Роторный двигатель принцип работы: Роторный двигатель — устройство, принцип работы, плюсы и минусы

Содержание

Роторный двигатель — устройство, принцип работы, плюсы и минусы

Изобретение двигателя внутреннего сгорания дало толчок к производству автомобилей, передвигающихся на жидком виде топлива. Двигатели эти на протяжении всей истории автомобилестроения эволюционировали: появлялись различные конструкции моторов. Одной из прогрессивных, но так и не получивших распространение конструкций двигателей стал роторно-поршневой агрегат. Об особенностях этого типа двигателя, его достоинствах и недостатках мы поговорим в сегодняшнем материале.

Роторный двигатель

История

Разработчиком роторно-поршневого двигателя стал дуэт инженеров компании NSU – Феликс Ванкель и Вальтер Фройде. И хотя основная роль в создании роторного двигателя принадлежит именно Фройде (второй участник проекта в это время работал над конструкцией иного двигателя), в автомобильной среде силовой агрегат известен как мотор Ванкеля.

Феликс Ванкель и роторный двигатель. Фото — Kolesa.ru

Эта силовая установка была собрана и испытана в 1957 году. Первым автомобилем, на который установили роторно-поршневой двигатель, стал спорткар NSU Spider, который развивал скорость 150 км/час при мощности мотора 57 лошадиных сил. Производилась эта модель на протяжении трех лет (1964-1967 годы).

NSU Spider

По настоящему массовым автомобилем с роторным двигателем стало второе детище компании NSU – седан Ro-80.

NSU Ro 80

В названии автомобиля указывалось, что модель оснащается роторным агрегатом. Впоследствии роторные двигатели устанавливались на автомобили Citroen (GS Birotor), Mercedes-Benz (С111), Chevrolet (Corvette), ВАЗ (21018) и так далее. Но самый массовый выпуск моделей с роторным двигателем был налажен японской компанией Mazda. Начиная с 1964 года, компания произвела несколько автомобилей с подобным типом силовой установки, а пионером в этом деле стала модель Cosmo Sport. Самая известная модель с роторно-поршневым двигателем, которая выпускалась этим производителем – RX (Rotor-eXperiment). Производство последней модели из этого семейства, Mazda RX-8 в специальной версии Spirit R, было свернуто в середине 2012 года. Впрочем, не все экземпляры роторной «восьмерки» еще распроданы – официальный дилер Mazda в Индонезии еще продает эти автомобили.

Mazda RX-8 Spirit R

Устройство

Особенностью роторно-поршневого двигателя внутреннего сгорания стало присутствие в его конструкции трехгранного ротора – поршня. Он вращается в цилиндре, который имеет специальную форму. Ротор насажен на вал, и соединен с зубчатым колесом, которое, в свою очередь, имеет сцепление со статором – шестерней. Ротор вращается вокруг статора по так называемой эпитрохоидальной кривой, его лопасти попеременно перекрывают камеры цилиндра, в которых происходит сгорание топлива.

Роторный двигатель

В конструкции роторного двигателя отсутствует газораспределительный механизм – его функцию выполняет сам ротор, который при помощи своих лопастей распределяет поступающую горючую смесь и выпускает отработанные в цилиндре газы. Подобная конструкция двигателя позволяет обойтись без множества узлов, крайне необходимых для простого поршневого двигателя (например, коленчатый вал, шатуны), что, во-первых, позволяет уменьшить размер и массу силового агрегата, а во-вторых – уменьшить стоимость его производства.

Устройство и принцип работы роторного двигателя

Достоинства и недостатки

Роторно-поршневой двигатель не зря привлек внимание многих именитых автомобильных компаний. Его конструкция и принцип действия позволяли получить несколько довольно весомых преимуществ перед обычными двигателями.

Во-первых, роторно-поршневой мотор в силу своей конструкции обладал лучшей среди остальных типов силовых установок сбалансированностью, и был подвержен минимальным вибрациям.

Во-вторых, у этой силовой установки отмечались отменные динамические характеристики: без существенной нагрузки на двигатель, авто с роторно-поршневым мотором легко можно разогнать до 100 км/час и более на низкой передаче при высоких оборотах двигателя.

В-третьих, роторный двигатель компактнее и легче, чем стандартный поршневой силовой агрегат. Эта особенность позволяла конструкторам добиться практически идеальной развесовки по осям, что влияло на устойчивость автомобиля на дороге.

Роторный двигатель в разобранном виде. Фото — Автостронг-М

В-четвертых, в нем используется намного меньшее количество узлов и агрегатов, чем в обычном двигателе.

Наконец, в-пятых, роторный двигатель обладает высокой удельной мощностью.

Роторный двигатель Mazda Renesis

Недостатки

К минусам роторно-поршневого двигателя, из-за которых он так и не смог получить массового применения и не используется сегодня в автомобилях всех брендов, относится, во-первых, большой расход топлива на низких оборотах. На некоторых моделях он достигает 20 литров на 100 км пробега, что, согласитесь, совсем не экономично и бьет по карману владельца авто с роторным двигателем.

Во-вторых, недостатком этого типа двигателей является сложность изготовления его деталей: чтобы ротор правильно прошел эпитрохоидальную кривую, необходима высокая геометрическая точность при создании как самого ротора, так и цилиндра. Для этого производители роторных двигателей используют высокоточное и дорогостоящее оборудование, а стоимость производства закладывают в цену автомобиля.

В-третьих, роторный двигатель склонен к перегреву из-за особенности конструкции камеры сгорания: она имеет линзовидную форму, а не сферическую, как у обычных поршневых моторов. Топливная смесь, сгорая в такой камере, превращается в тепловую энергию, которая расходуется в большей части неэффективно – ее избыток нагревает цилиндр, что в конечном итоге приводит к износу и выходу его из строя.

В-четвертых, высокий износ уплотнителей между форсунками ротора из-за перепадов давления в камерах сгорания двигателя. Именно поэтому ресурс таких двигателей составляет 100-150 тысяч км, после чего, как правило, требуется капитальный ремонт силового агрегата.

Капитальный ремонт роторного двигателя Mazda RX-8. Фото — drive2

В-пятых, роторно-поршневой двигатель нуждается в своевременной и четко соблюдаемой процедуре смены моторного масла: мотор потребляет примерно 600 мл моторного масла на 1000 км, так что менять его приходится раз в 5000 км пробега. Если его вовремя не заменить, это чревато выходом из строя узлов и агрегатов мотора, что повлечет за собой дорогостоящий ремонт. То есть, к эксплуатации и обслуживанию роторно-поршневых двигателей следует подходить более ответственно, чем к обслуживанию обычных моторов, вовремя проводя их техническое обслуживание и капитальный ремонт.

Автор — Александр Гилев.

Роторный двигатель (принцип работы, достоинства, недостатки, перспективы)

 Роторный двигатель изобрел доктор Феликс Ванкель, вернее он был соавтором совместно с Вальтером Фройде. В 1957 году они разрабатывали две модели аналогичных роторных двигателей, но двигатель Ванкеля нашел более широкое применение. Именно поэтому этот двигатель часто также называют двигателем Ванкеля или роторным двигателем Ванкеля.
 Роторный двигатель, как и двигатель в вашей машине является двигателем внутреннего сгорания, но принцип его работы совершенно другой, в отличии от обычного поршневого двигателя.

 Если в поршневом двигателе, существует несколько (в зависимости от цилиндров) рабочих объемов (цилиндр и поршень),  поочередно выполняющих свои стандартные циклы – забор смеси, сжатие, зажигание и выхлоп, то в роторном, поршни заменены ротором. (рабочий треугольный орган в форме эпитрохоида), который в зависимости от угла поворота поочередно, совместно с корпусом, участвует все в тех же циклах перечисленных ранее (забор, сжатие, зажигание, выброс)
 В этой статье мы узнаем о том, как работает роторный двигатель, о его особенностях и интересных фактах связанных с ним, о достоинствах и недостатках. Давайте начнем наше знакомство с роторным двигателем, с принципа его работы.

Принцип работы роторно-поршневого  двигателя

Как и поршневой двигатель, роторный двигатель использует давление, создаваемое при сгорании топливно-воздушной смеси. Как и в поршневом двигателе, входное отверстие сообщается с дроссельной заслонкой, а выпускное с выхлопной системой. Если в поршневом двигателе это давление образуется в цилиндрах, а затем посредством поршней, шатунов передается на коленчатый вал, то в роторном двигателе передаточные звенья отсутствуют. Треугольный ротор в роторном двигателе является своеобразным поршнем, вращающимся по кругу и передающим крутящий момент на выходной вал.
 Фактически ротор при вращении делит общую камеру на три изолированных, в объеме каждой из этих условных камер происходит свой цикл (забор, сжатие, зажигание, выброс). Как и в случае с поршневым двигателем, роторные двигатели имеют всего 4 такта.
 Как правило, даже в самом простом роторном двигателе применяют два ротора. Такая конструкция позволяет уменьшить детонацию, увеличить стабильность работы двигателя. Если вы внимательно посмотрите на картинку, то увидите, что один полный оборот ротора, соответствует 3 оборотом вала.
 Сердцем роторного двигателя является ротор. Ротор в данном случае эквивалентен поршням в обычном двигателе. Ротор установлен на вал с неким эксцентриситетом. Фактически такое смещение можно сравнить с рукояткой на лебедке. Подобная установка ротора, позволяет передавать крутящий момент от него на вал.
 Как мы уже говорили, двигатель имеет 4 такта, они меняются в зависимости от угла поворота ротора. Сейчас мы кратко рассмотрим каждый из данных тактов в роторном двигателе. 

Забор топливно-воздушной смеси в роторном двигателе

Забор смеси начинается в тот момент, когда одна из вершин ротора проходит впускной клапан в корпусе. В это время, объем камеры расширяется, вовлекая в свое увеличивающееся пространство топливно-воздушную смесь. В тот момент, когда следующая вершина ротора проходит впускной канал, начинается следующий такт.
Сжатие топливно-воздушной смеси в роторном двигателе
Во время поворота ротора, объем смеси захваченной ротором уменьшается, что приводит к повышению давления. Максимальное давление образуется в тот момент, когда топливно-воздушная смесь находится в зоне свечей.

Сжигание топливно-воздушной смеси

Для зажигания смеси, как и в поршневом двигателе, используются свечи. Они зажигают смесь одновременно, то есть срабатывают синхронно. Обычно для роторного двигателя применяют две свечи зажигания. Применение двух свечей зажигания связано с особенностями рабочего объема. Он как бы вытянут по стенке корпуса, именно поэтому, эффективней использовать две свечи, чтобы смесь сгорала более быстро и равномерно. В случае с одной свечкой, смесь будет сгорать дольше, если можно так сказать постепенно, что значительно понизит пиковое давление во время взрыва при зажигании топливно-воздушной смеси.
 В итоге, от образовавшегося давления взрывной волны, получается рабочее усилие, проворачивающее ротор на эксцентрике вала. Крутящий момент передается на выходной вал. Ротор проворачивается до отверстия выпуска выхлопных газов.

Выброс отработавших выхлопных газов

Как только ротор одной из своих вершин пересекает границу выпускного отверстия, начинается выброс выхлопных газов. Ротор по инерции, а также посредством второго ротора, работающего асинхронно, продолжает менять свой угол и перемещается вершиной до впускного отверстия. Здесь все происходит заново от такта забора до такта выброса.

Узлы (детали) роторного двигателя

swf» alt=»роторный двигатель»/>

Далее мы расскажем о составляющих частях роторного двигателя, что также отчасти поможет вам в более точном понимании работы двигателя. Роторный двигатель имеет в своем составе систему зажигания, систему питания, систему охлаждения, которые похожи на те, что применяются в поршневых двигателях. А теперь о уникальных деталях.

Ротор роторного двигателя

Ротор имеет три выпуклых поверхности с фразированными углублениями. Углубление позволяют несколько увеличить рабочий объем.  На вершинах (углах) ротора имеются уплотнительные, однонаправленные пластинки. Именно они учувствуют в герметизации между ротором и корпусом. Есть также металлические кольца на каждой из сторон ротора, которые отделяют рабочую камеру от картера двигателя.  Кроме того, ротор имеет в центре с одной стороны зубчатый венец. Этот венец жестко закреплен с ротором. Именно через данную зубчатую передачу передается рабочий крутящий момент от двигателя.

Корпус роторного двигателя

 

Корпус роторного двигателя, словно многослойный пирог. Он имеет свои крышки, рабочие камеры, разделительные стенки. Лучше всего понять конструкцию корпуса можно будет взглянув на картинку.
Из нее видно, что двигатель имеет две камеры, разделенные стенкой и крышки с двух сторон. Все остальное конечно тоже имеет значение, но первостепенно именно то, что мы перечислили.
 А теперь мы расскажем о рабочих камерах корпуса роторного двигателя. 

  Внутренняя полость корпуса представляет из себя сложную форму, напоминающую овал. На самом деле овал имеет определенные компенсирующие отливы, которые обеспечивают герметизацию всех трех камер разделенных ротором, вне зависимости от угла его поворота и происходящего цикла. Для каждого цикла, в корпусе роторного двигателя, отведено свое место. В зависимости от угла поворота ротора выполняется соответствующий цикл, который повторяется с периодичностью через каждые 360 градусов поворота ротора
 Выпускные отверстия для выброса сгоревших газов, находятся также в корпусе рабочей камеры. Промежуточная стенка между камерами (на фото ниже)

удерживает вал в совеем центральном отверстии, уплотняется с роторами по боковым стенкам, имеет элементы системы охлаждения, инжекционные порты, направляющие втулки.

Выходной вал роторного двигателя

 Выходной вал имеет эксцентрики, в данном случае их два, так как на вал устанавливается два ротора, которые работают в противофазе, когда один в цикле выброса отработавших газов, второй в цикле забора смеси. Применение двух роторов позволяют скомпенсировать биения во время работы двигателя и соответственно уменьшить детонацию. За счет смещения эксцентрика и перемещения каждого из роторов по стенкам в корпусе двигателя, они стараются провернуть вал. В итоге, на нем образуется рабочий крутящий момент.

Достоинства роторного двигателя

Как мы уже упоминали, главным достоинством роторного двигателя является отсутствие передающих звеньев, а именно шатунов. Кроме того, для роторного двигателя не требуется  клапанов, пружин клапанов, распределительного вала, ремня ГРМ и т. д. Все это в итоге сказывается на габаритах и массе двигателя. Именно поэтому многие производители самолетов (например Skycar, Schleicher), предпочитают поршневым двигателям роторные.
 К плюсам роторного двигателя, как мы уже тоже говорили, можно отнести и очень хорошую сбалансированность деталей в нем. Его можно сравнить с оппозитным 4 поршневым двигателем.
 роторный двигатель более длительное время, по сравнению с поршневым, выдает крутящий момент на выходной вал. Если для роторного двигателя выход мощности на вал длится порядка ¾ оборота (270 градусов), то для поршневого двигателя крутящий момент передается только в течении ½ оборота (180 градусов)
 Так как ротор вращается всего один раз за три оборота вала, это также сказывается на ресурсе ротора, в отличии от поршневых двигателей, где поршень делает полный цикл за оборот вала. У японский моделей автомобилей, ресурс двигателя может достигать 300 т. км.

Недостатки роторных двигателей

 Так в современном мире роторные двигатели массово не применяются вследствие низкой экологичности.
 Роторные двигатели потребляют большее количество топлива, вследствие низких рабочих давлений в камере сгорания.
 Роторные двигатели не так распространены, что может стать проблемой при их ремонте и эксплуатации.
 В двигателе фактически нет системы смазки. Определенное количество смазки (моторного масла) постоянно выбрасывается в корпус к ротору. В итоге у двигателя имеется значительный расход масла. Кроме того, это должно быть высококачественное минеральное масло без присадок, так как «синтетика» выгорая, образует на стенках корпуса нагар.
 Двигатели намного сильнее нагреваются чем поршневые двигатели.

Всемирно известные автомобили, выпускающиеся с роторными двигателями

(На фото Mazda Cosmo Sport и Mazda RX8)

 Японская компания Mazda была пионером в разработке серийных автомобилей с роторным двигателем. Так первая Мазда Cosmo Sport увидела свет в далеком 1967 году. Следующее поколение — Mazda RX-7 поступила в продажу в 1978 году. Пожалуй, это была одна из самых удачных машин с роторным двигателем.   И последнее поколение автомобилей с роторным двигателем это Мазда RX-8.
 И в итоге, самым мощным без турбонаддува двигателем внутреннего сгорания стал двигатель «Renesis» от Мазда, объёмом всего 1,3 л. Именно у него рекордный показатель мощности к рабочему объему двигателя, а именно 250 л. с.
 В последние годы компании Мазда удалось значительно улучшить характеристики роторных двигателей. Двигатели стали более экологичны, и не требуют такого объема масла для смазки.
Выпускались автомобили с роторным двигателем и другими авопроизводителями: Audi, Mercedes.
  В СССР на АвтоВАЗе также выпускали ряд роторных двигателей. Роторные двигатели ставились на автомобиль 21079 (1,3 л 140 л.с.) и планировались к эксплуатации в спецслужбах.
 В 90 годах, в Научно-техническом центре ВАЗ были созданы следующие роторные двигатели ВАЗ-416, ВАЗ-426, ВАЗ-526.

Перспективы роторных двигателей

Основные перспективы роторных двигателей связаны с переходом на водородное топливо. Во-первых сразу решается проблема экологичности, а во-вторых, роторные двигатели практически не подвержены детонации при работе с этим видом топлива.

Как работает роторный двигатель?

Всегда хотели знать, о чем все говорят, вращая Doritos? Давайте погрузимся в

Что такое роторный двигатель?

Говоря простым языком (на грани упрощения), это двигатель с одним или несколькими роторами, которые вращаются — представь себе — вместо поршней, совершающих возвратно-поступательное движение. Основные принципы внутреннего сгорания — всасывать, сжимать, хлопать, дуть — по-прежнему применимы, но разница заключается в методе, с помощью которого это осуществляется на практике. Подробнее об этом чуть позже.

Он также используется для обозначения больших двигателей старых самолетов, в которых целая куча поршней расположена по кругу вокруг эксцентричного центрального коленчатого вала и фактически вращается вокруг него. Без сомнения, это зрелище, но не то, о чем мы здесь говорим.

Хотя вы, вероятно, ассоциируете роторный двигатель с Mazda, учитывая, что это единственная автомобильная компания, добившаяся заметного потребительского успеха, роторный двигатель использовался в автомобилях от Citroen до NSU, а также в мотоциклах, вертолетах. , легкие самолеты, беспилотники, водные мотоциклы — вы называете это. Мы уверены, что если бы вы искали достаточно внимательно, вы могли бы найти кого-то, кто прикрепил его к газонокосилке (теперь есть идея) или к рыбацкой лодке, но, тем не менее, это довольно широкое распространение.

Роторный двигатель на самом деле особенный, учитывая, что это один из трех типов двигателей, когда-либо изобретенных человечеством. Первый — это тот, с которым вы больше всего знакомы — поршни — которые затем можно разделить на четырехтактные и двухтактные, дизельные, бензиновые и так далее. Во-вторых, это турбины, с которыми вы хорошо знакомы по последнему полету Ryanair/Jetstar/Delta. И третье — роторные. Вот примерно так, если только не начать считать ракеты.

Как работает роторный двигатель?

О, мы можем просто сказать «феиная пыль и слезы гонщиков» и двигаться дальше?

Нет? Отлично. Это будет немного концептуально, так что пристегнитесь.

Представьте себе овал, слегка сжатый посередине, чтобы получилась едва заметная восьмерка. Теперь представьте себе треугольник с выпуклыми сторонами внутри этой восьмерки, совершающий что-то вроде вальса вокруг и вокруг так, что длинная изогнутая сторона выпуклого треугольника создает четыре отдельные «зоны» в восьмерке, когда она танцует.

Эти четыре зоны являются четырьмя частями цикла сгорания – впуск, сжатие, зажигание, выпуск. Гениальность роторного двигателя заключается в том, что один оборот означает три отдельных рабочих такта, в отличие от четырехтактных поршневых двигателей, которые, как следует из названия, производят мощность только при одном движении из четырех.

Поскольку одна сторона треугольника удаляется от воздухозаборника, происходит всасывание топливно-воздушной смеси. И по мере его удаления соседняя сторона сжимает смесь. Который затем воспламеняется, а) позволяя расширяющемуся газу толкать ротор, и б) создавая мощность. Но поскольку эта сторона ротора толкается горением, она толкает следующую сторону треугольника, чтобы выпустить выхлопные газы. Удивительные вещи, на самом деле.

Внутри треугольника находится шестерня, которая как бы крутится вокруг меньшей шестерни, прикрепленной к чему-то, что называется эксцентриковым валом. Да, много танцев составляет роторный двигатель. Во всяком случае, этот эксцентриковый вал, или буква «Е», немного похож на большой распределительный вал с гигантскими кулачками. И он действует аналогичным образом, но с другой целью. В то время как лепестки на распределительных валах преобразуют вращательное движение в возвратно-поступательное — толкают клапаны вверх и вниз, когда идеально круглая часть вала вращается нормально — «лепестки» на эксцентриковом валу позволяют ротору совершать пируэты внутри корпуса, преобразовывая энергию от Dorito. танцуйте в регулярных вращениях.

На фото: роторный двигатель Mazda Renesis

Чем отличается роторный двигатель?

Во многом это та же идея, что и у любого другого бензинового двигателя. Ротари по-прежнему берут топливо, смешивают его с воздухом, сжимают смесь, поджигают ее свечами зажигания, используют расширяющийся газ для выполнения механической работы и вращения вала, а затем выбрасывают отработанный газ из камеры сгорания.

Роторный двигатель отличается… примерно везде. Поскольку мы уже говорили о том, как вальсировать Doritos с хулахупом вокруг эксцентрикового стержня, можно с уверенностью сказать, что здесь есть над чем подумать.

Количество деталей, необходимых для создания роторного двигателя, составляет лишь часть поршневого двигателя, и многие проблемы, присущие поршневым двигателям, и сложные инженерные решения, необходимые для их преодоления, устраняются исключительно благодаря конструкции роторного двигателя. Подробнее об этом. .. ну, а теперь, собственно.

Чем хорош роторный двигатель?

Ну, BRAP, есть множество BRAAAP-позитивов роторного двигателя BRAP-BAP-BAP-BAP, таких как небольшой размер, малый вес, малое количество деталей, простота изготовления, BRAAAAAP… И, конечно же, уникальный, хриплый и, в конечном счете, непревзойденный звук, если мы еще не сообщили об этом ранее. Звук наполовину мотоцикл, наполовину болид F1, и все хорошо. Даже турбины — печально известные шумоглушители — не могут подавить ярость ротора в полном полете.

И это тоже будет на полном ходу — роторные двигатели легендарны из-за того, как они набирают обороты, и действительно, как высоко они могут вращаться. Это потому, что ротор… ну, вращается, а не совершает возвратно-поступательные движения. Таким образом, каждая часть цикла сгорания продолжает двигать ротор в одном и том же направлении, а не преодолевать инерцию поршня, чтобы остановить его и отправить обратно туда, откуда он пришел. Во время вождения это означает четкую реакцию на нажатие педали газа; при сборке, обслуживании и восстановлении это означает некую простоту, с которой не могут сравниться даже старые детройтские V8.

Роторному двигателю не нужны коленчатые валы, шатуны или сложные клапанные механизмы. На самом деле, в клапанах нет необходимости — ротор берет на себя всю работу с несколькими портами.

Итак, когда приходит время настраивать роторный двигатель, это означает доставать Дремель и веселиться с впускными и выпускными отверстиями. Хотя это, очевидно, возможность настройки поршневого двигателя с возвратно-поступательным движением, вы делаете больше, чем вы думаете, изменяя порты на роторном — вы также фактически меняете синхронизацию.

Так что, если вам нужны вышеупомянутые BRAP-BAP-BAP и так далее, они появятся только после того, как вы повозитесь с впускным и выпускным отверстиями для большего потока воздуха и большего перекрытия. Итак, теперь вы знаете — за бредом стоит наука.

Чем плох роторный двигатель?

Не слишком ли сильно мы ударим по ротору, если скажем, что расход топлива не уступает Конкорду, срок службы можно измерить секундомером, а крутящего момента едва хватает, чтобы сорвать винт с крестообразным шлицем? Ну, да. Не хочу звучать как апологеты Spinning Dorito или что-то в этом роде, но все не так уж и плохо.

Здесь применима часто повторяемая поговорка «ничто в жизни не бывает бесплатным» — роторные двигатели имеют ряд преимуществ перед поршневыми двигателями, но это означает принятие определенных сопутствующих недостатков. В двух словах, это обычно расход топлива (и масла), более короткие интервалы между необходимостью серьезного механического вмешательства и просто ощущение того, что вы управляете чеховским пистолетом конфигураций двигателя. Это будет взрыв; именно там, где в пятом акте происходит тревожная часть.

В интересах баланса мы должны указать, что любой механически склонный к управлению а) классическим автомобилем или б) мотоциклом для бездорожья сможет управлять автомобилем с роторным двигателем без каких-либо проблем. Конечно, полный двухроторный двигатель (или тройной, если вы удачливый нищий с Cosmo начала девяностых) будет более сложным, чем стандартный классический карбюраторный или одноцилиндровый двигатель, но образ мышления, который восстанавливает являются лишь частью опыта владения, уже есть у владельцев Triumph TR3 и трейлрайдеров.

Но, если вас интересует чуть больший промежуток между заменой апексных уплотнений (самая распространенная большая работа на любом роторном двигателе, которая каждый раз включает в себя эквивалент операции на открытом сердце) (совершенно неофициальный) экспертный совет Часто это предварительное смешивание масла для двухтактных двигателей в топливном баке. Да, действительно.

Это для продления срока службы верхних уплотнений с дополнительной смазкой, по-видимому, даже несмотря на то, что роторные двигатели уже имеют впрыск масла. Очевидно, недостаточно, или в достаточно равномерном распределении по верхнему уплотнению.Кроме того, давайте рассмотрим очевидные опасения, которые могут возникнуть у вас по поводу работы вашего RX-8 на двухтактном: при соотношениях, которые, по словам эксперта, которого мы спросили, соотношение было около 1: 400. Это часть вашего среднего двухтактного двигателя, и не заблокирует форсунки или грязные свечи зажигания Грета может захотеть поговорить с вами, пожалуйста. 0003

Когда Mazda собирается превратить RX-Vision в RX-9, чтобы я мог воплотить свои мечты о квадроцикле в дороге?

Хотя мы мало что хотели бы больше, чем то, чтобы Mazda придала роторному двигателю четырехроторную лебединую песню со скоростью вращения 10 000 об/мин – особенно если он прибыл в такой великолепной форме, как RX-Vision – есть все шансы, что мы приходится утешаться виртуальной версией в Gran Turismo Sport.

Но это не значит, что мастерам двигателей Mazda эта идея тоже не нравится; в то время как Mazda разрабатывала роторный двигатель для MX-30 R-EV, извлекая выгоду из его небольшого размера и малого веса, используя его в качестве расширителя диапазона, очевидный вопрос был … ну, очевидно, немного обсуждался.

В конце концов, как сказал гадюка в Mazda: «Мечта инженеров состоит в том, чтобы когда-нибудь у нас была спортивная машина с роторным двигателем». ИСТОЧНИКИ ЭНЕРГИИ

ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ

ЭНЕРГЕТИЧЕСКОЕ ВОЗДЕЙСТВИЕ

ИНДЕКС

Поиск

Рисунок 1. Цикл роторного двигателя. Он всасывает воздух/топливо, сжимает его, воспламеняется, выполняя полезную работу, а затем выпускает газ. [1]

Роторные двигатели или Двигатели Ванкеля — тип двигателя внутреннего сгорания, чаще всего используемый в Mazda RX-7, который преобразует тепло от сгорания топливно-воздушной смеси под высоким давлением в полезную энергию. работа для остальной части автомобиля. Его уникальной характеристикой является треугольный ротор, который выполняет те же задачи, что и поршень поршневого двигателя, но совершенно по-другому. [2]

Ротор заключен в корпус овальной формы и выполняет обычный четырехтактный цикл двигателя внутреннего сгорания, как показано на рис. 1. Ротор соединен с выходным валом, который вращается в 3 раза быстрее, чем ротор (внутренний круг обозначен буквой «В» на рисунке). Этот цикл описан ниже и происходит

3 раза для каждого вращения ротора: [2]

  1. Впуск : Инициируется, когда кончик ротора проходит через впускное отверстие. В этот момент камера самая маленькая, и по мере вращения камера расширяется, втягивая воздушно-топливную смесь. Как только конец ротора проходит через впускное отверстие, он переходит к стадии сжатия, в то время как следующая сторона ротора начинает этот этап заново.
  2. Сжатие : По мере того как ротор продолжает вращаться, воздушно-топливная смесь сжимается из-за уменьшения размера камеры. Это необходимо для следующей части, которая воспламеняет эту смесь.
  3. Зажигание : Сжатая смесь воспламеняется от свечей зажигания, и огромное увеличение давления заставляет ротор расширяться. Это рабочий ход, обеспечивающий полезную работу. Часто необходимы две свечи зажигания, чтобы обеспечить равномерное зажигание по всей камере. Выхлопной газ расширяется в камеру до тех пор, пока кончик ротора не пройдет через выпускное отверстие.
  4. Выхлоп : Как только наконечник проходит через это отверстие, выхлопные газы под высоким давлением могут проходить через выпускное отверстие. Ротор продолжает вращаться до тех пор, пока конец его торца не пройдет через выпускное отверстие, а кончик не пройдет через впускное отверстие, и цикл повторяется.

Интересная часть этого цикла заключается в том, что каждый шаг происходит в одно и то же время , просто в разных камерах. Это дает три рабочих такта на каждый оборот ротора.

Отличия от поршневого двигателя

Помимо другого метода завершения четырехтактного цикла, роторные двигатели имеют различные преимущества и недостатки по сравнению с более распространенными поршневыми двигателями: [2]

  • Меньшее количество движущихся частей : Роторный двигатель с двумя роторами имеет три движущихся части — два ротора и выходной вал — в то время как обычные поршневые двигатели имеют не менее 40. Это повышает надежность роторных двигателей.
  • Сглаживатель : Ротор постоянно вращается в одном направлении, в отличие от поршневых двигателей, поршни которых резко меняют направление. Они также уравновешиваются грузами, которые уменьшают внутренние вибрации. Подача мощности также более непрерывна из-за трех рабочих ходов на каждый оборот ротора.
  • Медленнее : Ротор вращается со скоростью, равной одной трети скорости выходного вала, поэтому основные движущиеся части движутся медленнее, чем в поршневых двигателях. Это повышает надежность.

Недостатки

Затраты на производство могут быть выше из-за меньшей популярности этих двигателей. Они также обычно потребляют больше топлива, чем другие двигатели, из-за их низкой степени сжатия и, следовательно, имеют более низкий тепловой КПД, что затрудняет соблюдение ими норм выбросов.

Для дополнительной информации

  • Тепловая машина
  • Поршневой двигатель
  • Работа
  • Первый закон термодинамики
  • Или просмотрите случайную страницу

Ссылки

  1. 2.0 2.1 2.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *