Температура в камере сгорания бензинового двигателя: Работа двигателя. Процессы горения и передачи тепла

Содержание

Работа двигателя. Процессы горения и передачи тепла

У бензиновых двигателей после прохождения поршнем ВМТ давление и температура в цилиндре за счет сгорания топливо-воздушной смеси достигают максимума — давления порядка 3-6 МПа и температуры свыше 2500 К. Весь процесс сгорания происходит вблизи ВМТ, длится 4060° угла поворо­та коленчатого вала (ПКВ), объем камеры сгорания при этом изменяется мало. Именно поэтому бензиновые двигатели с искровым зажиганием в литературе называют иногда двига­телями с подводом тепла при постоянном объеме или двига­телями Отто (работающими по циклу Отто).

Для дизелей условно принимают, что часть теплоты под­водится при постоянном объеме, а часть — при постоянном давлении. Поскольку у дизелей степень сжатия существенно выше, чем у бензиновых двигателей (е = 21-22), то макси­мальное давление при сгорании также выше и достигает 5,5 МПа. При этом температура газов в цилиндре меньше и, как правило, не превышает 20005-2200 К.

Процесс сгорания топливо-воздушной смеси в двигателе очень сложен и до конца не изучен. При горении происходят химические реакции с выделением тепла и образованием продуктов сгорания. Процесс горения существенно зависит от большого числа физических явлений в цилиндре: от геоме­трии (формы) камеры сгорания до состава, скорости и на­правления движения смеси в цилиндре в данный момент вре­мени в данной точке.

Для осуществления процесса горения необходимо, чтобы количество топлива, подаваемого в цилиндр, строго соответ­ствовало количеству воздуха, поступающего в цилиндр на такте впуска. Соотношение количеств воздуха и топлива в смеси определяется коэффициентом избытка воздуха. где 15 — постоянный (стехиометрический) коэффици­ент для данного топлива — теоретически необходимое количе­ство воздуха (кг) для полного сгорания 1 кг топлива. При а = 1, когда количество топлива точно соответствует количеству воздуха, необходимому для полного сгорания этого топлива, состав смеси называют стехиометрическим.

При сгорании коэффициент избытка воздуха а смеси для бензиновых двигателей традиционных конструкций должен находиться в интервале от 0,70-0,75 до 1,05-1,15 в зависимо­сти от режимов работы двигателя. Для этого система питания двигателя должна строго дозировать топливо. Например, при разгоне целесообразно иметь, а меньше 1 («богатая» смесь и большой крутящий момент), в то время как для установивше­гося режима движения автомобиля желательно, чтобы а бы­ло близко к 1 (нормальная или слегка обедненная смесь, вы­сокая экономичность, а также приемлемая токсичность отработавших газов).

Для воспламенения и горения смеси у двигателей тради­ционных схем необходимо, чтобы топливо хорошо испарилось и перемешалось с воздухом еще на также сжатия, т. е. перед искровым разрядом. Это достигается внешним смесеобразо­ванием, т. е. подачей топлива заранее во впускной трубопро­вод (с помощью карбюратора или форсунок системы впрыс­ка). При этом топливо успевает практически полностью испа­риться перед воспламенением. После воспламенения смеси искровым разрядом образуется фронт пламени, распростра­няющийся по объему камеры сгорания.

Коэффициент избытка воздуха а существенно влияет не только на экономичность и мощность, но и на состав отрабо­тавших газов. Например, если основная часть продуктов сго­рания — это углекислый газ СО2 и водяные пары Н20, то при работе на богатых смесях двигатель выделяет повышенное ко­личество оксида углерода СО, а также несгоревшие углеводо­роды CnHm (СН). На некоторых режимах продукты сгорания содержат также повышенное количество оксидов азота NOx, что особенно характерно для двигателей с высокой степенью сжатия (оксиды азота образуются при высоких температурах).

Очень важное значение для состава отработавших газов имеет конструкция головки блока двигателя и особенно каме­ры сгорания — пространства между головкой и днищем порш­ня. От того, как организовано движение смеси по камере сго­рания перед и во время сгорания, сильно зависит количество вредных выбросов типа СО, NO

x и СН.

В конечном счете, все указанные факторы влияют и на ко­личество выделившегося при сгорания тепла — чем оно боль­ше, тем выше основные параметры двигателя. Например, двигатель, имеющий на определенном режиме большое коли­чество СО и несгоревших углеводородов СН в отработавших газах, вряд ли обеспечит на этом режиме хорошую мощность или экономичность. С другой стороны, сгорание должно так­же происходить в строго определенной фазе цикла — слишком раннее или позднее сгорание приводит к уменьшению давле­ния в цилиндре и, в конечном счете, к ухудшению основных параметров двигателя.

При сгорании в цилиндре выделяется большое количество тепла. Часть его уходит с отработавшими газами, другая часть передается в стенки головки и гильзу цилиндра, в пор­шень. Если бы конструкция поршня не позволяла от­водить тепло от днища, то поршень очень быстро бы распла­вился и прогорел. В самом деле, температура газа в камере сгорания превышает 1800-2000°С, в то время как рабочая температура деталей из алюминиевого сплава не должна быть больше 300-350°С. Для работы в таких условиях наибо­лее важна передача тепла через поршневые кольца в стенки цилиндра. При этом через верхнее кольцо уходит до 50-60% всего тепла, переданного из камеры в поршень, а через среднее — до 15-20%. Для того, чтобы обеспечить передачу тепла через кольца, необходимо точное (плотное) прилегание коль­ца к канавке поршня и к поверхности цилиндра. Дефекты кольца (плохое прилегание к цилиндру, поломки) и поршня (деформация или разрушение перемычек) приводят к сниже­нию потока тепла от поршня и, соответственно, к его перегре­ву с последующим разрушением. Другая часть тепла от порш­ня передается через его юбку в стенку цилиндра, а также че­рез палец в шатун и далее рассеивается в картере. Незначи­тельная часть тепла уходит в картер в результате вентиляции внутри поршневого пространства при возвратно-поступатель­ном движении поршня.

Тепловое состояние (т.е. распределение температуры) поршня в значительной степени зависит от его конструкции и материала. Эти факторы влияют на такие параметры, как за­зор между поршнем и цилиндром, износ юбки и др. Чем хуже отвод тепла, тем больше температура поршня, тем больше его тепловое расширение и тем больше необходимый зазор. Если зазор между поршнем и цилиндром окажется меньше, чем на­до, поршень в цилиндре может заклинить. При очень малом зазоре увеличивается трение юбки поршня о стенки цилинд­ра, из-за чего вместо отвода тепла может происходить его подвод (разогрев юбки от трения). После заклинивания и по­следующего остывания поршень, как правило, деформируется (сжимается по юбке), а на поверхности цилиндра появляются глубокие царапины (задиры), иногда со следами алюминия, перенесенного с поршня на материал гильзы.

При определенных условиях в эксплуатации бензиновых двигателей могут возникать нарушения процесса сгорания. К ним относятся детонация и преждевременное воспламенение.

Явление детонации широко известно. Внешние проявле­ния детонации — характерный стук, появляющийся при работе на низкооктановом топливе с увеличением нагрузки (т. е. при открытии дроссельной заслонки).

Суть детонации заключается в ненормально быстром (в сотни раз быстрее обычного) сгорания части смеси. При этом образуются ударные волны, с большой скоростью распростра­няющиеся по камере сгорания. В ударной волне происходит скачкообразный рост давления и температуры среды, в кото­рой распространяется волна. А это вызывает воспламенение смеси не в результате обычного распространения пламени (скорость порядка 20-30 м/с), а из-за ее разогрева в ударной волне, движущейся со скоростью более 1000 м/с.

Механизм возникновения детонации поддается изучению с большими трудностями. Опытным путем установлено, что компактные камеры сгорания с вытеснителями имеющие форму, близкую к сферической, менее склонны к образова­нию детонационных процессов, чем длинные и узкие камеры с острыми углами и выступами. Однако в каж­дом конкретном случае при разработке нового двигателя оп­ределить наилучшую форму камеры сгорания — дело очень от­ветственное, долгое и кропотливое.

В эксплуатации детонация наиболее часто возникает на низкооктановом топливе при малых и средних частотах враще­ния и больших нагрузках. Детонация изменяет характер проте­кания давления в цилиндре по углу поворота, резко увеличивает максимальное давление, температуру и нагрузки на детали дви­гателя. Последствия длительной работы двигателя с детонацией весьма тяжелы. В первую очередь это — поломка поршней и пор­шневых колец из-за ударных нагрузок. Наиболее подвержены поломкам перемычки поршней между канавками колец. Удар­ная волна, вызывая резкое повышение давления в зазоре меж­ду днищем поршня и цилиндром, бьет по верхнему поршневому кольцу. Удар передается на перемычку поршня, причем одно­временно не по всей окружности кольца, а в конкретной доста­точно узкой области, что облегчает поломку деталей.

Детонация вызывает не только поломку перемычек, но и перегрев и разрушение краев днища поршня (каверны на по­верхности), поломку поршневых колец. Последующий перегрев поршня обычно настолько велик (из-за уменьшения теплоотвода через кольца), что выгорает огневой пояс поршня от днища до верхнего и даже нижнего поршневого кольца.

После поломки деталей падает давление в цилиндре и мощность двигателя, увеличивается прорыв газов в картер (и давление в картере), расход масла. Результатом длительной работы двигателя с детонацией может быть также износ по торцу верхней канавки поршня и верхнего кольца, износ по­верхностей сопряжения поршня и поршневого пальца. Эти случаи встречаются довольно часто, но ускоренные износы не всегда удается связать с детонацией.

Режимы детонации ограничивают углы опережения зажи­гания на некоторых режимах. Это значит, что при увеличении опережения зажигания основные параметры двигателя повы­шаются, однако, работа на этих режимах недопустима из-за опасности поломки деталей. Электронные системы управле­ния двигателем точно отлеживают эти режимы, в том числе с помощью датчиков детонации.

На некоторых двигателях (TOYOTA, NIS­SAN) вместо одной свечи устанавливают две на один цилиндр. Такая конструкция является достаточно эффективной для уменьшения склонности двигателя к детонации при повышении степени сжатия за счет сокращения длины пути фронта пламе­ни по камере сгорания. Снижает вероятность возникновения детонации более низкая температура поверхностей камеры i сгорания и днища поршня. Это достигается интенсификацией i охлаждения камеры путем уменьшения толщины стенок, увеличения скорости течения охлаждающей жидкости у стенок и даже некоторым снижением уровня температуры охлаждающей жидкости (например, с 90-95°С до 80-85

0С) за счет схемы и конструкции системы охлаждения двигателя.

У двигателей с впрыском топлива температура топливо-воздушной смеси на входе в цилиндр обычно меньше, чем укарбюраторных двигателей, поскольку у последних необходим подогрев смеси на впуске (иначе не будет качественного испарения и сгорания топлива). Поэтому двигатели с впрыском топлива при прочих равных условиях менее склонны к детонации, что позвопяет несколько увеличить у них степень сжатия. Аналогичное влияние оказывает промежуточное ох­лаждение воздуха у двигателей с наддувом.

Кроме детонации, на практике встречается явление преждевременного воспламенения, называемое также калильным зажиганием. При калильном зажигании происходит воспла­менение смеси не от искрового разряда свечи, а от нагретых до очень высоких температур (более 700°С) поверхностей ка­меры сгорания. В качестве таких источников воспламенения могут выступать электроды свечи зажигания, тарелка выпуск­ного клапана или частицы нагара, если нагар лежит на дета­лях достаточно толстым слоем.

Обычно калильное зажигание возникает из-за несоответ­ствия характеристики свечи, рекомендованной изготовите­лем автомобиля, в частности, когда для двигателя с высокой степенью сжатия использована «горячая» свеча от низкофор­сированного двигателя. При этом смесь в цилиндре самовос­пламеняется несколько раньше, чем происходит искровой разряд, но процесс сгорания протекает нормальным обра­зом. С ростом нагрузки и частоты вращения момент самовос­пламенения отодвигается в раннюю сторону, из-за чего теп­ловое и силовое воздействие на детали двигателя, особенно, на поршень, значительно возрастает.

Опасность калильного зажигания заключается в том, что на начальной стадии его практически невозможно отличить «на слух» от обычного сгорания, в то время как с течение вре­мени (обычно от нескольких десятков секунд до нескольких минут), когда у двигателя появляется посторонний звук и он начинает терять мощность, детали поршневой группы уже мо­гут быть повреждены. Вследствие этого на двигате­лях современных автомобилей замена свечей зажигания оказывается весьма небезопасной для двигателя, если ста­вятся первые попавшиеся свечи.{jcomments on}

Бензиновый и дизельные двигатели: кому достаётся больше?

БЕНЗИНОВЫЙ

Образование рабочей смеси и ее горение происходит
не так быстро, как в дизельном двигателе.

 

 

ДИЗЕЛЬНЫЙ

Дизельные двигатели более теплонапряжены,
работают на более бедных горючих смесях,
а смесеобразование и сгорание у них происходит
в сотни раз быстрее.

0,8-0,9 БАР 70-120° C

На такте впуска давление в цилиндре
ниже атмосферного — 0,8-0,9 бара.
Температура топливовоздушной смеси
из-за ее контакта с нагретыми деталями двигателя
и смешивания с остаточными раскаленными газами — 70-120 °C.

 

110-250 БАР 550-600° C

Воздух в цилиндре сжимается до давления
в 28-40 бар, нагреваясь до 550-600 °C,
иначе говоря — до температуры самовоспламенения
тяжелого жидкого топлива. У верхней
мертвой точки в цилиндр впрыскивается
топливо под давлением
110-250 бар

20-40 БАР 400-600° C

Когда поршень сжимает рабочую смесь,
давление в камере сгорания возрастает 
до 20-40 бар, сама же рабочая смесь
нагревается до 400-600° C.

 

 

40-80 БАР до 1800° C

Распыленное в среде горячего сжатого воздуха
топливо самовоспламеняется и сгорает
при температуре до 1800° C.
Поэтому часто говорят, что воспламенение 
топливной смеси дизельных двигателей
происходит «от сжатия».
Давление образовавшихся газов на поршень
составляет 40-80 бар.

0,03% СЕРЫ

Незадолго до верхней мертвой точки тепловоздушная
смесь воспламеняется от искры свечи зажигания
и сгорает при температуре 980-1100° C,
выделяя большое количество тепла.
Температура образовавшихся газовв цилиндре при
этом возрастает до 1800° C поршень
толкается под давлением порядка 40 бар.

 

40-80 БАР до 1800° C

Распыленное в среде горячего сжатого воздуха 
топливо самовоспламеняется и сгорает 
при температуре до 1800° C. Поэтому часто говорят,
что воспламенение топливной смеси
дизельных двигателей происходит «от сжатия». 
Давление образовавшихся газов на поршень 
составляет 40-80 бар.

Моторное масло QUARTZ INEO MC3 5W-30
 содержит самый современный пакет противоизносных
присадок, который позволит защитить бензиновый
двигатель от износа и обеспечить его максимальный
ресурс. Синтетическое базовое масло позволяет
выдерживать продленные интервалы замены
и свести к минимуму необходимость доливки
моторного масла в процессе эксплуатации автомобиля.

 

Пакет моюще-диспергирующих присадок в
моторном масле QUARTZ INEO MC3 5W-30
содержит все необходимые компоненты, способствующие
максимальному удалению сажи и нагаров, образующихся
при сгорании дизельного топлива,что позволяет получить
высокую степень чистоты двигателя.

Правильная рабочая температура двигателя: Бензин- Дизель… Motoran.ru

Стабильность работы любого автомобиля зависит от условий эксплуатации и технических характеристик двигателя внутреннего сгорания. Такой показатель, как рабочая температура двигателя, зависит не только от условий окружающей среды, но и от многих эксплуатационных факторов. Если данный параметр соответствует расчетной величине, т. е. находится в допустимом диапазоне, силовой агрегат обеспечивает максимальную отдачу энергии в течение длительного времени. При оптимальных режимах двигателя внутреннего сгорания создаются лучшие условия для функционирования всех систем автомобиля.

Какая должна быть рабочая температура двигателя

При сгорании топливных смесей в цилиндрах мотора выделяется огромное количество тепла. В камерах сгорания температура достигает более 2000°С. В конструкцию силовых агрегатов включена система охлаждения, элементы которой отводят тепло от рабочих узлов. Благодаря эффективной работе элементов охлаждающей системы ДВС, тепловой режим поддерживается в оптимальных границах от +80 до 90°С. Существуют отдельные типы моторов, для которых нормы расширены до 110°С, чаще всего это механизмы с воздушным охлаждением.

При работе двигателя в оптимальном температурном режиме создаются наилучшие условия для:

  1. Полноценного наполнения цилиндров топливовоздушными смесями.
  2. Стабильности работы силового агрегата во время движения.
  3. Надежной работы механизмов и систем транспортного средства.

Отклонения от нормы температурных режимов силовых агрегатов

Показания температуры внутри двигателя можно увидеть на приборе, расположенном в салоне любого современного автомобиля.

К чему приводит превышение нормы рабочей температуры в двигателе? При сверхвысоких температурах технологические тепловые зазоры металлических элементов нарушаются. Это вызывает следующие негативные изменения в работе силового агрегата:

  • ускоренный износ рабочих узлов и деталей;
  • деформации и поломки механизмов;
  • уменьшение мощности двигателя;
  • возникновение детонации;
  • несанкционированное воспламенение горючего.

Что означает понятие – низкая температура двигателя? Если в процессе движения автомобиля стрелка прибора находится ниже рекомендуемого уровня температурного режима, имеются веские основания для тревоги. Непрогретая топливовоздушная смесь конденсируется и оседает на стенках цилиндров. При попадании конденсата в масляный поддон происходит разжижение моторного масла. Технических свойства и характеристики смазочного материала резко ухудшаются. При длительной работе в низком тепловом режиме узлы и детали силового агрегата быстро изнашиваются и приходят в негодность.

Если температура двигателя не поднимается до рабочей, во избежание преждевременного выхода из строя компонентов мотора, водителю необходимо отправить автомобиль на диагностику в ближайший сервисный центр.

Рабочая температура бензинового двигателя

Работа каждого двигателя внутреннего сгорания сопровождается выделением тепла. Рабочие элементы мотора функционируют в условиях высоких температурных режимов.

При опускании поршня в самую нижнюю точку затрачивается большое количество энергии, одновременно с этим выделяется тепло. Элементы силовых агрегатов изготовлены из металла. Как известно, при нагревании данный материал расширяется. При изготовлении узлов и деталей двигателей предусмотрены специальные тепловые зазоры, рассчитанные на нагрев изделий до оптимальных значений. Для предотвращения заклиниваний в конструкцию мотора включена система охлаждения двигателя.

Какая рабочая температура бензинового двигателя является оптимальной? Рабочая температура бензиновых силовых агрегатов как карбюраторного, так и инжекторного, не должна превышать +90°С. Задача охлаждающей жидкости – сохранять постоянную температуру двигателя на должном уровне.

Интересно: Существует понятие «опасная температура двигателя». Для ДВС бензинового типа она составляет 130°С. После достижения предельных значений может произойти заклинивание элементов силового агрегата.

Важно: После включения мотора при дальнейшем движении транспортного средства оператор, постоянно держит под контролем значения рабочей температуры ДВС. Отклонения свидетельствуют о проблемах, появившихся в охлаждающей системе:

  1. Повышение температуры в бензиновом двигателе приводит к закипанию и быстрому испарению ОЖ.
  2. При уменьшении ее количества температура мотора стремительно возрастет.
  3. Под воздействием высоких температур металл начнет деформироваться и расширяться в объеме.
  4. Размеры деталей будут сильно изменены.
  5. В результате, произойдет заклинивание мотора.

Чтобы восстановить работоспособность такого двигателя потребуется дорогостоящий капитальный ремонт автомобиля.

К чему приводит переохлаждение мотора

Такое явление, как переохлаждение также негативно сказывается на качестве работы силового агрегата. Чаще всего это случается зимой или при эксплуатации транспортного средства в сложных климатических условиях крайнего севера.

Рабочая температура двигателя зимой может быть резко снижена в процессе движения авто. При этом потоки охлажденного воздуха обдувают радиатор и весь силовой агрегат. В результате, охлаждающая жидкость резко понижает температуру мотора, даже, если он работает на полных нагрузках.

Понижение рабочей температуры мотора опасно по следующим причинам:

  1. При переохлаждении системы питания в карбюраторе обмерзает отверстие жиклера, через которое поступает воздух, в результате свечи зажигания заливаются бензином. Чтобы продолжить движение, водителю придется ждать высыхания свечей.
  2. При минусовых температурах окружающей среды в автомобилях, работающих на воде, охлаждающая жидкость (ОЖ) замерзает в трубках радиатора. Прекращение циркуляции ОЖ приводит к перегреву мотора. Опытные автовладельцы устанавливают специальные тканевые перегородки или защитные жалюзи на решетку радиатора.
  3. Ухудшение качества или отсутствие отопления салона автомобиля в зимний период может привести к нарушениям управления транспортным средством.

Рабочая температура дизельного двигателя

Поддержание рабочей температуры дизеля является необходимым условием для оптимального функционирования механизмов и систем транспортного средства. Принцип действия дизельного мотора принципиально отличается от бензинового. Здесь топливная смесь не готовится заранее. Первым в камеру попадает воздух. При сильном сжатии воздушная масса разогревается до +700°С. В момент топливного впрыска происходит взрыв с последующим равномерным сгоранием образовавшейся смеси. В результате чего, поршень перемещается в нижнюю мертвую точку.

Температура дизеля зависит от следующих факторов:

  • тип мотора;
  • период задержки воспламенения топливовоздушной смеси;
  • качество, равномерность сгорания топлива.

Считается, что оптимальная рабочая температура двигателя должна находиться в пределах 70 – 90°С. Допустимый максимум для дизельных силовых агрегатов, работающих под усиленными нагрузками, равен +97°С, не более.

Совет: Если дизельный двигатель исправен, перед началом движения рекомендуется прогреть охлаждающую жидкость до температуры не менее +40°С. При сильных морозах за бортом автомобиля мотор может начинать прогреваться только при движении. На первых порах рекомендуется включить пониженную передачу. В дальнейшем, нагрузка на движок должна повышаться постепенно, только после поднятия температуры хотя бы до 80°С.

Краткое описание принципа действия системы охлаждения

В данную систему входят следующие рабочие элементы:

  1. Расширительная емкость.
  2. Радиатор охлаждения.
  3. Патрубки верхний и нижний.
  4. Рубашки охлаждения блока цилиндров.
  5. Соединительные шланги.
  6. Насос ОЖ.
  7. Термостат.
  8. Радиатор отопителя салона.
  9. Охлаждающая жидкость.

Схема работы системы охлаждения силового агрегата:

Как видно из схемы, в охлаждающей системе происходят следующие процессы:

  • Охлаждающая жидкость под воздействием насоса в принудительном порядке проходит по шлангам, трубкам и прочим магистралям.
  • Она эффективно омывает каждый цилиндр ДВС.
  • Цилиндры, в частности камеры сгорания, являются источниками основного тепла, выделяемого силовым агрегатом.
  • Вокруг каждого цилиндра расположены специальные технологические полости под названием «рубашки охлаждения».
  • Рубашки охлаждения сообщаются между собой посредством подготовленных каналов. Через данные полости охлаждающая жидкость циркулирует в постоянном режиме.
  • Благодаря движению ОЖ, тепловая энергия отводится от двигателя внутреннего сгорания в радиатор через верхний патрубок.
  • Проходя сквозь лабиринты тонких трубок радиатора, жидкость охлаждается при помощи естественного обдува или воздушных потоков, создаваемых вентилятором.
  • Далее ОЖ продолжает круговое движение через нижний патрубок охлаждающего радиатора.

Методы восстановления нормальной температуры ДВС

При обнаружении завышения данного параметра, прежде всего, нужно остановить автомобиль, заглушить мотор и начать обследование:

  1. Убедиться в достаточном объеме антифриза в системе охлаждения.
  2. При необходимости восполнить необходимое количество.
  3. Жидкость заливается непосредственно в радиатор охлаждения (при этом необходимо соблюдать осторожность, чтобы не обжечься горячим составом).
  4. Осмотреть систему, чтобы исключить возможные протечки.
  5. Продиагностировать радиатор на предмет герметичности.

Если восполнение объема антифриза не дало ожидаемого результата, температура двигателя продолжает подниматься, это означает, что мотор нуждается в компьютерной диагностике в условиях специализированного сервисного центра.

Среди наиболее частых отказов в системе охлаждения ДВС можно выделить следующие пункты:

  • сбои в работе клапана термостата;
  • поломки электрического вентилятора;
  • чрезмерное засорение трубок радиатора;
  • поломка клапана крышки расширительного бачка;
  • протечки в корпусе насоса;
  • нарушение герметичности системы.

Тепловой режим двигателя считается оптимальным при его значениях, находящихся в пределах от +80 до +90 °С. При таких условиях мотор работает стабильно. При этом обеспечена существенная экономия горючего материала, детали и узлы силового агрегата получают минимальный износ, независимо от нагрузок на двигатель и особенностей работы транспортного средства.

Важно: Чтобы рабочая температура ДВС находилась в заданных пределах, необходимо проводить регулярную диагностику системы охлаждения силового агрегата.

Температура в камере сгорания дизельного двигателя и давление

Дизельный двигатель сегодня является вторым по степени распространенности типом ДВС после бензинового агрегата. Конструктивно дизельный мотор похож на бензиновый аналог, так как имеет все те же цилиндры, шатуны, поршни, коленвал  и т.д. При этом все детали более массивные и тяжелые, ведь они должны выдерживать повышенные нагрузки.

Дело в том, что степень сжатия в дизеле выше, чем в агрегатах на бензине. Если в бензиновом моторе указанный средний показатель составляет от 9-и до 11-и единиц, то в дизельном уже целых 20-24. По этой причине дизельный двигатель тяжелее и крупнее бензинового агрегата.

Главным же отличием является способ приготовления, подачи и воспламенения топливно-воздушной смеси. В большинстве моторов на бензине рабочая смесь образуется во впускном коллекторе и «засасывается» в цилиндры.

После подачи в цилиндры рабочая смесь воспламеняется в камере сгорания от искры. При этом в дизельном двигателе топливо и воздух подаются отдельно, при этом смесь воспламеняется самостоятельно от резкого сжатия и нагрева.

Далее мы поговорим о том, какие процессы протекают в камере сгорания дизельного двигателя, как реализована подача дизтоплива, каким образом происходит смесеобразование и воспламенение заряда, а также какое давление и температура в камере сгорания дизеля.

Содержание статьи

Камеры сгорания дизельных двигателей и особенности работы такого ДВС

Начнем с того, что камеры сгорания дизельных двигателей несколько отличаются от бензиновых. Существует два основных типа камер:

  • неразделенная камера сгорания дизельного мотора;
  • разделенная камера сгорания дизельного ДВС;

Неразделенный тип является однообъемной камерой, как правило, простой формы, которая согласована с расположением форсунок. Такие камеры обычно выполняются в днище поршней, также могут быть изготовлены частично в днище и частично в ГБЦ, редко только в головке блока.

Разделенный тип камеры сгорания предполагает два отдельных друг от друга объема, которые соединены посредством особых каналов. Таких каналов может быть от одного и больше.

Если говорить о плюсах и минусах, первый тип позволяет обеспечить двигателю лучший КПД, однако температуры в такой камере сгорания выше. Также растут и ударные нагрузки. Что касается разделенных камер сгорания, КПД меньше, однако удается реализовать более полноценное сгорание топлива, такой дизель меньше коксуется, дымит и т.д.

Как сгорает топливо в дизельном двигателе

Теперь давайте рассмотрим сам процесс горения. Как известно, для горения топлива необходимо определенное количество кислорода, а также источник, который позволит смеси воспламениться.

В дизеле вместо внешней искры таким источником является высокая температура, то есть нагрев.

Указанный нагрев достигается благодаря тому, что воздух в цилиндре сильно сжимается, а дизтопливо подается в самый последний момент. Это обусловлено тем, что температура, необходимая для воспламенения, растет с ростом давления, при этом температура самовоспламенения топлива в подобных условиях понижается.

Другими словами, топливно-воздушная смесь в дизельном двигателе самовоспламеняется от высокого давления и нагрева. При этом нормальная работа мотора сильно зависит от правильно настроенного впрыска, качественного сжатия смеси, а также от полноты сгорания заряда в цилиндрах.

В самом начале в цилиндр подается воздух, сжимается и нагревается. Далее топливо впрыскивается в камеру сгорания дизельного двигателя, во время впрыска происходит его распыление.

Затем возникает самовоспламенение, пламя распространяется по цилиндру. Впрыск горючего останавливается, а остатки топлива продолжают гореть. Далее процесс повторяется.

Как видно, хотя подача и горение заряда в дизеле протекает за очень короткий промежуток времени, этот отрезок можно разделить на этапы:

  • Первый этап- впрыск топлива до начала его воспламенения (задержка воспламенения). Форсунки на данном этапе подают солярку, причем в распыленном виде. Образуется топливный «туман», который распространяется в сильно сжатом и нагретом воздухе.

Фактически туман представляет собой мельчайшие капли топлива, но они не воспламеняются. Дело в том, что сначала горючее должно испариться.

Только после этого произойдет смешивание испаренного дизтоплива с воздухом, а сама смесь нагреется до температуры, необходимой для самостоятельного воспламенения. Отметим, что задержка воспламенения должна быть короткой.

  • Второй этап-воспламенение и распространение фронта пламени по цилиндру. Дело в том, что после воспламенения сразу горит не весь объем, а возникают точечные «очаги» возгорания. Они локализуются в местах, где топливо наиболее качественно смешалось с воздухом, а температура в камере около 1700 К.

Такое начальное горение приводит к повышению температуры и давления в цилиндре. В результате топливо, которое еще не загорелось, активно испаряется и смешивается с воздухом. В этот момент фактически происходит полное возгорание смеси в цилиндре, при этом резко увеличивается давление.

  • Наступает третий этап, года топливо непосредственно сгорает. Инжекторная форсунка еще впрыскивает солярку, горючее уже сразу загорается от контакта с пламенем в камере сгорания. Пламя в этот момент эффективно распространяется по всему объему, давление также максимально.

Именно на данном этапе давление в результате сгорающего топлива с большой силой толкает поршень, заставляя двигатель совершать полезную работу. Что касается температуры, показатель растет до 2200 К.

  • Завершающий четвертый этап является моментом, когда остатки топлива догорают в цилиндре. В это время поршень уже перемещается вниз, что означает падение давления и температуры.

Как видно, давление в камере сгорания дизельного двигателя играет первостепенную роль для реализации самовоспламенение топлива. Что касается впрыска, необходимо, чтобы солярка подавалась в строго определенный момент, в нужном количестве, а также качественно распылялась.

Если возникнут сбои, распространение пламени будет нарушено, температура в камере сгорания дизельного двигателя  повышается,  возникает риск детонации, топливо не сгорает в полном объеме и т.д.

Частые проблемы дизелей: момент впрыска и компрессия

Если сжатие смеси в цилиндре оказывается недостаточным, во время работы двигателя можно услышать шумы и металлические стуки. Дело в том, что в таком случае смеси нужно больше времени, чтобы нагреться до температуры воспламенения.

Получается, снижение компрессии дизельного двигателя увеличивает время до воспламенения заряда.

При этом в цилиндре несгоревшей смеси будет больше, чем нужно. В результате в момент возгорания такого заряда процесс горения приобретает взрывной характер, давление резко увеличивается, появляется ударная волна и детонация, разрушая ЦПГ и оказывая значительные нагрузки на детали мотора.

Также снижение компрессии приводит к тому, что дизель начинает дымить. Выхлоп может быть черным или серовато-белым. В случае с белым дымом из выхлопной трубы, дизтопливо попросту неэффективно воспламеняется в момент, когда поршень доходит до ВМТ.

Затем поршень идет вниз, температура и давление дополнительно снижаются, нет условий для горения. Получается, несгоревшая солярка испаряется и далее попадает в выпускную систему

То же самое происходит и в том случае, если впрыск дизтоплива слишком поздний. Другими словами, компрессия в цилиндрах нормальная, но подача топлива с опозданием приводит к тому, что поршень уже идет вниз, нет нужного сжатия и давления для самовоспламенения.

Если же выхлоп черный, это может указывать на то, что форсунки «переливают», то есть подача горючего происходит в большем объеме, чем необходимо. Простыми словами, дизтоплива много, а кислорода просто недостаточно на такое количество горючего.

Имеющийся кислород позволяет выгореть только части топлива, а несгоревшие остатки превращаются в углерод, что и проявляется в виде характерного черного дыма из выхлопной трубы.

Рекомендуем также прочитать статью о том, что такое степень сжатия двигателя. Из этой статьи вы узнаете о данном параметре применительно к двигателю внутреннего сгорания и особенностям его работы.

Еще отметим, что к похожим проблемам может приводить недостаточная подача воздуха (например, забит воздушный фильтр), завоздушивание системы питания дизельного двигателя и т.д.

В итоге, если нарушается нормальный процесс смесеобразования, это закономерно влияет на момент воспламенения и последующую эффективность сгорания топливного заряда в цилиндрах.

Что в итоге

С учетом вышесказанного становится понятно, что дизель особенно нуждается в высокоточном топливном впрыске. От этого напрямую завит КПД, ресурс мотора, экономичность, уровень токсичности отработавших газов и ряд других важных параметров.

По этой причине дизельные форсунки на современных типах указанных моторов способны обеспечить так называемый фазированный (многофазный) впрыск,  подавая дизтопливо до 10 раз за один рабочий такт мотора.

Напоследок отметим, что сегодня привычный ТНВД с механическими форсунками активно заменяется насос-форсунками или системой Common Rail, позволяя добиться максимальной эффективности впрыска горючего на всех этапах подачи топлива в камеру сгорания.

Подобные решения в сочетании с турбокомпрессором позволяют современному дизельному мотору уверенно конкурировать на рынке с бензиновыми аналогами, при этом высокая топливная экономичность остается главным преимуществом дизельного двигателя.

Читайте также

зачем современные моторы обречены на перегрев

Главная » Дизель » Рабочая температура дизельного двигателя — контроль и прогрев 446

Здравствуйте дорогие друзья, в наше время современные дизельные двигатели с быстрым прогревом рабочей температуры, все больше и больше завоевывают популярность.

До того как приступить к рассмотрению каких бы то ни было определенных параметров, необходимо иметь представление что вообще такое дизельный мотор. В 1824 году впервые была выдвинута теория, что тело можно разогреть до нужной температуры, если подвергнуть его изменению объема. Иначе говоря – применить стремительное сжатие.

На практике это было применено лишь через несколько десятилетий. Первый дизельный моторный агрегат увидел свет в 1897 году. Он был разработан инженером из Германии Рудольфом Дизелем. Работы такого двигателя основывается на том, что распыленное топливо, взаимодействуя с воздухом (разогретого в результате сжатия) самовоспламеняется. Сегодня дизельные двигатели используются на только в автомобилях, и сельхоз технике, они так же нашли свое место в танковом и судовом строении.

Особенности эксплуатации дизельного двигателя

Итак, прежде чем затрагивать какие-либо конкретные параметры, следует определиться, что же, вообще, представляет собой дизельный двигатель. История данного типа моторов начинается в далеком 1824 году, когда известный французский физик выдвинул теорию о том, что можно произвести нагрев тела до необходимой температуры путем изменения его объема. Другими словами, осуществив стремительное сжатие.

Однако практическое применение этот принцип нашел спустя несколько десятилетий, и в 1897 году был выпущен первый в мире дизель-мотор, его разработчиком является немецкий инженер Рудольф Дизель. Таким образом, принцип работы подобного двигателя заключается в самовоспламенении распыленного топлива, взаимодействующего с разогретым в процессе сжатия воздухом. Сфера применения такого мотора довольно обширна, начиная со стандартных автомобилей, грузовиков, сельскохозяйственной техники и заканчивая танками и судостроением.

Последствия перегрева и переохлаждения двигателя

Для начала постараемся рассказать о том, чем опасен перегрев мотора. Прежде всего, повышение температуры ведет к интенсивному кипению и испарению охлаждающей жидкости. Как только жидкость полностью выйдет из системы, охлаждение прекратится и тогда температура двигателя станет расти намного быстрее. Перегрев двигателя приводит к изменению свойств металла и к его расширению. Детали начинают деформироваться и менять свои нормальные размеры. Все это приводит к их заклиниванию и, в конечном счете, оживить мотор без дорогостоящего ремонта станет невозможным.

В настоящий момен все автомобили с бензиновым двигателем имеют опасную температуру двигателя, которая составляет 130 градусов Цельсия. При достижении температуры этой отметки как раз и происходит заклинивание двигателя.

Предельно допустимые температуры ограничиваются свойствами охлаждающей жидкости. Если температура кипения воды составляет 100 градусов, то температура кипения тосола может варьироваться от 108 до 138 градусов Цельсия. Поэтому, есть ряд двигателей, которые допустимо эксплуатировать и при 120 градусах.

Достоинства и недостатки дизеля

Теперь же следует сказать пару слов обо всех плюсах и минусах подобных конструкций. Начнем с положительных сторон. Моторы данного типа работают практически на любом горючем, поэтому к качеству последнего не предъявляются какие-либо серьезные требования, более того, с увеличением его массы и содержания атомов углерода повышается и теплотворная способность движка, а, следовательно, и его эффективность. Его КПД иногда переваливает за отметку 50%.

Автомобили с такими моторами более «отзывчивые», а все благодаря высокому значению вращающего момента на низких оборотах. Поэтому такой агрегат приветствуется на моделях спортивных машин, где нельзя не газовать от души. Кстати, именно этот фактор поспособствовал широкому распространению данного типа мотора на большие грузовые авто. Да и количество СО в составе выхлопных газов дизельных моторов значительно ниже, чем у бензиновых, что также является несомненным преимуществом. Кроме того, они намного экономичнее, да и раньше топливо стоило значительно ниже бензина, хотя на сегодняшний день их цены практически сравнялись.

Что же насчет недостатков, так они носят следующий характер. В связи с тем, что во время рабочего процесса возникает огромная механическая напряженность, детали дизельного двигателя должны быть более мощными и качественными, а, значит, и более дорогостоящими. Кроме того, это сказывается и на развиваемой мощности, причем не с самой лучшей стороны. Экологическая сторона вопроса сегодня очень важна, поэтому ради снижения выброса выхлопных газов общество готово платить за более «чистые» моторы и развивают это направление в исследовательских лабораториях. Еще одним значительным минусом является вероятность застывания топлива в холодное время года, так что если вы живете в регионе, где преобладают довольно низкие температуры, то дизельное авто не самый лучший вариант. Выше было сказано, что к качеству горючего не предъявляются серьезные требования, однако это касается только лишь масляных примесей, а вот с механическими ситуация обстоит намного серьезней. Детали агрегата очень чувствительны к подобным добавкам, кроме того, они быстро выходят из строя, а ремонт довольно сложный и дорогостоящий.

Температура дизельного ДВС

Поддержание температуры дизельного двигателя в строго заданных рамках является важным параметром для достижения оптимальных эксплуатационных показателей. От конструктивных особенностей и целевого назначения двигателя будет зависеть, какая рабочая температура дизеля будет нормальной для того или иного мотора.

Рабочий температурный режим одного ДВС может заметно отличаться от другого. Что касается дизельного двигателя, его рабочая температура (при условии полностью исправного агрегата, системы охлаждения и других узлов) зависит от ряда условий.

Показатель степени сжатия

Дизельный мотор работает по принципу самовоспламенения смеси от контакта распыленной солярки с разогретым от сжатия воздухом. Чем сильнее сжимается (разогревается) в цилиндре воздух, тем интенсивнее происходит вспышка после топливного впрыска, при этом количество подаваемого топлива остается одинаковым.

Зависимость эффективности вспышки от степени сжатия (повышения температуры воздуха) влияет на КПД дизельного двигателя. Получается, моторы с высокой степенью сжатия условно можно считать более «горячими».

Стоит также учитывать, что степень сжатия повышают только до определенных пределов. Топливно-воздушная смесь в цилиндре должна не взрываться от контакта с разогретым воздухом, а равномерно сгорать. Сильное увеличение степени сжатия может привести к бесконтрольному воспламенению топлива, что вызывает детонацию, локальные перегревы и ускоренный износ цилиндропоршневой группы.

Допустимые рабочие температуры дизельных ДВС

Температура дизельного двигателя будет напрямую зависеть от типа мотора. От поддержания рабочего температурного показателя дизельного агрегата зависит процесс смесеобразования и сгорания топливно-воздушной рабочей смеси, а также нормальное функционирование других систем ДВС.

После выхода на рабочую температуру время испарения солярки сокращается до оптимального показателя, уменьшается период задержки самовоспламенения. Топливно-воздушная смесь сгорает равномерно и полноценно, что приводит к увеличению КПД дизеля, меньшему расходу топлива и снижению токсичности выхлопных газов.

По утверждениям специалистов, оптимальным показателем рабочей температуры дизельного мотора считается температурный режим на отметке от 70 до 90 градусов Цельсия. Допустимым максимумом в процессе работы дизеля под нагрузкой является повышение температуры дизельного двигателя до 97 градусов, но не выше.

Дизель не прогревается до оптимальной температуры

В процессе прогрева исправного дизельного ДВС в режиме холостого хода желательно дождаться нагрева охлаждающей жидкости до температуры около 40-50°С. При сильном минусе за бортом дизель может и вовсе начать прогреваться только в движении. Начинать езду необходимо на пониженной передаче, придерживаясь отметки около 2-2.5 тыс. об/мин. Когда температура поднимется до 80°С, нагрузку на мотор можно увеличить.

Рекомендуем также прочитать статью о том, почему дизель дымит черным дымом. Из этой статьи вы сможете узнать о причинах дымления дизельного двигателя на различных режимах его работы.

Если дизель не выходит на рабочую температуру в движении, это говорит о том, что произошло снижение его КПД. Падает мощность, автомобиль хуже разгоняется, возрастает расход дизтоплива и т.д. Данные симптомы могут указывать на следующие неполадки:

Работа дизеля, который не прогрелся до рабочей температуры, под серьезной нагрузкой приводит к неполному сгоранию смеси, активному образованию нагара, засорению топливных форсунок, ускоренному износу узлов силового агрегата, выходу из строя сажевого фильтра и т.д.

В качестве примера можно рассмотреть засорение распылителя дизельной форсунки. Качество распыла топлива снижается, форсунка «льет» солярку. Топливо начинает сгорать неравномерно и несвоевременно, догорает на поршне и вызывает его прогар. Также прогорать может и выпускной клапан. Результатом становится падение компрессии, то есть воздух в неисправных цилиндрах не сможет сжиматься до такой температуры, при которой сгорание смеси будет оптимальным. Дизельный ДВС в подобных условиях не выйдет на рабочую температуру, будет испытывать затруднения с запуском «на холодную» и после прогрева.

krutimotor.ru

Основные параметры агрегатов на дизельном двигателе

Прежде чем отвечать на вопрос, какая рабочая температура у дизельного двигателя, стоит немного уделить внимание и его основным параметрам. К ним относится тип агрегата, в зависимости от количества тактов могут быть четырех- и двухтактные моторы. Также немалое значение имеет количество цилиндров с их расположением и порядком работы. На мощность транспортного средства существенно влияет и крутящий момент.

Теперь же рассмотрим непосредственно влияние степени сжатия газово-топливной смеси, которой, собственно говоря, и определяется рабочая температура в цилиндрах дизельного двигателя. Как уже было сказано вначале, мотор работает за счет воспламенения паров топлива при взаимодействии их с раскаленным воздухом. Таким образом происходит объемное расширение, поршень поднимается и, в свою очередь, толкает коленчатый вал.

Чем большим будет сжатие (температура также повышается), тем интенсивнее происходит выше описываемый процесс, а, следовательно, и повышается значение полезной работы. Количество топлива остается неизменным.

Однако имейте в виду, что для наиболее эффективной работы двигателя топливно-воздушная смесь должна равномерно гореть, а не взрываться. Если же сделать степень сжатия очень большой, это приведет к нежелательному результату – неконтролируемому воспламенению. Кроме того, подобная ситуация не только способствует недостаточно эффективной работе агрегата, но и ведет к перегреву и повышенному износу элементов поршневой группы.

Почему важно знать рабочую температуру двигателя?

Все двигатели внутреннего сгорания склонны к перегревам. Это связано с тем, что их работа связана с высоким температурным режимом.

Дело в том, что для того, чтобы опустить поршень в нижнюю мертвую точку, нужна очень большая энергия, которая не может происходить без отдачи большого количества теплоты. Как известно металл – это материал, который очень чувствителен к широкому диапазону температурных изменений. При нагревании металла, происходит его расширение, соответственно в двигателе происходит деформация тех участков, в которых соблюдение точных размеров является залогом успешной работы силовой установки.

Для того, чтобы не нарушать работу мотора предусмотрена система охлаждения, цель которой обеспечить наиболее оптимальную рабочую температуру двигателя, при которой не происходит деформация важных частей.

Фазы сгорания топлива и система выхлопных газов

Как же осуществляется процесс сгорания топливно-воздушной смеси в дизельных моторах и какая при этом температура в камере? Итак, весь процесс работы двигателя можно разделить на четыре основные стадии. На первой происходит впрыскивание горючего в камеру сгорания, происходящее под высоким давлением, что и является началом всего процесса. Затем хорошо распыленная смесь самовоспламеняется (вторая фаза) и горит. Правда, далеко не всегда топливо во всем объеме достаточно хорошо перемешивается с воздухом, есть еще и зоны, имеющие неравномерную структуру, они начинают гореть с некоторым запозданием. На данном этапе вероятно возникновение ударной волны, но она не страшна, так как не приводит к детонации. Температура же, царящая в камере сгорания, достигает 1700 К.

Во время третьей фазы образуются капли из неотработанной смеси, они при повышенных температурах превращаются в сажу. Такой процесс, в свою очередь, приводит к высокой степени загрязнения выхлопных газов. В этот период температура еще более возрастает на целых 500 К и достигает значения 2200 К, при этом всем давление, напротив, постепенно понижается. На последнем же этапе происходит догорание остатков топливной смеси, чтобы она не выходила в составе выхлопных газов, существенно загрязняя атмосферу и дороги. Для этой стадии характерен недостаток кислорода, это происходит из-за того, что его большая часть уже сгорела на предыдущих фазах. Если подсчитать все количество потраченной энергии, то она будет составлять около 95 %, оставшиеся же 5% теряются в связи с неполным сгоранием горючего.

Регулируя степень сжатия, а точнее, доведя ее до максимально допустимого значения, можно немного снизить расход топлива. В этом случае температура отработанных выхлопных газов дизельного двигателя будет находиться в пределах от 600 до 700 °С. А вот в аналогичных карбюраторных моторах ее значение может достигнуть целых 1100 °С. Поэтому получается, что во втором случае теряется намного больше тепла, а выхлопных газов вроде как больше.

Видео — Главная дорога — к чему приводит перегрев двигателя

  • Переохлаждение

Как бы это странно ни звучало, но переохлаждение двигателя тоже может быть. Речь идет об автомобилях, эксплуатируемых в районах крайнего севера, где минусовая погода является повседневностью. Переохлаждение двигателя происходит, в основном, во время движения автомобиля, когда поток холодного воздуха со стремительной скоростью обдувает радиатор и сам мотор. Прежде всего, очень быстро достигает низкой температуры охлаждающая жидкость, которая со стремительной скоростью остужает мотор даже во время работы при больших нагрузках.

Пониженная температура двигателя может привести к следующим неприятностям:

  • Для карбюраторного двигателя – замерзание системы питания двигателя. В этом случае, жиклер, через который должен поступать воздух очень быстро покрывается льдом, и свечи автомобиля попросту заливает. В этом случае, продолжить движение, пока свечи не высохнут — невозможно. Решают такую проблему установкой специальной гофры на воздушном фильтре, которая набирает поток теплого воздуха возле выпускного коллектора двигателя.
  • Замерзание охлаждающей жидкости. В основном такая проблема касается автомобилей, эксплуатируемых на воде. Дело в том, что при нормальном режиме работы в холодный период, температура падает до таких значений, что термостат закрывает допуск воды к радиатору. Соответственно, при движении вода в радиаторе замерзает и при выходе двигателя на повышенные нагрузки, даже с открытым термостатом, не циркулирует по радиатору, соответственно двигатель начинает перегреваться. Вот так переохлаждение может привести к перегреву. Чтобы этого не допускать, на решетку радиатора подвешивают перегородку из плотной ткани или жалюзи.
  • Переохлаждение может привести к плохой работе системы отопления салона, которая так важна для обеспечения нормальной жизнедеятельности человека в машине. Так как охлаждающая жидкость остывает, остывает и воздух, попадающий в салон автомобиля, соответственно, управление автомобилем начинает нести определенный дискомфорт.

Вот так рабочая температура двигателя отвечает за многие процессы, протекаемые в различных системах двигателя внутреннего сгорания. Старайтесь как можно чаще уделять этому параметру повышенное внимание, так как от него зависит жизнь вашего мотора.

Температура поршня

Температуры в поршне

Температура поршня и цилиндра — важный параметр для эксплуатационной безопасности
и срока службы. Пиковые температуры выхлопного газа, даже если они действуют короткое
время, могут достигнуть больше 2,200°C. Температуры выхлопного газа варьируются между
600 к 850°C для дизельных двигателей, и 800 к 1050°C для бензиновых двигателей.

 

Температура свежей смеси (воздух или смесь) может быть боле 200°C
для турбированных двигателей. Интеркуллеры на впуске уменьшают температуру до 40-60°C,
что обеспечивает лучшее заполнение камеры сгорания, так же использование впрыска водо-метанола дает хорошие показатели на впуске, об этом писал в теме про в пуск.

Из-за теплоемкости, поршня и других частей в камере сгорания невозможно точно определить температурные колебания. Но все же можно утверждать, что есть небольшая амплитуда изменения температуры поршня хоть и в несколько градусов, в зависимости от такта, впуск это или рабочий ход. Днище поршня первым подвергается нагреву раскаленными газами и поглощает различное количество тепла,
в зависимости от такта, оборотов двигателя и нагрузки. Высокая температура в первую очередь отводится через поршневые кольца к стенкам цилиндра, и в меньшей степени, юбкой поршня.

Дальше разберем самые нагруженные температурные области поршня, следует отметить что они различны для разных типов поршней и зависят от их формы и материала из которого они изготовлены. Типичные температурные распределения для бензинового и
дизельного двигателя показаны на рисунках 1.1 и 1.2.

Рисунок 1.1:

Температурное распределение в
поршне бензинового двигателя

Рисунок 1.2:

Температурное распределение в
поршне дизельного двигателя

 

Температурные уровни и распределение в поршне по существу зависят от следующих
параметров:

  • Тип двигателя (бензин/дизель)
  • Число тактов (четырехтактный / двухтактник)
  • Процесс сгорания (прямой впрыск/обычный впрыск)
  • Режим двигателя (скорость, вращающий момент)
  • Охлаждение двигателя (вода/воздух)

  • Форма поршня и головки цилиндра (местоположение и число газовых каналов и клапанов,

    тип поршня, материал поршня)
  • Дополнительное охлаждение поршня (да/нет)
  • Интенсивность охлаждения (распыляют масло на поверхность поршня, охлаждающий канал, охлаждение этого канала, и т.д.),

Прочность поршней, особенно из легких сплавов, очень зависит от температуры. Очень важно знать о высоко температурных зонах возникающих в процессе работы, возможном расширении металла в этих областях и сможет ли поршень выдерживать нагрузку в этих режимах, особенно при возникновении детонации. Хоть современные двигателе и оснащаются системами контроля детонации, но все же она уместна и может привести к серьезным последствиям . Высокие тепловые нагрузки вызывают быстрое старение метала или так называемая усталость. Чаще всего усталость металла наблюдается в соединении поршневого пальца и поршня, а также в канавке первого компрессионного кольца..

Чрезмерно высокая температура компрессионного кольца приводит к нагару масла в канавке, закоксованию и в следствии залеганию. Повышается нагрузка на остальные кольца и теряется герметичность камеры сгорания, через кольца прорываются отработанные газы нарушая смазку поршня, что приводит к увеличению силы трения и еще большему увеличению температуры поршня. в последствии его заклиниванию или задирам.

Масса поршня

 

ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА ОТЛОЖЕНИЯ В ДВИГАТЕЛЕ

ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА ОТЛОЖЕНИЯ В ДВИГАТЕЛЕ

Исследование отложений в автомобильных двигателях.

Одним из резервов повышения показателей эксплуатационной надежности ДВС является снижение отложений нагаров, лаков и осадков на поверхностях их деталей, контактирующих с моторным маслом. В основе их образования лежат процессы старения масел (окисление углеводородов, входящих в состав масляной основы). Определяющее влияние на процессы окисления масла в двигателях, на образование отложений и эффективность работы ДВС в целом оказывает тепловой режим теплонагруженных деталей.

Ключевые слова: температура, поршень, цилиндр, моторное масло, отложения, нагар, лак, работоспособность, надежность.

Отложения на поверхностях деталей ДВС делятся на три основных вида – нагары, лаки и осадки (шламы).

Нагар – твердые углеродистые вещества, откладывающиеся во время работы двигателя на поверхностях камеры сгорания (КС). При этом отложения нагаров, главным образом, зависят от температурных условий даже при аналогичном составе смеси и одинаковой конструкции деталей двигателей. Нагар оказывает весьма существенное влияние на протекание процесса сгорания топливовоздушной смеси в двигателе и на долговечность его работы. Почти все виды ненормального сгорания (детонационное сгорание, калильное воспламенение и прочие) сопровождаются тем или иным влиянием нагара на поверхностях деталей, образующих КС.

Лак – продукт изменения (окисления) тонких масляных пленок, растекающихся и покрывающих детали цилиндропоршневой группы (ЦПГ) двигателя под действием высоких температур. Наибольший вред для ДВС наносит лакообразование в зоне поршневых колец, вызывая процессы их закоксовывания (залегания с потерей подвижности). Лаки, откладываясь на поверхностях поршня, контактирующих с маслом, нарушают должную теплопередачу через поршень, ухудшают теплоотвод от него.

На количество осадков (шламов), образующихся в ДВС, решающее влияние оказывает качество моторного масла, температурный режим деталей, конструкционные особенности двигателя и условия эксплуатации. Отложения этого типа наиболее характерны для условий зимней эксплуатации, интенсифицируются при частых пусках и остановках двигателя.

Тепловое состояние ДВС оказывает определяющее влияние на процессы образования различных видов отложений, прочностные показатели материалов деталей, выходные эффективные показатели двигателей, процессы изнашивания поверхностей деталей. В этой связи необходимо знать пороговые значения температур деталей ЦПГ, по крайней мере, в характерных точках, превышение которых приводит к указанным ранее негативным по следствиям.

Температурное состояние деталей ЦПГ ДВС целесообразно анализировать по значениям температур в характерных точках, расположение которых показано на рис. 1 . Значения температур в данных точках следует учитывать при производстве, испытаниях и доводке двигателей для оптимизации конструкций деталей, при выборе моторных масел, при сравнении тепловых состояний различных двигателей, при решении целого ряда других технических проблем конструирования и эксплуатации ДВС.

Рис. 1. Характерные точки цилиндра и поршня ДВС при анализе их температурного состояния для дизельных (а) и бензиновых (б) двигателей

Эти значения имеют критические уровни:

1. Максимальное значение температур в точке 1 (в дизельных двигателях – на кромке КС, в бензиновых – в центре донышка поршня) не должно превышать 350С (кратковременно, 380С) для всех серийно применяемых в автомобильном двигателестроении алюминиевых сплавов, иначе происходит оплавление кромок КС в дизелях и, нередко, прогар поршней в бензиновых двигателях. Ко всему прочему высокие температуры огневой поверхности днища поршня вызывают образование нагаров высокой твердости на этой поверхности. В практике двигателестроения это критическое значение температуры удается повышать путем добавления в поршневой сплав кремния, бериллия, циркония, титана и других элементов.

Недопущение превышения критических значений температур в этой точке, равно как и в объемах деталей ДВС, обеспечивается также путем оптимизации их форм и правильной организацией охлаждения. Превышение температурами деталей ЦПГ двигателей допустимых значений обычно является основным сдерживающим фактором для форсирования их по мощности. По температурным уровням следует иметь определенный запас с учетом возможных экстремальных условий эксплуатации.

2. Критическое значение температур в точке 2 поршня – над верхним компрессионным кольцом (ВКК) – 250…260С (кратковременно, до 290С). При превышении этой величины все массовые моторные масла коксуются (происходит интенсивное лакообразование), что приводит к “залеганию” поршневых колец, то есть потере их подвижности, и в результате – к существенному уменьшению компрессии, увеличению расхода моторного масла и др.

3. Предельное максимальное значение температур в точке 3 поршня (точка расположена симметрично по сечению головки поршня на внутренней его стороне) – 220С. При более высоких температурах на внутренней поверхности поршня происходит интенсивное лакообразование. Лаковые отложения, в свою очередь, являются мощным тепловым барьером, препятствующим теплоотводу через масло. Это автоматически приводит к повышению температур во всем объеме поршня, а значит, и на поверхности зеркала цилиндра.

4. Максимально допустимое значение температур в точке 4 (расположена на поверхности цилиндра, напротив места остановки ВКК в ВМТ) – 200С. При его превышении моторное масло разжижается, что приводит к потере стабильности образования масляной пленки на зеркале цилиндра и «сухому» трению колец по зеркалу. Это вызывает интенсификацию молекулярно-механического изнашивания деталей ЦПГ. С другой стороны, известно, что пониженная температура стенок цилиндра (ниже точки росы отработавших газов) способствует ускорению их коррозионно-механического изнашивания [1,2]. Ухудшается также смесеобразование и уменьшается скорость сгорания топливовоздушной смеси, что снижает эффективность и экономичность работы двигателя, вызывая повышение токсичности отработавших газов. Также следует отметить, что при существенно заниженных температурах поршня и цилиндра сконденсированные водяные пары, проникающие в картерное масло, вызывают интенсивную коагуляцию примесей и гидролиз присадок с образованием осадков – «шламов». Эти осадки, загрязняя масляные каналы, сетки маслоотстойников, масляные фильтры, существенно нарушают нормальную работу смазочной системы.

На интенсивность протекания процессов образования отложений нагаров, лаков и осадков на поверхностях деталей ДВС существенно влияет старение моторных масел при их работе. Старение масел состоит в накоплении примесей (в том числе воды), изменении их физико-химических свойств и окислении углеводородов.

Изменение фракционного состава чистого залитого масла по мере работы двигателя вызывается в основном причинами, изменяющими состав его масляной основы и процентное соотношение присадок по отдельным составляющим (парафиновым, ароматическим, нафтеновым).

К ним относятся:

  • процессы термического разложения масла в зонах перегрева (например, в клапанных втулках, зонах верхних поршневых колец, на поверхностях верхних поясов зеркала цилиндров). Такие процессы приводят к окислению наиболее легких фракций масляной основы или даже их частичному выкипанию;

  • добавление к углеводородам основы неиспарившегося топлива, попадающего в начальные периоды пусков (или при резком увеличении подачи топлива в цилиндры для осуществления ускорения автомобиля) в маслосборник картера через зону поршневых уплотнений;

  • попадание в поддон картера или маслосборник двигателя воды, образующейся при сго-рании топлива в КС цилиндров.

Если система вентиляции картера действует достаточно эффективно, а стенки картера находятся в подогретом состоянии до 90-95°С, вода не конденсируется на них и удаляется в атмосферу системой вентиляции картера. Если температура стенок картера существенно понижена, то попавшая в масло вода будет принимать участие в процессах его окисления. Количество сконденсировавшейся воды при этом может быть весьма значительным [2]. Даже если считать, что только 2% газов могут прорваться через все компрессионные кольца цилиндра, то через картер двигателя с рабочим объемом 2-2,5 л за каждые 1000 км пробега будет прокачиваться по 2 кг воды. Допустим, что 95% воды удаляется системой вентиляции картера, то все равно после пробега в 5000 км на 4,0 л моторного масла будет приходиться около 0,5 л Н2О. Эта вода при работе двигателя преобразуется антиокислительной присадкой, содержащейся в моторном масле, в примеси – кокс и золу.

По указанным ранее причинам необходимо поддерживать при работе двигателя температуру стенок картера достаточно высокой, а в случае необходимости – применять системы смазки с сухим картером и отдельным масляным баком.

Следует отметить, что мероприятия, замедляющие процессы изменения состава масляной основы, существенно замедляют образование нагара, лака и осадков, а также снижают интенсивность изнашивания основных деталей автомобильных двигателей .

Фракционный и химический состав масел может изменяться в достаточно широких
пределах под влиянием различных факторов:

  • характера сырья, зависящего от месторождения, свойств нефтяной скважины;

Для предварительной оценки свойств нефтепродуктов применяют различные лабораторные методы: определение кривой разгонки, температур вспышки, помутнения и застывания, оценку окисляемости в средах с различной агрессивностью и т.п.

В основе старения автомобильного моторного масла лежат процессы окисления, разложения и полимеризации углеводородов, которые сопровождаются процессами загрязнения масла различными примесями (нагаром, пылью, металлическими частичками, водой, топливом и пр.). Процессы старения существенно изменяют физико-химические свойства масла, приводят к появлению в нѐм разнообразных продуктов окисления и износа, ухудшают его эксплуатационные качества. Различают следующие виды окисления масла в двигателях: в толстом слое – в поддоне картера или в масляном баке; в тонком слое -на поверхностях горячих металлических деталей; в туманообразном (капельном) состоянии – в картере, клапанной коробке и т.п. При этом окисление масла в толстом слое даѐт осадки в виде шлама, а в тонком слое – в виде лака.

Окисление углеводородов подчиняется теории перекисей А.Н. Баха и К.О. Энглера, дополненной П.Н. Черножуковым и С.Э. Крейном. Окисление углеводородов, в частности, в моторных маслах ДВС, может идти по двум основным направлениям, представленным на рис. 2, результаты окисления по которым различны. При этом результатом окисления по первому направлению являются кислые продукты (кислоты, оксикислоты, эстолиды и асфальтогенные кислоты), образующие осадки при пониженных температурах; результатом окисления по второму направлению являются нейтральные продукты (карбены, карбоиды, асфальтены и смолы), из которых образуются в различных пропорциях при повышенных температурах или лаки, или нагары.

Рис. 2. Пути окисления углеводородов в нефтяном продукте (например, в моторном масле для ДВС)

В процессах старения масла весьма значительна роль воды, попадающей в масло при конденсации ее паров из картерных газов или другими путями. В результате этого образуются эмульсии, которые впоследствии усиливают окислительную полимеризацию молекул масла. Взаимодействие оксикислот и других продуктов окисления масла с водомасляными эмульсиями вызывает усиленное образование осадков (шламов) в двигателе.

В свою очередь, образовавшиеся частички шлама, если они не будут нейтрализованы присадкой, служат центрами катализации и ускоряют разложение еще не окислившейся части масла. Если при этом не произвести своевременную замену моторного масла, процесс окисления будет происходить по типу цепной реакции с увеличивающейся скоростью, со всеми вытекающими отсюда последствиями.

Решающее влияние на образование нагаров, лаков и осадков на поверхностях деталей ДВС, контактирующих с моторным маслом, оказывает их тепловое состояние. В свою очередь, конструкционные особенности двигателей, условия их эксплуатации, режимы работы и т.д.  определяют тепловое состояние двигателей и влияют, таким образом, на процессы образования отложений. 

Не менее важное влияние на образование отложений в ДВС оказывают и характеристики применяемого моторного масла. Для каждого конкретного двигателя важно соответствие рекомендованного заводом-изготовителем масла температуре поверхностей деталей, контактирующих с ним.

В данной работе произведен анализ взаимосвязи температур поверхностей поршней двигателей ЗМЗ-402.10 и ЗМЗ-5234.10 и процессов образования на них отложений нагаров и лаков, а также произведена оценка осадкообразования на поверхностях картера и клапанной крышки двигателей при использовании рекомендованного заводом изготовителем моторного масла М 63/12Г1.

Для исследования зависимостей количественных характеристик отложений в двигателях от их теплового состояния и условий работы можно использовать различные методики, например, Л-4 (Англия), 344-Т (США), ПЗВ (СССР) и др. [2, 3]. В частности, по методике 344-Т, являющейся нормативным документом США, состояние «чистого» неизношенного двигателя оценивается в 0 баллов; состояние предельно изношенного и загрязненного двигателя в 10 баллов. Аналогичной методикой оценки лакообразования на поверхностях поршней является отечественная методика ПЗВ (авторы – К.К. Папок, А.П. Зарубин, А.В. Виппер), цветовая шкала которой имеет баллы от 0 (отсутствие лаковых отложений) до 6 (максимальные отложения лака). Для пересчета баллов шкалы ПЗВ в баллы методики 344-Т показания первой необходимо увеличить в полтора раза. Указанная методика аналогична отечественной методике отрицательной оценки отложений ВНИИ НП (10 балльная шкала).

Для экспериментальных исследований использовались по 10 двигателей ЗМЗ-402.10 и ЗМЗ-5234.10 [2]. Эксперименты по исследованию процессов образования отложений проводились совместно с лабораториями испытаний легковых и грузовых автомобилей УКЭР ГАЗ на моторных стендах. В процессе испытаний, кроме прочего, контролировались расходы воздуха и топлива, давление и температура отработавших газов, температура масла и охлаждающей жидкости. При этом на стендах выдерживались режимы: частота вращения коленчатого вала, соответствующая максимальной мощности (100% нагрузки), и, поочередно, в течение 3,5 часов – 70% нагрузки, 50% нагрузки, 40% нагрузки, 25% нагрузки и без нагрузки (при закрытых дроссельных заслонках), т.е. эксперименты проведены по нагрузочным характеристикам двигателей. При этом температура охлаждающей жидкости выдерживалась в интервале 90…92С, температура масла в главной масляной магистрали – 90…95С. После этого двигатели разбирались и производились необходимые замеры.

Предварительно были проведены исследования по изменению физико-химических параметров моторных масел при испытаниях двигателей ЗМЗ-402.10 в составе автомобилей ГАЗ-3110 на автополигоне УКЭР ГАЗ. При этом выдержаны условия: средняя техническая скорость 30…32 км/ч, температура окружающего воздуха 18…26С, пробег до 5000 км. В результате испытаний получено – при увеличении пробегов автомобилей (времени работы двигателей) увеличивалось количество механических примесей и воды в моторных маслах, его коксовое число и зольность, происходили прочие изменения, что представлено в табл. 1

Нагарообразование на поверхностях днищ поршней двигателей ЗМЗ-5234.10 характеризовалось данными, представленными на рис. 3 (для двигателей ЗМЗ-402.10 результаты подобны). Из анализа рисунка следует, что при повышении температур днищ поршней от 100 до 300С толщина (зона существования) нагара уменьшалась с 0,45…0,50 до 0,10…0,15 мм, что объясняется выжиганием нагара при повышении температуры поверхностей двигателей. Твердость же нагара повышалась с 0,5 до 4,0…4,5 баллов по причине спекания нагара при высоких температурах.

Рис. 3. Зависимости нагарообразования на поверхностях днищ поршней двигателей ЗМЗ-5234.10 от их температур:
а – толщина нагара; б – твердость нагара;
символами нанесены усредненные экспериментальные значения

Оценка величин отложений лаков на боковых поверхностях поршней и их внутренних (нерабочих) поверхностях производилась также по десятибалльной шкале, согласно методике 344-Т, используемой во всех ведущих научно-исследовательских учреждениях страны.

Данные по лакообразованию на поверхностях поршней двигателей представлены на рис. 4 (результаты по исследуемым маркам двигателей совпадают). Режимы испытаний указаны ранее и соответствуют режимам при исследованиях нагарообразования на деталях.

Из анализа рисунка следует, что лакообразование на поверхностях поршней двигателей однозначно увеличивается с увеличением температур их поверхностей. На интенсивность лакообразования влияет не только повышение температур поверхностей деталей, но и длительность ее действия, т.е. продолжительность работы двигателей [3]. При этом, однако, процессы лакообразования на рабочих (трущихся) поверхностях поршней существенно замедляются по сравнению с внутренними (нерабочими) поверхностями, вследствие стирания слоя лака в результате трения.

Рис. 4. Зависимости отложений лака на поверхностях поршней двигателей ЗМЗ-5234.10 от их температур:
а – внутренние поверхности; б – боковые поверхности; символами нанесены усредненные экспериментальные значения

Нагаро- и лакообразование на поверхностях деталей существенно интенсифицируется при применении масел групп «Б» и «В», что подтверждено рядом исследований, проведенных авторами на подобных и других типах автомобильных двигателей.

Планомерное увеличение отложений лаков на внутренних (нерабочих) поверхностях поршней вызывает уменьшение теплоотвода в картерное масло при увеличении наработки двигателей. Это вызывает, например, постепенное увеличение уровня теплового состояния двигателей по мере приближения наработки к смене масла при очередном ТО-2 автомобиля.

Образование осадков (шламов) из моторных масел происходит в наибольшей степени на поверхностях картера и клапанной крышки. Результаты исследований осадкообразования в двигателях ЗМЗ-5234.10 представлены на рис. 5 (для двигателей ЗМЗ-402.10 результаты подобны). Осадкообразование на поверхностях указанных ранее деталей оценивалось в зависимости от их температур, для измерения которых были смонтированы термопары (приварены конденсаторной сваркой): на поверхностях картера по 5 штук у каждого двигателя, на поверхностях клапанных крышек – по 3 штуки.

Как следует из рис. 5, при повышении температур поверхностей деталей двигателей осадкообразование на них уменьшается вследствие уменьшения содержания воды в картерном масле, что не противоречит результатам ранее проведенных экспериментов другими исследователями. Во всех двигателях осадкообразование на поверхностях деталей картера оказались больше, чем на поверхностях клапанных крышек.

На моторных маслах групп форсирования «Б» и «В» осадкообразование на деталях ДВС, контактирующих с моторным маслом, происходит интенсивнее, чем на маслах групп форсирования «Г», что подтверждено рядом исследований [1, 2, 3 и др.].

По сравнению с поверхностями поршней, отложения на зеркалах цилиндров следует считать незначительными. Далее, на рис. 6 приводятся данные по лакообразованию на зеркале цилиндра двигателей ЗМЗ-5234.10 при работе на маслах М-8В («автол») и М6з/12Г1, полученные также по методике 344-Т (для двигателей ЗМЗ-402.10 результаты подобны).

В данной работе исследования отложений на зеркалах цилиндров при эксплуатации двигателей на самых современных маслах не проводилось, однако, можно уверенно предположить, что для исследуемых двигателей они будут не больше, чем при их работе на менее качественных маслах.

Полученные результаты по взаимосвязи изменения температур основных деталей двигателей ЗМЗ-402.10 и ЗМЗ-5234.10 (поршней, цилиндров, клапанных крышек и масляных картеров) и количества отложений позволили выявить закономерности процессов образования нагаров, лаков и осадков на поверхностях указанных деталей. Для этого результаты аппроксимированы функциональными зависимостями методом наименьших квадратов и представлены на рис. 3-5. Полученные закономерности процессов образования отложений на поверхностях деталей автомобильных карбюраторных двигателей должны учитываться и использоваться конструкторами и инженерно-техническими работниками, занимающимися доводкой и эксплуатацией ДВС.

Двигатель автомобиля работает с наибольшей эффективностью лишь при определенных условиях. Оптимальный температурный режим теплонагруженных деталей является одним из таких условий и обеспечивает высокие технические характеристики двигателя с одновременным снижением износов, отложений и, следовательно, повышением показателей его надежности.

Оптимальное тепловое состояние ДВС характеризуется оптимальными температурами поверхностей их теплонагруженных деталей. Анализируя проведенные исследования процессов образования отложений на деталях исследуемых карбюраторных двигателей ЗМЗ и подобные исследования по бензиновым двигателям [1, 2, 3 и др.], можно с достаточной степенью  точности определить интервалы оптимальных и опасных температур поверхностей деталей данного класса двигателей. Полученная информация представлена в табл. 2.

При температурах деталей двигателей в опасной высокотемпературной зоне существенно увеличивается твердость нагара на деталях КС цилиндра, что вызывает процессы калильного зажигания топливовоздушных смесей, количество лаковых отложений на поверхностях поршней и цилиндров, а значит, нарушается нормальный тепловой баланс. Рис. 7.

При температурах деталей двигателей в опасной низкотемпературной зоне увеличивается толщина нагара на поверхностях деталей, образующих КС, что приводит к возникновению детонационного сгорания топливовоздушных смесей, а также при низких температурах поверхностей деталей двигателей на них увеличивается количество осадков из моторных масел. Все это нарушает нормальную работу двигателей. В свою очередь отложения приводят к перераспределению тепловых потоков, проходящих через поршни, и повышению температур поршней в критических точках – в центре огневой поверхности днища поршня и в канавке ВКК. Температурное поле поршня двигателя ЗМЗ-5234.10 с учетом отложений нагаров и лаков на его поверхностях представлено на рис. 7.

Задача теплопроводности методом конечных элементов решалась с ГУ 1-рода, полученными при термометрировании поршня на режиме номинальной мощности при стендовых испытаниях двигателя. Термоэлектрические эксперименты проводились с тем же поршнем, для которого предварительно выполнены исследования температурного состояния без учета отложений. Эксперименты осуществлялись при идентичных условиях. Предварительно двигатель работал на стенде более 80 часов, после чего наступает стабилизация нагаров и лаков. В результате, температура в центре днища поршня повысилась на 24°С, в зоне канавки ВКК – на 26°С в сравнении с моделью поршня без учета отложений. Значение температуры поверхности поршня над ВКК 238°С входит в опасную высокотемпературную зону (табл. 2). Близко к опасной высокотемпературной зоне и значение температуры в центре днища поршня.

На этапе проектирования и доводки двигателей влияние отложений нагаров на тепловоспринимающих поверхностях поршней и лаков на их поверхностях, контактирующих с моторным маслом, учитывается крайне редко. Это обстоятельство в совокупности с эксплуатацией двигателей в составе АТС при повышенных тепловых нагрузках увеличивает вероятность отказов – прогары поршней, закоксовывание поршневых колец и т.д.

Н.А Кузьмин, В.В. Зеленцов, И.О. Донато

Нижегородский государственный технический университет им. Р.Е. Алексеева, Управление автомагистрали “Москва — Н.Новгород»

Двигатели внутреннего сгорания — Wikiversity

Двигатели внутреннего сгорания (или двигатели внутреннего сгорания или ДВС, как их еще называют) используются в повседневной жизни и могут быть найдены в: автомобилях; грузовые автомобили; мотоциклы; легкие самолеты; строительная техника и автомобили; железнодорожные локомотивы; стационарные энергосистемы; и лодки и корабли всех размеров. Изучение двигателей превратилось в отрасль машиностроения.

Есть два типа двигателей внутреннего сгорания,

    Четырехтактный двигатель
  1. и
  2. Двухтактный двигатель


Также двигатели можно классифицировать по циклам, которым они следуют, как указано ниже.

  1. Дизельный двигатель
  2. Бензиновый двигатель

Четырехтактные двигатели, как следует из названия, имеют четыре разных цикла, а именно
a.прием
б. сжатие
c. зажигание / расширение
d. выхлоп

В двухтактном режиме всего два цикла, и каждый из них имеет два цикла, выполняемых одновременно.
а. впуск / выпуск
б. зажигание / сжатие

Несколько определений:

 ВМТ: верхняя мертвая точка. Это самая верхняя часть, до которой поршень может добраться в вертикальном двигателе. 
BDC: нижняя мертвая точка. Это самая нижняя часть, до которой поршень может добраться в вертикальном двигателе.

Степень сжатия Двигатель внутреннего сгорания — это, по сути, насос, который выжимает смесь воздух / топливо (или просто «воздух» в случае двигателей с прямым впрыском), а затем зажигает ее, так что она расширяется назад и производит механическую энергию. Степень сжатия в основном показывает, насколько двигатель сжимает определенный объем всасываемого воздуха. Двигатель со степенью сжатия 12: 1 означает, что на каждые 12 единиц всасываемого объема воздуха поршень сжимает этот воздух до 1 единицы объема.Чем больше воздуха вдавливается в камеру сгорания, тем больше энергии производится на один объем двигателя на такте расширения.

Одним из ограничивающих факторов увеличения степени сжатия является детонация (известная как стук двигателя), когда вместо контролируемого горения воздушно-топливная смесь взрывается, потенциально повреждая двигатель. Кроме того, двигатель с более высокой степенью сжатия имеет тенденцию иметь меньший зазор между поршнем в верхней мертвой точке (ВМТ) и полностью открытыми клапанами, а работа на высоких оборотах может привести к смещению клапана, что может привести к контакту между клапанами и поршнем.

Коэффициент сжатия = (Рабочий объем + зазорный объем) / зазорный объем

Рабочий объем = Объем поршня, пройденного за один полный ход от ВМТ до НМТ.

Свободный объем = Объем камеры сгорания, когда поршень находится в ВМТ

Бензиновый двигатель Бензиновые двигатели, также известные как двигатели с искровым зажиганием, нуждаются во внешнем источнике энергии для воспламенения топлива как для запуска, так и для работы двигателя. Как следует из обоих названий, в этом двигателе используются свечи зажигания для обеспечения искры зажигания и бензин (бензин) в качестве топлива.


Системы бензинового двигателя

1. Топливная система перекачивает топливо из бензобака в карбюратор. Там он смешивается с воздухом и всасывается в цилиндры двигателя. При электронном впрыске топлива он поступает непосредственно из бака в цилиндры с помощью электронного компьютера.

2. Система зажигания подает искры для воспламенения топливной смеси в цилиндрах. С помощью катушки зажигания и прерывателя контактов он заряжает 12-вольтовую батарею, которая, в свою очередь, выдает импульсы в 20 000 вольт.Они проходят через распределитель к свечам зажигания в цилиндрах, где создают искры. При воспламенении топлива в цилиндрах температура достигает 700 ° C и более.

3. В системе водяного охлаждения, при которой вода циркулирует по каналам в блоке цилиндров, отводя таким образом тепло. Он течет по трубам в радиаторе, которые охлаждаются нагнетаемым вентилятором воздухом.

4. Система смазки также снижает теплоотдачу, но ее функциональная задача — поддерживать покрытие движущихся частей маслом, которое под давлением подается на распределительный вал, коленчатый вал и привод клапана.

5. Карбюратор — это сердце бензиновых / бензиновых двигателей. Он точно дозирует топливно-воздушную смесь. Старые карбюраторы делают опережение искры, измеряя разницу давления между внешней и внутренней частями карбюратора. Также измеряется величина подъема дроссельной заслонки. Остатки двигателя, которые могут быть оксидом углерода или несгоревшими углеводородами, показывают, насколько хорошо работает карбюратор.


Классификация бензиновых двигателей

Поршневые двигатели подразделяются на несколько категорий.Некоторые из них:


1. По способу охлаждения,

а. Двигатели с воздушным охлаждением: Тепло от двигателя излучается в окружающий воздух. Обычно используются алюминиевые ребра, поскольку они хорошо проводят тепло. Ребра увеличивают общую площадь контакта с окружающим воздухом, обеспечивая максимальный отвод тепла.

г. Двигатели с водяным охлаждением: В этих двигателях охлаждающая жидкость / вода циркулирует через рубашки, расположенные на цилиндре, для отвода тепла.


2. По количеству ходов,

а. 2-тактные двигатели: Завершает термодинамический цикл за два хода поршня (один оборот кривошипа).

г. 4-тактные двигатели: Завершает термодинамический цикл за четыре такта поршня (два оборота кривошипа).


3. В соответствии с расположением цилиндров,

а. Линейное расположение цилиндров: все цилиндры расположены по прямой линии.

г. V-цилиндровый двигатель или V-образный двигатель: два цилиндра наклонены друг к другу под углом 90 градусов.


4. В зависимости от расположения клапана, а. Одинарный верхний распредвал (SOHC)

г. Двойной верхний распредвал (DOHC)

Детали бензинового двигателя

Ниже перечислены важные части бензинового двигателя: 1. Цилиндры 2. Блок цилиндров 3. Поршень и шатуны 4. Головка блока цилиндров Картер 5. Клапаны 6. Вал коленчатый Маховик 7. Выхлопная система 8. Распредвал Топливная система 9. Система смазки 10. Система зажигания

Работа бензинового двигателя

Обычно автомобили с бензиновым / бензиновым двигателем имеют четырехтактный двигатель, поскольку они более эффективны, чем двухтактный двигатель, и обеспечивают полное сгорание топлива для оптимального использования. Четырехтактный двигатель имеет четыре такта, а именно: впуск, сжатие, мощность, и выхлопные ходы.

1. Такт всасывания или впуска — первоначально при запуске двигателя поршень движется вниз по направлению к НМТ цилиндра, что создает низкое давление вверху. Вследствие этого открывается впускной клапан, и смесь, содержащая пары бензина и воздух, всасывается цилиндром. Именно через карбюратор смешивается соотношение бензин / бензин и воздух.

2. Ход сжатия — после этого хода впускной клапан закрывается. Поршень теперь движется к верхней (ВМТ) цилиндра, сжимая топливную смесь до одной десятой ее первоначального объема.Температура и давление внутри цилиндра повышаются из-за сжатия.

3. Рабочий ход — во время этого хода впускной и выпускной клапаны остаются закрытыми. Когда поршень достигает почти верхнего положения (ВМТ), свеча зажигания производит электрическую искру. Горение запускается системой зажигания, которая зажигает искру высокого напряжения через заменяемый на месте воздушный зазор, называемый свечой зажигания. Возникшая искра вызывает взрыв топливовоздушной смеси. Горячие газы расширяются и заставляют поршень двигаться вниз.Поршень соединен со штоком поршня, а шток поршня — с коленчатым валом. Все они движутся друг к другу из-за связи между ними. Коленчатый вал соединен с колесами автомобиля. Когда коленчатый вал движется, колеса вращаются и перемещают автомобиль.

4. Такт выпуска — в этом такте выпускной клапан остается открытым в начале. Поршень вынужден двигаться вверх из-за полученного импульса. Это заставляет газы перемещаться через выпускной клапан в атмосферу.Теперь выпускной клапан закрывается, а впускной клапан открывается. После этого четыре такта двигателя повторяются снова и снова.

Приложения: Эти двигатели широко используются в транспортных средствах, переносных электростанциях для подачи энергии для работы насосов и другого оборудования на фермах. Многие небольшие лодки, самолеты, грузовики и автобусы также используют его.

Объем будущего: Постоянно ведутся исследования, чтобы повысить эффективность использования топлива, уменьшить количество загрязняющих веществ и сделать его более легким и компактным.Недавно инженеры Бирмингемского университета создали самый маленький бензиновый двигатель, способный заменить обычные батареи. Двигатель такой миниатюрный, что с ним можно потрогать кончиками пальцев.

Дизельный двигатель

Подобно бензиновому двигателю, дизель — это двигатель внутреннего сгорания, который преобразует химическую энергию топлива в механическую энергию, которая вызывает возвратно-поступательное движение внутри цилиндров. Поршни соединены с коленчатым валом двигателя, который обеспечивает движение, необходимое для приведения в движение колес транспортного средства.И в бензиновых, и в дизельных двигателях энергия выпущен в серии небольших взрывов, известных как горение. Топливо вступает в химическую реакцию с кислородом из воздуха, который забирается во время такта впуска двигателя. Зажигание в бензиновых двигателях происходит из-за искр от свечей зажигания, тогда как в дизельных двигателях топливо воспламеняется из-за тепла сжатия. При сжатии воздух нагревается.

Типы дизельных двигателей

Дизельные двигатели могут быть четырехтактными или двухтактными.

Четырехтактный дизельный двигатель

Работа четырехтактного дизельного двигателя следующая:

1. Такт впуска или всасывания начинается, когда поршень втягивает воздух в цилиндр через впускной клапан. Когда поршень достигает дна цилиндра, впускной клапан закрывается, задерживая воздух внутри цилиндра.

2. Такт сжатия начинается, когда поршень перемещается вверх по цилиндру, сжимая захваченный воздух.Давление повышается от 32 до 50 бар, а температура — до 600 градусов Цельсия.

3. Такт впрыска начинается где-то около ВМТ такта сжатия, топливо разбрызгивается в горячий воздух, воспламеняется и горит контролируемым образом из-за тепла сжатия, что приводит к такту мощности. 4. Такт выпуска начинается, когда поршень НМТ, поршень вытесняет все сгоревшие газы через открытый выпускной клапан. В верхней части такта выпуска выпускной клапан закрывается, а впускной клапан открывается, готовый принять свежий заряд воздуха, который возвращает двигатель в исходную точку.Цикл повторяется снова.

Двухтактный дизель

Дизельный двигатель работает так же, как четырехтактный дизельный двигатель, но уменьшает четыре хода поршня до двухтактных один раз вверх и один раз вниз по цилиндру.

1. Когда поршень находится в верхней части своего цилиндра, он находится на такте сжатия. Цилиндр заполнен сжатым перегретым воздухом. Дизельное топливо впрыскивается и воспламеняется. Поршень движется вниз по цилиндру для своего рабочего хода.Когда поршень приближается к нижней части рабочего хода, выпускные клапаны открываются, и большая часть сгоревших газов устремляется из цилиндра. Теперь, когда поршень продолжает двигаться вниз по цилиндру, он открывает ряд отверстий в стенке цилиндра, через которые вдувается сжатый воздух, выталкивая оставшиеся сгоревшие газы. из баллона и заправив его свежим воздухом.

2. При движении поршня вверх он блокирует впускные отверстия, задерживая заряд свежего воздуха в цилиндре.Хотя поршень прошел лишь немного больше одного хода, он уже завершил свой рабочий ход, процесс выпуска и впускной цикл. Когда поршень поднимается вверх по цилиндру во время второго хода, он сжимает свежий воздух. Когда он достигнет В верхней части цилиндра происходит впрыск и сгорание, начиная цикл снова. Двухтактный двигатель производит один рабочий ход за каждый полный цикл, в то время как четырехтактный двигатель производит один рабочий ход за каждые четыре такта.

Камера сгорания — обзор

4.5 Камеры сгорания

В камере сгорания газовой турбины добавляется энергия, приводящая в движение всю систему. Камера сгорания современной турбины обычно состоит из цилиндра со вторым цилиндром меньшего размера, который называется гильзой внутри него. Топливо-воздушная смесь проходит в горловину гильзы, и дополнительный воздух может проходить вокруг нее, между гильзой и внешним цилиндром, чтобы поддерживать гильзу в прохладном состоянии. Затем этот воздух вводится через отверстия и прорези вдоль гильзы.

В большинстве современных камер сгорания газовых турбин воздух предварительно смешивается с топливом перед его впрыском в камеру сгорания через набор сопел. Форма и направление сопел и перегородок в камере сгорания тщательно продуманы для обеспечения как равномерного перемешивания, так и стабильного пламени в камере сгорания. Топливно-воздушная смесь воспламеняется в зоне горения, выделяя энергию в виде тепла. Температура в пламени зоны горения может достигать более 1900 ° C, что намного выше, чем может выдержать большинство материалов.Чтобы контролировать это, часть воздуха из компрессора может использоваться для охлаждения стенок гильзы камеры сгорания. Это также разбавит очень горячие дымовые газы, чтобы снизить их температуру.

Необходимо тщательно контролировать поток воздуха через все части камеры сгорания, чтобы избежать нестабильности пламени и турбулентности, которые могут привести к потере энергии. Цель состоит в том, чтобы обеспечить плавный поток воздуха, даже если добавление тепловой энергии повысит его температуру и общее давление.

Добавление воздуха в камеру сгорания также тщательно контролируется, чтобы контролировать образование NO x в процессе сгорания. Высокие температуры в зоне горения приведут к быстрому образованию оксидов азота в результате реакции между кислородом и азотом из воздуха. Это можно контролировать, поддерживая восстановительные условия. Сохраняя количество кислорода на низком уровне по сравнению с количеством, необходимым для сжигания всего топлива, можно свести к минимуму производство NO x .При этом типе ступенчатого горения дополнительный воздух вводится в последние ступени зоны горения, чтобы позволить реакции горения продолжаться до завершения. Однако многие современные камеры сгорания полагаются на тщательное смешивание топлива и воздуха в стехиометрических пропорциях до того, как смесь попадет в камеру сгорания, чтобы контролировать производство NO x .

После завершения процесса сгорания горячие газы проходят в последнюю ступень камеры сгорания, которая называется переходной частью.Это сужающийся воздуховод, который преобразует статическое давление в динамическое давление, увеличивая скорость горячих газов перед их подачей в секцию турбины.

Тип и количество камер сгорания в газовой турбине будет варьироваться от производителя к производителю и от турбины к турбине. Многие более крупные конструкции турбин используют набор кольцевых камер сгорания, которые окружают вал турбины между компрессором и турбиной. Другие забирают воздух из компрессора вне корпуса турбины в одну или несколько камер сгорания, а затем возвращают газы в турбину.

По крайней мере, один производитель тяжелых промышленных газовых турбин также использует несколько комплектов газовых турбин и камер сгорания. Эта конструкция разделяет турбинную часть газовой турбины на две части. Горячий воздух из первого набора камер сгорания входит в первую секцию турбины, где энергия отбирается лопатками турбины, затем воздух входит во вторую группу камер сгорания, где сжигается больше топлива и больше энергии добавляется перед подачей во вторую секцию турбины. . Этот тип конструкции, называемый турбиной с повторным нагревом, часто используется в больших паровых турбинах для выработки электроэнергии, но гораздо реже в газовых турбинах.

Механическая работа двигателя — процесс сгорания

В течение сорока лет после первый полет братьев Райт использовались самолеты двигатель внутреннего сгорания повернуть пропеллеры генерировать толкать. Сегодня большинство самолетов авиации общего назначения или частных самолетов все еще находятся в эксплуатации. с пропеллерами и двигателями внутреннего сгорания, как и ваш автомобильный двигатель. На этой странице мы обсудим основы двигатель внутреннего сгорания с использованием Двигатель братьев Райт 1903 года, показанный на рисунке в качестве примера.

Дизайн братьев очень прост по сегодняшним меркам, так что это хороший двигатель для студентов, чтобы изучить основы работа двигателя. Этот тип двигатель внутреннего сгорания называется четырехтактный двигатель, потому что есть четыре движения (штрихи) поршня перед повторением всей последовательности запуска двигателя. На рисунке мы раскрасили система впуска топлива / воздуха красный, электрическая система зеленый, а Система вытяжки синий. Мы также представляем топливно-воздушную смесь и выхлопные газы небольшими цветные шарики, чтобы показать, как эти газы проходят через двигатель.Поскольку мы будем иметь в виду движение различных частей двигателя, вот рисунок, показывающий названия частей:

Механическое управление

В конце ход сжатия топливно-воздушная смесь была сжата в камеру сгорания до умеренного давления и температуры движением поршня вправо. Из наших соображений цикл двигателя, обозначим это условие как 3 этап цикла Отто. Впускной и выпускной клапаны закрыты, а электрическая контакт закрыт.Процесс горения начинается с размыкания электрического контакта через действие кулачка зажигания и пружин. Когда контакт удаляется от свечу, возникает искра, которая воспламеняет смесь. Воспламенение топливно-воздушной смеси приводит к быстрому горение топлива, выпуск высокая температура, и производство выхлопных газов. В горение происходит так быстро, что мы можем рассматривать поршень должен быть неподвижен, а объем камеры сгорания быть константой. Конец процесс сгорания обозначен Стадия 4 цикла двигателя и это начало рабочий ход.

Термодинамика

Поскольку впускной и выпускной клапаны закрыты, сгорание Топливо находится в сосуде почти постоянного объема. В сгорание увеличивает температура выхлопных газов, остаточного воздуха в камере сгорания, и в самой камере сгорания. Из соображений первый закон термодинамики повышение температуры определяется по формуле:

T4 = T3 + Q / cv

где Q — выделяемое тепло, которое зависит от соотношения топливо и топливо / воздух, и cv — удельная теплоемкость при постоянном объеме, и T — температура.Из уравнение состояния, мы знаем, что:

р4 = р3 * (Т4 / Т3)

где p — давление. Цифры обозначают две стадии цикла. Поскольку Q — положительное число, T4 больше T3, а p4 больше, чем p3. Температура и давление в камере сгорания повышаются во время процесс горения. Конечное значение давления зависит от температурный коэффициент, умноженный на начальное значение давления. Чем сильнее мы можем сжать газ (тем выше p3), тем больше будет конечное давление p4.Финал работай а выходная мощность двигателя зависит от значения p4. Это почему мы максимально сжимаем газ перед сжиганием.



Деятельность:

Экскурсии с гидом

Навигация ..


Руководство для начинающих Домашняя страница

Исследование низкотемпературного сгорания бензина может повысить эффективность двигателя

Низкотемпературное сгорание бензина (LTGC) является привлекательной темой для исследования двигателей, поскольку снижение теплопередачи улучшает характеристики двигателя и снижает выбросы закиси азота.В Центре исследования горения (CRF) в Sandia National Labs исследователи проводят ряд исследований, чтобы понять химию сгорания в двигателях LTGC. Они работают с отраслевыми партнерами и другими национальными лабораториями, чтобы изучить проекты экологически чистых двигателей для различных видов топлива. Конечная цель исследований CRF — разработать методы самовоспламенения для будущих автомобильных двигателей, которые можно было бы использовать для замены свечей зажигания в обычных двигателях внутреннего сгорания.

% {[data-embed-type = «image» data-embed-id = «5df2771df6d5f267ee2825b7» data-embed-element = «aside» data-embed-align = «left» data-embed-alt = «Machinedesign Com Sites Machinedesign com Загрузка файлов 2017 01 25 1485364784422529246554 «data-embed-src =» https: // base.imgix.net/files/base/ebm/machinedesign/image/2017/01/machinedesign_com_site_machinedesign.com_files_uploads_2017_01_25_1485364784422529246554.png?auto=format&fit=max&w=1440} Тактный двигатель внутреннего сгорания. Коленчатый вал опускает поршень, так что топливо поступает через впускной клапан. Коленчатый вал продолжает вращаться для такта сжатия, в результате чего свеча зажигания воспламеняет впрыскиваемое топливо. Энергия сгорания заставляет цилиндр расшириться на рабочий ход.Выхлоп выходит через выпускной клапан.

â € ‹недавний проект исследует систему отрицательного перекрытия клапана (NVO) с измененными временными характеристиками клапана, чтобы улавливать часть выхлопных газов в камере сгорания в конце каждого рабочего цикла. Выхлоп смешивается с потоком впрыскиваемого топлива, образуя заряженный продукт, который воспламеняется при низких температурах пламени. Во время такта сжатия двигателя теплопередача вызывает воспламенение новой разбавленной заряженной смеси. Высвободившаяся энергия приводит в движение рабочий ход. Укороченный ход выпуска и задержка открытия впускного клапана позволяет части выпуска снова оставаться в камере для следующего цикла.Команда разработала систему NVO, чтобы попытаться улучшить стабильность горения при низких нагрузках. Эта нестабильность является одной из причин, по которой LTGC затрудняет разработку двигателей.

Ученые используют различные тесты и инструменты моделирования, чтобы попытаться понять химическую реакцию горения в разбавленных смесях выхлопных газов и топлива. Понимание химического состава и компонентов смесей (в дополнение к термодинамическим свойствам) в течение рабочего цикла может помочь контролировать горение в любых условиях.Недавно CRF объявила о создании Консорциума по распылительному сжиганию для объединения ресурсов, которые можно использовать для изучения альтернативных методов впрыска топлива.

% {[data-embed-type = «image» data-embed-id = «5df2771df6d5f267ee2825b9» data-embed-element = «aside» data-embed-align = «left» data-embed-alt = «Machinedesign Com Sites Machinedesign com Загрузка файлов 2016 09 13 типов горения «data-embed-src =» https://base.imgix.net/files/base/ebm/machinedesign/image/2017/01/machinedesign_com_sites_machinedesign.com_files_uploads_2016_09_13_Combution_Types.png? auto = format & fit = max & w = 1440 «data-embed-caption =» «]}% 3. Это изображение из национальных инструментов показывает разницу между дизельным двигателем внутреннего сгорания, бензиновым двигателем с искровым зажиганием и двигателем LTGC. • LTGC все еще исследуются на предмет лучшей стабильности горения.

Ученые проверили шесть различных типов топлива, чтобы определить, какие составляющие они составляют после сгорания, а также их реакцию с выхлопными газами. Они протестировали изооктан, н-гептан, этанол, циклогексан, толуол и 1-гексен для представления компонентов, содержащихся в коммерческом бензине.Бензин исследовательского класса и его заменитель с известным составом также были протестированы с использованием одноцилиндровых исследовательских двигателей. Клапан для отбора проб был установлен для отправки проб из камеры сгорания на газовый хроматограф, который идентифицирует легкие углеводородные компоненты в смеси.

Чтобы различать углеводороды с аналогичным молекулярным составом, но с различным влиянием на химию горения, была проведена фотоионизационная масс-спектроскопия с использованием усовершенствованного источника света Национальной лаборатории Лоуренса Беркли.Команда обнаружила, что во время сжатия высокие температуры смеси заставляют топливо разлагаться на реактивную смесь «риформинга», состоящую из легковоспламеняющихся компонентов, таких как водород, окись углерода, и небольших углеводородов, таких как метан, ацетилен и этилен.

LTGC также известен как воспламенение от сжатия однородного заряда (HCCI) и зажигание со сжатием предварительно смешанного заряда (PCCI).

Дэвид Ботчер — профессиональный инженер

Дэвид Ботчер — профессиональный инженер

Eur Ing D B Boettcher BSc (Hons) CEng MIET

Предоставление инновационных решений для инженерии и бизнеса задач возможность.

Термостат двигателя, такой как термостат двигателя обычного автомобиля или грузовика с водяным охлаждением, выполняет две отдельные, но взаимосвязанные функции:

1. Как можно быстрее довести двигатель до оптимальной рабочей температуры; и

2. После этого поддерживать двигатель при оптимальной рабочей температуре.

Введение

Двигатели внутреннего сгорания наиболее эффективно работают при относительно высоких температурах, обычно выше 80–85 ° C (176–185 ° F).Износ движущихся частей уменьшается, а термический КПД увеличивается за счет работы при этой температуре.

Более низкие температуры двигателя приводят к неэффективному сгоранию, что приводит к увеличению расхода топлива и повышенному износу с последующим сокращением срока службы двигателя.

Однако, если температура двигателя становится слишком высокой, кипение охлаждающей жидкости приводит к образованию локальных паровых карманов, которые серьезно снижают теплопередачу в пораженной области, обычно в головке блока цилиндров, что приводит к преждевременному сгоранию топливовоздушной смеси, также известному как детонация. или детонация и, в конечном итоге, повреждение компонентов двигателя (головки блока цилиндров, клапанов и поршней).

Источник тепла и раковины

Когда двигатель сжигает топливо, выделяется тепло. Это тепло увеличивает давление образующейся газовой смеси, остатков всасываемого воздуха и сгоревших паров топлива, что заставляет поршень опускаться и вращает коленчатый вал. Но не все тепло, выделяемое при сжигании топлива, превращается в полезную работу; часть его остается в газе и спускается по выхлопной трубе, а часть проходит в стенки камеры сгорания и цилиндра и удаляется системой охлаждения двигателя.

Итак, сколько тепла задействовано? Двигатели внутреннего сгорания довольно эффективно превращают тепло в полезную работу коленчатого вала; в наиболее эффективных дизельных двигателях с высокой степенью сжатия «тепловой КПД» (количество энергии в топливе, которое превращается в полезную работу) в идеальных условиях может приближаться к 50%. Бензиновые двигатели не так эффективны, как дизельные, из-за более низкой степени сжатия, и большинство двигателей определенно не работают в идеальных условиях большую часть времени.Итак, давайте говорить круглыми числами: в типичном автомобильном двигателе примерно треть (33%) энергии топлива превращается в полезную работу, чтобы заставить автомобиль двигаться, одна треть тепла уходит в выхлопную трубу. горячий выхлопной газ, и последняя треть тепла уходит в систему охлаждения.

Используя эти пропорции, мы можем увидеть, что автомобильный двигатель, скажем, достаточно мощный, в 200 л.с. (тормозная мощность) на самом деле выделяет 600 л.с. тепла, когда он развивает свою максимальную мощность.Одна лошадиная сила составляет примерно 750 ватт, то есть примерно 450 кВт (киловатт), или целых 150 электрических чайников, которые обычно имеют мощность около трех киловатт. Треть этих 450 кВт тепла должна отводиться системой охлаждения.

Конечно, двигатель не всегда развивает максимальную мощность. Когда он не работает, он вырабатывает очень мало тепла, и требования к системе охлаждения намного ниже. Это заметно, когда вы сидите в пробке даже в жаркий день.В типичном современном автомобиле с электрическим вентилятором радиатора температура двигателя будет постепенно повышаться, пока вентилятор не включится, чтобы охладить его. После того, как охлаждающая жидкость остынет на несколько градусов, вентилятор отключается, и охлаждающая жидкость может поглощать тепловую мощность двигателя в течение нескольких минут, пока он не нагреется, и вентилятор должен снова включиться, чтобы охладить его.

Таким образом, система охлаждения двигателя должна иметь возможность отводить часть тепла, производимого двигателем, много или мало, и что-то среднее, при этом поддерживая температуру двигателя стабильной на оптимальной рабочей температуре.

Роль термостата

Для отвода тепла от блока цилиндров и головки охлаждающая жидкость циркулирует в проходах, встроенных в эти компоненты. Часть охлаждающей жидкости рециркулирует вокруг двигателя, а часть отводится через радиатор для охлаждения. Доля охлаждающей жидкости, рециркулирующей вокруг двигателя, по сравнению с пропорцией, направляемой в радиатор и охлаждаемой, определяется степенью открытия термостата.

Чтобы двигатель всегда работал при оптимальной температуре, термостат регулирует его открытие для управления потоком охлаждающей жидкости и, следовательно, потоком тепла от двигателя к радиатору.Охлаждающая жидкость охлаждается в радиаторе и возвращается для смешивания с охлаждающей жидкостью, циркулирующей по двигателю, для поддержания постоянной температуры смешанной смеси.

Если двигатель вырабатывает мало тепла, например, если он работает на холостом ходу, то струйки охлаждающей жидкости через радиатор достаточно, чтобы отвести это тепло и поддерживать постоянную температуру двигателя. Если двигатель работает усиленно, то выделяется больше тепла и через радиатор должно циркулировать больше охлаждающей жидкости, чтобы предотвратить перегрев.

Внешняя температура и скорость автомобиля, которые изменяют способность радиатора отводить тепло, также влияют на скорость, с которой охлаждающая жидкость должна циркулировать через радиатор, поскольку они влияют на температуру охлаждающей жидкости, возвращаемой в двигатель из радиатора для смешивания с охлаждающая жидкость, циркулирующая вокруг двигателя.

Чтобы двигатель достиг оптимальной рабочей температуры как можно быстрее, термостат ограничивает поток воды от двигателя к радиатору практически до нуля (требуется небольшой поток, чтобы термостат ощущал изменения температуры воды по мере того, как двигатель прогревается), пока двигатель не достигнет оптимальной температуры.Затем термостат постепенно открывается, чтобы позволить достаточному количеству охлаждающей жидкости протекать через радиатор, чтобы отвести тепло, выделяемое двигателем, и предотвратить повышение температуры. Если двигатель нагревается на холостом ходу и, следовательно, выделяет лишь небольшое количество тепла, термостату потребуется лишь немного приоткрыться, чтобы отвести выделяемое тепло.

Когда двигатель работает при оптимальной температуре, термостат регулирует поток охлаждающей жидкости к радиатору таким образом, чтобы двигатель поддерживался при оптимальной рабочей температуре, даже когда выходная мощность и, следовательно, тепловая мощность двигателя изменяются в зависимости от нагрузки и условий окружающей среды. .

В условиях пиковой нагрузки, например, при медленном подъеме по крутому склону на полностью открытой дроссельной заслонке при большой нагрузке в жаркий день, термостат будет приближаться к полному открытию, потому что двигатель вырабатывает максимальную мощность, скорость воздушного потока через радиатор мала. , и разница температур между радиатором и охлаждающим воздухом будет небольшой. (Скорость воздушного потока через радиатор и разница температур между радиатором и охлаждающим воздухом имеют большое влияние на его способность рассеивать тепло.) Обратите внимание, что даже при работе двигателя на полной мощности термостат не должен быть полностью открыт: всегда должен быть запас холодопроизводительности в соответствии с принципом предосторожности.

И наоборот, при быстром движении под гору по автостраде холодной ночью с небольшим дросселем термостат будет почти закрыт, потому что двигатель вырабатывает небольшую мощность, а радиатор может рассеивать гораздо больше тепла, чем производит двигатель. Допуск слишком большого потока охлаждающей жидкости к радиатору приведет к переохлаждению двигателя и его работе при температуре ниже оптимальной.Побочным эффектом этого может быть то, что обогреватель салона не сможет выдавать достаточно тепла, чтобы согреть пассажиров.

Таким образом, термостат постоянно регулируется, то есть он перемещается во всем своем диапазоне в зависимости от температуры охлаждающей жидкости, протекающей мимо него, увеличивая или уменьшая поток охлаждающей жидкости двигателя к радиатору в ответ на изменения температуры охлаждающей жидкости из-за для изменения выходной мощности в ответ на рабочую нагрузку транспортного средства, скорость транспортного средства и внешнюю температуру, всегда поддерживая двигатель при оптимальной рабочей температуре.

Как работает термостат?

Типичный термостат имеет цилиндр, содержащий термочувствительный воск, и поршень, который проходит через стенку цилиндра, к которому прикреплен рабочий диск клапана и возвратная пружина. Расширение воска при нагревании выталкивает поршень из цилиндра, перемещая диск дискового клапана. Сжатие парафина при охлаждении позволяет поршню возвращаться в цилиндр с помощью возвратной пружины. При температурах ниже диапазона рабочих температур двигателя воск остается твердым, и термостат не реагирует на изменения температуры.После запуска двигателя и нагрева охлаждающей жидкости воск становится жидким, когда температура достигает нижней границы диапазона рабочих температур. Когда воск разжижается, термостат находится в точке, в которой поршень начинает перемещать дисковый клапан и отклонять поток охлаждающей жидкости к радиатору. По мере дальнейшего прогрева двигателя постоянный поток охлаждающей жидкости к радиатору отводит излишки тепла от двигателя.

Когда двигатель находится в нормальном рабочем диапазоне температур, температура охлаждающей жидкости, проходящей мимо термостата, будет увеличиваться или уменьшаться с изменением выходной мощности.Парафин расширяется или сжимается пропорционально изменению температуры, выталкивая поршень из цилиндра или втягивая его с помощью возвратной пружины. Дисковый клапан действует как пропорциональный регулирующий клапан, регулируя пропорции охлаждающей жидкости, которая либо рециркулирует непосредственно в двигатель, либо направляется в радиатор для охлаждения и затем смешивается с рециркулирующей водой.

Термостат спроектирован так, что он может переходить из полностью закрытого состояния в полностью открытое в небольшом диапазоне температур.Номинальная температура термостата, например 82, 88, 92 и т. Д. — это номинальная температура в градусах Цельсия, при которой клапан термостата начнет открываться после прогрева двигателя. При дальнейшем повышении температуры охлаждающей жидкости клапан будет открываться до полного открытия. Температура полностью открытого состояния обычно на 12-15 градусов выше температуры открытия.

Для проверки термостата обычно помещают его в кастрюлю или чайник с водой и доводят до кипения, наблюдая, как дисковый клапан переключается из открытого в закрытое.Однако подобное тестирование может привести к неправильному пониманию того, как работает термостат. Термостат предназначен для поддержания температуры двигателя в узком диапазоне, и он делает это, переходя от полностью закрытого к полностью открытому в диапазоне температур в несколько градусов.

Пока не будет достигнута начальная температура открытия где-то выше 80 градусов, ничего не произойдет, но как только температура открытия будет достигнута, температура воды может так быстро подняться в рабочем диапазоне термостата, что пропорциональное открытие дискового клапана не будет соблюдаться.Вот почему люди ошибочно думают, что термостаты переключаются из закрытого состояния в полностью открытое за один шаг. Чтобы действительно наблюдать пропорциональную работу термостата, температуру охлаждающей жидкости, в которой он испытывается, следует повышать очень медленно во всем рабочем диапазоне.

При тестировании термостатов с более высокими температурами следует отметить, что термостат на 88 градусов не будет полностью открыт до 100-103 градусов, точно так же термостат на 92 градуса не будет полностью открыт до 104-107 градусов.Клапан не откроется полностью при погружении в обычную кипящую воду, потому что температура кипения воды составляет 100 градусов по Цельсию на уровне моря. Чтобы проверить термостаты с более высокой температурой, их необходимо нагреть в смеси вода / незамерзающая смесь или кулинарном масле, что позволит поднять температуру охлаждающей жидкости выше 100 градусов.

NB: Тестирование термостата путем нагревания его в жидкости потенциально опасно и должно выполняться только компетентным лицом, полностью осведомленным о потенциальных опасностях и с соответствующими мерами безопасности.


Copyright © Дэвид Ботчер, 2006-2021 гг., Все права защищены. Не стесняйтесь обращаться ко мне через страницу «Свяжитесь со мной».

Эта страница обновлена ​​в апреле 2019 г. W3CMVS.

КАМЕРА СГОРАНИЯ

Камеры сгорания являются одними из основных узлов воздушно-реактивных и ракетных двигателей или газотурбинных установок, которые нагревают исходные компоненты (рабочее тело) от начальной температуры T 0 до заданной температуры T g за счет теплотворной способности сгоревшее топливо H u .В воздушно-реактивном двигателе тепло, передаваемое 1 кг воздуха в типичной камере сгорания при постоянном давлении, с учетом полноты сгорания и тепловых потерь ζ через стенки, определяется уравнением

где C po и C ps — удельные теплоемкости исходного рабочего тела и продуктов сгорания соответственно; произведение αL 0 представляет собой отношение расхода рабочей среды к расходу топлива и зависит от окислительной среды, т.е.г., воздух. Теоретическое количество окислительной среды, необходимое для полного сгорания 1 кг топлива, составляет 0 л. α — коэффициент избытка (это коэффициент, на который умножается стехиометрическая потребность в воздухе, чтобы учесть избыток воздуха). Таким образом, для сжигания углеводородного (нефтяного) топлива в воздухе требуется L 0 = 0,115C + 0,345H — 0,043O, где C, H и O — соответственно массовые доли углерода, водорода и кислорода в топливе. Например, для авиационного керосина L 0 = 14,9 (84-86% C, 14-16% H).Для CH 4 и H 2 , L 0 = 17,2 и 34,5 соответственно.

Теплотворная способность, или самая низкая теплота сгорания топлива, определяется как количество тепла в Джоулях, которое выделяется в результате полного сгорания 1 кг топлива в воздухе при t O = 15 ° C и p = 0,1. МПа при охлаждении продуктов сгорания до 15 ° С. При этом не учитывается теплота конденсации и содержание водяного пара. Это примерно оценивается по:

Например, H u = 42 900–43 100 кДж / кг для авиационного керосина и 49 500 и 116 700 для CH 4 и H 2 соответственно.

Продуктами сгорания углеводородного топлива являются CO 2 и CO, NO и NO 2 , вода, углеводороды C x H y и т. Д. Их состав влияет на камеру сгорания с экологической точки зрения. Ухудшение полноты сгорания, ζ <1, увеличивает количество CO, C x H y и приводит к образованию сажи и дыма . Выброс оксидов азота NO x увеличивается по мере повышения температуры горения и увеличения продолжительности пребывания продуктов горения в зоне горения.Таким образом, допустимые уровни NO x , CO, C x H y и дыма для большинства типов двигателей подлежат государственному контролю.

Коэффициент избытка окислителя (воздуха) α = G a / G f представляет режим горения. Смесь, полученная в результате сгорания, имеет стехиометрический состав при α = 1; богатый при α <1; и бедная при α> 1. При избытке или недостатке окислителя температура продуктов сгорания T g ниже максимального значения, ближайшего к стехиометрическому, из-за расхода тепла избыточного топлива и окислителя.При значительном изменении α установившееся горение в камере прекращается. Они называются «богатым» и «бедным» с пламенем соответственно.

Камеры сгорания энергоблоков должны обеспечивать высокую полноту сгорания (в современных газотурбинных двигателях ζ = 0,995 и выше), низкие потери давления потока рабочего тела через камеру (σ = p out / п в в газотурбинных двигателях, составляет 0,94 — 0,96), высокая надежность и больший срок службы (в газотурбинных двигателях до 10 000 часов).Это может быть обеспечено отсутствием перегрева, нагара и т. Д. Изменение коэффициентов ζ и σ в зависимости от расхода воздуха (или M comb.ch ) и величины предварительного нагрева T g / T 0 являются так называемые характеристики камеры сгорания. По мере роста M comb.ch и T g / T 0 σ падает. Эффективность сгорания ζ увеличивается с увеличением T g / T 0 и достигает плоского оптимума, если строить график по сравнению с гребенкой M .

Особое значение в газотурбинных двигателях имеет высокая однородность полей окружных температур газа на выходе из камеры сгорания (для надежной работы соплового устройства) и профиля зависимости температуры от радиуса (для надежности лопаток) с температурой уменьшается к верхнему и нижнему концам лезвия. Поля образуются за счет развития потоков окислителя (воздуха) и топлива в зонах горения и смешения.

Воспламеняемость гомогенных углеводородных топливовоздушных смесей находится в пределах 0.5 <α <1,7. Скорости распространения фронта пламени невелики: от 0,5 до 2,0 м / с для керосина и 210 м / с для водорода. Следовательно, для обеспечения стабильного горения при средних скоростях потока, намного превышающих скорость распространения фронта пламени, может быть разработан стабилизатор горения с зоной обратного тока, обеспечивающий надежное воспламенение смеси в зоне горения для всех рабочих режимов горения. камера сгорания. На рис. 1 представлена ​​структура такого потока в зоне горения за стабилизатором горения.Добавление воздуха к продуктам сгорания в зоне смешения снижает средние значения температуры и увеличивает значения α. Например, характерные значения α для плохого тушения пламени в камере сгорания воздушно-реактивного двигателя обычно варьируются от 20 до 50. В ракетных двигателях на стабилизацию фронта пламени обычно влияет система вихрей около окислителя и топливные жиклеры.

Рисунок 1. Горение при наличии стабилизатора пламени.

Камеры сгорания классифицируются по типу двигателя (воздушно-реактивный, ракетный и другие двигатели), назначению, для которого он предназначен (основная камера сгорания или дожигатель в воздушно-реактивном двигателе), характеру сгорания (дозвуковой или сверхзвуковой), давлению топлива ( высокого и низкого давления), типа форсунок и распыления топлива (центробежные, высокотурбулентные, испарительные), количества зон горения и конструкции (осевые, радиальные, обратные, трубчатые, кольцевые и др.)).

ССЫЛКИ

Лефевр, А. Х. (1983) Gas Turbine Combustion , McGraw Hill, 1983.

Реактивные двигатели

Базовый обзор


На изображении выше показано, как реактивный двигатель будет расположен в современном военный самолет. В базовом реактивном двигателе воздух поступает в передний воздухозаборник и сжат (посмотрим, как позже). Затем воздух нагнетается в камеры сгорания, в которые впрыскивается топливо, и воздушная смесь и топливо воспламеняется.Образующиеся газы быстро расширяются и истощаются через заднюю часть камер сгорания. Эти газы обладают одинаковой силой во всех направлениях, обеспечивая тягу вперед, когда они уходят назад. В виде газы выходят из двигателя, они проходят через веерный набор лопаток (турбина), которая вращает вал, называемый валом турбины. Этот вал, в повернуть, вращает компрессор, обеспечивая приток свежего воздуха через впуск. Ниже представлена ​​анимация изолированного реактивного двигателя, который иллюстрирует процесс притока, сжатия, сгорания, истечения воздуха. и только что описанное вращение вала.

процесс можно описать следующей схемой, взятой с сайта Rolls Royce, популярного производителя реактивных двигателей.


Этот процесс является сутью того, как работают реактивные двигатели, но как именно что-то вроде сжатия (сдавливания) происходит? Чтобы узнать больше о каждом о четырех этапах создания тяги реактивным двигателем см. ниже.

SUCK

Двигатель всасывает большой объем воздуха через вентилятор и компрессор этапы.Типичный коммерческий реактивный двигатель потребляет 1,2 тонны воздуха в секунду. во время взлета — другими словами, он может выпустить воздух на корте для сквоша в меньше секунды. Механизм при котором реактивный двигатель всасывает воздух, в значительной степени является частью сжатия сцена. Во многих двигателях компрессор отвечает как за всасывание воздуха, так и за его сжатие. Некоторые двигатели имеют дополнительный вентилятор, который не является частью компрессора для втягивания дополнительного воздуха в систему. Вентилятор — это крайний левый компонент двигатель, показанный выше.


SQUEEZE

Помимо всасывания воздуха в двигатель, компрессор также создает давление в воздух и подает его в камеру сгорания. Компрессор показан на изображении выше слева от огонь в камере сгорания и справа от вентилятора. Компрессионные вентиляторы приводятся в действие турбина валом (турбина, в свою очередь, приводится в движение воздухом, оставив двигатель). Компрессоры могут достигать чрезмерных степеней сжатия 40: 1, что означает, что давление воздуха в конце компрессор более чем в 40 раз превышает объем воздуха, поступающего в компрессор.На полную мощность лопасти типового коммерческий струйный компрессор вращается со скоростью 1000 миль в час (1600 км / ч) и принимает 2600 фунтов (1200 кг) воздуха в секунду.

Сейчас мы обсудим, как компрессор на самом деле сжимает воздух.


Как видно на изображении выше, зеленые вееры, составляющие компрессор постепенно становится все меньше и меньше, как и полость, проходящая через который воздух должен путешествовать. Воздух должен продолжать движение вправо, к камерам сгорания двигатель, так как вентиляторы вращаются и выталкивают воздух в этом направлении.Результат — заданное количество воздуха. переходя от большего пространства к меньшему, и, таким образом, увеличивая давление.


BANG

В камере сгорания топливо смешивается с воздухом, чтобы произвести взрыв, который отвечает за расширение, которое заставляет воздух попадать в турбину. В типичном коммерческом реактивном двигателе топливо горит при сгорании. камера при температуре до 2000 градусов Цельсия. Температура, при которой металлы в эта часть двигателя начинает плавиться — 1300 градусов по Цельсию, поэтому продвинутый необходимо использовать методы охлаждения.

Горение камера имеет сложную задачу сжигания большого количества топлива, подается через топливные форсунки с большим объемом воздуха, подаваемый компрессором, и выделяя образующееся тепло таким образом что воздух расширяется и ускоряется, давая плавный поток равномерно нагретый газ. Эта задача должна быть выполнена с минимальными потерями. по давлению и с максимальным тепловыделением в ограниченном пространстве имеется в наличии.

Количество топлива добавление в воздух будет зависеть от требуемого повышения температуры.Однако, максимальная температура ограничена определенным диапазоном, определяемым материалы, из которых изготовлены лопатки и сопла турбин. В воздухе есть уже были нагреты до температуры от 200 до 550 C в результате работы, проделанной в компрессор, требующий повышения температуры примерно от 650 до 1150 C от процесса сгорания. Поскольку температура газа определяет тягу двигателя, камера сгорания должна быть способна поддержание стабильного и эффективного сгорания в широком диапазоне двигателей условия эксплуатации.

Воздух, принесенный вентилятор, который не проходит через ядро ​​двигателя и, следовательно, не используется для сжигания, что составляет около 60 процентов от общего количества поток воздуха, постепенно вводится в жаровую трубу, чтобы снизить температура внутри камеры сгорания и охладите стенки жаровой трубы.


УДАР

Вынужденная реакция расширенного газа — смеси топлива и воздуха. через турбину, приводит в действие вентилятор и компрессор и выдувает из выхлопное сопло, обеспечивающее тягу.

Таким образом, турбина должна обеспечивать мощность для привода компрессор и аксессуары. Это делает это путем извлечения энергии из горячих газов, выделяемых из системы сгорания и расширения их до более низкого давления и температуры. Непрерывный поток газа, к которому открытая турбина может попасть в турбину при температуре от 850 до 1700 ° C, что снова намного выше точки плавления текущего материаловедение.

Для производства крутящего момента, турбина может состоять из нескольких ступеней, каждая из которых использует один ряд подвижных лопастей и один ряд неподвижных направляющих лопаток для направления воздух по желанию на лезвия.Количество ступеней зависит от соотношение между мощностью, требуемой от газового потока, вращательной скорость, с которой она должна производиться, и допустимый диаметр турбины.

Желание для обеспечения высокого КПД двигателя требуется высокая температура на входе в турбину, но это вызывает проблемы, поскольку лопатки турбины должны выполнять и выдерживают длительные периоды эксплуатации при температурах выше их плавления точка. Эти лезвия, хотя и раскаленные докрасна, должны быть достаточно прочными, чтобы нести центробежные нагрузки из-за вращения с высокой скоростью.

Для работы в этих условиях холодный воздух вытесняется из множества мелких отверстия в лезвии. Этот воздух остается близко к лезвию, предотвращая его плавится, но не сильно ухудшает общий представление.

Добавить комментарий

Ваш адрес email не будет опубликован.