Современные двигатели: Современный мотор: меньше, мощнее – но не вечно…

Содержание

Современный мотор: меньше, мощнее – но не вечно…

Если говорить о тенденциях современного мирового моторостроения, то двигатель внутреннего сгорания остается на лидирующих позициях, хотя справедливости ради надо отметить, что некие попытки «покуситься» на «святая святых» все же существуют – например, уже продается серийный электромобиль Tesla. Но поскольку нефтепромышленность сегодня является ключевой отраслью мировой экономики, доминирование двигателей внутреннего сгорания еще на многие десятилетия может остаться незыблемым.

Немного истории. Грустной…

Современные двигатели конструктивно практически мало изменились со времен «отцов-осно-вателей»: Николауса Августа Отто и Рудольфа Кристиана Карла Дизеля. Сегодня в ходу те же коленчатый вал, шатуны, поршни, цилиндры, клапаны, распределительный механизм.

Поэтому все новшества в двигателестроении опираются на новые материалы и технологии, в том числе связанные с электронным управлением.

Например, если еще 20 лет назад блок цилиндров почти повсеместно был сделан из чугуна, то сегодня чугунный блок встречается редко, плавно перейдя в разряд анахронизмов. В настоящее время блоки делают из алюминия, который и легче, и технологичнее. Сначала были проблемы с прочностью и жесткостью, но их постепенно решили.

Правда, полностью алюминиевые моторы действительно приживаются трудно – очень они чувствительны к смазке, охлаждению, зазорам. А вот алюминиевый блок с чугунными гильзами гораздо менее требователен в эксплуатации. Так что старый добрый чугун, который использовали Отто и Дизель, еще послужит…

Вообще надо отметить, что создание нового двигателя даже традиционной схемы – это процесс очень долгий. Вот и получается, что модельный ряд автомобилей меняется в среднем через четыре-пять лет, а мотор в нем нередко стоит от предыдущих моделей, а то и еще более ранних. И часто даже в новых двигателях используются узлы от старых – например, блок цилиндров. Так что двигатели «живут» долго – бензиновые в среднем 10-15 лет, а дизели легко «доживают» до 20 и даже 30 лет.

И еще. С сожалением приходится признать, что в России практически не было своих разработок двигателей – все бралось «оттуда», из-за границы. Причем часто даже то, что там отвергалось. Результат очевиден – сегодня передового двигателестроения у нас в стране просто не существует. Как и конструкторов для его возрождения.

Все началось с авиации… Авиадвигатель Rolls-Royce Merlin 40-х годов прошлого века с непосредственным впрыском

Успехи, неудачи и тенденции

В современном моторостроении существуют две основные тенденции: первая – сократить вредные выбросы, и вторая – снизить расход топлива. Это взаимосвязанные задачи: сокращая расход, мы автоматически снижаем выбросы.

Но если 10-15 лет назад «вредными выбросами» считались традиционные оксид углерода – СО, оксиды азота – NOx и углеводороды – СН, то сегодня в разряд основных перешел и углекислый газ СО2, создающий «парниковый эффект». И если учесть, что любое углеводородное топливо в конечном счете распадается на воду и углекислый газ – то уменьшить выбросы СО2 можно единственным путем: снижением расхода топлива.

Здесь надо принять во внимание и такой нюанс: КПД у двигателя внутреннего сгорания в целом лишь около 25-30%. Выходит, что только четверть бензина в ДВС тратится на движение – остальные три четверти просто вылетают в трубу. И греют окружающую среду. Поэтому инженеры-моторостроители борются за каждый «лишний» процент с помощью довольно сложных технических решений.

Верный способ – повысить удельные параметры двигателя: проще говоря, получить «одну лошадиную силу» с меньшего количества топлива. Например, одним из основных путей роста эффективности бензинового двигателя является повышение степени сжатия. При росте степени сжатия эффективность сгорания топлива в цилиндре повышается, а значит, возрастает коэффициент полезного действия (КПД) цикла – и двигателя в целом.

В частности, повышение основных параметров двигателей, в том числе путем увеличения степени сжатия, дают системы непосредственного впрыска бензина в цилиндр – впрыск сдвигает режимы детонации, убирает неравномерность подачи топлива и увеличивает наполнение цилиндров.

Когда мы еще были впереди планеты всей: форкамерно-факельное зажигание на Волге — прообраз современного послойного распределения заряда

На самом деле эта идея достаточно старая: непосредственный впрыск широко применялся на авиационных двигателях 40-х годов прошлого века. Инженерам требовалось добиться небывалой по тем временам удельной мощности 70 л.с. с 1 л рабочего объема двигателя при максимальных 2500-3000 об/мин. Сегодня это удельная мощность обычного автомобильного двигателя (хотя и при вдвое больших оборотах, так что авиационный уровень 70-летней давности все еще не превзойден современным автомобилестроением) – а тогда достичь их в авиации было возможно только с помощью непосредственного впрыска.

Но система подачи топлива была механической, т.е. сложной, дорогой и требовавшей постоянных регулировок, что было приемлемо в авиации, но никак не на автомобилях.

Форкамерно-факельный процесс в двигателе Honda CVCC, такие двигатели ставились на автомобили Honda почти до конца 1980-х годов

Кроме того, механическое управление непосредственным впрыском было хорошо при низких оборотах, требовавшихся для тогдашних авиационных двигателей (воздушный винт все же!). А при их росте хотя бы до автомобильных 6000 об/мин механика уже не справлялась.

Собственно, «возвращение» к старой идее в 1990-2000-х годах стало возможным благодаря развитию электроники, позволившей реализовать управление непосредственным впрыском на высоких оборотах двигателя – с внедрением электронных компонентов появилась возможность управлять процессом горения, чего не было ранее.

Карбюратор, да и традиционные системы впрыска – так называемое внешнее смесеобразование, позволяли лишь смешать 15 кг воздуха с 1 кг топлива и подать смесь в цилиндры. И все. А вот электронное управление непосредственным впрыском в цилиндр дает возможность инженеру выбирать – когда вводить топливо, сколько вводить. И даже впрыскивать топливо за один цикл двигателя несколько раз.

Еще в 70-х годах ХХ века конструкторы для экономии топлива предложили использовать принцип «послойного» впрыска, реализованный в виде так называемого «форкамерно-факель-ного зажигания». Идея заключалась в том, что в специальной камере создается богатая смесь, которая при воспламенении от свечи создает факел, поджигающий бедную смесь, подаваемую непосредственно в цилиндр.

Машины с такими двигателями (с аббревиатурой СТСС – Compound Vortex Controlled Combustion) разработала и длительное время производила японская Honda, и даже горьковский автозавод некоторое время выпускал «Волги» с форкамерными моторами. Но в итоге к середине 1980-х от этой идеи пришлось отказаться. Ведь приходилось готовить сразу две топливо-воздушных смеси: бедную, которой надо было много, и богатую, которой надо было мало. И подавать их раздельно – при этом в точные временные промежутки. А сложные карбюраторы (а тогда полноценного электронного управления еще не существовало) не прибавляли ни надежности, ни оптимизма по снижению себестоимости. Но основной удар был неожиданным – выяснилось, что помимо СО и СН оксиды азота тоже не слишком полезны. А здесь у «послойников» возникли новые проблемы…

Но всего через 10 лет, примерно к середине 1990-х годов, инженеры смогли вернуться к идее на новом уровне, чтобы с помощью электроники объединить в одном двигателе все три составляющие: непосредственный впрыск, управление процессом горения и послойное смесеобразование, что позволило поднять степень сжатия и выйти на новый уровень.

Первыми создали серийные автомобили с такими моторами в компании Mitsubishi – они имеют обозначение GDI (Gasoline Direct Injection – «система прямого впрыска бензина»). За ними последовали и другие производители. В этих двигателях нет отдельной форкамеры – форсунка впрыскивает бензин в цилиндр под очень высоким давлением. А камера сгорания имеет такую «хитрую» форму, что в зоне у свечи оказывается богатая смесь, а в остальном объеме – бедная.

Казалось бы, все прекрасно: степень сжатия высокая, смесь бедная, как следствие, вредные выбросы заметно снижены, а экономичность улучшена. Но опять начались проблемы с оксидами азота. Дело в том, что традиционные трехкомпонентные нейтрализаторы убирают из выхлопа СО, NOХ и СН только у смеси обычного состава (15 кг воздуха на 1 кг топлива). А вот с возросшими при бедных смесях объемами оксидов азота они уже не справляются. Так что пришлось разрабатывать новые дополнительные катализаторы. Работают они хорошо, хотя требуют специальной жидкости в качестве «топлива».

Но хорошо только в том случае, если в бензине нет серы. А если есть – то быстро «умирают». Ведь бензин с полным отсутствием серы пока еще редкость даже в богатых странах…

Поэтому автопроизводители от идеи послойного впрыска вынуждены были отказаться, а проблему уже построенной инфраструктуры по производству этих двигателей (и уже немало потраченных денег) решили путем «перепрошивки» электронного управления впрыском.

Теперь впрыск топлива осуществляется не тогда, когда поршень находится вблизи верхней «мертвой точки», а раньше. И пока поршень проходит весь путь до ВМТ, смесь успевает перемешаться до практически гомогенной.

Так что «попытка № 2» внедрения послойного смесеобразования и управления горением тоже сорвалась. Когда будет третья попытка, неясно. Но то, что она будет – вполне предсказуемо. Ведь уже создано достаточно много таких двигателей, они работают, хотя их возможности пока не реализованы полностью.

Еще одно направление повышения эффективности ДВС – системы регулирования фаз газораспределения. Они получили распространение недавно, в начале 90-х годов ХХ века, но сегодня двигатель без регулирования фаз уже смотрится каким-то анахронизмом.

Логика таких систем понятна – для эффективной работы двигателя при малых оборотах время (продолжительность) и момент открытия впускных и выпускных клапанов должны быть одни, а с повышением оборотов – другие. И сегодня существует много систем, которые регулируют не только время открытия клапанов, но и величину этого открытия. Что делает ДВС эластичным, а автомобиль с ним – экологичным, экономичным и удобным.

Если подводить промежуточный итог, то можно сказать следующее: современный бензиновый ДВС – обязательно с регулируемыми фазами, а лучшие его образцы имеют непосредственный впрыск. Для повышения мощности двигателей нередко используется наддув, который увеличивает количество воздуха, поступающего в цилиндры, и удельную мощность. Существуют две схемы наддува: газотурбинный, когда турбину для привода компрессора раскручивают выхлопные газы, и приводной, когда компрессор приводится непосредственно от двигателя. Приводные компрессоры тоже разные: объемные, винтовые, волновые и т.д. Но большого распространения такие системы так и не получили, хотя известны давно – в отличие от регулирования фаз газораспределения, непосредственного впрыска топлива и турбонаддува.

Ванкель и другие

В принципе, возможны альтернативы старой конструкции, созданной во времена Отто и Дизеля. Но создать работающий двигатель, способный на равных конкурировать с привычной схемой по всем показателям, очень сложно. Двигатели Стирлинга, Баландина и многих других оригинальных схем и решений не получили распространения и оказались на грани забвения.

И хотя новые идеи витают в воздухе, реализовать даже лучшие из них весьма проблематично. Например, роторно-лопастной мотор Вигриянова, который изначально планировалось устанавливать в «прохоровский» «ё-мобиль», пока так и не создан. И для того чтобы (возможно!) довести его до серийного производства, потребуется, по прикидкам, как минимум, 10 лет и весьма неограниченное финансирование. Причем несколько из этих 10 лет надо будет потратить на подготовку специалистов, способных его довести. А поскольку с «неограниченным финансированием», кажется, наступили проблемы, этот двигатель, скорее всего, света так и не увидит…

Роторно-поршневой двигатель Ванкеля стал, пожалуй, единственным примером внедрения в серийное производство ДВС нетрадиционной конструкции. Хотя двигателю данной схемы уже добрых полвека, и за это время многие производители, выпускавшие такие моторы, давно «сошли с дистанции» (последним стал АвтоВАЗ), он и по сей день ставится на автомобили Mazda. Причем компания так долго занимается этим двигателем и добилась таких его показателей, что уже вряд ли кто сможет сделать хотя бы такой же – по цене, надежности и эффективности. И потому он вряд ли когда-нибудь станет массовым.

Ремонт ремонту рознь

Современные двигатели гораздо более надежны, чем те, которые производились, например, 20 лет назад. В них не надо ничего регулировать, что-то менять – они работают без поломок как минимум до окончания срока гарантии.

Но есть нюанс – сегодня срок службы всего автомобиля стал значительно меньше, чем был ранее. Прошли те времена, когда машину покупали «на всю жизнь». Сегодня сложилась тенденция: люди хотят ездить на новой модели машины. И потому автомобили меняются в среднем через 3-5 лет. Соответственно автопроизводителям не имеет смысла делать машину, которая без поломок прослужит 20 лет. Вот и получается, что автопарк обновляется значительно быстрее, чем два-три десятка лет назад.

Так что время двигателей-«миллионников» давно «кануло в Лету» – их просто невыгодно

делать. Да и зачем? Ресурс мотора рассчитывается с учетом возможного пробега автомобиля: в среднем можно говорить максимум о 150 тыс. км.

Процесс непосредственного впрыска уже широко распространился, но пока использовать все его преимущества не удается

Очевидно, ремонт двигателя должен продлить ресурс – но не до бесконечности, а до конца срока службы автомобиля (который тоже закладывается относительно небольшим – не более 10 лет). К чему это приводит? К тому, что некоторые ремонтные процессы становятся просто ненужными, а ремонтное оборудование «отстает» от современных двигателей.

Например, на старых моторах уровень нагрузки составлял 50 л/с с 1 л объема, а на современных (с наддувом) – вдвое больше. При такой разнице удельных мощностей и нагрузок на детали «старое-доброе» уже не работает – нужны новые технологии. Сегодня многие работы стало просто невозможно сделать без современного оборудования – шлифовального, расточного, хонинговального. Оно не слишком хорошо окупается, поэтому многие предпочитают работать по старинке. Но не тут-то было…

Так, для новых моторов нередко используются шатуны с «ломаными» крышками. Традиционные конструкции крышек шатунов, изготовленных отдельно, а потом собранных, для современных высоконагруженных двигателей не подходят – неточно и совсем недешево. И при ремонте традиционных шатунов всегда есть опасность нарушения соосности, что ведет к катастрофическим последствиям для мотора, хотя традиционные шатуны ремонтируются легко. А вот «колотые» – не ремонтируются вообще.

Еще пример – коленчатый вал на старом тихоходном двигателе можно было наварить и прошлифовать. Сейчас это невозможно даже представить: усталостные трещины очень быстро приведут к разрушению всего двигателя. Кроме того, ручная работа с большим количеством операций стоит дорого. А коленчатый вал легкового мотора – деталь массовая, а значит, и недорогая. И делать двойную, а то и тройную работу, чтобы восстановить деталь, которая потом быстро выйдет из строя, по крайней мере, экономически неэффективно.

При этом надо помнить, что просто замена одной детали, вышедшей из строя, не решает проблемы поломки двигателя в целом: такая локальная замена обычно предполагает «гарантию только до ворот». Современный высоконагруженный двигатель – это сложный комплекс, а потому его ремонт должен быть комплексным, с заменой всего «по кругу», чтобы даже самый экономный автовладелец не возвращался через каждые 10-15 тыс. км для замены очередной детали. Вот почему качественно отремонтированный мотор стоит всего лишь на 25-30% меньше нового. Но насколько такой ремонт выгоднее замены для владельца?

Так что современная тенденция в ремонте проглядывается – замена вышедшего из строя узла постепенно побеждает. Причем ремонт «в гараже на коленке» уже не удается. Поэтому неудивительно, что в последние годы значительно возросли требования к квалификации ремонтников, ощутимо выросла стоимость ремонта, а сам процесс стал сводиться больше к замене деталей, нежели к их восстановлению.

Есть и другая тенденция, когда производитель не дает запчастей вообще – только двигатель в сборе. И ремонтникам остается только поменять весь двигатель, вместо того чтобы его ремонтировать. А зачем чинить, если двигатели непрерывно усложняются, а квалифицированная ручная работа дорожает еще быстрее?

И наконец, «контрактные» моторы…

В заключение отметим: модные сегодня «контрактные» моторы становятся похожи на пресловутый «МММ». Нет в мире такой страны-«донора», где бы существовало столько двигателей с большим остатком ресурса. А поскольку двигатели современных легковых автомобилей рассчитаны на конечный и весьма ограниченный пробег, то покупка такого мотора давно стала лотереей – в которой, как известно, выигрывает один из тысяч. В лучшем случае.

А остальным предлагается раз в 10-20 тыс км купить очередной «билет» – пока не будет выбран их «лимит» на ремонт или замену мотора на новый.

  • Александр Хрулев, канд. техн. наук, директор фирмы «АБ-Инжиниринг»

Современные двигатели — какие бывают

Артем Сутягин

30.07.2020,

Вечный двигатель будоражит умы ученых и изобретателей всего мира. Сейчас многие одержимы им примерно так же, как в свое время алхимики были одержимы идеей получения золота из свинца. Все из-за того, что он — вечный двигатель — принесет очень много пользы не только в краткосрочной перспективе, но и на далекое будущее. Главное понимать, что вечный двигатель это не совсем то, что многие себе представляют. Это куда более продвинутая вещь, но в то же время более простая, чем принято считать. А еще есть несколько концепций такого двигателя. Давайте разберемся с некоторыми из них.

Читать далее

Артём Горячев

С тех пор, как Илон Маск ворвался на автомобильный рынок, интерес к электромобилям не утихает который год. Автомобильные концерны тратят миллиарды на разработки в сфере электрификации автомобилей, а общественность зачастую видит в них спасение окружающей среды и восхищается повышенной эффективностью, но действительно ли это так? Является ли электромобиль революцией в автомобильной промышленности и панацеей от нефтепродуктов, или это просто очень красивый маркетинг с харизматичным лидером у руля? Давайте затронем все эти моменты в данной статье.

Читать далее

Рамис Ганиев

Ежедневно транспортные средства загрязняют воздух выхлопными газами, которые вредят не только природе, но и здоровью людей. По данным Росприроднадзора, в 2017 году объем выбросов углекислого газа от одних только автомобилей составил более 14,5 миллиона тонн. Чтобы снизить этот показатель, многие страны хотят отказаться от транспорта с двигателями внутреннего сгорания и перейти на электрические аналоги. Примечательно, что новые двигатели необходимо устанавливать не только на автомобили, но и на самолеты и даже на грузовые корабли. В 2018 году в Голландии началось строительство двух электрических «кораблей Тесла».

Читать далее

Владимир Кузнецов

На сегодняшний день межпланетные полеты (не говоря уже о перемещениях за пределы нашей Солнечной системы) упираются в одну проблему — недостаточная мощность ракетных двигателей. Конечно, непрерывно ведутся работы по улучшению этого компонента ракет. Кто-то даже всерьез занимается вопросом создания ионного двигателя, но дальше всех пошел инженер NASA Дэвид Бернс, который предлагает использовать в качестве двигателя ускоритель частиц.

Читать далее

Рамис Ганиев

24.07.2019,

Прямо сейчас на орбите Земли работает тысяча искусственных спутников, практически каждый из которых передвигается при помощи дорогостоящих ионных двигателей со сроком службы не более трех лет. Если эти двигатели такие дорогие и недолговечные, почему бы ученым не разработать более дешевый и надежный вариант управления спутниками? Многих это удивит, но он уже создан и применен в тестовом спутнике LightSail 2 — он движется вокруг планеты за счет солнечных частиц, которые толкают прикрепленный к спутнику парус. Огромное и блестящее полотно было развернуто 23 июля, и его вполне можно разглядеть с Земли.

Читать далее

Рамис Ганиев

Компания Tesla, которая на данный момент является производителем самых известных электрических автомобилей, была основана Илоном Маском в 2003 году. Первым автомобилем компании стал Tesla Roadster, который был выпущен только спустя пять лет после ее основания. На данный момент он уже не продается, но компания разрабатывает его обновленную версию, которая мало того что будет мощнее предыдущей, так еще и обзаведется ракетными двигателями. О грядущей новинки давно не было ничего слышно, но недавно Илон Маск поделился некоторыми подробностями.

Читать далее

Рамис Ганиев

С 17 по 23 июня во Франции проходит авиасалон Ле-Бурже, в ходе которого производители самолетов из разных стран демонстрируют свои новые авиационные технологии. В этом году особое внимание уделяется электрическим летательным аппаратам, которые способны перевозить пассажиров на небольшие расстояния с нулевым количеством вредных выбросов в атмосферу. Особенно выделилась израильская компания Eviation, которая представила самый большой в мире полностью электрический самолет Alice с девятью местами для пассажиров.

Читать далее

Рамис Ганиев

Производители техники всеми способами пытаются минимизировать загрязнение окружающей среды, поэтому за последние годы, помимо электрокаров, свет увидело множество прототипов гибридных самолетов. Взять, к примеру, летающий автомобиль Terrafugia — благодаря гибридному двигателю, он меньше загрязняет воздух, и вмещает в себя двух людей. В мире есть гибридные самолеты побольше, и одним из них является Ampaire 337 — на днях он совершил свой первый публичный полет и доказал, что практически готов к коммерческому использованию.

Читать далее

Илья Хель

06.06.2019,

С самого рождения космической эпохи мечта о поездке в другую солнечную системы удерживалась в «ракетной узде», которая жестко ограничивает скорость и размеры космического корабля, который мы запускаем в космос. По оценкам ученых, даже при использовании самых мощных ракетных двигателей сегодня потребуется около 50 000 лет, чтобы достичь нашего ближайшего межзвездного соседа — Альфы Центавра. Если люди когда-либо надеются увидеть восход инопланетного солнца, время транзита должно существенно сократиться.

Читать далее

Рамис Ганиев

В 2016 году космическое агентство NASA заключило контракт с компанией Sierra Nevada Corporation — они договорились, что разрабатываемый космический корабль Dream Chaser будет использоваться для доставки грузов на Международную космическую станцию. Ожидается, что он выполнит как минимум шесть миссий, и в ходе каждого поднимет около 3400 килограммов груза в виде продуктов питания и воды. Недавно в Висконсине были успешно проведены огневые испытания его двигателя.

Читать далее

Совершенствование электрических двигателей в системах автоматизированного электропривода

С момента изобретения устройства, преобразовывающего электрическую энергию в механическую, инженеры и конструкторы непрерывно работают над совершенствованием электрических двигателей в системах автоматизированного электропривода. Они стремятся:

  • Улучшить их эксплуатационные и энергетические качества.
  • Добиться оптимального координирования двигателей и питающих преобразователей.
  • Повысить КПД.
  • Снизить уровень шума при работе агрегатов.
  • Сделать оборудование более долговечным и надежным.
  • Расширить линейку моделей, специализированных для эксплуатации в конкретных условиях.

Способы совершенствования электродвигателей

Двигатели каждого типа улучшаются в разных направлениях, что позволяет повысить эффективность их работы:

  • В щеточно-коллекторных узлах двигателей постоянного тока для увеличения окружной скорости коллекторов применяются новые материалы (металлокерамические и металловолокнистые).
  • В асинхронных короткозамкнутых устройствах устанавливаются более современные системы интенсивного охлаждения, и тоже используются материалы «последнего поколения».
  • В синхронных двигателях применяются постоянные магниты и вращающиеся выпрямители, что позволяет исключить контакты.
  • В вентильных агрегатах до минимума снижена удельная масса за счет установки на роторе высококоэрцитивных магнитов.
  • В вентильно-индукторных моделях и агрегатах с когтеобразными полюсами ротор имеет магнитомягкий сердечник, вследствие чего становится возможным намного повысить частоту вращения ротора и сделать конструкцию более надежной.

Кроме того, современные электродвигатели оснащаются датчиками вибраций и температуры, использование которых в комплексе с датчиками Холла, датчиками положения ротора и датчиками скорости позволяет улучшить эксплуатационные характеристики агрегатов. Благодаря переходу на конструктивно закрытые модели снижается пагубное влияние окружающей среды на механизм. Так как производственная пыль не оседает на вращающихся узлах двигателя, возможность их дисбаланса и возникновения вибраций (что влечет за собой преждевременную порчу подшипниковых узлов) сведена к минимуму. Большую роль также играет введение более эффективных методов интенсивного поверхностного охлаждения – это в разы увеличивает КПД оборудования, уровень его надежности и срок службы.


Сколько километров могут проехать современные двигатели?


 Автомобилисты нередко затрагивают тему долговечности двигателей транспортных средств и дискуссируют об этом в жизни и интернете. Одни уверены, что ресурс машины рассчитан максимум на 100 тысяч километров, мнение других более оптимистично — они считают, что автомобиль на одном двигателе может проехать 200 тысяч километров, а после идёт капитальный ремонт. Действительно ли современные моторы имеют настолько печальные цифры? Давайте разберёмся.

 В кругу автомобилистов бытует мнение, что раньше делали машины с упором на качество, и те могли проехать до миллиона километров без капитального
ремонта. В пример они ставят автомобили Mercedes-Benz для такси или праворульные японские экземпляры, которые  производили для внутреннего рынка.

 Сейчас считается, что только грузовики имеют похожий ресурс и действительно способны преодолеть огромное расстояние без капитального ремонта двигателя.


 Также сейчас везде говорят, что автопроизводители специально снижают ресурс двигателя, однако это не имеет ничего общего с реальностью. Ни одна автомобилестроительная компания не станет идти на такой шаг как минимум из-за рисков получить огромный штраф и полностью растерять репутацию и доверие своих клиентов. Вспомните, какие последствия были у немецких компаний из-за махинаций с дизельными двигателями, где из-за некоторого программного обеспечения был снижен показатель выбросов вредных веществ, хотя на самом деле этот показатель был значительно выше. Поэтому ситуация со снижением ресурса исключена, хотя не стоит забывать о том, что некоторые автопроизводители могут экономить на производстве силовой установки.

 На ресурс двигателя влияет исключительно водитель, а точнее то, как он эксплуатирует свой автомобиль. Ведь у некоторых автомобилистов одна и та же модель проезжает по 200 и 500 тысяч километров, а у других ломается не доехав до первой сотни тысяч километров. Первая категория автовладельцев не экономит на сервисе, запчастях и топливе, используя только качественную продукцию, а также очень трепетно относится к своему транспортному средству. Другие же могут весь год ездить на зимней резине, чинить всё самостоятельно  в гараже и экономить на всём подряд.

 Надёжность и долговечность мотора напрямую зависит от водителя. Например, у нас многие плохо относятся к немецким малообъёмным турбированным двигателям, работающим в паре с роботизированной коробкой переключения передач. Однако существует немало случаев, когда на них проезжали 200 тысяч километров и более. Современные инженеры считают, что именно столько должен проезжать современный двигатель при условии правильного технического обслуживания.

Напомним, «АвтоВАЗ» перенёс на неопределённый срок дату начала производства двигателей с проточками. Новая модификация должна полностью исключить случаи соприкосновения клапанов и поршней во время обрыва ремня ГРМ.

Современные двигатели внутреннего сгорания: новые модели и инновации от лидеров индустрии автомобилестроения

Шествие двигателей внутреннего сгорания продолжается, при этом в них появляются инновации – от изменяемой степени сжатия до клапанов без кулачков. Электрические силовые агрегаты в наши дни на пике моды, но эволюция двигателя внутреннего сгорания не замедлилась. На самом деле, новые изменения происходят быстрее, чем когда-либо. Рассмотрим, например, этот краткий список последних инноваций двигателя: двигатель с турбонаддувом без кулачков; новый дизель с самым низким в мире коэффициентом сжатия; четырехцилиндровый двигатель с переменным коэффициентом сжатия; первый в мире бензиновый двигатель, использующий зажигание при сжатии. Здесь мы собрали фотографии двигателей, предлагающих некоторые из последних инноваций в области силовых агрегатов. От интеллектуальных двигателей грузовиков до крошечных моделей с турбонаддувом, мы предлагаем вам подборку основных достижений последних лет. Пролистайте следующие слайды, чтобы увидеть лучшие из них. 2,2-литровый двигатель Mazda SkyActiv-D имеет самый низкий в мире коэффициент сжатия (14,1:1) среди всех дизельных двигателей, что, как сообщается, дает потребителям множество преимуществ.

Воспользуйтесь нашими услугами

Более низкие показатели сжатия идут рука об руку с более низким давлением и пониженной температурой в верхней части поршня, что способствует лучшему смешению воздуха и топлива, а также уменьшает проблемы с оксидами азота и сажей, давно ассоциирующиеся с дизельным двигателем, говорит Mazda.

Более того, более низкий коэффициент сжатия SkyActiv-D обеспечивает меньшее трение и меньший вес конструкции. На нью-йоркском автосалоне на прошлой неделе японский автопроизводитель объявил, что собирается изменить антидизельные настроения последнего времени, установив новый 2,2-литровый дизельный двигатель на компактный кроссовер CX-5 2019 года.

Представьте себе полноразмерный пикап, работающий всего на двух цилиндрах. Это то, на что способен Chevrolet Silverado, благодаря добавлению в новый 2,7-литровый турбодвигатель электромеханического регулируемого распределительного вала и функции активного управления подачей топлива (Active Fuel Management). В целом, двигатель предлагает 17 различных схем отключения цилиндров, что позволяет ему справиться практически с любой ситуацией при движении. «Это все равно, что иметь разные двигатели для работы на низких и высоких оборотах», — отметил главный инженер двигателя Том Саттер в пресс-релизе. «Профиль распределительного вала и синхронизация клапанов полностью отличаются на низких и высоких скоростях». Двигатель мощностью 310 л.с. и крутящим моментом 471.8 Нм заменяет 4,3-литровый V-6 на Silverado.

Производитель суперкаров Koenigsegg Automotive AB возлагает большие надежды на технологию безкулачкового двигателя, которую он представил на концептуальном автомобиле в 2016 году. Известная как FreeValve, эта технология использует «пневмо-гидравлические-электронные» приводы для управления процессом сгорания в каждом цилиндре. Koenigsegg говорит, что с помощью этих приводов, вместо кулачковых валов, можно более точно управлять процессом сгорания в каждом цилиндре. FreeValve также позволяет люксовому автопроизводителю отказаться от других дорогостоящих автозапчастей, включая корпус дроссельной заслонки, кулачковый привод, ГРМ, выпускной клапан, предкаталитический преобразователь и систему непосредственного впрыска. По слухам, компания готовит технологию для установки на суперкар стоимостью 1,1 миллиона долларов, который будет выпущен в 2020 году. В интервью Top Gear основатель компании Кристиан фон Кёнигсегг (Christian von Koenigsegg) заявил, что FreeValve позволит ему построить автомобиль с нулевым уровнем выбросов и двигателем внутреннего сгорания. «Идея заключается в том, чтобы доказать миру, что даже двигатель внутреннего сгорания может быть полностью СО2-нейтральным», — сказал он.

Говорят, что двигатель Nissan VC-Turbo является первым в мире готовым к производству двигателем с переменным коэффициентом сжатия. VC-Turbo разрабатывался более 20 лет, и он использует усовершенствованную многозвеньевую систему для изменения коэффициента сжатия. Во время работы, угол наклона многозвеньевых рычагов варьируется, что приводит к регулировке верхней мертвой точки поршней. С изменением положения поршня меняется и степень сжатия. Результат — производительность по требованию. Высокий коэффициент сжатия обеспечивает большую эффективность, в то время как низкий коэффициент сжатия увеличивает мощность и крутящий момент. VC-Turbo доступен в Nissan Altima 2019.

3,6-литровый двигатель Pentastar от Fiat Chrysler Automobiles является примером внимательного отношения к деталям и политики постоянного совершенствования. Двигатель использует две ключевые особенности для повышения топливной экономичности и крутящего момента. Первая из них — это регулируемый подъем клапана (VVL). VVL позволяет двигателю оставаться в режиме пониженного подъема до тех пор, пока водитель не потребует больше мощности. Затем он реагирует переключением в режим повышенного подъема для улучшения сгорания топлива. Вторая инновация — это рециркуляция отработавших газов с охлаждением, которая, как говорят, сокращает выбросы вредных веществ, снижает потери при прокачке и позволяет работать без стука при высоких нагрузках двигателя. Эти особенности обеспечивают Pentastar увеличение экономии топлива на 6%, при этом крутящий момент увеличивается на 14,9%. Fiat Chrysler также отмечает, что эти улучшения наблюдаются на скоростях двигателя ниже 3000 оборотов в минуту, когда повышенный крутящий момент необходим больше всего.

В наши дни производительность двигателя — это не только крутящий момент и лошадиные силы. Речь идет и об эффективности. Toyota доказала это в 2018 году, представив 2,5-литровый четырехцилиндровый двигатель Dynamic Force, который, по имеющимся данным, обладает тепловым КПД около 40%. Это большой шаг вперед, учитывая, что большинство современных двигателей приближаются к 30%, что, в свою очередь, означает, что 70% сгорания топлива теряется в виде тепла. Toyota добилась этого с помощью ряда современных усовершенствований, включая длинный ход, высокий коэффициент сжатия, форсунки с двойными распылителями, интеллектуальную регулировку синхронизации клапанов и непосредственный впрыск топлива. Результат: Экономия топлива на трассе 2018 Camry составляет 29 и 41 мг, что на 26% выше по сравнению с предыдущей моделью.

1,5-литровый двигатель EcoBoost от Ford заслуживает внимания, потому что это еще один пример «умного» маленького двигателя, способного управлять относительно большим автомобилем с помощью двух цилиндров. Рядный трехцилиндровый EcoBoost выполняет эту задачу при отключении цилиндра, который определяет ситуацию, когда один цилиндр не нужен, и поэтому автоматически отключает его. Система может отключить или активировать цилиндр всего за 14 миллисекунд для поддержания плавного хода. Однако даже на трех цилиндрах она способна выдать 180 л.с. и 240 Нм крутящего момента (при сгорании 93-октанового топлива). Этот двигатель установлен в европейском Ford Fusion и американском внедорожнике Ford Escape, способном буксировать до 2,000 фунтов.

В 2018 году компания Cadillac еще больше увлеклась турбокомпрессорами, представив двигатель Twin Turbo V-8. Twin Turbo использует «горячую V-образную конфигурацию» — то есть устанавливает турбокомпрессоры в верхней части двигателя, в ложбине между головками. Таким образом, инженеры Cadillac утверждают, что они уменьшили общий размер конструкции двигателя и практически ликвидировали отставание турбокомпрессоров. Использованный на Cadillac CT6 V-Sport, новый двигатель выдает примерно 550 л.с. и обеспечивает потрясающий крутящий момент в 850.1 Нм.

Для тех, у кого есть страсть к старомодным лошадиным силам и крутящему моменту, у Dodge есть ответ в виде 6,2-литрового высокомощного двигателя HEMI V-8. Двигатель, выдающий 797 л.с. и 958.6 Нм крутящего момента, большую часть своей мощности черпает из 2,7-литрового нагнетателя — самого большого заводского нагнетателя среди всех серийных автомобилей. Наряду с нагнетателем в двигателе используются высокопрочные шатуны и поршни, высокоскоростной клапанный механизм и два двухступенчатых топливных насоса. 6,2-литровый двигатель, используемый в Dodge Challenger Hellcat Redeye, способен принимать огромное количество бензина в высокопроизводительном режиме, опорожняя бак чуть менее чем за 11 минут. Хорошая новость, однако, в том, что при нормальных дорожных условиях Hellcat все еще находится на отметке 10.69 л/100 км. Dodge хвастается тем, что Hellcat является самым быстрым в отрасли маслкаром с разгоном 0-100 км/ч в 3,4 секунды.

Поговорим о другой крупной инновации в двигателе 2018 года: Mazda выпустила двигатель SkyActiv-X, который, как говорят, является первым в мире бензиновым двигателем, использующим воспламенение при сжатии. Соединив две классические технологии, инженеры Mazda утверждают, что они объединили высокую тягу бензинового двигателя с эффективностью, крутящим моментом и реакцией дизеля. Ключом к их реализации является технология, известная под названием Spark Controlled Compression Ignition, которая максимально увеличивает зону, в которой возможно воспламенение от сжатия, и обеспечивает плавный переход между воспламенением от сжатия и воспламенением от искры. При внедрении двигателя прошлой осенью Mazda сообщила удивительные цифры: крутящий момент повысился на 10-30%, а КПД — на 20-30% по сравнению с предшественником. Mazda говорит, что двигатель также предлагает большую свободу в выборе передаточных чисел, что еще больше увеличивает экономию топлива и ходовые качества двигателя.

Автор: T-800
Источник: https://habr.com/

Воспользуйтесь нашими услугами

Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!

Современные электродвигатели

Электрический привод довольно часто используется в современном производстве. Существует достаточно большое количество типов электродвигателей, которые предназначены для определенной сферы применения.

Часто встречающихся электродвигатели

  • Асинхронные двигатели и линейные асинхронные;
  • Серводвигатели;
  • Мотор-ролики;
  • Вентильные электродвигатели.

Частота вращения ротора асинхронного двигателя меньше частоты вращения магнитного поля, создаваемого статором электродвигателя. Скорость вращения ротора регулируется путем изменения параметров электрического напряжения, которое подается к статору. В современных моделях двигателей подобного типа используется, как правило, короткозамкнутый ротор. Сам ротор изготавливается из алюминиевых сплавов, что приводит к снижению веса и себестоимости подобного привода.

Линейные асинхронные двигатели

Отличием этого двигателя является то, что магнитное поле двигателя перемещает пластину, а не вращает ротор, как это происходит в обычном асинхронном двигателе. Они характеризуются большой точностью.

Пластина может перемещаться с точностью до 0,03 мм. При этом скорость перемещения пластины может достигать до 5 м/сек. В подобном двигателе присутствует минимум движущихся частей, что значительно повышает их надежность.

Серводвигатели

В серводвигателях используются якоря малого диаметра. Малый диаметр якоря снижает удельный вес двигателя и позволяет добиться максимально быстрых перемещений. В них часто используются системы электронных датчиков, которые позволяют реализовывать сложные алгоритмы перемещений. Наиболее часто они применяются в станках с ЧПУ, роботостроении и др.

Мотор-ролики

Внутри ведущего ролика подобного двигателя находится миниатюрный электрический привод постоянного тока и редуктор. Основная сфера применения подобных двигателей – конвейерные и сортировочные линии. В отличие от конвейерных линий, которые используют внешний привод, мотор-ролики обеспечивают более высокий КПД и малый уровень шума. Кроме того, эти новые электродвигатели практически не нуждаются в техническом обслуживании.

Вентильные электродвигатели

В этом типе электродвигателя, для регулирования режимов работы, используется полупроводниковые (вентильные) преобразователи. В качестве основного электропривода, как правило, используется синхронный двигатель.

Статор этого двигателя управляется при помощи инвертора. Инверторное управление характеризуется большим диапазоном регулировок частоты вращения. Показатели КПД вентильных двигателей достигают 90%, в то время, как КПД обычного асинхронного двигателя, при небольших нагрузках, может падать до 60%.

Просмотров: 2539

Дата: Воскресенье, 19 Январь 2014

Современный двигатель: можно ли починить?

Ресурс современных двигателей легковых автомобилей, особенно если речь идет о высокофорсированных моторах с небольшим рабочим объемом, значительно ниже, чем у атмосферных силовых агрегатов, зачастую он лишь немного превышает гарантийный срок эксплуатации автомобиля, при этом ремонтные размеры не предусмотрены заводами-изготовителями. Что делать в случае поломки, ведь замена на так называемый контрактный двигатель нецелесообразна, поскольку его остаточный ресурс совсем небольшой?

Начнем с того, что до сих пор выпускаются простые атмосферные ДВС, для которых предусмотрены ремонтные размеры, и, соответственно, их можно починить, используя традиционные методы ремонта. Первым делом проверяются: блок цилиндров на герметичность рубашки охлаждения и наличие трещин, привалочная поверхность под головку блока цилиндров, соосность постелей коленчатого вала. Затем цилиндры растачиваются под новый ремонтный размер на хонинговальном станке. Далее устанавливаются поршни и поршневые кольца ремонтного размера, также заменяются вкладыши коленчатого вала. В серийном производстве осталось мало моделей таких двигателей, но поскольку они устанавливаются на массовые автомобили, как правило, бюджетных марок, они до сих пор выпускаются в больших количествах. Также у большинства японских двигателей с рабочим объемом от 2,4 до 2,5 л предусмотрены ремонтные размеры.

Моторы легковых автомобилей европейских марок за редким исключением не имеют ремонтных размеров. Тем не менее отремонтировать их можно, при этом даже в ряде случае удается существенно повысить ресурс. Каким образом? До недавнего времени считалось нормой, что ресурс двигателя после капитального ремонта должен составлять 70% от нового. Почему не 100%? Дело в том, что обычно при капитальном ремонте заменяются не все детали, иначе он будет слишком дорогим, также ремонтные технологии не всегда могут обеспечить такую же культуру производства, как в заводских условиях.

Однако при грамотном ремонте современных двигателей их ресурс может быть увеличен в ряде случаев в несколько раз. Дело в том, что ресурс многих моторов искусственно ограничен, кто-то называет это «теорией заговора», но более распространен такой термин, как «программируемый износ агрегатов», то есть в идеале производитель стремится создать узел, который прослужит лишь чуть дольше гарантийного срока, для этого сознательно используются комплектующие не самого высокого качества, они при этом еще и дешевле, что позволяет получать дополнительную прибыль в условиях массового производства. Однако ничто не мешает независимым производителям автокомпонентов производить детали, в том числе и для ремонта двигателей, обладающие большим ресурсом, так называемые «автозапчасти, превосходящие по качеству оригинальные детали». Сегодня такие компоненты для ремонта предлагают многие ведущие компании. В результате существует возможность собрать на базе старого блока цилиндров фактически новый мотор с лучшими характеристиками, в том числе и с большим ресурсом. В некоторых случаях применение ремонтных комплектов даже позволяет исправить конструктивные ошибки завода-изготовителя.

Например, у современных двигателей легковых автомобилей облегченный блок цилиндров выполнен из алюминиевого сплава и не обладает достаточной жесткостью, что приводит к повышенным нагрузкам на детали двигателя. Использование при ремонте таких моторов чугунных гильз позволяет решить сразу две задачи. Значительно увеличивается жесткость блока цилиндров, и появляется возможность использовать при ремонте детали цилиндропоршневой группы номинального размера.

Сухие гильзы цилиндров выпускаются в двух исполнениях: Slip Fit (посадка с зазором) и Press Fit (прессовая посадка) – и предназначены для различных технологий ремонта. При ремонте изношенных двигателей легковых автомобилей сухие гильзы позволяют успешно производить работы при отсутствии поршней ремонтного размера. Гильзы в исполнении Slip Fit могут быть заменены в любой автомастерской, для этого не требуется специальное оборудование. Гильзы Press Fit при установке должны быть впрессованы, после монтажа они подвергаются сверлению и хонингованию, такие работы могут быть выполнены только с использованием специального оборудования на предприятиях по ремонту двигателей.

У деталей цилиндропоршневой группы есть также своя тонкость, о которой не знают даже многие опытные механики. Как правило, все современные двигатели, особенно это актуально для дизелей, выпускаются с несколькими вариантами форсировки. Блоки цилиндров у них одинаковые, но на более мощные двигатели устанавливаются детали, рассчитанные на более высокие нагрузки. Так вот, оказывается, оригинальные комплектующие для ремонта поставляются только в единственном варианте – для самых форсированных модификаций. Почему так происходит? Во-первых, на складе проще держать один ремкомплект, подходящий для всех вариантов. Во-вторых, маржинальность на рынке запчастей значительно выше, чем при конвейерных поставках, где производитель считает каждую сэкономленную копейку, которая при больших объемах производства дает большую прибыль. В результате при ремонте двигателя, если изменить его электронные настройки, можно повысить мощность, а если ничего не менять, то на выходе получится мотор с более высоким ресурсом, поскольку его детали рассчитаны на большие нагрузки.

В настоящее время в конструкции двигателей широко распространены литые поршни из алюминия, они обладают небольшим весом и отличной теплопроводностью. Такие поршни в зависимости от конструкции двигателя оснащены различными деталями, призванными сделать конструкцию более прочной и долговечной. Например: упрочняющие вставки колец из чугуна; стальные детали для заданного теплового расширения; керамические детали, усиленные волокном из оксида алюминия. Для высокофорсированных двигателей выпускаются специальные кованые поршни из высокотемпературного деформируемого сплава.

В последние годы в конструкции дизельных двигателей все чаще используются кованые поршни из жаростойких стальных сплавов, которые выдерживают более высокие температуры и нагрузки по сравнению с алюминиевыми деталями. Применение таких поршней для дизельных двигателей легковых автомобилей позволяет снизить трение на 2–3%, что приводит к снижению выбросов CO2. Также применение стальных поршней позволяет снизить уровень шума. Двигатели со стальными поршнями более компактные.

Подводим итоги. Несмотря на сложность конструкции, современный двигатель отремонтировать вполне возможно. Более того, при использовании качественных комплектующих после ремонта можно добиться лучших характеристик по сравнению с исходной конструкцией.

Как работает современный двигатель

Вы поворачиваете ключ в замке зажигания, и двигатель заводится. Вы нажимаете на газ, и машина движется вперед. Вы вынимаете ключ, и двигатель глушится. Так работает твой двигатель, верно? Он намного более подробный, чем многие из нас думают, и закулисные процессы происходят каждую секунду.

Внутреннее устройство вашего двигателя

Двигатель вашего автомобиля состоит из двух основных компонентов: блока цилиндров и головки блока цилиндров.

Блок двигателя

Блок составляет основную часть размера и веса вашего двигателя.Скорее всего, это цельный кусок чугуна или алюминия. В рядном двигателе все цилиндры расположены по прямой линии, чаще всего в четырехцилиндровых двигателях и в некоторых конфигурациях с шестью цилиндрами. V-образный блок используется в некоторых шестицилиндровых двигателях и практически во всех восьмицилиндровых двигателях. Эта конструкция разделяет ряд цилиндров на две группы, которые образуют V-образную форму.

В блоке двигателя находится коленчатый вал. Коленчатый вал представляет собой прочный вращающийся кусок металла, подвергнутого прецизионной обработке. В нем есть ступеньки, называемые каналами, которые соответствуют количеству цилиндров в двигателе.Это места крепления шатунов поршня к коленчатому валу. Мощность, генерируемая в двигателе, заставляет коленчатый вал вращаться, начиная процесс передачи мощности на колеса автомобиля.

Поршни входят в цилиндры блока цилиндров. Они перемещаются вверх и вниз в цилиндрах во время работы двигателя для передачи энергии коленчатому валу. Поршневые кольца создают уплотнение в цилиндре, предотвращая потерю мощности в блоке цилиндров. Позже мы рассмотрим работу поршней.

Головка блока цилиндров

Верхняя часть двигателя называется головкой блока цилиндров. Он содержит клапаны, которые открываются и закрываются для регулирования потока топливовоздушной смеси и выхлопных газов из отдельных цилиндров. На каждом цилиндре должно быть не менее двух клапанов: один для впуска (впускание несгоревшей топливовоздушной смеси в цилиндр) и один для выпуска (для выхода отработанной топливовоздушной смеси из двигателя). Многие двигатели используют несколько клапанов как для впуска, так и для выпуска.

Распределительный вал прикреплен либо через середину, либо вверху головки блока цилиндров для управления работой клапанов. Распределительный вал имеет выступы, называемые лепестками, которые заставляют клапаны точно открываться и закрываться.

Распределительный вал и коленчатый вал тесно связаны. Они должны работать в идеальное время, чтобы двигатель вообще работал. Они соединяются с помощью цепи или ремня ГРМ для поддержания этого времени. Распредвал должен совершать два полных оборота на каждый оборот коленчатого вала.Один полный оборот коленчатого вала — это два хода поршня в его цилиндре. Энергетический цикл — процесс, который фактически производит мощность, необходимую для движения вашего автомобиля, — требует четырех ходов поршня. Давайте подробнее рассмотрим работу поршня внутри двигателя и четыре различных этапа:

  • Впуск : Чтобы начать энергетический цикл, первое, что нужно двигателю, — это воздушно-топливная смесь для входа в цилиндр. Впускной клапан открывается в головке блока цилиндров, когда поршень начинает двигаться вниз.В цилиндр поступает топливовоздушная смесь примерно в соотношении 15: 1. Когда поршень доходит до конца своего хода, впускной клапан закрывается и герметизирует цилиндр.

  • Компрессия : Поршень движется вверх в цилиндре, сжимая топливно-воздушную смесь. Поршневые кольца уплотняют стороны поршня в цилиндре, чтобы предотвратить потерю сжатия. Когда поршень достигает вершины этого хода, содержимое цилиндра находится под чрезмерным давлением. Нормальное сжатие составляет от 8: 1 до 10: 1.Это означает, что смесь в цилиндре сжата примерно до одной десятой своего первоначального несжатого объема.

  • Power : Когда содержимое цилиндра сжимается, свеча зажигания воспламеняет топливовоздушную смесь. Происходит управляемый взрыв, который толкает поршень вниз. Это называется рабочим ходом, потому что это сила, которая вращает коленчатый вал.

  • Выпускной клапан : Когда поршень находится в нижней части рабочего хода, выпускной клапан в головке блока цилиндров открывается.Когда поршень снова движется вверх (приводимый в действие одновременными циклами включения питания, происходящими в других цилиндрах), сгоревшие газы в цилиндре вытесняются вверх и выходят из двигателя через выпускной клапан. Когда поршень достигает вершины этого хода, выпускной клапан закрывается, и цикл начинается снова.

  • Рассмотрим это : если ваш двигатель работает на холостом ходу со скоростью 700 об / мин или оборотов в минуту, это означает, что коленчатый вал полностью вращается 700 раз в минуту. Поскольку цикл питания происходит каждый второй оборот, в каждом цилиндре каждую минуту на холостом ходу происходит 350 взрывов.

Как смазывается двигатель?

Масло — незаменимая жидкость в работе двигателя. Во внутренних компонентах двигателя есть небольшие каналы, называемые масляными каналами, через которые проходит масло. Масляный насос всасывает моторное масло из масляного поддона и заставляет его циркулировать по двигателю, позволяя плотно закрытым металлическим компонентам двигателя работать плавно. Этот процесс не просто смазывает компоненты. Он предотвращает трение, которое вызывает чрезмерное нагревание, охлаждает внутренние детали двигателя и создает плотное уплотнение между деталями двигателя, например, между стенками цилиндра и поршнями.

Как создается топливно-воздушная смесь?

Воздух засасывается в двигатель вакуумом, создаваемым при работе двигателя. Когда воздух поступает в двигатель, топливная форсунка распыляет топливо, которое смешивается с воздухом в соотношении примерно 14,7: 1. Эта смесь втягивается в двигатель во время каждого цикла впуска.

Это объясняет основные внутренние механизмы современного двигателя. Десятки датчиков, модулей и других систем и компонентов работают во время этого процесса, что позволяет двигателю работать.Подавляющее большинство автомобилей на дорогах имеют двигатели, работающие таким же образом. Если учесть точность, необходимую для того, чтобы сотни компонентов вашего двигателя могли работать плавно, эффективно и надежно на протяжении тысяч миль в течение многих лет использования, вы можете начать ценить работу инженеров и механиков, чтобы доставить вас туда, где вам нужно идти.

Развитие современных двигателей меняет формулу обслуживания

Двигатель внутреннего сгорания набирает обороты почти через 150 лет.Ленуар, Отто и Бенц, пионеры двигателей и автомобилей, были бы поражены, увидев, куда делись их творения. Развитие современных двигателей было просто поразительным.

Естественно, что стремление к быстрому и большому успеху привело к появлению большинства инноваций в двигателях внутреннего сгорания, но благодаря современным экологическим инициативам эти двигатели стали более мощными и эффективными, чем когда-либо прежде. Вот взгляд на эволюцию двигателя внутреннего сгорания, а также некоторые современные советы по обслуживанию двигателя.

Конструирование современных двигателей

Сегодняшние двигатели — это чудо, когда дело доходит до эффективности: с 1975 года средняя экономия топлива увеличилась более чем вдвое, достигнув 24,7 миль на галлон (миль на галлон) в 2016 году, по данным Агентства по охране окружающей среды (EPA). Мощность двигателя также выросла более чем вдвое. Например, Ford Mustang V8 1980 года выдавал 119 лошадиных сил, а сегодняшний Ford Mustang GT 2018 года — 460 лошадиных сил, но оба они рассчитаны на 16 миль на галлон!

Хотя интересно изучить, как развивались современные двигатели внутреннего сгорания, еще интереснее увидеть, как автомобильные инженеры заставили их работать.Вот некоторые из инструментов этой отрасли:

  • Легкие материалы: алюминий, пластик и другие легкие компоненты делают современные двигатели и автомобили более легкими и эффективными.
  • Принудительная индукция: этот процесс нагнетает больше воздуха в меньшие двигатели, увеличивая выходную мощность при необходимости и ограничивая выходную мощность для крейсерского движения. Турбокомпрессоры и нагнетатели больше не ограничиваются спортивными автомобилями и автомобилями класса люкс, но встречаются даже в автомобилях эконом-класса.
  • Прямой впрыск: этот процесс впрыскивает топливо непосредственно в цилиндр, улучшая испарение и сгорание топлива, а также увеличивая экономию топлива и выходную мощность.
  • Отключение цилиндра: в этом процессе используется только количество цилиндров, необходимое для удовлетворения требований водителя. V8 может эффективно двигаться за счет четырех цилиндров и до восьми цилиндров по запросу для ускорения и энергичного вождения.
  • Гибридные электрические приводы: в них используются преимущества противоположных сильных и слабых сторон электродвигателей и двигателей внутреннего сгорания для повышения общей эффективности.
  • Бесступенчатая трансмиссия (CVT): это не технология двигателей, но о них стоит упомянуть, потому что они поддерживают двигатели внутреннего сгорания в их наиболее эффективном диапазоне.
  • Синтетические смазочные материалы: Эти продукты сохраняют свои смазочные свойства даже в экстремальных условиях. Это помогает современным двигателям внутреннего сгорания и вариаторам работать эффективнее и дольше.
  • Двигатели с высокой степенью сжатия: они сжигают топливо более эффективно, повышая выходную мощность и снижая расход топлива.
  • Электроусилитель руля и другие электродвигатели: эти усовершенствования снижают нагрузку на двигатель, увеличивая экономию топлива.
  • Пуск-остановка двигателя: эта функция снижает выбросы при работе двигателя на холостом ходу.Если автомобиль не движется, почему должен работать двигатель?
  • Электронное управление: они используются во всех аспектах работы и оптимизации современного двигателя. Современные датчики электронного впрыска топлива (EFI) и воздушно-топливного отношения (AFR) намного более точны, чем карбюраторы прошлого, увеличивая как мощность, так и экономию топлива.

Техническое обслуживание современных двигателей

Учитывая инженерные достижения, которые помогли создать современный двигатель, неудивительно, что его обслуживание несколько отличается от обслуживания старой машины.Электронное управление сейчас требует другого уровня технических знаний, чем это было даже 10 лет назад. Даже механически современные двигатели построены с гораздо более жесткими допусками. Помимо технических знаний, необходимых для их обслуживания, диагностики и ремонта, современные двигатели внутреннего сгорания также требуют качественных расходных материалов.

Высококачественное синтетическое масло, такое как Valvoline Modern Engine, специально разработано для удовлетворения потребностей современных двигателей в смазочных материалах. Благодаря меньшему количеству примесей и присадок, характерных для современных двигателей внутреннего сгорания, это масло не образует отложений, снижающих производительность.Помимо сохранения выходной мощности и топливной экономичности, это также помогает вашему двигателю работать дольше.

По мере того, как стандарты выбросов ужесточаются, современные двигатели будут соответствовать им. Методы технического обслуживания и смазочные материалы также продвигают вперед мощное будущее с низким уровнем выбросов.

Ознакомьтесь со всеми запасными частями, доступными на NAPA Online, или доверьтесь одному из наших 17 000 пунктов обслуживания AutoCare NAPA для текущего обслуживания и ремонта. Для получения дополнительной информации об обслуживании современных двигателей поговорите со знающим экспертом в местном магазине NAPA AUTO PARTS.

Фото любезно предоставлено Flickr.

BBC — Autos — Born to run: Современные двигатели преодолевают расстояние

Механические системы 1950-х, 60-х и 1970-х годов были либо дополнены, либо заменены электрическими, что усложнило техническое обслуживание и ремонт двигателей. В большинстве случаев лучшая сторона — это повышенная надежность — и не только надежность, связанная с меньшим количеством утечек масла, но и надежность на 100 000 миль между настройками.

Этот писатель знает не понаслышке, учитывая, что его машина проехала более 220 000 миль, прежде чем потребовалась какая-либо серьезная работа с двигателем.

Чтобы выяснить, что может быть наиболее ответственным за повышение надежности двигателя, мы обратились на Quora.com, онлайн-форум вопросов и ответов, чтобы оценить мысли пользователей.

Рост машин
За последние 15 или 20 лет модули управления, датчики и бортовая диагностика внесли свой вклад в улучшение работы двигателя. Пользователь Quora Крис Лейнбах считает, что переход на более компьютеризированные двигатели с меньшим количеством механических систем оказал «наибольшее влияние на надежность двигателя».

Он писал, что до 1970-х годов зависимость двигателя от механических систем требовала, чтобы он полностью прогревался, прежде чем он работал оптимально, а его различные коллекторы и клапаны требовали регулярной регулировки — обычно с помощью гаечного ключа. «Теперь у нас есть компьютеры, которые в реальном времени регулируют такие сложные вещи, как фаза газораспределения в двигателях», — написал Лайнбах.

Лори Карран утверждает, что электроника также играет огромную роль в надежности двигателя. Он привел сложные алгоритмы, которые управляют такими факторами, как расход топлива и время зажигания.«Системы управления двигателем полагаются на целый ряд электронных датчиков, которые контролируют, сколько и когда используется топливо», — написал он.

Но компьютеры не только повысили надежность двигателя; они изменили способ построения двигателей. Карран также отметил, что двигатели проектируются с использованием трехмерных компьютерных моделей, которые — с помощью цифровых симуляторов — могут лучше определять потенциальные точки напряжения и горячие точки. «Когда дело доходит до испытаний в реальном времени, двигатели очень часто работают так, как задумано, и до начала массового производства необходимо внести лишь незначительные изменения», — сказал он.

Что говорят данные
Но подтверждаются ли мнения пользователей Quora данными о надежности транспортных средств? Вообще говоря, да.

Согласно ежегодному исследованию надежности транспортных средств JD Power and Associates, которое проводилось в течение 25 лет, надежность транспортных средств в США постоянно растет, за исключением небольшого всплеска в прошлом году.

В своем отчете за 2014 год, опубликованном в феврале, JD Power сообщила, что количество проблем, о которых сообщают владельцы автомобилей 2011 модельного года, увеличилось по сравнению с предыдущим годом, что стало первым увеличением количества зарегистрированных проблем за 15 лет.Фирма собрала более 41 000 ответов на опрос от первоначальных владельцев автомобилей 2011 года выпуска после трех лет владения. Авторы обзора отметили, что большинство проблем связано с автомобилями с четырехцилиндровыми двигателями.

Хотя водители могут считать автомобили более надежными, чем они были в прошлом, технологии не являются всеобъемлющей защитой, а сложность двигателя создает целый ряд новых проблем. При этом покупатели могут предположить, что двигатель нового автомобиля любой ценовой категории был рожден для работы.

Mobil 1 ™ защищает современные двигатели

  1. Смазочные материалы Mobil ™
  2. О нас
  3. Mobil 1 ™
  4. Mobil 1 ™ для современных двигателей

Все функции веб-сайта могут быть недоступны в зависимости от вашего согласия на использование файлов cookie.Щелкните здесь, чтобы обновить настройки.

Стандарты экономии топлива и выбросов изменили конструкцию современных двигателей. Автопроизводители теперь должны сосредоточиться на повышении эффективности при одновременном удовлетворении спроса потребителей на электроэнергию. Разнообразные современные двигатели работают на обоих фронтах с помощью сложных инженерных систем и передовых технологий смазочных материалов. Вот почему моторное масло Mobil 1 ™ разработано, испытано и доказано, что обеспечивает выдающиеся характеристики и защиту — независимо от того, что находится под вашим капотом.

Технология моторных масел

  • Масло со сверхнизкой вязкостью

    Mobil 1 ™ 0W-16 Advanced Fuel Economy — моторное масло со сверхнизкой вязкостью, разработанное для некоторых современных бензиновых и гибридных двигателей.

    Узнать больше
  • Новый стандарт

    Новый стандарт ILSAC GF-6 для моторных масел улучшает экономию топлива и характеристики двигателя вашего автомобиля.Мы выполнили и превзошли стандарты со многими из наших моторных масел Mobil ™.

    Подробнее о ILSAC GF-6
  • Защита выхлопной системы

    Современные двигатели, особенно в европейских транспортных средствах, оснащены либо бензиновыми каталитическими нейтрализаторами, либо дизельными сажевыми фильтрами. Линейка моторных масел Mobil 1 ESP идет впереди всех.

    Узнать больше

Автомобильная техника

  • Гибридная технология

    В наши дни появляется все больше и больше гибридов.Узнайте, как моторное масло Mobil 1 ™ защищает их экономичную конструкцию.

    Узнать больше
  • Технология старт-стоп

    Узнайте о том, что делают системы старт-стоп, и посмотрите, как моторное масло Mobil 1 ™ работает при экстремальных испытаниях транспортных средств с функцией старт-стоп.

    Узнать больше
  • Чем отличаются турбокомпрессоры и нагнетатели

    Турбокомпрессоры и нагнетатели можно встретить в современных двигателях, но только один из них обеспечивает дополнительную мощность и улучшенную топливную экономичность.

    Узнать больше

Турбокомпрессоры

  • Превосходная защита LSPI

    Моторные масла Mobil 1 ™ обеспечивают превосходную защиту от разрушительного воздействия предварительного воспламенения на низкой скорости (LSPI).

    Узнать больше
  • Проверенные характеристики для турбокомпрессоров

    Более высокие рабочие температуры, более высокие обороты, более высокая степень сжатия.Откройте для себя важность моторного масла Mobil 1 ™ в современных турбодвигателях.

    Узнать больше
  • Суперкары с двойным турбонаддувом

    Эти суперкары с двойным турбонаддувом относятся к отдельной категории. Необходимость выдерживать экстремальные температуры и повышенную мощность привела к выбору моторного масла Mobil 1 ™.

    Узнать больше
  • Новые автомобили с маслом Mobil 1 ™ в качестве заводской заливки.

    Узнайте, почему многие ведущие производители автомобилей заливают свои автомобили синтетическим маслом Mobil 1 с первого дня.

    Узнать больше

ВВС США приближается к битве за следующий двигатель B-52

БАРКСДЕЙЛСКАЯ БАЗА ВВС США, Луизиана и ВАШИНГТОН — После нескольких месяцев задержки ВВС США надеются опубликовать запрос предложений на новые двигатели для бомбардировщиков B-52 к концу 2019 года, как только служба получит шанс укрепить свои ходатайства и ответить на озабоченности Конгресса.

Но на базе ВВС Барксдейл в Луизиане обслуживающий персонал B-52 жаждет новых двигателей, которые, мы надеемся, сократят время, необходимое для диагностики и устранения проблем с двигателем.

«Если бы я расставлял приоритеты систем с точки зрения обслуживающего персонала, то, по моему личному мнению — явно не ВВС, — но [замена] двигателей в первую очередь» оказала бы самое положительное влияние на сообщество техобслуживания, — сказал Подполковник Тиффани Арнольд, командир 2-й эскадрильи технического обслуживания. Арнольд разговаривал с журналистом и корреспондентом Defense News Джеффом Болтоном во время визита на авиабазу Барксдейл.

Каждый B-52 использует восемь двигателей TF33 для полета, что означает, что обслуживающий персонал тратит много времени на обеспечение правильной работы каждого двигателя.А когда в ремонте требуется более одного двигателя, это влечет за собой больше работы для персонала, который уже выполняет несколько оценок, сказал Арнольд.

Щелкните здесь, чтобы получить дополнительную информацию из специального отчета о ядерном предприятии США.

ВВС США считают, что они могут снизить расход топлива и сократить количество часов, необходимых для обслуживания B-52, путем замены TF33 на восемь новых серийных двигателей.

Это обсуждение продолжается уже более 30 лет, — сказал Алан Уильямс, заместитель по наблюдению за элементами программы B-52 в Командовании глобального удара ВВС.

«B-52 должен был быть снят с производства в 1996 году, затем дата сдвинулась на 2000 год, затем на 2003 год, затем, наконец, перешла к 2040 году, а теперь уже 2050 год», — сказал он в августовском интервью. «Продление срока службы наконец дало нам зеленый свет для обновлений, которые мы искали 20 или 30 лет, но так и не смогли получить финансирование».

Зарегистрируйтесь на нашем Early Bird Brief
Получить наиболее полный новости и информацию в оборонной промышленности прямо на Ваш почтовый ящик

Подписка

Введите действительный адрес электронной почты (пожалуйста, выберите страну) United StatesUnited KingdomAfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish в Индийском океане TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканских RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongoCongo, Демократическая Республика TheCook IslandsCosta RicaCote D’ivoireCroatiaCubaCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland (Мальвинских) островах Фарерских IslandsFiji FinlandFranceFrench GuianaFrench PolynesiaFrench Южный TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuamGuatemalaGuineaGuinea-bissauGuyanaHaitiHeard Island и МакДональда IslandsHoly Престол (Ватикан) HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Исламская Республика ofIraqIrelandIsraelItalyJamaicaJapanJordanKazakhstanKenyaKiribatiKorea, Корейская Народно-Демократическая Республика ofKorea, Республика ofKuwaitKyrgyzstanLao Народная Демократическая RepublicLatviaLebanonLesothoLiberiaLibyan Арабская JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, бывшая югославская Республика ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesia, Федеративные Штаты ofMoldova, Республика ofMonacoMongoliaMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands Антильские островаНовая КаледонияНовая ЗеландияНикарагуаНигерНигерияНиуэОстров НорфолкСеверные Марианские островаНорвегияОманПакистанПалауПалестинская территория, оккупированнаяПан amaPapua Нового GuineaParaguayPeruPhilippinesPitcairnPolandPortugalPuerto RicoQatarReunionRomaniaRussian FederationRwandaSaint HelenaSaint Киттс и NevisSaint LuciaSaint Пьер и MiquelonSaint Винсент и GrenadinesSamoaSan MarinoSao Том и PrincipeSaudi ArabiaSenegalSerbia и MontenegroSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Джорджия и Южные Сандвичевы IslandsSpainSri LankaSudanSurinameSvalbard и Ян MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwan, провинция ChinaTajikistanTanzania, Объединенная Республика ofThailandTimor-lesteTogoTokelauTongaTrinidad и ТобагоТунисТурцияТуркменистанТуркс и острова КайкосТувалуУгандаУкраинаОбъединенные Арабские ЭмиратыВеликобританияСоединенные ШтатыМалые отдаленные острова СШАУругвайУзбекистан ВануатуВенесуэлаВьетнамВиргинские острова, Британские Виргинские острова, У.С.Уоллис и ФутунаЗападная СахараЙеменЗамбияЗимбабве

Спасибо за регистрацию!

×

Отправляя нам свой адрес электронной почты, вы соглашаетесь на получение Early Bird Brief.

Запрос предложений, который изначально планировалось выпустить в марте, был перенесен на конец 2019 года, добавил он. Присуждение контракта с единственным производителем двигателей запланировано примерно на год позже. Как только это произойдет, двигатель-победитель пройдет типичный этап проектирования и испытаний, кульминацией которого станет интеграция новых двигателей на двух B-52 для летных испытаний примерно в 2023 или 2024 году.

Уильямс признал, что задержка была частично вызвана опасениями законодателей Палаты представителей по поводу стратегии приобретения ВВС. Речь идет о решении службы заключить контракты на создание прототипов до того, как требования и смета расходов были окончательно определены, и Комитет по вооруженным силам Палаты представителей хочет потребовать от ВВС предоставить дополнительную документацию по графику и стоимости работ.

«Прямо сейчас они работают над этим процессом, пытаясь ответить на все вопросы, которые есть у руководства ВВС и Конгресса», — сказал Уильямс.«Нет никакой особой причины для задержки, кроме как просто пройти через калитку».

Главный подрядчик B-52 Boeing и три потенциальных поставщика двигателей — General Electric, Rolls Royce и Pratt & Whitney — заключили контракт на начальную фазу конкурса прототипов, которая завершится в ноябре, когда каждый производитель создаст первоначальный цифровой дизайн, определяющий, как их соответствующий двигатель будет интегрироваться с B-52.

Действующая компания Pratt & Whitney теперь планирует предложить PW815, но компания также выступает за продление срока службы существующих TF33 в качестве альтернативы покупке новых двигателей.Rolls-Royce предложит версию своего двигателя F130 и пообещал построить завод в Индианаполисе, штат Индиана, если выиграет модернизацию двигателя B-52. Между тем, GE Aviation указала, что может предложить двигатели CF34-10 или Passport.

Американские летчики осматривают двигатель B-52H Stratofortress на базе ВВС Майнот, Северная Дакота. Они сняли стартер двигателя для проверки и установки на другой двигатель. (Летчик Джесси Дженни / ВВС США)

Уровень детализации виртуальных прототипов не достигнет уровня предварительного проекта, сказал Джим Кроенинг, менеджер программы модернизации Boeing B-52, но он предоставит ВВС Лучшее представление о том, как четыре потенциальных двигателя будут взаимодействовать с капотом, который окружает двигатель, и стойкой, которая прикрепляет двигатель к крылу.

«Используя цифровое моделирование, [мы] также пытаемся понять, каковы рабочие характеристики двигателя», — сказал он. «Таким образом, мы понимаем, могут ли миссии повторить то, что B-52 может делать сегодня, а также понимать, что такое надежность жизненного цикла и ремонтопригодность».

Поскольку двигатели TF33 были разработаны в конце 1950-х годов, они не оснащены датчиками современных двигателей, которые могут контролировать состояние системы или диагностировать проблему до ее возникновения, сказал Арнольд на авиабазе Барксдейл.

«Мы можем увидеть индикатор проблемы, но мы не знаем, через какое время она выйдет из строя, пока она действительно не сработает. В моем мире мы хотели бы, чтобы сбой не прервал запланированную тренировку или миссию », — сказала она.

«Я хотела бы знать, нужно ли мне исключить этот самолет из графика и заранее установить на него новый двигатель», — добавила она. «Мы могли расставить приоритеты, мы могли понять структуру двигателей таким образом, чтобы мы могли лучше поддерживать их.И, надеюсь, новый двигатель, кто бы его ни проектировал, будет иметь меньшую наработку на отказ, и мы сможем управлять им дольше ».

Старший летчик Грегори Гатдула, механик по реактивным двигателям, сказал, что возраст TF33 делает работу с двигателями «очень хлопотной», несмотря на надежность B-52 в целом.

«Обычно мы можем определить определенные вещи, но в большинстве случаев это происходит случайно», — сказал он. «У этих движков нет ничего, что могло бы помочь нам в устранении неполадок, кроме нашего руководства [технических заказов].Так что получение нового двигателя с чем-то, что может помочь нам определить, что может быть правильным или неправильным с двигателем, определенно может нам очень помочь ».

Хотя большая часть усилий по переоборудованию B-52 была сосредоточена на самих двигателях, Кренинг отметил, что ВВС могут также оснастить каждый двигатель новыми генераторами в рамках программы — изменение, которое дало бы B -52 увеличение мощности, необходимое для новых технологий, таких как гиперзвуковое, лазерное или дальнобойное оружие.

«Прямо сейчас на B-52 установлено четыре генератора — по одному на каждый второй двигатель», — сказал он. «Наша цель в конструкции — прикрепить генератор к каждому двигателю, возможно, меньший генератор, что в целом увеличит мощность».

Но Уильямс сказал, что ВВС все еще работают, чтобы понять будущие потребности в электронике, и нет твердого решения по теме генератора.

«Когда вы забираете мощность от двигателя для запуска генератора — или генератора переменного тока, или любого другого вспомогательного оборудования, подключенного к двигателю, — вы должны отводить некоторый процент мощности двигателя от него, создавая тягу для полета самолета» он сказал.«Все это компромиссы».

Блок силовых ячеек (PCU) для современных двигателей с ГНБ

Правительственное законодательство в отношении выбросов является важным фактором для разработки двигателей с тяжелым дизельным двигателем (ГНБ). Для достижения поставленных целей в большинстве случаев необходимо увеличивать тепломеханические нагрузки, повышая уровень технической потребности в компонентах двигателя. Помимо этого, развитие двигателя определяется другими важными аспектами, такими как стоимость владения, требующая, например, увеличенного интервала между заменами масла, что приводит к более суровым условиям окружающей среды для компонентов двигателя.

Чтобы соответствовать требованиям современного двигателя, в этой статье представлены поршень и поршневые кольца, специально разработанные для надежного выполнения этих задач. Начиная с кольцевого пакета, покрытия на основе CrN, наносимые методом PVD (физическое осаждение из паровой фазы), обычно наносятся на верхнюю поверхность кольца для достижения целевых показателей долговечности. Новизна верхнего кольца, описанного в этой статье, заключается в том, что покрытие имеет различную толщину по окружности кольца, будучи более толстым около вершин кольца, которые являются наиболее критическими областями кольца с точки зрения износа.Особенность, описанная в этой статье, обеспечивает повышенную долговечность продукта.

Керамическое PVD-покрытие удовлетворяет требованиям к низкому трению, поскольку оно имеет пониженный коэффициент трения по сравнению с другими покрытиями верхнего кольца, доступными на рынке (например, Ceramic Cr с внедренными твердыми частицами). Однако наиболее важный вклад в снижение трения в пакете колец достигается за счет улучшения конструкции маслосъемного кольца, обеспечивающего подходящее очищающее действие при уменьшении тангенциальной нагрузки.

Конструкция и материал поршня также должны быть изменены, чтобы соответствовать таким современным требованиям. Повышенные термомеханические нагрузки выводят обычные алюминиевые поршни за пределы возможностей их применения из-за более сложных условий работы. В этой статье описываются некоторые конструктивные особенности, позволяющие продлить срок службы этих поршней. В более агрессивных случаях лучшим решением может быть использование стального материала особой конструкции.

Контроль выбросов двигателя

Контроль выбросов двигателя

Вт.Адди Маевски, Hannu Jääskeläinen

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Реферат : Увеличение количества дизельных двигателей создало давление на контроль дизельных выбросов PM и NOx. Первоначальный прогресс в борьбе с выбросами дизельного топлива был достигнут за счет технологий двигателей, включая изменения в конструкции камеры сгорания, улучшенные топливные системы, охлаждение наддувочного воздуха и особое внимание к расходу смазочного масла.Нормы выбросов, введенные в период 2005-2010 гг., Дополнительно требуют использования методов нейтрализации выхлопных газов на новых дизельных двигателях. Эти методы включают дизельные фильтры твердых частиц, катализаторы СКВ с мочевиной и адсорберы NOx.

Введение

Выбросы загрязняющих веществ

В современных двигателях внутреннего сгорания за образование и сокращение загрязняющих веществ отвечают две основные системы:

  • система сгорания и
  • выхлоп система нейтрализации .

Система сгорания включает камеру сгорания, ее форму и характеристики, такие как состав заряда, движение заряда и распределение топлива. Здесь образуются такие загрязнители, как NOx, CO и PM, а также происходит неполное окисление топлива. На то, что происходит в системе сгорания, сильно влияют другие системы двигателя, такие как система управления впускным зарядом и система впрыска топлива. Фактически, основная цель этих вторичных систем — влиять на то, что происходит в процессе сгорания.Доступны многочисленные варианты ограничения образования загрязняющих веществ в системе сгорания. Как только выхлопные газы покидают систему сгорания, их состав по существу замораживается до тех пор, пока не попадет в систему доочистки выхлопных газов (ATS, также сокращенно EAT или EATS), где может быть реализовано дальнейшее сокращение загрязняющих веществ, а также там, где вторичные выбросы, например N 2 O Могут происходить NO 2 и NH 3 .

Система доочистки состоит из каталитических реакторов, которые пытаются еще больше снизить загрязнение.В некоторых случаях, например, в двигателях со стехиометрическим искровым зажиганием (SI), одного трехкомпонентного катализатора (TWC) достаточно для достижения очень значительного сокращения загрязняющих веществ. В других случаях, таких как дизельные двигатели, работающие на обедненной смеси, требуется ряд каталитических устройств. Вторичные системы необходимы для обеспечения правильной работы АВР. К ним относятся: контроль состава выхлопных газов посредством управления стехиометрией выхлопных газов или подача дополнительных реагентов, которые обычно отсутствуют в выхлопных газах или отсутствуют в достаточном количестве (например,g., мочевина, дополнительные углеводороды, дополнительный воздух или O 2 ), регулирование температуры для обеспечения работы катализаторов в пределах требуемого температурного окна, системы, обеспечивающие удаление загрязняющих веществ и загрязняющих веществ, которые могут накапливаться (регенерация фильтров, управление серой, мочевина отложений,) и систем для сведения к минимуму образования вторичных загрязнителей, таких как катализатор проскальзывания аммиака (ASC).

Было бы ошибкой рассматривать систему сгорания и АВР как отдельные системы.Чтобы максимизировать их эффективность, требуется высокая степень интеграции. Классическим примером является соотношение воздух-топливо (AFR) в двигателях SI, где требуется очень высокий уровень точности управления для обеспечения максимальной производительности TWC. Управление температурным режимом ATS может осуществляться путем регулировки в двигателе, чтобы влиять на температуру выхлопных газов, выходящих из цилиндра. В некоторых случаях дополнительное топливо, необходимое для ATS (например, для управления температурным режимом), может подаваться топливными форсунками двигателя.

Важно понимать, что целью оптимизации двигателя не является минимизация выбросов загрязняющих веществ из системы сгорания или максимальное сокращение выбросов загрязняющих веществ в ATS. Скорее цель состоит в том, чтобы достичь целевого уровня выбросов от всей системы. Целевой показатель обычно значительно ниже нормативного предела, чтобы учесть изменчивость производства. Это может потребовать увеличения выбросов некоторых загрязняющих веществ из системы сжигания, если показатели ATS достаточно высоки, чтобы все же обеспечить достижение проектных целей.Например, выбросы NOx из двигателей, оснащенных катализатором SCR мочевины, могут увеличиваться для минимизации выбросов парниковых газов (из-за компромисса NOx-BSFC), если достигается высокая конверсия NOx в катализаторе SCR.

Горюче-смазочные материалы являются важным «партнером» в комбинированной системе двигателя и дополнительной обработки. Низкий уровень выбросов в течение срока службы двигателя будет невозможен, если загрязняющие вещества топлива, такие как сера и некоторые неорганические минералы, не будут доведены до очень низкого уровня.

Контроль выбросов от используемых двигателей

Вышеупомянутые технологии, обсуждаемые далее в следующих разделах, применимы к новым (OEM) двигателям внутреннего сгорания.Некоторые из этих технологий могут также использоваться для уменьшения выбросов и / или повышения эффективности существующих двигателей. Также существует группа технологий, разработанных специально для используемых приложений, которые обычно не используются в новых двигателях. Эти технологии более подробно обсуждаются в разделе «Контроль выбросов от используемых двигателей

».

Выбросы парниковых газов и экономия топлива

Пределы выбросов парниковых газов и стандарты топливной эффективности создали возможности для внедрения широкого спектра технологий в двигатели и транспортные средства.В поисках повышения топливной экономичности основное внимание уделяется как минимум трем ключевым направлениям:

  • КПД трансмиссии,
  • автомобильной техники и
  • рабочих параметров.

Поскольку эффективность трансмиссии напрямую влияет на расход топлива, это очевидный выбор для повышения эффективности использования топлива. Важные подходы включают повышение эффективности двигателя, рекуперацию кинетической энергии (например, за счет рекуперативного торможения), рекуперацию отработанного тепла и сокращение паразитных потерь от вспомогательных устройств, таких как насосы.Среди автомобильных технологий улучшенная аэродинамика и снижение трения качения — два очевидных фактора, влияющих на экономию топлива. Другие факторы включают вес автомобиля и мощность, используемую вспомогательным оборудованием, не связанным с трансмиссией, таким как кондиционер. И последнее, но не менее важное: рабочие параметры транспортного средства, такие как режим вождения и выбор маршрута, также могут быть использованы для получения значительных улучшений в экономии топлива [1376] . Эти технологии обсуждались в разделе «Технологии эффективности».

Технологии контроля выбросов

Варианты контроля выбросов можно сгруппировать в три категории: (1) методы проектирования двигателей, (2) технологии, связанные с топливом и смазочными материалами, и (3) доочистка выхлопных газов.Каждый из этих подходов можно разделить на подкатегории, как показано в следующих таблицах. Кроме того, технологии интеграции и управления трансмиссией играют очень важную роль в сокращении выбросов и повышении эффективности двигателя и транспортного средства. Некоторые из методов, обсуждаемых ниже, реализованы в современных движках, другие, которые все еще находятся в разработке, перспективны для будущих приложений.

Таблица 1
Технологии проектирования двигателей для снижения выбросов
Технология Воздействие на выбросы Значимость
Дизельные двигатели с воспламенением от сжатия
Впрыск топлива Возможности значительно расширились.Значительные улучшения в технологии впрыска начались в 1990-х годах с повсеместного внедрения систем, способных изменять время впрыска за счет использования электронного управления. Двигатели с системой рециркуляции ОГ предъявляют самые высокие требования к давлению впрыска топлива. В легковых автомобилях используются самые сложные стратегии многократного впрыска.
Время впрыска В основном используется для ограничения выбросов NOx Время впрыска влияет на фазировку сгорания; замедление фазирования горения можно использовать для ограничения выбросов NOx.
давление впрыска В основном используется для ограничения выбросов сажи (ТЧ) Более высокое давление впрыска может снизить выбросы сажи; особенно важно в сочетании с технологиями контроля NOx, такими как EGR, которые в противном случае увеличили бы выбросы сажи.
множественный впрыск Различный Стратегии множественного впрыска были разработаны для снижения выбросов NOx, сажи, HC и CO.
Рециркуляция выхлопных газов (EGR) В дизельных двигателях основное применение — контроль выбросов NOx. Обычно используется во многих дизельных двигателях малой и большой мощности.Подача системы рециркуляции ОГ под высоким давлением может привести к снижению расхода топлива за счет более высоких насосных потерь. Система рециркуляции ОГ низкого давления имеет меньшие насосные потери, но ее труднее контролировать во время переходной работы. Могут потребоваться другие меры для ограничения потенциального увеличения количества сажи и, возможно, HC и CO.
Повышение уровня всасывания Воздействие первичных выбросов заключается в снижении образования сажи (ТЧ). Также важно для повышения эффективности. Более высокое давление на впуске увеличивает соотношение воздух / топливо для данного количества впрыскиваемого топлива и снижает образование сажи.Может быть важной мерой для компенсации нежелательного снижения производительности и увеличения выбросов с помощью таких мер контроля NOx, как EGR. Часто сопровождается улучшенными возможностями охлаждения всасываемого заряда. Позволяет уменьшить размер двигателя для повышения эффективности. Вызывает проблемы, такие как отставание турбокомпрессора, которые могут потребовать комплексных решений.
Управление температурой на впуске Наиболее прямое влияние на выбросы NOx. Также может снизить выбросы сажи. Повышенное давление наддува и / или EGR может повысить температуру впускного коллектора.Для ограничения температуры всасываемого заряда и сведения к минимуму связанных с ним увеличения выбросов NOx, уменьшения воздушно-топливного отношения и потерь удельной мощности необходимы улучшения охлаждающей способности впускного заряда.
Конструкция камеры сгорания Важная мера по борьбе с сажей Изменения конструкции камеры сгорания обычно используются для компенсации увеличения выбросов сажи, когда принимаются меры по ограничению выбросов NOx. Во многих случаях усовершенствования улучшают перемешивание на поздних стадиях процесса сгорания, чтобы улучшить выгорание сажи.
Двигатели с принудительным зажиганием (SI)
Впрыск топлива Расход топлива и выбросы твердых частиц Переход от впрыска через порт к непосредственному впрыску бензина (GDI) был вызван уменьшением габаритов двигателя для соответствия расходу топлива и Требования CO 2 . Двигатели GDI имеют более высокую тенденцию к выделению мелких частиц, что может быть частично компенсировано усовершенствованием конструкции системы впрыска топлива.
Повышение давления на впуске Расход топлива Фактор уменьшения габаритов двигателя и снижения расхода топлива и выбросов CO 2 .
Переменное срабатывание клапана Разное Некоторые примеры включают: Регулировка фаз газораспределения является важной мерой для уменьшения количества углеводородов при холодном запуске. Регулируемый подъем клапана обеспечивает работу без дроссельной заслонки и повышает эффективность. Деактивация цилиндра снижает насосные потери при частичной нагрузке и повышает эффективность. Регулируемые фазы газораспределения позволяют работать по циклу Миллера для снижения насосных потерь.
Сжигание обедненной смеси Расход топлива Сжигание обедненной смеси может снизить насосные потери, теплопередачу и улучшить характеристики рабочей жидкости для повышения эффективности.Вводит необходимость в дорогостоящих технологиях доочистки NOx.
Сгорание Расход топлива Передовые концепции сгорания могут повысить эффективность за счет более быстрого сгорания и снижения тепловых потерь.
EGR Одно время использовалось для ограничения выбросов NOx. Современные подходы в основном направлены на снижение расхода топлива. В двигателях SI система рециркуляции отработавших газов является альтернативой обогащению топлива при высоких нагрузках для снижения склонности к детонации и снижения температуры выхлопных газов при высокой мощности.В условиях частичной нагрузки это может снизить насосные потери.
Таблица 2
Топливно-смазочные технологии
Технология Воздействие на выбросы Значение
Смазочное масло Важно для снижения расхода топлива Смазочные материалы с низкой вязкостью важны для снижения расхода топлива / CO требует 2 изменений, но для обеспечения снижения уровень износа двигателя не увеличивается.Ограничение содержания каталитических ядов (например, серы, неорганической золы, фосфора) является ключевым фактором обеспечения долговечности и эффективности технологий каталитического контроля выбросов выхлопных газов.
Альтернативные виды топлива Первичное воздействие — жизненный цикл CO 2 выбросов Ограниченные критерии потенциал сокращения выбросов от современных двигателей с полным диапазоном доочистки NOx и PM. Некоторое влияние на критерии загрязняющих веществ (PM, NOx, SOx) возможно в приложениях без дополнительной обработки (например,г., морской). В некоторых случаях более низкие эксплуатационные расходы являются основным соображением (например, природный газ). Спрос часто может определяться государственными стимулами или предписаниями.
Присадки к топливу Разные Небольшие прямые выбросы вредных веществ при использовании современных двигателей и высококачественного топлива. Важно поддерживать долгосрочную стабильную работу технологий контроля выбросов. Например, цетановые добавки помогают обеспечить постоянное и надежное качество воспламенения современного дизельного топлива для обеспечения надежных и предсказуемых характеристик; присадки для чистоты форсунок и смазывающие присадки предназначены для поддержания чистоты компонентов системы впрыска топлива и уменьшения износа, чтобы обеспечить долговечность и стабильную работу систем впрыска топлива; В некоторых системах сажевых фильтров используются топливные присадки, способствующие регенерации сажевых фильтров.
Таблица 3
Технологии доочистки выхлопных газов
Технология Воздействие на выбросы Значимость
Двигатели с воспламенением от сжатия (дизельные)
Катализатор окисления дизельного топлива (DOC) Высокая степень снижения выбросов углеводородов в атмосферу / от среднего до умеренного . Окисление NO до NO 2 повышает эффективность систем SCR / DPF. Широко используется в автомобилях Euro 2/3 и некоторых дизельных двигателях US 1994 и более поздних версиях для тяжелых и средних нагрузок. В современных двигателях используется в качестве вспомогательного катализатора в системах нейтрализации SCR / DPF (поколение NO 2 , контроль проскальзывания аммиака).
Катализаторы окисления твердых частиц Снижение выбросов ТЧ до ~ 50% Ограниченное коммерческое применение в отдельных (оборудованных системой рециркуляции отработавших газов) двигателях тяжелых грузовиков Евро IV, а также в некоторых двигателях малой и внедорожной техники.
Дизельные сажевые фильтры (DPF) 90% + сокращение выбросов ТЧ Основная технология, используемая на всех дизельных двигателях малой грузоподъемности Евро 5 и США Tier 2 и более поздних версиях; во всех двигателях большой мощности US2007 и Euro VI и более поздних; во всех внедорожных двигателях Stage V; в программах модернизации по всему миру.
Катализаторы мочевина-СКВ 90% + снижение выбросов NOx Основная технология, используемая в двигателях для тяжелых условий эксплуатации в США 2010, Euro V и более поздних версиях; в легких дизельных транспортных средствах США Tier 2 и Euro 5/6 и более поздних версий; в внедорожных, морских и стационарных двигателях.
Катализаторы адсорбера NOx Снижение NOx до ~ 70-90%, в зависимости от ездового цикла Используется в качестве автономного катализатора снижения NOx в некоторых легких транспортных средствах США Tier 2 и Euro 5/6. Используется в качестве катализатора снижения выбросов NOx при холодном запуске на некоторых автомобилях стандарта Euro 6 с системой SCR.
Катализаторы обедненных NOx (HC-SCR) Потенциал снижения NOx ~ 10-20% в пассивных системах, до 50% в активных системах Ограниченное коммерческое применение OEM и модернизация коммерческого применения, в основном в 2000-х годах.
Двигатели с принудительным зажиганием (SI)
Катализатор окисления (OC) 90% + сокращение выбросов HC и CO Используется в старых бензиновых автомобилях (примерно 1980-1990).
Трехкомпонентный катализатор (TWC) 90% + сокращение выбросов NOx, HC и CO Самая важная технология контроля выбросов бензиновых двигателей. Широко используется в двигателях со стехиометрической системой SI по всему миру.
Катализаторы адсорбера NOx ~ 70-90% снижение NOx Используется в легких транспортных средствах с прямым впрыском бензина (GDI) с обедненным сжиганием (послойной заправкой), которые были распространены в Европе в 2000-х годах.
Бензиновые сажевые фильтры (GPF) ~ 90% сокращение выбросов PN Все более широкое использование в легких транспортных средствах класса GDI стандарта Euro 6. Ожидается, что в Китае будут широко использоваться 6 легковых автомобилей.
Таблица 4
Технологии управления, диагностики и трансмиссии
Технология Воздействие на выбросы Значение
Гибридизация В первую очередь для снижения расхода топлива Гибридизация с аккумуляторным электроприводом может позволить двигателю работать дольше в регионах с более высокой термической эффективностью и меньшими точки низкой эффективности, такие как холостой ход и низкая нагрузка.Повышение эффективности электродвигателя позволяет использовать технологии повышения эффективности, которые в противном случае были бы непрактичными из-за отрицательного воздействия на производительность.
Диагностика OBD обеспечивает долгосрочное соответствие требованиям по выбросам. Предназначен для обнаружения неисправностей, которые могут привести к увеличению выбросов в ходе сертификационного испытания выше определенного порогового значения.
Органы управления Электронные органы управления обеспечивают точное управление многочисленными выбросами, а компоненты управления трансмиссией могут поддерживаться в течение всего срока службы автомобиля.Возможны изменения в условиях окружающей среды, системная интеграция и эффекты старения системы. Элементы управления дизельным двигателем включают в себя: управление рециркуляцией отработавших газов, управление давлением наддува на впуске, управление синхронизацией впрыска топлива и управление сгоранием.
Средства управления системой дополнительной обработки включают: дозирование мочевины, управление температурой для обеспечения высокой эффективности сокращения выбросов, контроль регенерации для обеспечения регулярного удаления накопленных материалов, таких как отложения сажи, серы и мочевины.
Интегрированное управление системой: некоторые функции управления требуют строго интегрированного подхода для обеспечения совместной работы двигателя и системы нейтрализации выхлопных газов.Примеры включают в себя катализатор-адсорбер NOx, который требует регулярного обогащения воздушно-топливного отношения двигателя для удаления накопленных NOx; регулировка параметров двигателя, таких как время впрыска топлива, для повышения температуры выхлопных газов для поддержания высокой эффективности системы нейтрализации выхлопных газов; и регенерация DPF, которая может потребовать строгого контроля работы двигателя, чтобы избежать повреждения DPF.
Элементы управления двигателем SI включают в себя: управление соотношением воздух / топливо, управление синхронизацией зажигания, управление скоростью холостого хода.
Средства управления системой последующей обработки включают: управление температурным режимом для обеспечения быстрого прогрева и высокой эффективности сокращения выбросов; и управление соотношением воздух / топливо для обеспечения максимального преобразования TWC.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *