне трубки карбюратора сразу за дроссельной заслонкой, топливо может быть втянуто в трубку с помощью разрежения дроссельной заслонки. Это крошечное отверстие называется жиклер холостого хода . Другой винт пары, показанной на фото 1, помечен как «Lo», и он регулирует количество топлива, которое проходит через жиклер холостого хода.

Оба винта Hi и Lo представляют собой просто игольчатые клапаны. Поворачивая их, вы позволяете большему или меньшему количеству топлива проходить мимо иглы. Регулируя их, вы напрямую контролируете, сколько топлива проходит через жиклер холостого хода и главный жиклер.

Когда двигатель холодный и вы пытаетесь запустить его с помощью тягового троса, двигатель работает на очень низких оборотах. К тому же он холодный, поэтому для начала нужна очень богатая смесь. Вот здесь и вступает в игру дроссельная заслонка. При активации дроссельная заслонка полностью закрывает трубку Вентури (см. Это видео о дроссельной заслонке, чтобы увидеть ее в действии).Если дроссельная заслонка полностью открыта, а трубка Вентури закрыта, вакуум двигателя втягивает много топлива через главный жиклер и жиклер холостого хода (поскольку конец трубки карбюратора полностью закрыт, весь вакуум двигателя идет на вытягивание топлива через форсунки). Обычно эта очень богатая смесь позволяет двигателю запускаться один или два раза или работать очень медленно. Если вы затем откроете воздушную заслонку, двигатель заработает нормально.

Первоначально опубликовано: 10 мая 2000 г.

Как работает карбюратор?

Карбюратор - это высокочувствительный прецизионный инструмент, предназначенный для смешивания топлива и воздуха в правильном соотношении в довольно динамичном рабочем диапазоне двигателя внутреннего сгорания.

Их также, хотите верьте, хотите нет, очень легко понять. Хотя я не скажу, что карбюраторы и их настройка (адаптация карбюратора к конкретному двигателю и даже конкретному сценарию использования) просты, их принцип работы довольно прост, а обслуживание обычно легко выполнить, если конструкция карбюратора является работоспособной. и доступ к нему достаточный. Карбюраторы хороши, потому что мы все еще живем в эпоху, когда они используются (и, возможно, самые сложные и лучшие конструкции карбюраторов - это все, что остается в игре), но из-за ограничений выбросов они больше не разрабатываются.В этом отношении они представляют собой живое ископаемое.

Чтобы лучше объяснить конструкцию и усовершенствование карбюратора, я сделаю то, что обычно делаю: верну вас в прошлое, чтобы понять простейшую форму обсуждаемой нами темы, а затем мы перейдем ко всем большие важные вехи. Я также добавлю перца в некоторые фактоиды, чтобы он не пересыхал.

Вот основная идея трубки Вентури. Если вы это понимаете, вы в значительной степени разбираетесь в карбюраторе.Иллюстрация RevZilla.

Принцип работы

Как и многие части мотоцикла, устройство для смешивания воздуха и топлива является результатом исследований, завершенных в другом столетии. В 1730-х годах Даниэль Бернулли, швейцарский математик и физик, обнаружил, что давление воздуха уменьшается с увеличением скорости. Так получилось, что хороший и последовательный способ заставить этот сценарий произойти - это пропустить воздух через ограниченный участок трубы; воздух ускоряется, а давление падает.Это было открыто около 1797 года итальянским физиком по имени Джованни Вентури. Он сконструировал трубку с гораздо меньшим входным отверстием при этом ограничении в зоне низкого давления. Это входное отверстие позволяет трубке втягивать жидкость в поток воздуха.

Вот и все в двух словах. Вот что такое карбюратор и что он делает. Это трубка, по которой воздух проходит через специально расположенные пустоты, через которые в двигатель попадает очень определенное количество топлива. В идеале он также эмульгирует топливо с помощью распыления воздуха.(Важно знать, что жидкое топливо гораздо труднее воспламеняется, чем пары топлива, взвешенные в воздухе.)

Это съемная трубка Вентури от карбюратора Langsenkamp-Linkert, которую можно найти на многих старинных товарах Harley-Davidson. Видите область, где диаметр сужается? Фото Лемми.

Поэтому, когда вы «даете ему газ», вы на самом деле ничего не делаете с топливом. Между вашей правой рукой и бензином нет прямой связи. То, что вы делаете, на самом деле заливаете воздухом .Вы впускаете в двигатель больше воздуха - так уж получилось, что из-за эффекта Вентури больший перепад давления воздуха позволяет ему увлекать с собой больше топлива.

Если вы не продвинетесь дальше в этой статье, вы в значительной степени поймете, что делает карбюратор и как он это делает. Но, как и все механические части в мото, были очень интересные изменения и улучшения. История и эволюция также помогают объяснить, почему вы не найдете старинного Schebler раннего Харлея, свисающего с дрэг-байка.

Осадка

Прежде чем мы начнем, вы должны знать, что все карбюраторы можно классифицировать по тому, как воздух входит и выходит из карбюратора, когда он находится в установленном положении. Таким образом, в карбюраторе с нисходящим потоком, который вы можете найти в маслкаре с V8, есть воздух, который входит сверху и движется вниз, забирая топливо, откуда они вместе попадают в коллектор, а затем в камеру сгорания.

В мире мотоциклов почти каждый карбюратор имеет боковую тягу.Я уверен, что какой-нибудь проницательный читатель создаст малоизвестную модель с карбюратором с восходящим или нисходящим потоком, о котором я не могу думать, но шансы отличные, если вы увидите карбюратор мотоцикла, это блок с боковым тягом. Это связано в первую очередь с ограничениями по упаковке, а также взаимосвязано с попытками сохранить длину впускных направляющих как можно ближе к равной на многоцилиндровых мотоциклах.

Дроссель, пережиток ушедшей эпохи. Эта заслонка закрывается вручную, чтобы ограничить поток воздуха на конце карбюратора от двигателя.Это позволяет двигателю «присосаться» к нему, так что топливо может поступать легко, но ограничение воздуха делает двигатель очень богатым, облегчая запуск. Фото Лемми.

Части карбюратора

У большинства углеводов есть чаша, область, где висит топливо. Некоторые из них дистанционно сдвинуты в сторону, но у большинства есть буквальная чаша, которая отделяется от корпуса карбюратора. Внутри есть поплавок, который работает так же, как поплавок в вашем горшке. Он управляет иглой, которая устанавливается на предмет, который, по логике вещей, называется сиденьем.

Чаша карбюратора. Фото Лемми.

Большинство мотоциклетных карбюраторов питаются самотеком (бак всегда устанавливается над карбюратором, если нет топливного насоса), поэтому поплавок, игла и седло работают вместе, чтобы подавать топливо в карбюратор по мере необходимости, не переполняя резервуар.

Черный элемент здесь - поплавок, а с ним соединена игла, которая плотно прилегает к его седлу. Не в фокусе латунные насадки - это жиклеры. Самый верхний элемент из латуни - пилотный жиклер, а нижний - главный.Фото Лемми.

В чаше вы также можете увидеть форсунки, ведущие к основному корпусу карбюратора. Обычно это сменные латунные детали с просверленными отверстиями очень точного размера. Они часто бывают разных размеров для настройки. Размер отверстия влияет на количество топлива в топливовоздушной смеси.

Вот слайд карбюратора. Обратите внимание, что вырез (вырез слева внизу) виден. Форма и высота выреза может быть изменена для изменения отклика на холостом ходу.Этот золотник аналогичен дроссельной заслонке в более ранних карбюраторах. Фото Лемми.

Вы также можете увидеть иглы в карбюраторе. В зависимости от карбюратора это могут быть топливные иглы, воздушные иглы или «игольчатые форсунки». Они выглядят как настоящая игла (хотя и толще) и не похожи на иглу, которая прикрепляется к поплавку. Разве это не глупо?

В корпусе карбюратора вы можете увидеть ползун, удерживающий струйную иглу, или вы можете увидеть дроссельный диск, который может перемещаться, когда вы поворачиваете дроссельную заслонку (это может также быть не так, в зависимости от того, какой у вас тип карбюратора. ), и вы можете увидеть другой диск, заслонку воздушной заслонки.Не все карбюраторы имеют все эти детали. Почему? Что ж, это хороший переход к тому, как углеводы эволюционировали и отличаются друг от друга.

Давным-давно, когда

Я собираюсь описать следующее с точки зрения возрастающей сложности, и, вообще говоря, все двигалось в этом порядке с точки зрения сложности. Улучшения были внесены в очень разные графики, но это примерно прогрессия - это просто было реализовано в разное время разными производителями карбюраторов и велосипедов, и некоторые шаги были пропущены на этом пути.

На рассвете мотоспорта углеводы были похожи на ту базовую единицу, которую мы только что описали выше. Двигатели были примитивными, так что карбюраторы тоже могли. Степень сжатия была низкой, металлургия была плохой, что ограничивало обороты двигателя, технология уплотнения была где-то между доисторическими и несуществующими.

Некоторые ранние мотоциклы использовали впускной клапан атмосферного давления. Фактически, впускной клапан удерживался закрытым с помощью пружины, как обычный клапан сегодня, но пружина была намного слабее.Однако клапан не открывался механически, как в современных двигателях. Вместо этого движение поршня вниз создавало достаточное отрицательное давление, чтобы преодолеть слабую пружину и впустить поступающий воздушный топливный заряд в камеру сгорания. Когда всасывание уменьшалось, клапан закрывался под давлением пружины. Это не имеет прямого отношения к карбюраторам, но вступит в игру чуть позже в этой статье, так что подумайте, хорошо? Через несколько лет впускные клапаны стали стандартными, которые мы знаем сейчас, их открывал кулачок и подъемник с хорошей сильной пружиной, чтобы закрыть их обратно.

Когда двигатели стали более мощными, стало понятно, что более плавная работа и лучшая работа могут быть достигнуты за счет более точного контроля подачи топлива. Двигатель на холостом ходу, быстро открытая дроссельная заслонка от гонщика, требующего ускорения, и двигатель на полном ходу - все это требует подачи топлива по-разному.

Ранние велосипедные карбюраторы имели две цепи: цепь холостого хода и цепь высокой скорости. «Контур» можно рассматривать как часть дроссельной заслонки, которой управляет конкретный топливный тракт.Таким образом, контур холостого хода на раннем карбюраторе может регулировать холостой ход до 25%, а высокоскоростной контур может справиться с остальным. Почти в каждом карбюраторе есть некоторое перекрытие и утечка в отношении того, какая цепь обслуживает какую часть дроссельной заслонки. Изменение чего-либо в одном контуре может что-то изменить в другом, и часто такие детали, как регулируемые отводы воздуха, могут перемещать точку перехода, чтобы избежать грубых или неустойчивых изменений контура.

Хорошим примером этого является размер трубки Вентури.Ранние карбюраторы Harley Linkert-Langsenkamp, ​​например, очень похожи карбюраторы, даже для двигателей с достаточно разной мощностью. Воздушный поток контролировался «бабочкой» или дроссельной заслонкой, названной так потому, что в работе он напоминает взмах крыла бабочки. Чтобы учесть необходимость использования одного корпуса с большим количеством смещений, для Linkerts были доступны разные Вентури, и они были более или менее отличительным фактором между моделями карбюратора.

Проблема, однако, в том, что данный размер трубки Вентури действительно оптимален только для заданного расхода, что соответствует одной скорости двигателя.Это нормально для мотокультиватора и т.п., в которых используется двигатель, работающий с фиксированной скоростью. Они достаточно гибкие, но идеальным вариантом были бы Вентури разных размеров для различных ситуаций с дроссельной заслонкой. Введите слайд карбюратора.

Скользящий карбюратор. Фото Лемми.

Скользящие карбюраторы отличаются от карбюраторов-бабочек тем, что в них не используется дроссельная заслонка, а вместо них используется круглый или плоский «ползун», который работает аналогично гильотине. Этот слайд поднимается тросом дроссельной заслонки, когда гонщик «крутит фитиль».”

Скользящие углеводы имеют несколько преимуществ по сравнению с карбюраторами типа «бабочка». Во-первых, что наиболее важно, размер Вентури увеличивается при открытии дроссельной заслонки. Он маленький при малых отверстиях дроссельной заслонки и становится больше при больших отверстиях. Некоторые люди до сих пор называют эти углеводы «переменной Вентури».

Это установка в виде бабочки. Многие ранние карбюраторы используют эту конструкцию клапана. Вал, на котором установлен диск, вращается примерно на 90 градусов. Это положение было бы широко открытым дросселем.Ага! Фото Лемми.

Ползунковые карбюраторы также имеют то преимущество, что втулки вала дроссельной заслонки не изнашиваются. Изношенные втулки действительно могут затруднить поддержание разумных оборотов холостого хода и смеси. Кроме того, поскольку вал дроссельной заслонки и дроссельная заслонка не занимают места во впускном отверстии карбюратора, скользящий карбюратор при полностью открытой дроссельной заслонке не имеет внутренних препятствий на впускном тракте.

Помните, когда мы раньше говорили о схемах? Одним из способов улучшения карбюраторов было добавление контуров.С одной стороны, дополнительные схемы обеспечивали все более детальную и тонкую настройку. Обратной стороной этого, как и для всего, что имеет повышенную настраиваемость, является повышенная сложность, которая дает возможность настраивать более неправильно, чем когда-либо прежде.

Вот отверстие, просверленное в пилотном жиклере. Должно быть довольно легко понять, почему клейкое топливо или грязный карбюратор могут помешать вашему мотоциклу заводиться и работать. Фото Лемми.

Одна схема, которая появилась и встречается на большинстве слайд-карбюраторов, - это струйная игла, о которой мы говорили ранее.Вместо того, чтобы просто иметь цепь холостого хода и цепь «всего остального», дроссельная заслонка была разделена на три части. На большинстве скользящих карбюраторов игла жиклера регулирует положение дроссельной заслонки примерно на одну восьмую вплоть до ее полного открытия, при этом пилот работает на холостом ходу и на холостом ходу, а главная цепь обрабатывает большую часть больших отверстий дроссельной заслонки, обычно с некоторой помощью со стороны струйная игла.

Струйная игла. Обратите внимание на различные положения зажима, а также на очень аккуратную конусность струйной иглы.Фото Лемми.

Струйные иглы часто имеют несколько положений для удерживающих зажимов. Чем выше струйная игла движется по слайду (зажим движется к заостренному концу игольчатого сопла), тем богаче смесь может быть получена в средней части дроссельной заслонки. Это обрабатывает нижнюю часть среднего диапазона. Верхний конец обрабатывается самим конусом иглы. Длинный, плавный конус будет более скудным при открытии дроссельной заслонки, чем короткий, агрессивный, когда игла движется вверх вместе с ползунком.

Интересно, что такие вещи, как форсунки иглы с несколькими положениями, начали исчезать в более поздних карбюраторах не потому, что они плохо работали, а потому, что ограничения выбросов заставили производителей сделать свои карбюраторы «защищенными от несанкционированного доступа». Часто по этой причине винты холостого хода устанавливаются на заводе и закрываются латунными заглушками. Вы все еще можете получить доступ к регулировочному винту, вам просто нужно удалить запрессованную заглушку, что обычно квалифицируется как вмешательство в устройство контроля выбросов.Что-то вроде "Уловки-22", а?

Еще одна разработка, которая возникла, заключалась в добавлении ускорительного насоса, который не является отдельной схемой, но предназначен для решения очень конкретной задачи: устранения спотыкания, которое обычно возникает из-за быстро открывающейся дроссельной заслонки. Это спотыкание обычно происходит из-за того, что поток воздуха внезапно увеличивается, но топливо отстает. Акселераторные насосы - это, по сути, крошечные топливные насосы с механическим приводом, которые управляются дроссельной заслонкой, и они обычно открываются только при определенных обстоятельствах.Если вы когда-нибудь слышали, как кто-то говорит о «мощном» карбюраторе, это то, на что они ссылаются.

Они настроены так, что мягкое открывание дроссельной заслонки недостаточно сильно, чтобы привести их в действие, но когда дроссельная заслонка резко открывается, в карбюратор подается хороший порция топлива. (В большинстве случаев они могут быть настроены, поэтому размер «выстрела» может быть адаптирован для удаления болота, но не слишком богатого.)

Со временем на карбюраторах стала проявляться еще одна корректировка: стравливание воздуха.Регулируемые отводы воздуха в основном помогают ускорить или отсрочить переход с одного контура на другой, снова расширяя возможности регулировки карбюратора, к лучшему или к худшему.

Это карбюратор CV. Видите эту большую большую обложку сверху? Это ваша наводка. Фото Лемми.

Современная эпоха

Что ж, этот подзаголовок неправильно употреблен. Хотя некоторые мотоциклы с карбюраторами все еще выпускаются с заводов, их становится мало, и их обычно можно найти на старых моделях.Таким образом, мы можем определить «современный» здесь как примерно 1990-е годы.

Введите постоянную скорость, или CV, карбюратор. Карбюраторные карбюраторы существуют уже давно, но они стали очень популярными в 1990-х годах из-за их способности очищать карбюратор, сводя к минимуму избыток несгоревших углеводородов, которые обеспечивали менее точные устройства для распыления топлива.

А это слайд резюме. (Звучит как изящный танец, не так ли?) Это более поздний блок в стиле диафрагмы. Видите, почему углеводы такие большие? Фото Лемми.

По сути, карбюратор CV поднимает ползун не механически, а пневматически. Карбюратор разделяет функцию подъема слайда, используя трос дроссельной заслонки для открытия и закрытия бабочки в горловине карбюратора, а не путем прямого подъема слайда. Затвор, теперь уплотненный диафрагмой и закрытый слабой пружиной, открывается относительно вакуума двигателя. Таким образом, ползун карбюратора управляется двигателем. На самом деле всадник косвенно управляет воздушным потоком.

"Но Лем!" Я слышу, как вы говорите. «Разве это не ухудшит реакцию дроссельной заслонки?» Да. Да, было бы. Но это было неплохо, особенно когда задействовали ускорительный насос. Это было лучше для окружающей среды, потому что не было всех этих сильных всплесков (численно низкого соотношения воздух / топливо), возникающих каждый раз, когда гонщик доволен газом. Вместо этого произошло приятное равномерное повышение оборотов двигателя с меньшим ущербом для окружающей среды. Однако вы, как правило, не увидите карбюраторы CV (обычно идентифицируемые по очень большим квадратным или круглым вершинам, на которых расположены диафрагмы) на гоночных или соревновательных машинах.(Взгляните на современный двухтактный мотоцикл для бездорожья!) Вместо этого их использование было отнесено в первую очередь к более повседневным и пригородным мотоциклам. Карбюратор CV, как вы уже догадались, очень экономно расходует топливо. От чего они отказываются в отклике на газ и производительности, они возвращают эффективность и экономичность.

А сейчас я верну вас к той мысли, которую просил удержать ранее. Помните атмосферные клапаны? Они в основном полагались на то, что вакуум в двигателе преодолевает слабую пружину, чтобы впускать воздух и топливо в двигатель.Звучит знакомо? По сути, дизайнеры взяли тот же принцип, соединив его с идеей старого Вентури, и создали самые технологически продвинутые и экологически эффективные массовые карбюраторы, которые когда-либо устанавливались на серийные мотоциклы.

Закат

За исключением старых мотоциклов, которые все еще соответствуют законам о выбросах, таких как Suzuki S40 Boulevard или Honda XR650L (которые, кстати, оба используют CV) и соревновательных машин, карбюраторы в значительной степени исчезли, их заменила система впрыска топлива.

Почему, спросите вы? Что ж, они менее вредны для окружающей среды. Впрыск топлива отключает подачу топлива в условиях высокого вакуума и низкой нагрузки. (Подумайте о том, когда вы спускаетесь на низкоскоростной спуск с закрытой дроссельной заслонкой.) Карбюратор по своей конструкции продолжает забрасывать много топлива во впускной тракт. Так что впрыск топлива в этом отношении более эффективен.

Однако более серьезная причина заключается в том, что карбюратор загрязняет намного больше, чем FI, но, вероятно, не так, как вы думаете.Поскольку углеводы не являются системами под давлением, такими как впрыск топлива, топливо должно падать из бака в топливный бак карбюратора под действием силы тяжести, что означает, что и бак, и бак должны выпускаться в атмосферу, выбрасывая в воздух очень вредные несгоревшие углеводороды. А топливо, как и многие растворители, очень легко испаряется. Если умножить все это испарение на все мотоциклы в мире, можно легко представить, сколько бензина (в газообразной форме) выбрасывается в атмосферу. (Велосипеды с впрыском топлива представляют собой герметичные системы и обычно содержат испарительный баллон для улавливания паров до следующего запуска велосипеда, когда они попадут в воздухозаборник и сгорят.)

Карбюраторы работают хорошо, и это удивительно простые, но точные устройства. Они ушли на второй план по какой-то причине, но это, конечно, не умаляет изобретательности, необходимой для их разработки, создания и настройки.

Интересная информация о карбюраторах

Информация о выходе газа из строя: нажмите здесь Где находится OEM-номер карбюратора: нажмите здесь

Что делает карбюратор?

Карбюратор выполняет несколько функций: 1) он объединяет бензин и воздух, создавая легковоспламеняющуюся смесь, 2) регулирует соотношение воздуха и топлива и 3) регулирует скорость двигателя.

Как карбюратор смешивает топливо и воздух

Когда поршень движется вниз по цилиндру на такте впуска, он втягивает воздух из цилиндра и впускного коллектора. Создается вакуум, который вытягивает воздух из карбюратора. Воздушный поток через карбюратор заставляет топливо всасываться из карбюратора через впускной коллектор мимо впускных клапанов в цилиндр. Количество топлива, смешанного с воздухом для получения необходимого соотношения воздух-топливо, регулируется трубкой Вентури или дросселем.Когда воздух проходит через трубку Вентури, его скорость увеличивается, а давление падает. Это приводит к засасыванию топлива воздушным потоком из отверстия или жиклера. Когда двигатель работает на холостом ходу или при быстром разгоне, через трубку Вентури проходит недостаточно воздуха для всасывания топлива. Для решения этих проблем используются другие системы.

Подача бензина в карбюратор

Бензин подается в карбюратор топливным насосом и хранится в топливном баке. Чтобы поддерживать постоянный уровень топлива в бачке при любых условиях, используется поплавковая система.Игольчатый клапан с поплавковым управлением и седло на впускном отверстии для топлива используются для контроля уровня топлива в бачке. Если уровень топлива опускается ниже определенного уровня, поплавок опускается и открывает клапан, впуская больше топлива. Когда поплавок поднимается, он прижимает иглу к седлу и перекрывает поток топлива в бачок.

Управление скоростью двигателя

Дроссельная заслонка управляет скоростью двигателя, контролируя количество воздушного топлива, разрешенного в двигателе.Дроссель представляет собой дроссельную заслонку, расположенную после трубки Вентури и открываемую нажатием на педаль газа. Чем дальше открывается клапан, тем больше воздушно-топливной смеси попадает в двигатель и тем быстрее он работает. На низких оборотах двигателя, когда дроссельная заслонка приоткрыта, потока воздуха недостаточно для всасывания топлива.

Для решения этой проблемы используются две цепи. Один контур расположен в зоне низкого давления, а контур холостого хода - внизу. На низких оборотах двигателя оба контура потребляют топливо, чтобы двигатель продолжал работать.По мере увеличения оборотов двигателя топливо из двух контуров уменьшается до полной остановки.

Работа на низких скоростях

Когда двигатель работает на холостом ходу, через трубку Вентури проходит очень мало воздуха, потому что дроссельная заслонка закрыта. Схема холостого хода позволяет двигателю работать в этом состоянии. Топливо проходит через контур холостого хода из-за разницы давлений между воздухом в топливном баке и вакуумом под дроссельной заслонкой. Горючая смесь холостого хода контролируется регулируемым игольчатым клапаном.

Работа на высоких скоростях

При более высоких оборотах двигателя больше топлива забирается из главного жиклера. Топливо поступает из топливного бака через усилитель (и) в горловину карбюратора, где смешивается с воздухом.

Типы карбюраторов

Сегодня используются 3 основных типа карбюраторов. Это один ствол, два ствола и четыре ствола. Как правило, тип двигателя и его использование определяют, какой карбюратор будет использоваться. В двигателях с высокими рабочими характеристиками можно использовать несколько карбюраторов для подачи необходимого количества топлива.Независимо от того, какой тип карбюратора используется в вашем двигателе, National Carburetors - ваш источник высококачественных карбюраторов.

Карбюраторные системы

Чтобы обеспечить работу двигателя при различных нагрузках и при разных оборотах двигателя, каждый карбюратор имеет шесть систем:

  1. Основное дозирование
  2. Холостой ход
  3. Ускорение
  4. Контроль смеси
  5. Отсечка холостого хода
  6. Энергетическое обогащение или экономайзер

Каждая из этих систем выполняет определенную функцию.Он может действовать самостоятельно или с одним или несколькими другими.

Основная система дозирования подает топливо в двигатель на всех оборотах выше холостого хода. Топливо, выпускаемое этой системой, определяется падением давления в горловине Вентури.

Для холостого хода необходима отдельная система, поскольку основная система дозирования может работать нестабильно при очень низких оборотах двигателя. На малых оборотах дроссельная заслонка почти закрыта. В результате скорость воздуха, проходящего через трубку Вентури, мала, и давление незначительно падает.Следовательно, перепада давления недостаточно для работы основной системы дозирования, и топливо из этой системы не выгружается. Поэтому большинство карбюраторов имеют систему холостого хода для подачи топлива в двигатель на низких оборотах.

Система ускорения подает дополнительное топливо при резком увеличении мощности двигателя. Когда дроссельная заслонка открыта, воздушный поток через карбюратор увеличивается, чтобы получить больше мощности от двигателя. Затем основная дозирующая система увеличивает расход топлива.Однако во время внезапного ускорения увеличение воздушного потока происходит настолько быстро, что существует небольшая задержка по времени, прежде чем увеличение расхода топлива станет достаточным для обеспечения правильного соотношения компонентов смеси с новым воздушным потоком. За счет дополнительной подачи топлива в этот период система ускорения предотвращает временное отклонение смеси от нормы и обеспечивает плавное ускорение.

Система контроля смеси определяет соотношение топлива и воздуха в смеси. С помощью пульта управления из кабины, ручное управление смесью может выбрать соотношение смеси в соответствии с рабочими условиями.В дополнение к этим ручным настройкам многие карбюраторы имеют автоматические регуляторы смеси, так что соотношение топливо / воздух, когда оно выбрано, не изменяется при изменении плотности воздуха. Это необходимо, потому что, когда самолет набирает высоту и атмосферное давление уменьшается, происходит соответствующее уменьшение веса воздуха, проходящего через систему впуска. Объем, однако, остается постоянным. Поскольку именно объем воздушного потока определяет падение давления в горловине трубки Вентури, карбюратор стремится дозировать такое же количество топлива в этот разреженный воздух, что и в плотный воздух на уровне моря.Таким образом, естественная тенденция состоит в том, что смесь становится богаче по мере набора высоты самолетом. Автоматический контроль смеси предотвращает это, уменьшая скорость слива топлива, чтобы компенсировать уменьшение плотности воздуха.

Карбюратор имеет систему отключения холостого хода, чтобы можно было отключить подачу топлива для остановки двигателя. Эта система, входящая в состав ручного управления смесью, полностью останавливает выпуск топлива из карбюратора, когда рычаг управления смесью установлен в положение «отсечки холостого хода».Двигатель самолета останавливается путем отключения топлива, а не путем выключения зажигания. Если зажигание выключается, а карбюратор продолжает подавать топливо, свежая топливно-воздушная смесь продолжает проходить через систему впуска в цилиндры. Когда двигатель останавливается по инерции и если он слишком горячий, эта горючая смесь может воспламениться из-за локальных горячих точек в камерах сгорания. Это может привести к тому, что двигатель продолжит работу или откатится назад. Также смесь может пройти через цилиндры несгоревшей, но воспламениться в горячем выпускном коллекторе.Или двигатель явно останавливается, но горючая смесь остается во впускных каналах, цилиндрах и выхлопной системе. Это небезопасное состояние, поскольку двигатель может перевернуться после остановки и серьезно травмировать всех, кто находится рядом с гребным винтом. Когда двигатель останавливается с помощью системы отключения холостого хода, свечи зажигания продолжают воспламенять топливно-воздушную смесь до тех пор, пока не прекратится выход топлива из карбюратора. Уже одно это должно предотвратить остановку двигателя с горючей смесью в цилиндрах.Некоторые производители двигателей предлагают, чтобы непосредственно перед тем, как гребной винт перестал вращаться, дроссельная заслонка должна быть широко открыта, чтобы поршни могли перекачивать свежий воздух через систему впуска, цилиндры и выхлопную систему в качестве дополнительной меры предосторожности против случайного опрокидывания. После полной остановки двигателя ключ зажигания переводится в положение «выключено».

Система энергетического обогащения автоматически увеличивает насыщенность смеси во время работы на большой мощности. Это делает возможным изменение соотношения топливо / воздух, необходимое для различных условий эксплуатации.Помните, что на крейсерских скоростях обедненная смесь желательна из соображений экономии, тогда как при высокой выходной мощности смесь должна быть богатой, чтобы получить максимальную мощность и помочь в охлаждении цилиндров двигателя. Система обогащения энергии автоматически вызывает необходимое изменение соотношения топливо / воздух. По сути, это клапан, который закрывается на крейсерских скоростях и открывается для подачи дополнительного топлива в смесь во время работы на большой мощности. Хотя она увеличивает расход топлива при высокой мощности, система обогащения энергии фактически является устройством для экономии топлива.Без этой системы необходимо было бы эксплуатировать двигатель на богатой смеси во всем диапазоне мощностей. Тогда смесь будет богаче, чем необходимо на крейсерской скорости, чтобы обеспечить безопасную работу на максимальной мощности. Систему обогащения мощности иногда называют экономайзером или компенсатором мощности.

Хотя различные системы обсуждались отдельно, карбюратор функционирует как единое целое. Тот факт, что одна система работает, не обязательно препятствует работе другой.В то же время, когда основная система дозирования выпускает топливо пропорционально воздушному потоку, система контроля смеси определяет, является ли полученная смесь богатой или бедной. Если дроссельная заслонка внезапно открывается широко, системы ускорения и обогащения мощности действуют, чтобы добавить топливо к тому, которое уже выгружается основной системой дозирования.

Flight Mechanic рекомендует

Carburetor - New World Encyclopedia

Bendix-Technico (Stromberg) 1-цилиндровый карбюратор с нисходящим потоком, модель BXUV-3, с номенклатурой.

Карбюратор (североамериканское написание) или карбюратор (написание Содружества) - это устройство, которое смешивает воздух и топливо (обычно бензин) для двигателя внутреннего сгорания. Карбюратор должен обеспечивать надлежащую топливно-воздушную смесь для широкого диапазона условий работы двигателя, температур, атмосферного давления и центробежных сил, сохраняя при этом низкий уровень выбросов выхлопных газов. Для правильной работы во всех этих условиях большинство карбюраторов содержат сложный набор механизмов для поддержки нескольких различных режимов работы, называемых цепями и .

Карбюратор в просторечии называется carb (в Северной Америке и Соединенном Королевстве) или carby (в основном в Австралии).

Этимология

Слово карбюратор происходит от французского carbure , что означает «карбид». [1] «К карбюратору» означает соединение с углем. В топливной химии этот термин конкретно означает соединение (газа) с летучими углеводородами для увеличения доступной энергии топлива.

История и развитие

Карбюратор был изобретен Карлом Бенцем в 1885 г. [2] и запатентован в 1886 г.Очевидно, он был также изобретен венгерскими инженерами Яношом Чонкой и Донатом Банки в 1893 году. Фредерик Уильям Ланчестер из Бирмингема, Англия, рано экспериментировал с фитильным карбюратором в автомобилях. В 1896 году Фредерик и его брат построили первый в Англии автомобиль с бензиновым двигателем с одноцилиндровым двигателем внутреннего сгорания мощностью 5 л.с. (4 кВт) и цепным приводом. Недовольные производительностью и мощностью, они перестроили двигатель в следующем году в двухцилиндровую версию с горизонтальным расположением противоположных сторон, используя его новую конструкцию фитильного карбюратора.Эта версия совершила поездку на 1000 миль (1600 км) в 1900 году, успешно включив карбюратор в качестве важного шага в автомобильной инженерии.

Карбюраторы были обычным способом подачи топлива почти для всех бензиновых двигателей вплоть до конца 1980-х годов, когда впрыск топлива стал предпочтительным методом подачи автомобильного топлива. На рынке США последними автомобилями с карбюратором, проданными широкой публике, были Oldsmobile Custom Cruiser 1990 года и Buick Estate Wagon.До 1991 года полицейский перехватчик Ford Crown Victoria, оснащенный двигателем объемом 351 дюйм³ (5,8 л), имел четырехцилиндровый карбюратор Autolite. Внедорожник Jeep Grand Wagoneer, оснащенный двигателем AMC 360ci (5,9 л), поставлялся с двух- или четырехцилиндровым карбюратором. Последним легким грузовиком с карбюратором был Isuzu 1994 года выпуска. В других странах автомобили Lada, построенные в Самарской области Российской Федерации, использовали карбюраторы до 1996 года.

В большинстве мотоциклов по-прежнему используются карбюраторы из-за более низкой стоимости и проблем с откликом дроссельной заслонки при ранних настройках впрыска.Однако с 2005 года многие новые модели были представлены с впрыском топлива. Карбюраторы по-прежнему используются в небольших двигателях, а также в старых или специализированных автомобилях, например, в автомобилях, предназначенных для гонок на серийных автомобилях.

Принципы работы

Карбюратор работает по принципу Бернулли: чем быстрее движется воздух, тем ниже его статическое давление и выше его динамическое давление. Тяга дроссельной заслонки (акселератора) напрямую не контролирует поток жидкого топлива. Вместо этого он приводит в действие механизмы карбюратора, которые измеряют поток воздуха, втягиваемого в двигатель.Скорость этого потока и, следовательно, его давление определяют количество топлива, попадающего в воздушный поток.

Когда карбюраторы используются в самолетах с поршневыми двигателями, необходимы специальные конструкции и функции для предотвращения нехватки топлива во время перевернутого полета. В более поздних двигателях использовалась ранняя форма впрыска топлива, известная как карбюратор под давлением.

Большинство карбюраторных двигателей (в отличие от двигателей с впрыском топлива) имеют один карбюратор, хотя в некоторых двигателях используется несколько карбюраторов.В более старых двигателях использовались карбюраторы с восходящим потоком, в которых воздух поступает снизу карбюратора и выходит через верх. Это имело то преимущество, что никогда не «заливало» двигатель, так как любые капли жидкого топлива выпадали из карбюратора, а не во впускной коллектор; он также пригоден для использования воздухоочистителя с масляной ванной, где масляная лужа под элементом сетки под карбюратором всасывается в сетку, а воздух втягивается через покрытую маслом сетку; это была эффективная система в то время, когда бумажных воздушных фильтров не существовало.

Начиная с конца 1930-х годов карбюраторы с нисходящим потоком были самым популярным типом для автомобильного использования в Соединенных Штатах. В Европе карбюраторы с боковой тягой заменили нисходящую тягу, поскольку свободное пространство в моторном отсеке уменьшилось, а использование карбюратора типа SU (и аналогичных агрегатов других производителей) увеличилось. В некоторых небольших авиационных двигателях с воздушным винтом по-прежнему используется конструкция с восходящим потоком воздуха, но многие используют более современные конструкции, такие как карбюратор с постоянной скоростью (CV) Bing (TM) .

Основы

Карбюратор в основном состоит из открытой трубы, «горловины» или «бочки», через которые воздух проходит во впускной коллектор двигателя. Трубка имеет форму трубки Вентури: она сужается в поперечном сечении, а затем снова расширяется, в результате чего скорость воздушного потока увеличивается в самой узкой части. Под трубкой Вентури находится дроссельная заслонка, называемая дроссельной заслонкой - вращающийся диск, который можно повернуть к потоку воздуха, чтобы почти не ограничивать поток, или можно повернуть так, чтобы он (почти) полностью блокировал поток. воздуха.Этот клапан регулирует поток воздуха через горловину карбюратора и, таким образом, количество воздушно-топливной смеси, которую система будет подавать, регулируя тем самым мощность и скорость двигателя. Дроссельная заслонка обычно соединяется тросом или механической связью стержней и шарниров (или, реже, пневматической связью) с педалью акселератора на автомобиле или аналогичным устройством управления на других транспортных средствах или оборудовании.

Топливо вводится в воздушный поток через небольшие отверстия в самой узкой части трубки Вентури.Расход топлива в ответ на конкретный перепад давления в трубке Вентури регулируется с помощью точно откалиброванных отверстий, называемых форсунками , в топливном тракте.

Трубка Вентури может быть «фиксированной» или «переменной»:

  • Карбюратор Вентури : изменение скорости воздуха в трубке Вентури изменяет расход топлива. Эта архитектура используется в большинстве карбюраторов с нисходящим потоком, имеющихся на американских и некоторых японских автомобилях.
  • Карбюратор Вентури с регулируемым приводом : Отверстие топливного жиклера регулируется заслонкой (которая одновременно изменяет поток воздуха).В карбюраторах с «постоянным разрежением» это достигается с помощью поршня с вакуумным приводом, соединенного с конической иглой, которая скользит внутри топливного жиклера. Существует более простая версия, наиболее часто встречающаяся на небольших мотоциклах и мотоциклах для бездорожья, где ползун и игла напрямую контролируются положением дроссельной заслонки. Эти типы карбюраторов обычно оснащаются ускорительными насосами, чтобы компенсировать конкретный недостаток этой конструкции.

Контур холостого хода

Когда дроссельная заслонка немного открывается из полностью закрытого положения, дроссельная заслонка открывает дополнительные отверстия для подачи топлива за дроссельной заслонкой, где есть область низкого давления, создаваемая дроссельной заслонкой, блокирующей поток воздуха; они позволяют протекать большему количеству топлива, а также компенсируют пониженный вакуум, который возникает при открытии дроссельной заслонки, тем самым сглаживая переход к измерению расхода топлива через обычный открытый контур дроссельной заслонки.

Главный контур открытого дросселя

По мере того, как дроссельная заслонка постепенно открывается, разрежение в коллекторе уменьшается, поскольку существует меньше ограничений для воздушного потока, уменьшая поток через контуры холостого хода и холостого хода. Именно здесь в силу принципа Бернулли вступает в игру форма Вентури горловины карбюратора. Вентури увеличивает скорость воздуха, и эта высокая скорость и, следовательно, низкое давление всасывают топливо в воздушный поток через сопло или сопла, расположенные в центре трубки Вентури.Иногда один или несколько дополнительных усилителей Вентури размещаются коаксиально внутри первичной трубки Вентури для усиления эффекта.

Когда дроссельная заслонка закрыта, поток воздуха через трубку Вентури падает до тех пор, пока пониженное давление не станет недостаточным для поддержания этого потока топлива, и снова вступит в действие контур холостого хода, как описано выше.

Принцип Бернулли, который обусловлен импульсом жидкости, является доминирующим эффектом для больших отверстий и больших расходов, но поскольку в потоке жидкости при малых масштабах и низких скоростях (низкое число Рейнольдса) преобладает вязкость, принцип Бернулли сводится к следующему: неэффективен на холостом ходу или медленной работе и в очень маленьких карбюраторах самых маленьких моделей двигателей.Двигатели малых моделей имеют ограничения потока перед форсунками, чтобы снизить давление, достаточное для всасывания топлива в воздушный поток. Точно так же жиклеры холостого хода и медленно работающие большие карбюраторы размещаются после дроссельной заслонки, где давление снижается частично за счет вязкого сопротивления, а не по принципу Бернулли. Самым распространенным устройством для запуска холодных двигателей на богатой смеси была воздушная заслонка, работающая по тому же принципу.

Клапан силовой

Для работы с открытым дросселем более богатая смесь будет производить больше мощности, предотвращать детонацию и поддерживать охлаждение двигателя.Обычно это решается с помощью подпружиненного «силового клапана», который закрывается вакуумом двигателя. Когда дроссельная заслонка открывается, разрежение уменьшается, и пружина открывает клапан, позволяя большему количеству топлива попасть в главный контур. На двухтактных двигателях силовой клапан работает в обратном порядке: обычно он «включен», а при заданных оборотах «выключается». Он активируется при высоких оборотах, чтобы расширить диапазон оборотов двигателя, используя тенденцию двухтактного двигателя к увеличению числа оборотов на мгновение при обедненной смеси.

В качестве альтернативы силовому клапану в карбюраторе можно использовать дозирующий стержень или систему повышающего стержня для обогащения топливной смеси в условиях высоких требований. Такие системы были созданы компанией Carter Carburetor в 1950-х годах для двух основных карбюраторов Вентури их четырехцилиндровых карбюраторов, а повышающие стержни широко использовались на большинстве одно-, двух- и четырехцилиндровых карбюраторов Carter до конца производства в США. 1980-е годы. Ступенчатые штанги сужаются на нижнем конце, который входит в основные дозирующие жиклеры.Верхние части штоков соединены с вакуумным поршнем и / или механической связью, которая поднимает штоки из главных жиклеров при открытии дроссельной заслонки (механическая связь) и / или при падении вакуума в коллекторе (вакуумный поршень). Когда повышающий шток опускается в главный жиклер, он ограничивает поток топлива. Когда повышающий шток поднимается из жиклера, через него может протекать больше топлива. Таким образом, количество подаваемого топлива адаптируется к переходным требованиям двигателя. В некоторых карбюраторах с 4 цилиндрами дозирующие стержни используются только на двух первичных трубках Вентури, но некоторые используют их как на первичных, так и на вторичных контурах, как в Rochester Quadrajet.

Насос ускорительный

Большая инерция жидкого бензина по сравнению с воздухом означает, что если дроссельная заслонка внезапно открывается, воздушный поток будет увеличиваться быстрее, чем поток топлива, вызывая временное «обедненное» состояние, которое заставляет двигатель «спотыкаться» при ускорении ( противоположное тому, что обычно предполагается при открытии дроссельной заслонки). Это устраняется использованием небольшого механического насоса, обычно плунжерного или диафрагменного типа, приводимого в действие дроссельной заслонкой, который продвигает небольшое количество бензина через жиклер, откуда он впрыскивается в горловину карбюратора.Эта дополнительная порция топлива противодействует переходной обедненной смеси при открытии дроссельной заслонки. Большинство ускорительных насосов можно регулировать по объему и / или продолжительности каким-либо образом. В конечном итоге уплотнения вокруг движущихся частей насоса изнашиваются, так что производительность насоса снижается; это уменьшение выстрела ускорительного насоса вызывает спотыкание при ускорении до тех пор, пока не будут заменены уплотнения на насосе.

Ускорительный насос также используется для заправки двигателя топливом перед холодным пуском. Чрезмерная заливка, как и неправильно отрегулированная заслонка, может вызвать затопление . Это когда слишком много топлива и недостаточно воздуха для поддержания горения. По этой причине некоторые карбюраторы оснащены механизмом разгрузки : акселератор удерживается при полностью открытой дроссельной заслонке, пока двигатель проворачивается, разгрузчик удерживает дроссельную заслонку открытой и пропускает дополнительный воздух, и в конечном итоге излишки топлива удаляются, и двигатель запускается.

Дроссель

Когда двигатель холодный, топливо испаряется с меньшей легкостью и имеет тенденцию конденсироваться на стенках впускного коллектора, что приводит к нехватке топлива в цилиндрах и затрудняет запуск двигателя; таким образом, для запуска и работы двигателя, пока он не прогреется, требуется более богатая на смесь (больше топлива к воздуху).Более богатая смесь также легче воспламеняется.

Для подачи дополнительного топлива обычно используется штуцер ; это устройство, ограничивающее поток воздуха на входе в карбюратор перед трубкой Вентури. При наличии этого ограничения в цилиндре карбюратора создается дополнительный вакуум, который втягивает дополнительное топливо через основную дозирующую систему, чтобы дополнить топливо, забираемое из контуров холостого хода и холостого хода. Это обеспечивает богатую смесь, необходимую для поддержания работы при низких температурах двигателя.

Кроме того, дроссель соединен с кулачком (кулачок быстрого холостого хода ) или другим подобным устройством, которое предотвращает полное закрытие дроссельной заслонки во время работы дроссельной заслонки. Это заставляет двигатель работать на холостом ходу на более высоких оборотах. Быстрый холостой ход помогает двигателю быстро прогреться и обеспечивает более стабильный холостой ход в холодном состоянии за счет увеличения потока воздуха во впускной системе, что помогает лучше распылять холодное топливо.

В старых карбюраторных автомобилях воздушная заслонка управлялась кабелем, соединенным с ручкой на приборной панели, управляемой водителем.В большинстве карбюраторных автомобилей, выпускаемых с середины 1960-х годов (середина 1950-х годов в Соединенных Штатах), он обычно автоматически управляется термостатом, использующим биметаллическую пружину, которая подвергается воздействию тепла двигателя. Это тепло может передаваться к термостату воздушной заслонки посредством простой конвекции, через охлаждающую жидкость двигателя или через воздух, нагретый выхлопными газами. В более поздних конструкциях тепло двигателя используется только косвенно: датчик определяет нагрев двигателя и подает электрический ток на небольшой нагревательный элемент, который воздействует на биметаллическую пружину, контролируя ее натяжение, тем самым управляя воздушной заслонкой.Разгрузочное устройство воздушной заслонки представляет собой рычажное устройство, которое заставляет воздушную заслонку открываться против его пружины, когда акселератор транспортного средства перемещается до конца своего хода. Это положение позволяет очистить "залитый" двигатель, чтобы он запустился.

Некоторые карбюраторы не имеют дроссельной заслонки, но вместо этого используют контур обогащения смеси или обогатитель . Обычно используемые в небольших двигателях, особенно мотоциклах, обогатители работают, открывая вторичный топливный контур ниже дроссельных заслонок.Этот контур работает точно так же, как и контур холостого хода, и когда он включен, он просто подает дополнительное топливо, когда дроссельная заслонка закрыта.

В классических британских мотоциклах с карбюраторами с боковой заслонкой и дроссельной заслонкой использовался другой тип «устройства холодного пуска», называемый «тиклер». Это просто подпружиненный стержень, который при нажатии вручную толкает поплавок вниз и позволяет избытку топлива заполнить поплавок и затопить впускной тракт. Если "щекер" удерживался слишком долго, он также заливал внешнюю часть карбюратора и картер внизу и, следовательно, создавал опасность возгорания.

Элементы прочие

На взаимодействие между каждой цепью также могут влиять различные механические соединения или соединения, работающие под давлением воздуха, а также чувствительные к температуре и электрические компоненты. Они вводятся по таким причинам, как реакция, топливная экономичность или контроль автомобильных выбросов. Различные отводы воздуха (часто выбираемые из точно откалиброванного диапазона, аналогично форсункам) позволяют воздуху попадать в различные части топливных каналов, улучшая подачу и испарение топлива.В комбинацию карбюратор / коллектор могут быть включены дополнительные усовершенствования, такие как некоторая форма нагрева для облегчения испарения топлива, такая как ранний испаритель топлива.

Подача топлива

Поплавковая камера

Карбюраторы Holley "Visi-Flo" модели №1904 1950-х годов, фабрика оснащена прозрачными стеклянными чашами.

Для получения готовой смеси карбюратор имеет «поплавковую камеру» (или «чашу»), в которой находится готовое к использованию количество топлива под давлением, близким к атмосферному. Этот резервуар постоянно пополняется топливом, подаваемым топливным насосом.Правильный уровень топлива в унитазе поддерживается с помощью поплавка, управляющего впускным клапаном, аналогично тому, как это используется в туалетных баках. Когда топливо израсходовано, поплавок опускается, открывая впускной клапан и впуская топливо. По мере повышения уровня топлива поплавок поднимается и закрывает впускной клапан. Уровень топлива, поддерживаемого в поплавковой чаше, обычно можно отрегулировать с помощью установочного винта или чего-то грубого, например, сгибая рычаг, с которым соединен поплавок. Обычно это критическая регулировка, и правильная регулировка обозначается линиями, начерченными в окошке на чаше поплавка, или измерением того, насколько далеко поплавок висит ниже верхней части карбюратора в разобранном виде, или аналогичным образом.Поплавки могут быть изготовлены из различных материалов, например из листовой латуни, впаянной в полую форму, или из пластика; полые поплавки могут вызвать небольшие утечки, а пластиковые поплавки со временем могут стать пористыми и потерять плавучесть; в любом случае поплавок не будет плавать, уровень топлива будет слишком высоким, и двигатель не будет работать нормально, если поплавок не будет заменен. Сам клапан изнашивается по бокам из-за его движения в «седле» и в конечном итоге пытается закрыться под углом, и, таким образом, не может полностью перекрыть подачу топлива; опять же, это вызовет чрезмерный расход топлива и плохую работу двигателя.И наоборот, когда топливо испаряется из поплавкового резервуара, оно оставляет после себя осадок, остатки и лак, которые закупоривают проходы и могут мешать работе поплавка. Это особенно проблема автомобилей, эксплуатируемых только часть года и оставленных стоять с полными поплавковыми камерами в течение нескольких месяцев; Доступны коммерческие добавки-стабилизаторы топлива, которые уменьшают эту проблему.

Обычно специальные вентиляционные трубки позволяют воздуху выходить из камеры при заполнении или входить при опорожнении, поддерживая атмосферное давление внутри поплавковой камеры; они обычно доходят до горловины карбюратора.Размещение этих вентиляционных трубок может иметь критическое значение для предотвращения вытекания топлива из них в карбюратор, и иногда они модифицируются с помощью более длинных трубок. Обратите внимание, что при этом топливо остается под атмосферным давлением, и поэтому оно не может попасть в горловину, которая находится под давлением нагнетателя, установленного выше по потоку; в таких случаях для работы весь карбюратор должен быть помещен в герметичный герметичный бокс. В этом нет необходимости в установках, где карбюратор установлен перед нагнетателем, который по этой причине является более частой системой.Однако это приводит к тому, что нагнетатель заполняется сжатой топливно-воздушной смесью с сильной тенденцией к взрыву в случае обратного огня двигателя; этот тип взрыва часто наблюдается в гонках сопротивления, которые по соображениям безопасности теперь включают сбросные пластины для сброса давления на впускном коллекторе, отрывные болты, удерживающие нагнетатель на коллекторе, и улавливающие осколки баллистические нейлоновые покрытия, окружающие нагнетатели.

Если двигатель должен работать в любом положении (например, цепная пила), поплавковая камера не может работать.Вместо этого используется диафрагменная камера. Гибкая диафрагма образует одну сторону топливной камеры и расположена так, что по мере того, как топливо втягивается в двигатель, диафрагма вынуждается внутрь под давлением окружающего воздуха. Диафрагма соединена с игольчатым клапаном, и по мере движения внутрь она открывает игольчатый клапан для впуска большего количества топлива, пополняя тем самым топливо по мере его потребления. Когда топливо пополняется, диафрагма выдвигается из-за давления топлива и небольшой пружины, закрывая игольчатый клапан. Достигается сбалансированное состояние, при котором создается постоянный уровень топлива в резервуаре, который остается постоянным в любом положении.

Множественные стволы карбюратора

Holley model # 2280 2-х цилиндровый карбюратор Двигатель Colombo Type 125 "Testa Rossa" в Ferrari 250TR Spyder 1961 года с шестью двухствольными карбюраторами Weber, подающими воздух через 12 воздушных рупоров; один индивидуально регулируемый цилиндр для каждого цилиндра.

В то время как базовые карбюраторы имеют только одну трубку Вентури, многие карбюраторы имеют более одной трубки Вентури, или «цилиндра». Конфигурации с двумя и четырьмя стволами обычно используются для обеспечения более высокого расхода воздуха при большом объеме двигателя.Многоствольные карбюраторы могут иметь неидентичные первичный и вторичный цилиндры разного размера и откалиброваны для подачи различных топливно-воздушных смесей; они могут приводиться в действие рычажным механизмом или вакуумом двигателя «прогрессивно», так что вторичные цилиндры не начинают открываться, пока первичные цилиндры не откроются почти полностью. Это желательная характеристика, которая максимизирует поток воздуха через первичный цилиндр (ы) на большинстве оборотов двигателя, тем самым максимизируя «сигнал» давления от труб Вентури, но уменьшает ограничение воздушного потока на высоких скоростях за счет увеличения площади поперечного сечения для большего воздушного потока.Эти преимущества могут быть не важны в высокопроизводительных приложениях, где работа частичного дросселя не имеет значения, а первичные и вторичные потоки могут открываться одновременно для простоты и надежности; Кроме того, двигатели с V-образной конфигурацией с двумя рядами цилиндров, питаемыми от одного карбюратора, могут быть сконфигурированы с двумя идентичными цилиндрами, каждый из которых питает один ряд цилиндров. В широко распространенной комбинации карбюратора V8 и 4-цилиндрового карбюратора часто используются два первичных и два вторичных цилиндра.

На одном двигателе можно установить несколько карбюраторов, часто с прогрессивным соединением; четыре двухцилиндровых карбюратора часто можно увидеть на высокоэффективных американских двигателях V8, а несколько четырехкамерных карбюраторов теперь часто можно увидеть на очень мощных двигателях.Также использовалось большое количество небольших карбюраторов (см. Фото), хотя эта конфигурация может ограничивать максимальный поток воздуха через двигатель из-за отсутствия общей камеры статического давления; с отдельными впускными трактами не все цилиндры всасывают воздух одновременно при вращении коленчатого вала двигателя. [3]

Регулировка карбюратора

Слишком много топлива в топливно-воздушной смеси обозначается как слишком богатое, и недостаточное количество топлива слишком бедное. Смесь обычно регулируется одним или несколькими игольчатыми клапанами автомобильного карбюратора или пилотным рычагом на самолетах с поршневым двигателем (поскольку смесь зависит от плотности (высоты) воздуха).Отношение воздуха к бензину (стехиометрическое) составляет 14,7: 1, что означает, что на каждую единицу веса бензина будет потреблено 14,7 единиц воздуха. Стехиометрические смеси различны для различных видов топлива, кроме бензина.

Способы проверки регулировки смеси карбюратора включают: измерение содержания окиси углерода, углеводорода и кислорода в выхлопных газах с помощью газоанализатора или непосредственное наблюдение за цветом пламени в камере сгорания через специальную свечу зажигания из стекла (продается под названием "Colortune") для этой цели.Цвет пламени стехиометрического горения описывается как «синий по Бунзену», переходящий в желтый, если смесь богатая, и беловато-голубой, если она слишком бедная.

Смесь можно также определить после работы двигателя по состоянию и цвету свечей зажигания: черные, сухие, покрытые копотью свечи указывают на слишком богатую смесь, отложения от белого до светло-серого на свечах указывают на бедную смесь. Правильный цвет должен быть коричневато-серым.

В начале 1980-х годов многие автомобили американского рынка использовали специальные карбюраторы с «обратной связью», которые могли изменять базовую смесь в ответ на сигналы датчика кислорода в выхлопных газах.Они в основном использовались для экономии затрат (поскольку они работали достаточно хорошо, чтобы соответствовать требованиям по выбросам 1980-х годов и основывались на существующих конструкциях карбюраторов), но в конечном итоге исчезли, поскольку падение цен на оборудование и более жесткие стандарты выбросов сделали впрыск топлива стандартным элементом.

Каталитические карбюраторы

Каталитический карбюратор смешивает пары топлива с водой и воздухом в присутствии нагретых катализаторов, таких как никель или платина. Это расщепляет топливо на метан, спирты и другие легкие виды топлива.Был представлен оригинальный каталитический карбюратор, чтобы фермеры могли использовать тракторы на модифицированном и обогащенном керосине. Армия США также с большим успехом использовала каталитические карбюраторы во время Второй мировой войны, в кампании по пустыне в Северной Африке.

Хотя каталитические карбюраторы стали коммерчески доступными в начале 1930-х годов, их широкое общественное использование ограничивалось двумя основными факторами. Во-первых, добавление присадок к коммерческому бензину сделало его непригодным для использования в двигателях с каталитическими карбюраторами.Тетраэтилсвинец был введен в производство в 1932 году для повышения устойчивости бензина к детонации двигателя, что позволило использовать более высокие степени сжатия. Во-вторых, экономическое преимущество использования керосина по сравнению с бензином исчезло в 1930-х годах, устранив главное преимущество каталитического карбюратора.

См. Также

Банкноты

  1. ↑ Answers.com, карбюратор. Проверено 24 ноября 2008 года.
  2. Энциклопедия мировой биографии (Томсон Гейл, 2005).
  3. ↑ Jeff Hibbard and Ron Sessions, Baja Bugs & Buggies (Тусон, Аризона: H.P. Books, 1982, ISBN 0895861860).

Список литературы

  • Эйрд, Форбс и Малкольм Элстон. 1997. Характеристики карбюратора: как настраивать и модифицировать. Моторбуки серии PowerTech. Оцеола, Висконсин: Международные издательства Motorbooks. ISBN 0760304211.
  • Legg, A. K. 1995. Haynes Weber Carburetor Manual. Haynes Серия руководств по ремонту автомобилей. Sparkford Nr Yeovil, Сомерсет, Великобритания: Haynes Pub. Группа. ISBN 156392157X.
  • Ньютон, Том.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *