Водородный двигатель внутреннего сгорания: Toyota начала испытания двигателя внутреннего сгорания на водороде — Motor

Содержание

Двигатель внутреннего сгорания на водороде: устройство и принцип работы

Как известно, поршневой двигатель внутреннего сгорания имеет как плюсы, так и целый ряд определенных недостатков. Прежде всего, глобальной проблемой является токсичный выхлоп бензиновых и дизельных ДВС, а также постоянная потребность в нефтяном топливе. Не сильно меняется ситуация и после перевода автомобиля на газ, так как установка ГБО также не решает всех задач.

С учетом данных особенностей постоянно ведутся разработки альтернативных вариантов. Сегодня реальным конкурентом ДВС является электродвигатель. При этом относительно небольшой запас хода, высокая стоимость аккумуляторных батарей и всего электрокара (электромобиля) в целом, а также отсутствие развитой инфраструктуры по ремонту и обслуживанию таких машин закономерно тормозит их популяризацию.

По этой причине автопроизводители постоянно работают над тем, чтобы получить «безвредный» для окружающей среды и относительно дешевый в производстве силовой агрегат, который при этом не будет нуждаться в дорогом топливе.

Среди подобных двигателей следует отдельно выделить водородный ДВС, который вполне может заменить существующий на сегодня дизельный или бензиновый мотор, причем в обозримой перспективе. Давайте рассмотрим, как работает водородный двигатель, какую конструкцию имеет подобный мотор и в чем заключаются его особенности.

Содержание статьи

История создания водородного двигателя

Начнем с того, что идеи построить водородный мотор появились еще в 1806 г. Основоположником стал Франсуа Исаак де Риваз, который получал водород из воды методом электролиза. Как видно, двигатель на водороде «родился» задолго до того, как был поднят ряд вопросов касательно окружающей среды и токсичности выхлопа.

Другими словами, попытки запустить ДВС на водороде были предприняты не для защиты окружающей среды, а в целях банального использования водорода в качестве топлива. Спустя несколько десятков лет (в 1841 г.) был выдан первый патент на такой двигатель, в 1852 г. в Германии появился агрегат, который успешно работал на смеси воздуха и водорода.

Во времена Второй мировой войны, когда возникли сложности с поставками нефтяного топлива, техник из СССР Борис Исаакович Шелищ, который был родом из Украины, заложил основы российской водородной энергетики. Он также предложил использовать смесь водорода и воздуха в качестве горючего  для ДВС, после чего его идеи быстро нашли практическое применение. В результате появилось около полутысячи двигателей, работавших на водороде.

Однако после окончания войны дальнейшее развитие водородного двигателя было приостановлено как в СССР, так и во всем мире. Затем об этом двигателе вспомнили только тогда, когда в 70-е годы XX века случился топливный кризис. В результате компания BMW в 1979 г. построила автомобиль, двигатель которого использовал водород в качестве основного топлива. Агрегат работал относительно стабильно, не было взрывов и выбросов водяного пара.

Другие автопроизводители также начали работы в этой области, в результате чего к концу XX века появилось не только много прототипов, но и вполне успешно действующих образцов двигателей на водородном топливе (бензиновый и дизельный двигатель на водороде).

Однако после того как топливный кризис окончился, работы над водородными ДВС также были свернуты. Сегодня интерес к альтернативным источникам энергии снова растет, теперь уже по причине серьезных экологических проблем, а также с учетом того, что запасы нефти на планете быстро сокращаются и на нефтепродукты закономерно растут цены.

Также правительства многих стран стремятся стать энергонезависимыми, а водород является вполне доступной альтернативой. На сегодняшний день над водородными ДВС ведут работы GM, BMW, Honda, корпорация Ford и т.д.

Работа двигателя на водороде: особенности водородного ДВС

Начнем с того, что двигатель внутреннего сгорания на водороде по своей конструкции не сильно отличается от обычного ДВС. Все те же цилиндры и поршни, камера сгорания и сложный кривошипно-шатунный механизм для преобразования возвратно поступательного движения в полезную работу.

Единственное, в цилиндрах сгорает не бензин, газ или солярка, а смесь воздуха и водорода. Также нужно учитывать и то, что способ подачи водородного топлива, смесеобразование и воспламенение также несколько другой по сравнению с аналогичными процессами в традиционных аналогах.

Прежде всего, горение водорода по сравнению с нефтяным топливом отличается тем, что водород сгорает намного быстрее. В обычном двигателе смесь бензина или солярки с воздухом заполняет камеру сгорания тогда, когда поршень почти поднялся в ВМТ (верхняя мертвая точка), затем топливо какое-то время горит и уже после этого газы давят на поршень.

На водороде реакция протекает быстрее, что позволяет сдвинуть наполнение цилиндра на момент, когда поршень уже начинает движение в НМТ (нижняя мертвая точка). Также после того, как протекает реакция, результатом становится обычная вода вместо токсичных выхлопных газов. Как видно, на первый взгляд стандартный двигатель относительно легко подстроить под водородное топливо путем доработок впуска, выпуска и системы питания, однако это не так.

Первая проблема заключается в том, как получать необходимый водород. Как известно, водород находится в составе воды и является распространенным элементом, однако в чистом виде практически не встречается. По этой причине для максимальной автономности на транспортное средство нужно отдельно ставить водородные установки, чтобы «расщеплять» воду, позволяя мотору питаться необходимым топливом.

Идея кажется привлекательной. Более того, можно даже обойтись без наружного воздуха на впуске и создать закрытую топливную систему. Другими словами, после каждого раза, когда в камере сгорит заряд, в цилиндре будет оставаться водяной пар. Если этот пар пропустить через радиатор, произойдет конденсация, то есть снова образуется вода, из которой можно повторно получить водород.

Однако чтобы этого добиться, на автомобиле должна стоять установка для электролиза (электролизер), которая и будет отделять водород от воды, чтобы затем получить нужную реакцию с кислородом в камере сгорания. На практике установка получается сложной и дорогой, а создать такую закрытую систему довольно сложно.

Дело в том, что любой двигатель внутреннего сгорания независимо от типа топлива все равно нуждается в системе смазки, чтобы защитить нагруженные узлы и трущиеся пары. Если просто, без моторного масла никак не обойтись. При этом масло частично попадает в камеру сгорания и затем в выхлоп. Это значит, что полностью изолировать топливную систему на водороде (не использовать наружный воздух) практически нереализуемая задача.

По этой причине современные водородные двигатели внутреннего сгорания больше напоминают газовые двигатели, то есть агрегаты на газе пропане. Чтобы использовать водород вместо пропана, достаточно изменить настройки такого ДВС. Правда, КПД на водороде несколько снижается. Однако и водорода нужно меньше, чтобы получить необходимую отдачу от мотора. При этом никаких установок для автономного получения водорода не предполагается.

Что касается попытки подать водород в обычный бензиновый или дизельный двигатель, автоматически возникают риски и сложности. Прежде всего, высокие температуры и степень сжатия могут привести к тому, что водород будет вступать в реакцию с нагретыми элементами ДВС и моторным маслом.

Также даже небольшая утечка водорода может стать причиной того, что топливо попадет на разогретый выпускной коллектор, после чего может произойти взрыв или пожар. Чтобы этого не случилось, для работы на водороде чаще задействуют  роторные двигатели. Такой тип ДВС больше подходит для этой задачи, так как их конструкция предполагает увеличенное расстояние между впускным и выпускным коллектором.

Так или иначе, даже с учетом всех сложностей, ряд проблем удается обойти не только на роторных, но даже и на поршневых моторах, что позволяет водороду считаться достаточно перспективной альтернативой бензину, газу или солярке. Например, экспериментальная версия модели BMW 750hL, которую представили в 2000 году, имеет водородный двигатель на 12 цилиндров. Агрегат успешно работает на таком горючем и способен разогнать автомобиль до скорости около 140 км/час.

Правда, никаких отдельных установок для получения водорода из воды  на машине не имеется. Вместо этого стоит особый бак, который просто заправлен водородом. Запас хода  на полном баке водорода составляет около 300  км. После того, как водород закончится, двигатель в автоматическом режиме начинает работать на бензине.

Двигатель на водородных топливных элементах

Обратите внимание, под водородными двигателями понимаются как агрегаты, работающие на водороде (водородный ДВС), так и моторы, которые используют водородные топливные элементы. Первый тип мы уже рассмотрели выше, теперь давайте остановимся на втором варианте.

Топливный элемент на водороде фактически представляет собой «батарейку». Другими словами, это водородный аккумулятор с высоким КПД около 50%. Устройство основано на физико-химических процессах, в корпусе такого топливного элемента имеется особая мембрана, проводящая протоны. Эта мембрана разделяет две камеры, в одной из которых стоит анод, а в другой катод.

В камеру, где расположен анод, поступает водород, а в камеру с катодом попадает кислород. Электроды дополнительно покрыты дорогими редкоземельными металлами (зачастую, платиной).  Это позволяет играть роль катализатора, который оказывает воздействие на молекулы водорода.  В результате водород теряет электроны. Одновременно протоны идут через мембрану на катод, при этом катализатор также воздействует и на них. В итоге происходит соединение протонов с электронами, которые поступают снаружи.

Такая реакция образует воду,  при этом электроны из камеры с анодом поступают в электрическую цепь. Указанная цепь подключена к двигателю. Простыми словами, образуется электричество, которое заставляет двигатель работать от такого водородного топливного элемента.

Подобные водородные двигатели позволяет пройти не менее 200 км. на одном заряде. Основным минусом является высокая стоимость топливных элементов по причине использования платины, палладия и других дорогих металлов. В результате конечная стоимость транспорта с таким двигателем сильно возрастает.

Водородный двигатель: дальнейшие перспективы

Сегодня над созданием экологичных двигателей трудятся многие компании. Некоторые идут по пути создания двигателей-гибридов, другие делают ставку на электромобили и т.д. Что касается водородных установок, в плане экологии и производительности данный вариант также может в ближайшее время составить конкуренцию ДВС на бензине, газе или дизтопливе.

Водородные двигатели показали себя несколько лучше, чем самые продвинутые электрокары. Например, японская модель Honda Clarity. Единственное, остался такой недостаток, как способы  и возможности заправки. Дело в том, что инфраструктура водородных заправочных станций не особенно развита, причем в мировом масштабе.

Также не особенно большим является и сам выбор водородных  легковых авто. Кроме Honda Clarity можно разве что упомянуть Mazda RX8 Hydrogen, а также BMW Hydrogen 7. Фактически это автомобили-гибриды, которые работают на жидком водороде и бензине. Еще можно добавить в список Mercedes GLC F-Cell. Эта модель имеет возможность подзарядки от бытовой сети электропитания и позволяет пройти до 500 км. на одном заряде.

Дополнительно стоит отметить модель Toyota Mirai. Автомобиль работает только на водороде, одного бака хватает на 600 км. Водородные двигатели еще встречаются на отечественной модели «Нива», а также устанавливаются корейцами на специальную версию внедорожника Hyundai Tucson.

Как видно, с двигателем на водороде активно экспериментируют многие производители, однако такое решение все равно имеет много недостатков. При этом некоторые минусы сильно мешают массовой популяризации.

Рекомендуем также прочитать статью о том, что такое двигатель GDI. Из этой статьи вы узнаете об особенностях, принципах работы, а также преимуществах и недостатках моторов данного типа.

Прежде всего, это безопасность и сложность транспортировки такого топлива. Важно понимать, что водород  весьма горюч и взрывоопасен даже при относительно невысоких температурах. По этой причине его сложно хранить и перевозить. Получается, необходимо строить особые водородные резервуары для  авто с данным типом двигателя. Как результат, на практике водородных заправок очень мало.

К этому также можно добавить определенную сложность и высокие расходы на ремонт и обслуживание водородного агрегата, а также необходимость в подготовке и обучении большого количества высококвалифицированного персонала. Если же говорить о самом авто на водороде и его эксплуатационных характеристиках, наличие водородной установки делает машину более тяжелой, закономерно ухудшается управляемость.

Подведем итоги

Как видно, сегодня водородные автомобили и двигатель на воде можно считать вполне реальной альтернативой не только привычным ДВС, которые используют нефтяное топливо, но и электрокарам.

Прежде всего, такие установки менее токсичны, при этом они не нуждаются в дорогостоящем топливе на основе нефти. Также автомобили с водородным двигателем имеют приемлемый запас хода. В продаже имеются и гибридные модели, использующие как водород, так и бензин.

Что касается недостатков и сложностей, машина с водородным двигателем сегодня имеет высокую стоимость, а также могут возникать проблемы с заправкой топливом по причине недостаточного количества заправочных станций. Не стоит забывать и о том, что также не просто найти специалистов, которые способны качественно и профессионально обслужить водородную силовую установку. При этом обслуживание будет достаточно затратным.

Напоследок отметим, что активное строительство трубопроводов для перекачки газа метана обещает в дальнейшей перспективе возможность перекачки по этим же трубопроводам и водорода. Это значит, что в случае роста общего числа авто с водородными двигателями, также высока вероятность быстрого увеличения количества специализированных заправочных станций.

Читайте также

есть ли у них будущее

Загрязнение атмосферы вызывает серьезную озабоченность общественности, организаций по защите окружающей среды. Реальной альтернативой ДВС являются водородные транспортные средства и автомобили на электротяге.

Электричество или водород

В настоящее время существует актуальная проблема, которая заключается в том, что 60% электроэнергии, потребляемой во всем мире, производится на тепловых электростанциях. Для того чтобы обеспечить возросший спрос на электричество, придется сжигать углеводороды в еще больших количествах. Даже при полной замене ДВС электродвигателями произойдет перераспределение вредных выбросов, уменьшение будет не столь значительным. Концентрация CO2 в воздухе снизится в мегаполисах, но возрастет в местах расположения ТЭС. Кроме того, автомобиль не единственный источник загрязнения окружающей среды: об электрических кораблях, самолетах пока не идет даже речи.

Водородная энергетика в этом смысле предпочтительнее. Добыча водорода сопровождается микроскопическими, по сравнению со сжиганием углеводородов, выбросами токсичных веществ. Выхлоп автомобиля на водороде на 99,99% состоит из чистого водяного пара, безвредного для окружающей среды. Но тут возникают другие проблемы, которые носят экономический, технологический, инфраструктурный характер.

Как устроен водородный двигатель

Разработаны два вида двигателей работающих на водороде:

  • обычный ДВС, где вместо бензина используется водород;
  • с применением топливных элементов.

В первом случае используется все тот же двигатель внутреннего сгорания. Инженерные решения направлены на оптимизацию горения смеси водорода с воздухом, разработку системы питания и снижение взрывоопасности. Данная концепция распространения не получила. Водород, который отличается высокой чистотой, в камере сгорания контактирует с маслом. Поэтому отработанные газы, пусть в значительно меньшем количестве, но содержат токсичные компоненты. Помимо этого, эксплуатация таких автомобилей небезопасна, требует значительных затрат.

При использовании топливных элементов транспортное средство, которое приводится в движение водородным двигателем, принципиально является тем же электромобилем. Разница в том, что на чистой электротяге батарея заряжается от внешних источников, а в водородном автомобиле электроэнергия непрерывно черпается из топливных элементов.

Они состоят из двух камер, одна из которых является анодом, а другая катодом. Между ними находится мембрана. Все компоненты покрыты дорогостоящими редкоземельными металлами, играющими роль катализатора. В результате реакции гидролиза водород, находящийся в анодной камере, соединяясь с кислородом из атмосферного воздуха в катоде, превращается в водяной пар. Процесс сопровождается выделением свободных электронов, которые поступают в электрическую сеть автомобиля.

Такая схема значительно эффективнее, практически отсутствуют вредные выхлопы. Львиная доля усилий конструкторов направлена на развитие двигателей на топливных элементах.

Преимущества и недостатки водородных двигателей

Достоинства и недостатки силовых агрегатов с топливными элементами вытекают из особенностей водорода как топлива, технического уровня двигателей. Факторы, считающиеся безоговорочным достоинствами:

  • простота конструкции, соответственно, надежность;
  • КПД, превышающий таковой у бензинового двигателя, но уступающий электрическому;
  • отсутствие каких-либо шумов;
  • почти полное отсутствие вредных выбросов;
  • высокая мощность двигателей;
приемлемая автономность: современные водородные автомобили способны преодолевать на одной заправке до 500 километров.

Среди недостатков можно выделить следующие:

  • увеличенная масса автомобиля;
  • взрывоопасность водорода, которая резко повышается при наличии неисправностей в двигателе;
  • высокая стоимость эксплуатации автомобиля.

Реальная эксплуатация показывает, что километр пути на автомобиле с водородным двигателем обходится минимум на 50% дороже, по сравнению с бензиновым ДВС. Расход водорода в несколько раз меньше, чем бензина, но все перекрывает его цена.

В этом кроется главная проблема водородной энергетики. В виде соединений с другими веществами запасы h3 на Земле безграничны, но в чистом виде его почти нет. Для его получения используется сложная технология. К этому добавляются проблемы хранения, транспортировки, создания инфраструктуры.

Перспективы водородных автомобилей

Для того чтобы полноценно осветить на этот вопрос, необходимо точно знать цель, с которой бензиновый двигатель пытаются заменить водородным. Если речь идет о внедрении технически более совершенного двигателя, то в этом ракурсе перспективы водородоавтомобилей почти такие же, как и у бензиновых агрегатов, немного выше. ДВС, как бы он не совершенствовался, имеет принципиальное ограничение: низкий коэффициент полезного действия.

Водородный двигатель в этом смысле предпочтительнее, но уступает электромобилям. С другой стороны, обогреть салон чистым электричеством, без снижения автономности, невозможно: запас на автомобиле ограничен. Водородные двигатели таких проблем не знают: при гидролизе выделяется тепло.

Если приоритетом является экология, здесь водородный двигатель имеет приоритет перед остальными. Но не все так однозначно. Современные технологии добычи водорода находятся на таком уровне развития, что дешевле всего получать h3 путем сжигания газа или угля. При этом выделяется углекислый газ, для борьбы с которым и внедряют водородный автомобиль. Экологически чистые способы добычи водорода не обладают достаточной производительностью, значительно повышают его стоимость, которая и так немаленькая.

Если удастся разработать экономичную, производительную, экологически чистую технологию добычи водорода, автомобиль на таком топливе, без сомнения, получит широкое распространение. По эксплуатационным характеристикам он уже сейчас превосходит ДВС.

По сравнению с электрическим у водородного двигателя существует ключевое преимущество: на заправку водородом потребуется около 5 минут, тогда как зарядка батареи на специальных станциях занимает несколько часов.

Cummins тестирует двигатель внутреннего сгорания, работающий на водороде – logist.today


После проведения пробных испытаний компания Cummins планирует оценить работу двигателя внутреннего сгорания на водородном топливе в различных условиях эксплуатации. Об этом Логист.Today узнал из сообщения, опубликованного пресс-службой компании Cummins.

Компания Cummins начала испытания двигателя внутреннего сгорания, работающего на водородном топливе. Испытания доказанной концепции опираются на существующие технологии Cummins и опыт производителя в области применения газообразного топлива и силовых агрегатов.


«Мы используем все новые платформы двигателей, оснащенные новейшими технологиями для повышения удельной мощности, снижения трения и повышения тепловой эффективности, что позволяет нам избежать типичных ограничений производительности и эффективности, связанных с переводом дизельных или газовых двигателей на водородное топливо»

Шрикант Падманабхан, президент сегмента двигателей Cummins

Сообщается, что компания «оптимистично» настроена относительно вывода двигателя на рынок. После проведения пробных испытаний планируется оценить работу двигателя в различных дорожных и внедорожных условиях. Испытания являются частью стратегии по ускорению процесса декарбонизации коммерческих автомобилей, утверждают в Cummins.

Водородные двигатели могут использовать экологически чистое водородное топливо, производимое электролизерами, изготовленными компанией Cummins, при этом выбросы CO2 и оксида азота (NOx) через выхлопную трубу практически нулевые. Cummins инвестирует в целый ряд технологий для поддержки транспорта на основе водорода, включая водородные двигатели, топливные элементы, электролизеры и емкости для хранения.


«Программа водородных двигателей может потенциально расширить технологические возможности для достижения более экологичного транспортного сектора, дополняя наш ряд решений в области водородных топливных элементов, электрических аккумуляторов и силовых агрегатов на возобновляемом природном газе»

Джонатон Уайт, вице-президент Cummins по разработке двигателей

Логист.Today напоминает, что общий пробег грузовиков XCIENT Fuel Cells в Швейцарии уже перешел отметку в миллион километров. Ожидается, что к 2025 году парк большегрузов на топливных элементах увеличится на 1,6 тыс. единиц. Далее Hyundai Motor планирует выйти на североамериканский рынок.

Узнать подробности можно из материала «Водородные грузовики Hyundai наездили 1 млн километров».

Из истории водородной энергетики — Энергетика и промышленность России — № 15-16 (107-108) август 2008 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 15-16 (107-108) август 2008 года

Очевидно, что каждая составляющая топливно-энергетического комплекса имеет свою историю. Иногда эта история – например, использования угля – длится веками, иногда – например, атома – всего лишь десятилетиями. Почему‑то принято считать, что водородная энергетика появилась совсем недавно. Происходит это, конечно же, в силу того, что она до сих пор не нашла широкого применения, хотя над проблемой освоения одного из основных элементов таблицы Менделеева тысячи ученых работают очень давно.

Проблеме использования водорода как топлива более 150 лет. Еще в 1820 году В. Сесил в докладе Кембриджскому философскому обществу предложил использовать водород для привода в движение машин, а первый патент на двигатель, работающий на смеси водорода и кислорода, был выдан в Англии в 1841 году.

Эффект обратной вспышки

В Германии, в Мюнхене, в 1852 году придворным часовщиком Христианом Тейтманом был построен двигатель, работавший (в течение нескольких лет) на смеси водорода с воздухом. В 1920‑х годах Г. Ф. Рикардо и А. Ф. Брустелл выполнили детальные исследования работы двигателя внутреннего сгорания с внешним смесеобразованием на водородо-воздушных смесях. В этих работах, по‑видимому, впервые было обнаружено явление обратной вспышки, которым впоследствии занимались многие исследователи. В это же время началось и практическое использование водородных двигателей на дирижаблях фирмы «Цеппелин». Для них в качестве топлива использовался водород, наполнявший дирижабль.

В 1928 году был проведен испытательный перелет такого дирижабля через Средиземное море.

Особое место в истории водородных двигателей занимают работы Рудольфа Эррена, выполненные в 1920‑30‑х годах. Он впервые применил внутреннее смесеобразование в двигателях на водороде. Водород подавался в цилиндр через его стенку, что снижало опасность возникновения обратной вспышки.

При этом у двигателя сохранялась система подачи основного топлива, и он мог работать на любом из топлив, а также на жидком топливе с добавлением водорода. Р. Эррен перевел на водород несколько типов двигателей, в том числе и дизельный, установленный на автобусе «Лэйлэнд». Успешная пробная эксплуатация этого автобуса происходила в пригороде Лондона. Р. Эрреном был разработан и испытан первый водородо-кислородный ДВС. На такте впуска в цилиндр подавалась смесь кислорода с водяным паром, на такте сжатия – водород.

Образующийся при сгорании водяной пар частично возвращался на такте впуска в двигатель и частично конденсировался. Двигатель мог работать без наружного выхлопа, то есть был пригоден для использования в подводных лодках. В это же время в Германии использовались автодрезины, работающие на водороде. Последний производился на заправочных станциях электролизом воды под давлением.

Школа Семенова

В период с 1920‑х до начала 1940‑х годов весьма важные и обширные исследования реакции горения водорода в кислороде и воздухе в различных условиях были выполнены российскими учеными школы
Н. Н. Семенова, учеными Германии, Англии, США. Таким образом, к началу Второй мировой войны были заложены научные и технические основы использования водорода как топлива. Развитие экспериментальных работ по созданию водородных двигателей было прервано войной. Однако первый успешный опыт массового использования водорода как топлива в автомобильных двигателях внутреннего сгорания был осуществлен во время Второй мировой войны в России.

В блокадном Ленинграде в 1941 году инженер-лейтенантом Б. И. Шелищем многие автомобильные двигатели ГАЗ-АА, вращающие лебедки аэростатов заграждения, были переведены на питание водородо-воздушной смесью из аэростатов, потерявших плавучесть.

Содержание воздуха в них достигало 15‑20 процентов, и обратная вспышка могла привести к взрыву аэростата. Для предотвращения этого
Б. И. Шелищ применил водяной затвор, установленный перед двигателем, и ряд других мер защиты с использованием доступных средств. С 1942 года водород из потерявших плавучесть аэростатов стал использоваться и Московской службой ПВО. В годы войны более 400 автомобильных двигателей для привода лебедок аэростатов заграждения в России работали на водороде.

После нефтяного кризиса

После Второй мировой войны фундаментальные исследования процессов и разработки автомобильных двигателей на водородном топливе проводились во многих странах, в том числе в СССР (в НИИ энергетики Казахстана, Институте теоретической и прикладной механики (ИТПМ) СО АН СССР и некоторых других организациях), но активность исследований в этом направлении существенно снизилась.

Дешевая нефть и не осознанные еще экологические последствия бурного развития автотранспорта на углеводородных топливах не оставляли места для развития водородных технологий в этой отрасли.

Осознание необходимости их развития пришло в начале 1970‑х годов, одновременно с первым нефтяным кризисом и резким обострением экологической ситуации в крупных городах. К этому времени относится начало активной фазы НИОКР по созданию водородных транспортных средств и инфраструктуры их топливообеспечения.

К началу 1980‑х годов в США, Японии, Германии, СССР, Канаде и ряде других стран были созданы экспериментальные водородные автомобили с двигателями внутреннего сгорания, работающие на водороде, бензоводородных смесях, смесях водорода с природным газом и с различными системами хранения водорода на борту автомобиля: в виде гидридов интерметаллических соединений, в жидком и газообразном сжатом состоянии.

В начале 1970‑х годов в Австрии К. Кордеш создал первый экспериментальный водородный электромобиль с водородо-кислородным щелочным топливным элементом (ТЭ) мощностью 6 кВт. Основной задачей работ в этом направлении в последующие годы стало создание эффективной и дешевой двигательной установки на основе водородо-воздушного топливного элемента.

Активные исследования и разработки в области водородной энергетики и технологии начались в нашей стране в середине 1970‑х годов. Они проводились по многим направлениям крупными научными коллективами под руководством
В. А. Легасова, Н. Д. Кузнецова, A. M. Фрумкина, Р. Е. Лозино-Лозинского, А. А. Туполева,
В. П. Глушко, В. П. Бармина,
А. Н. Барабошкина, В. П. Белякова, А. Н. Подгорного и других выдающихся ученых и крупных организаторов науки.

Разрабатывались новые технологические процессы крупномасштабного производства водорода и водородсодержащих газов из природных топлив, воды и нетрадиционного сырья, методы и средства его хранения, транспортировки и распределения, технологии использования водорода и искусственных топлив на его основе в энергетике (в т. ч. автономной), автотранспорте, авиации, ракетной технике, металлургии, химической промышленности и других отраслях народного хозяйства.

Была обеспечена координация фундаментальных и прикладных исследований по линии Академии наук и ГКНТ. Начиная с середины 1970‑х годов систематические исследования проблем использования водородного топлива для автотранспорта выполняли Институт проблем машиностроения АН Украины (Харьков), Научный автомобильный и автомоторный институт (НАМИ, Москва), НПО «Квант» (Москва), Институт атомной энергии им. И. В. Курчатова (Москва), институты Сибирского отделения Академии наук и ряд других организаций.

Главными задачами этих исследований и разработок являлись снижение токсичности выбросов и повышение эффективности использования первичных энергоресурсов. Поскольку в крупных городах число автомобилей весьма велико и существует развитая инфраструктура их топливообеспечения, рациональным путем внедрения водородного топлива в автотранспорт было признано создание на базе существующих моделей автомобилей с ДВС, способных работать как на водороде, так и на бензоводородных смесях различного состава. Одновременно с этим разрабатывались двигательные установки для перспективных автомобилей с нулевым выбросом на базе водородо-воздушных топливных элементов и элементы инфраструктуры.

«РАФы» на бензоводородных смесях

В результате обширных экспериментальных исследований специалистами ИПМаша АН УССР и НАМИ были детально изучены рабочие процессы в двигателях на водороде и бензоводородных смесях как с внешним, так и с внутренним смесеобразованием. Было показано, что главным фактором, вызывающим обратную вспышку, является контакт водородо-воздушной смеси с горячими остаточными газами в момент впуска, и разработаны пути подавления обратных вспышек.

Созданы были универсальные системы питания автомобильных двигателей, обеспечивающие их устойчивую работу на водороде, бензоводородных смесях и бензине, и эффективные системы хранения водорода на борту на основе комбинации высокотемпературных и низкотемпературных металлогидридов.

К началу 1980‑х годов в СССР различными организациями были созданы и испытаны опытные легковые автомобили ВАЗ «Жигули», АЗЛК «Москвич», ГАЗ-24 «Волга» и ГАЗ-69, грузовые ЗИЛ-130, микроавтобусы РАФ и УАЗ, работающие на водороде и бензоводородных смесях.

Опытная эксплуатация бензоводородных автомобилей «Волга», осуществлявшаяся в Харькове с 1980 года, показала перспективность перевода части городского автотранспорта на бензоводородные смеси с содержанием водорода около 5 процентов по весу. При этом резко снижается токсичность выбросов, эксплуатационный расход бензина уменьшается на 35‑40 процентов, а эксплуатационная экономичность повышается на 20‑25 процентов. В 1986 году Минавтопромом СССР было принято решение о выпуске и последующей эксплуатации в городах СССР опытной партии городских микроавтобусов РАФ (200 штук), работающих на бензоводородных смесях. Однако это решение из‑за начавшихся политических процессов не было выполнено.

Автомобили с топливными элементами

В 1970‑80‑е годы в НПО «Квант» был выполнен цикл работ по применению топливных элементов для городских электробусов на водородном топливе. Была решена задача создания щелочных ТЭ, работающих на водороде и воздухе. Найдено эффективное и изящное решение сложной проблемы создания активного воздушного электрода. Для этого был использован разработанный «Квантом» гидрофобизированный электрод с газозапорным слоем, активность которого в процессе работы поддерживается за счет избытка воздуха (с коэффициентом Кn ~ 2,5‑3). Одновременно был решен комплекс электротехнических проблем, связанных с созданием системы электродвижения.

В 1982 году НПО «Квант» и заводом РАФ был создан первый в мире экспериментальный водородный микроавтобус «Квант-РАФ» с комбинированной энергоустановкой на основе водородо-воздушного ТЭ мощностью 2 кВт и никель-цинковой аккумуляторной батареи (5 кВт/ч), который был представлен на Москов-ской международной выставке «Электро-82» и прошел экспериментальную эксплуатацию. На основе полученного опыта специалисты НПО «Квант» совместно с венгерскими партнерами разработали технический проект городского автобуса с энергоустановкой на основе водородо-воздушных щелочных топливных элементов.

Однако этот проект, по тем же причинам, что и выпуск малой серии бензоводородных микроавтобусов, не был реализован.

Системы хранения водорода на борту

Создание систем хранения водорода на борту транспортных средств имеет ключевое значение для развития водородных технологий на транспорте. В 1980‑х годах в нашей стране были разработаны опытные образцы таких систем (металлогидридных, газобаллонных, криогенных). Для автомобилей, работающих на бензоводородных смесях, приемлема разработанная в ИПМаше комбинированная система аккумулирования водорода с использованием низкотемпературных и высокотемпературных гидридов интерметаллических сплавов на основе FeTiVa (70‑75 процентов) и Mg2Ni (25‑30 процентов). Такая система обеспечивает минимальные весовые характеристики аккумулятора водорода и полную десорбцию водорода за счет утилизации тепловых потерь двигателя с охлаждающей водой и выхлопными газами. Изготовленные и испытанные ИПМашем несколько опытных металлогидридных аккумуляторов для различных автомобилей («Волга» ГАЗ-24, «Жигули» ВАЗ-2101, автопогрузчик, микроавтобус РАФ) прошли опытную эксплуатацию в составе транспортных средств и показали вполне приемлемые технические характеристики и соответствие нормам безопасности при запасе хода бензоводородных автомобилей до 300 километров.

Металлогидридные системы хранения водорода вполне приемлемы для бензо-водородных автомобилей, автопогрузчиков, тракторов, подводных лодок, но по весовым характеристикам не подходят для транспорта, работающего на чистом водороде. Для таких автомобилей наиболее эффективны легкие композитные супербаллоны с весовым содержанием водорода примерно 8‑10 процентов при давлениях 300‑500 атмосфер. Такие баллоны были разработаны в России для авиационной техники и вполне могут быть использованы в автотранспорте.

Исследовались также и возможности создания криогенных систем хранения жидкого водорода на борту автомобиля. Экспериментальный автомобиль РАФ с криогенной системой хранения водорода испытан на полигоне НАМИ. По результатам этих работ в НПО «Криогенмаш» был разработан экспериментальный криогенный бак для хранения жидкого водорода на борту автомобиля. Однако дальнейшего развития после 1985 года эти работы не получили.

Еще не все потеряно

Несмотря на значительное снижение научно-технического потенциала страны в области новых водородных технологий в 1990‑е годы, наиболее дальновидным руководителям и коллективам исследователей в тяжелейших условиях крайне скудного финансирования удалось сохранить и продолжить работы по ряду перспективных направлений. Сохранилась эта тематика, хотя и при минимальном финансировании, в федеральных целевых программах Минпромнауки и программах НИОКР Минатома и Росавиакосмоса. Главными задачами сегодняшних отечественных разработок в области водородной энергетики и технологии являются создание компактных и дешевых топливных элементов (сегодня их стоимость превышает 10 тысяч долларов США за кВт) с ресурсом более 10 тысяч часов, надежных и дешевых систем хранения водорода на борту автомобиля, обеспечивающих запас хода 400‑500 километров, бортовых конверторов углеводородных топлив, усовершенствованных элементов инфраструктуры, новых и усовершенствованных технологий производства водорода и его использования в энергетике (в том числе автономной и основанной на возобновляемых энергоресурсах), авиационно-космической технике и других отраслях народного хозяйства, систем обеспечения безопасности.

В этих направлениях в последние годы получен ряд важных результатов. Созданы опытные образцы ТЭ с твердополимерным электролитом на базе отечественных мембран мощностью до 10 кВт, разрабатываются такие ТЭ мощностью до 200 кВт для автотранспорта, организовано опытное производство отечественных мембран на основе твердополимерного электролита, созданы компактные электролизеры с твердым полимерным электролитом на повышенные давления с энергопотреблением 3,9‑4,2
кВт/ч/нм3 h3 производительностью до 10 нм3/ч, компактные микроволновые конверторы природных топлив в синтез-газ производительностью до 20 нм3/ч, новая технология модификации полимерных мембран для выделения водорода из газовых смесей, обеспечивающая увеличение их селективности на несколько порядков, эффективные каталитические дожигатели водорода производительностью до 100 нм3/ч по водородсодержащему газу (РНЦ «Курчатовский институт» в кооперации с НПО «Пластполимер», ГУП «Компания МЭТИС» и др.), созданы и испытаны экспериментальные и опытно-промышленные устройства для использования водородных технологий в автономной и стационарной энергетике – водородо-кислородные парогенераторы мощностью до 25 МВт (ИВТАН, Центр Келдыша), энергоустановка на базе водородо-воздушного щелочного ТЭ мощностью около 6 кВт (ФГУП «НПП «Квант»», Independent Power Technology), разработаны новые интерметаллические соединения с емкостью по водороду до 2 процентов (весовых) и выше и организовано их опытное производство (Московский завод полиметаллов «Полимс», МГУ, ИХФ РАН и др.), новые типы блочных катализаторов на теплопроводных носителях для бортовых конвертеров углеводородных топлив и стационарных компактных конверторов (Институт катализа им. Г. К. Борескова СО РАН), выполнены разработки усовершенствованного криогенного оборудования, обеспечивающего снижение энергозатрат при производстве жидкого водорода и потерь при его транспортировке, распределении и хранении (ОАО «Криогенмаш» и кооперация), усовершенствованных ДВС для работы на водороде и водородсодержащих топливах (НАМИ). В последнее время к разработкам отечественного водородного автомобиля подключились «АвтоВАЗ» и РКК «Энергия».

Этот далеко не полный перечень результатов последних лет показывает, что российская наука и техника даже в ее сегодняшнем состоянии пока еще способна решать сложные задачи создания новых водородных технологий для автотранспорта, авиации, ракетной техники, энергетики и других отраслей народного хозяйства.

В заключение следует отметить, что история водородной энергетики пишется и сейчас. Как положительный момент стоит отметить факт, что к освоению водорода подключились в последнее время и предприниматели. Согласитесь, без поддержки финансово‑промышленных структур о каком бы то ни было внедрении инноваций говорить бессмысленно. Так, например, особое внимание к проблемам водорода уделяла компания «Норильский никель». И даже если ее интерес лежал в строго коммерческой области, даже если деятельность компании в этом направлении вызывала скепсис многих ученых и не очень ученых мужей – факт сам по себе отрадный. Потому что для всех очевидно: водород как энергоноситель рано или поздно пробьет себе дорогу в будущее.

Toyota собирается расширять производство автомобилей с водородным двигателем | Новости из Германии о событиях в мире | DW

Японский автопроизводитель Toyota собирается расширить выпуск машин с водородным двигателем. В компании полагают, что в перспективе оснащать такими моторами можно будет не только автомобили класса люкс, но и компактные модели. Об этом сообщил немецкой газете Welt am Sonntag пресс-секретарь концерна Toyota Хисаши Накаи. Материал будет опубликован в воскресенье, 24 марта.

В то же время при попытке найти замену классическому двигателю, сжигающему бензин или дизельное топливо, немецкие автопроизводители VW, BMW и Daimler договорились сконцентрироваться на создании электромобилей.

«В ближайшем будущем это будет лучшей и самой эффективной возможностью снизить выбросы в атмосферу углекислого газа», — прокомментировал этот решение глава концерна VW Герберт Дис (Herbert Diess).

Преимущества водородного двигателя

Однако японцы решили пойти иным путем и сделать ставку на термоэлектрический генератор, самым распространенным видом которого является водородный двигатель.

«Мы относимся с пониманием к тому, что кто-то, возможно, хочет сконцентрироваться только на одной технологии», — отметил представитель концерна Хисаши Накаи. — Однако считаем, что нам нужно и то, и другое — электробатарея и термоэлектрический генератор».

Главные преимущества водородного двигателя состоят в том, что он работает бесшумно и не производит вредных выбросов в атмосферу. Автомобиль Toyota Mirai, уже продающийся и в России, стал первой в мире автомоделью с водородным двигателем в серийном производстве. Сегодня автомобили с водородными двигателями выпускают и другие производители, такие как Hyundai. 

Принцип работы водородного двигателя

Принцип работы водородного двигателя состоит в следующем. Углеродные топливные баки автомобиля заправляются сжатым водородом. Потом через передний воздухозаборник поступает необходимый для работы двигателя воздух.

В результате химической реакции при взаимодействии водорода и кислорода из поступившего воздуха вырабатывается электроэнергия. При нажатии на педаль газа образовавшееся в результате реакции электричество приводит в действие электромотор, и автомобиль начинает движение.

Единственный побочный продукт этого процесса — вода, которая не наносит вреда окружающей среде, указывается на сайте японского автопроизводителя.

Компактные автомобили с водородным двигателем

До сих пор водородный двигатель не смог найти широкого применения в автостроении. Тем не менее специалисты Toyota полагают, что по мере проникновения таких машин на рынок их производственные расходы сократятся на столько, что автомобили с водородным двигателем станут рентабельными не только в среднем и премиум-классе и среди компактных автомобилей.

«Даже если на это потребуется время, в перспективе будут производиться и компактные автомобили с термоэлектрическими генераторами», — подчеркнул Накаи.

______________

Подписывайтесь на новости DW в | Twitter | Youtube | или установите приложение DW для | iOS | Android

Смотрите также:

  • Немецкие электромобили: что можно уже купить и что нас ждет?

    Скромная доля электромобилей на рынке Германии

    Почти 17 200 электромобилей было продано в Германии в первом полугодии 2018 года — и еще 16 700 машин с гибридным приводом. Это хотя и означает рост по сравнению с аналогичным периодом прошлого года на 51%, но в сравнении с продажами новых бензиновых и дизельных машин составляет лишь 1,8%. Ничтожно мало — по сравнению с почти 40% в Норвегии, являющейся мировым лидером по этому показателю.

  • Немецкие электромобили: что можно уже купить и что нас ждет?

    Отставание по электромобильности

    Причин отставания две. Немецкий автопром слишком долго не верил в приход новой эры электромобильности, делая ставку на двигатели внутреннего сгорания, в производстве которых немцы были в числе мировых лидеров. В итоге, многие электромобили сегодня существуют в основном на бумаге (см. фото). Другая причина — предоставление властями льгот покупателям электромобилей началось в ФРГ лишь недавно.

  • Немецкие электромобили: что можно уже купить и что нас ждет?

    Перелом с сентября 2018 года?

    Но сентябрь 2018 года может стать поворотным моментом. Прежде всего благодаря презентации электрического внедорожника e-tron. Это первая модель Audi, работающая полностью на электромоторе — и, как признают в самой компании-производителе, ее первая «вызревшая» серийная модель электромобиля. Поставки первым покупателям начнутся уже в конце 2018 года, а зарезервировать машину можно уже сейчас.

  • Немецкие электромобили: что можно уже купить и что нас ждет?

    E-tron на троне?

    Презентация Audi e-tron состоялась 17 сентября в США, что можно истолковать как готовность потягаться силами с мировым лидером в производстве элитных электромобилей, американской компанией Tesla. Так, e-tron будет иметь запас хода в 400 км, что сравнимо с Model 3 от Tesla.

  • Немецкие электромобили: что можно уже купить и что нас ждет?

    Volkswagen пока не впечатляет

    У электромобилей других марок, которые, как и Audi, принадлежат концерну Volkswagen, цифры менее впечатляющие. Так, под брендом Volkswagen концерн сейчас продает клиентам только 2 электрические модели — E-Golf (с начала 2014 года) и E-Up (с конца 2013). Технические характеристики таковы: запас хода у E-Golf — 300 км (и это по старым, менее экологичным нормам), у E-Up — 160 км.

  • Немецкие электромобили: что можно уже купить и что нас ждет?

    Будущее называется I.D.

    В этом году премьер электромобилей от VW не ожидается. Концерн сейчас перестраивает свой завод в немецком Цвикау, где в 2019 году начнется производство совершенно новой линейки электромобилей под общим брендом I.D. Среди прочего — и изображенного на фото микроавтобуса I.D. Buzz.

  • Немецкие электромобили: что можно уже купить и что нас ждет?

    Другое будущее под названием EQC

    Пытаются наверстать упущенное и в концерне Daimler. Сайт автопроизводителя, оттенив прошлые эксперименты с электромобильностью, уже вовсю рекламирует новую линейку электромобилей марки Mercedes — EQC. Но в серию первая машина EQC — внедорожник — выйдет в середине 2019 года. Следом за внедорожником компания обещает полную линейку на новой технологии, от компакт-класса до премиум-сегмента.

  • Немецкие электромобили: что можно уже купить и что нас ждет?

    Smart только электрический

    А вот принадлежащая Daimler марка Smart будет полностью переориентирована на электромобильность. С 2020 года машины Smart будут продаваться во всей Западной Европе только с электрическим двигателем. А в США, Канаде и Норвегии от бензиновых Smart отказались еще 2017 году.

  • Немецкие электромобили: что можно уже купить и что нас ждет?

    BMW удивит в 2020 году

    BMW уделяла внимание электромобильности больше других немецких автопроизводителей — так что уже имеет в активе две серийные модели машин с электрическими двигателями: i3 (на фото) и i8. Но с запасом хода в 200 км (i3) и у баварских автопроизводителей есть куда расти — поэтому с 2020 года BMW обещает вывести на рынок новые серийные модели электромобилей.

  • Немецкие электромобили: что можно уже купить и что нас ждет?

    Porsche нужно еще время

    Миллиарды евро инвестирует сейчас в разработки и другая дочерняя фирма Volkswagen — Porsche. Полностью электрическая модель этого бренда ожидается в 2020 году. Предварительное название модели — Taycan.

  • Немецкие электромобили: что можно уже купить и что нас ждет?

    Opel ждут перемены

    Поклонники выпускающейся в ФРГ марки Opel могли уже с 2012 года купить электромобиль Ampera. Но на самом деле он производился в США. Поэтому после приобретения компании Opel в 2017 году французским концерном PSA новый владелец объявил о планах по выпуску новых электромобилей: в 2020 году на рынок должна выйти новая Corsa с электрическим приводом, а к 2022 — еще четыре модели электромобилей.

  • Немецкие электромобили: что можно уже купить и что нас ждет?

    Стартапы в эру электромобильности

    Перспективы электромобильности увлекли не только гигантов немецкого автопрома, но и небольшие стартапы. Например, ахенская фирма e.GO Mobile AG, созданная всего лишь в 2015 году, уже к концу 2018 года собирается выпустить на рынок свою первую серийную модель e.GO Life (на фото).

  • Немецкие электромобили: что можно уже купить и что нас ждет?

    Почтальон приезжает на электромобиле

    А немецкая почта — Deutsche Post, так и не найдя в 2014 года ни одного автопроизводителя, готового поставить небольшие автофургоны для развоза почты, сама приобрела никому не известную тогда фирму StreetScooter. Фирма прекрасно справилась с заданием, и сейчас по дорогам Германии разъезжает уже более 6 тысяч выпущенных ею желтых электромобилей.

    Автор: Инза Вреде, Павел Лось


Водородный двигатель автомобиля — как работает и основные недостатки

Авто компании разрабатывают новые виды двигателей для автомобилей будущего. Кто-то ставит ставку на электромоторы, а кто-то разрабатывает водородные двигатели. Рассмотрим водородный двигатель и его преимущества.

Как работает

Автомобиль на водородном топливе имеет так называемый топливный элемент или по-научному — электрохимический генератор. Это своего рода «вечная» батарейка, внутри которой идет реакция окисления водорода и на выходе получается чистый водяной пар, азот и электричество. Т.е. выхлоп такого водородного автомобиля экологический чистый, в нем содержание углекислого газа CO2 равняется нулю.

Автомобиль с топливными элементами, по сути электромобиль. Только с более компактной батареей: ёмкость литий-ионного аккумулятора в 10 раз меньше, чем обычного электромобиля. Батарея нужна только в качестве буфера для хранения энергии, получаемой при рекуперативном торможении и для быстрого холодного старта.

Потому что главный источник энергии — блок топливных элементов — выходит на рабочий режим не сразу. На первых прототипах водородных машин для этого требовалось около полутора часов. На современных — не более 2 минут, чтобы начать превращение водорода и воздуха в водяной пар, азот и электроэнергию. Но на прогрев до рабочей температуры, когда КПД установки достигает 90%, уходит от 15 минут до часа в зависимости от окружающей температуры.

В баллонах хранится 5 кг водорода, обеспечивающие запас хода до 500 км. Полная заправка баллонов займет три минуты.

Главные недостатки

Главный недостаток — высокая себестоимость. Помимо электрохимического генератора, который при массовом производстве может стоить дешевле батарей для электромобилей, нужны еще прочные и легкие баки. Для этого используют дорогой углепластик.

Серьезный недостаток — энергетическая эффективность. Если использовать водород только как промежуточное звено в цепочке доставки энергии от электростанции к колесам автомобиля, то КПД составит не более 30% с учетом потерь на перекачку и охлаждение водорода перед заправкой. В отличие от 70-80% у электромобилей.

Если получать водород из попутного нефтяного газа, то КПД становится несравнимо выше — до 70%. Правда, ценой выбросов углекислого газа.

Если производить автомобили с водородными двигатели, то где взять заправки? В Европе количество водородных заправок можно пересчитать по пальцам, у нас их вовсе нет. Инженеры для таких случаев изобрели бивалентный двигатель, который может одновременно работать на водородном топливе и бензине. Владелец данного автомобиля не будет зависеть от наличия на заправке водородного топлива.

Лет через десять, когда количество водородных заправок в Европе возрастет, тогда водородомобили получат жизнь. Пока реалии не радуют. Взять хотя бы стоимость машины на чисто водородных элементах — она превышает стоимость обычного автомобиля почти в два раза. И на 20 процентов дороге гибридных версий.

От ворот водород – Газета Коммерсантъ № 99 (7061) от 10.06.2021

Автомобили на водороде, внедрением которых заинтересовались российские власти, не смогут конкурировать с электромобилями и тем более машинами с двигателем внутреннего сгорания (ДВС), полагают в «Петромаркете». В частности, легковые машины на водородном топливе останутся более дорогими, чем электротранспорт, а стоимость «зеленого» водорода в ЕС будет выше, чем электроэнергии. В случае РФ сам водород может оказаться дешевле, но «водородомобиль» все же окажется более дорогим для владельца, чем электрический аналог.

“Ъ” ознакомился с исследованием «Петромаркета» «Зеленая революция: что она несет России?», посвященном сравнительному анализу перспектив автомобилей на разных видах «зеленого» топлива. Эксперты консалтинговой компании делают вывод, что машины на водородном топливе, применение которого сейчас активно обсуждают власти России, не смогут составить конкуренции электромобилям. В «Петромаркете» считают перспективы водородных машин «исключительно неблагоприятными»: «Даже в случае радикального снижения их цены (ныне очень высокой) по совокупной стоимости владения они будут проигрывать не только электромобилям, но и автомобилям с двигателем внутреннего сгорания на углеродно-нейтральном синтетическом топливе».

В России до сих пор не определились с приоритетами, параллельно идет разработка госпрограмм развития как электро-, так и водородного транспорта. Причем на данный момент у государства не установлены цели по снижению выбросов от автотранспорта, и пока это не планируется. В то же время чиновники активно обсуждают локализацию низкоуглеродных решений, а также развитие заправочной сети одновременно для компримированного газа, СПГ, электромобилей и водородного транспорта.

В «Петромаркете» полагают, что для продвижения на рынок автомобилей с низкими и нулевыми выбросами СО2 уже в ближайшие пять лет в РФ потребуется установить достаточно серьезные ограничения на выбросы для новых автомобилей.

Среди проблем так называемых «водородомобилей» эксперты «Петромаркета» выделяют дороговизну «зеленого» водорода (производимого с помощью электричества из возобновляемых источников путем электролиза воды) по сравнению с собственно электричеством. По их оценке, производство водорода более энергоемкое, и разрыв не устранить. По расчетам, чтобы водородный автомобиль мог проехать 1 км, необходимо примерно в 2,5 раза больше электроэнергии из ВИЭ, чем для осуществления той же работы электромобилем, заключают в «Петромаркете».

Также в исследовании говорится о крайне высокой стоимости водородного автомобиля по сравнению со стоимостью электромобиля (см. график). «Даже если предположить, что водородный автомобиль к 2050 году упадет в цене в относительном выражении настолько же, насколько электромобиль, то этого все равно будет недостаточно, чтобы соперничать с последним по стоимости владения»,— отмечается в исследовании. Такой сценарий падения стоимости водородных машин достижим только при заметном расширении их производства, отмечают в «Петромаркете», а это пока выглядит нереалистичным из-за «почти единодушной ориентации автопроизводителей на выпуск электромобилей».

Среди других препятствий к распространению водородных легковых автомобилей — неразвитость на территории ЕС сети водородных заправочных станций, что, с одной стороны, будет негативно сказываться на ценах водорода для конечных потребителей, а с другой — будет заметно ограничивать географию использования «водородомобилей».

В ближайшей перспективе автотранспорт на водородном топливе не сможет заместить электромобили на аккумуляторах или ДВС, согласен директор практики стратегического и операционного консалтинга КПМГ в России и СНГ Максим Малков. Водород является взрывоопасным газом, это значительно ограничивает возможности его использования, говорит он: скорее, речь может идти о его применении в карьерной технике или железнодорожных локомотивах для перевозки грузов.

Дмитрий Бабанский из SBS Consulting полагает, что инфраструктура по водороду «подтянется за парком», причем такие машины «требуют «наименьших усилий» из-за того, что плотность энергии водорода у него значительно выше, чем у дизтоплива и литий-ионных батарей, поэтому заправок нужно будет много меньше». Что касается затрат, при использовании «зеленого» водорода его удельная стоимость на 1 кВт•ч энергии выходит дороже электричества, но для «желтого» водорода (производится с использованием электричества АЭС) в России и при промышленных масштабах затраты примерно сопоставимы, полагает он.

В то же время эксперт согласен, что стоимость владения водородным автомобилем останется выше, чем у электромобиля, а стоимость самой машины будет снижаться медленнее.

Кроме того, отмечает Дмитрий Бабанский, если субсидировать такой транспорт по аналогии с практикой развитых стран — то есть компенсировать примерную разницу между электромобилем и аналогом на ДВС — то финансирования на эти цели потребуется больше.

Ольга Никитина


Может ли водород поддерживать двигатель внутреннего сгорания?

Все более строгие правила выбросов затрудняют для автопроизводителей продолжать предлагать автомобили с двигателями внутреннего сгорания, при этом некоторые страны, такие как Соединенное Королевство, даже предпринимают шаги для полного запрета двигателей.

Интересно, что водород может оказаться спасителем двигателя внутреннего сгорания.

Ряд автопроизводителей предложили преобразовать водород, полученный из возобновляемых источников, в синтетическое топливо с нейтральным выбросом углерода.Porsche и его партнеры даже построили пилотный завод, способный производить синтетическое топливо в промышленных масштабах.

Toyota сейчас тестирует другое, гораздо более старое решение, связанное с водородом: сжигание этого вещества непосредственно в двигателе внутреннего сгорания.

На прошлой неделе автопроизводитель представил гоночный автомобиль, чей рядный 3-цилиндровый двигатель предназначен для работы на чистом водороде. Гоночный автомобиль все еще проходит испытания, но в мае этого года он войдет в этап гоночной серии Super Taikyu Series 2021 года в Японии.

Как уже упоминалось, это решение не ново.BMW представила прототип 7-й серии, двигатель V-12 которого мог работать на водороде. Это было еще в 2006 году. Основные необходимые изменения касаются топливного бака и топливных форсунок.

При сжигании водорода выбросы CO2 нулевые. Однако технология не лишена недостатков. При сжигании водорода в двигателе внутреннего сгорания образуются вредные оксиды азота. Однако есть способы минимизировать это, например, использование селективного каталитического восстановления на основе мочевины, как в современных дизельных двигателях.

Как мы уже выяснили, более серьезной проблемой является низкая эффективность. Энергия уже тратится на производство водорода из возобновляемых источников, и к тому времени, когда водород сгорает в двигателе и мощность передается на трансмиссию и, в конечном итоге, на колеса, фактически передается только около 25% энергетической ценности водорода.

Вот почему электромобили на топливных элементах, такие как Toyota Mirai, имеют больше смысла при использовании водорода в качестве топлива. Здесь водород объединяется с кислородом воздуха, чтобы создать электричество, которое затем приводит в действие электродвигатель, который может напрямую приводить в действие колеса.Здесь КПД приближается к 50%. И вредных выбросов тоже нет. Только вода.

Еще один недостаток водорода? Отсутствует инфраструктура, которая позволяла бы производить чистые закупки материалов и поставлять их клиентам. Вот почему электромобили с аккумуляторными батареями, которые могут использовать существующую электрическую сеть, вероятно, станут основным источником личного транспорта в будущем, хотя водород все еще может иметь место в транспорте на дальние расстояния.

Как водородные двигатели внутреннего сгорания могут способствовать нулевым выбросам

Регулирующие органы ужесточают правила выбросов для шоссейных грузовиков на многих крупнейших мировых рынках (Приложение 1).Начиная с 2030 года регулирующие органы в Европе будут требовать от производителей сократить выбросы CO 2 для новых шоссейных грузовиков на 30 процентов по сравнению с уровнями 2019 года.

Аудио

Послушайте эту статью

В США целевой показатель сокращения выбросов к 2027 году на 46 процентов ниже уровня 2010 года. В пятнадцати штатах США во главе с Калифорнией действуют дополнительные требования, согласно которым к 2030 году 30 процентов проданных грузовиков должны иметь нулевой выброс вредных веществ.Аналогичным образом китайские регулирующие органы требуют от производителей комплектного оборудования сократить выбросы от тяжелых грузовиков на 24 процента с 2021 года по сравнению с 2012 годом. Вероятны дополнительные долгосрочные цели, учитывая, что Китай недавно присоединился к растущей группе стран с нулевыми показателями выбросов на уровне или до 2060 г.

Приложение 1

Мы стремимся предоставить людям с ограниченными возможностями равный доступ к нашему сайту.Если вам нужна информация об этом контенте, мы будем рады работать с вами. Напишите нам по адресу: [email protected]

Грузовики повышенной проходимости традиционно меньше подвергались контролю со стороны регулирующих органов; однако OEM-производители в внедорожное пространство ожидает все возрастающее давление со стороны клиентов на декарбонизацию. За последние два года крупные горнодобывающие компании поставили перед собой амбициозные цели по декарбонизации, стремясь к Сферам 1 и 2. CO 2 нейтралитет.Например, Anglo American и Fortescue объявили о своих целевых показателях углеродной нейтральности Scope 1 и 2 к 2040 году в 2019 и 2020 годах соответственно. Компании BHP, Rio Tinto, Teck и Vale стремятся достичь этого рубежа к 2050 году. Приблизительно 30 процентов выбросов парниковых газов (ПГ) на руднике 1 и 2 производятся дизельными двигателями, в основном от горнодобывающих транспортных средств, таких как самосвалы, самосвалы. грузовики, погрузчики, бульдозеры, экскаваторы. Сокращение этих выбросов до нуля потребует массового перехода на автомобили с нулевым уровнем выбросов в горнодобывающем секторе.

В то время как игроки строительства и сельского хозяйства отставали от майнеров, давление на развитие Количество решений с нулевым уровнем выбросов в этих секторах также растет. Для строительных машин правила качества воздуха на уровне города ужесточают правила декарбонизации и направляют клиентов. экскаваторам, погрузчикам, грейдерам и автопогрузчикам с нулевым уровнем выбросов. Учитывая растущую обеспокоенность общества по поводу устойчивости в сельскохозяйственном секторе, давление со стороны потребителей вполне может привести к быстрому переходу на сельскохозяйственные тракторы и опрыскиватели с нулевым уровнем выбросов.

Четыре технологии трансмиссии с нулевым уровнем выбросов используются для тяжелых дорожных и внедорожных транспортных средств

Существует четыре технологии с истинным нулевым уровнем выбросов для транспортных средств: электромобили с аккумуляторными батареями (BEV), электромобили на водородных топливных элементах (FCEV), водородные двигатели внутреннего сгорания (h3-ICE) и двигатели внутреннего сгорания на биотопливе или синтопливе (если используется устойчивый источник углерода). Гибридные и газовые двигатели представляют собой промежуточные технологии для сокращения выбросов в среднесрочной перспективе, но сами по себе не могут достичь нулевого уровня выбросов.

Четыре технологии с нулевым уровнем выбросов имеют разные преимущества и недостатки, что приводит к разным уровням пригодности для разных типов транспортных средств (Иллюстрация 2).

Приложение 2

Мы стремимся предоставить людям с ограниченными возможностями равный доступ к нашему сайту. Если вам нужна информация об этом контенте, мы будем рады работать с вами. Напишите нам по адресу: [email protected]

CO 2 Выбросы. Хотя мы называем все четыре технологии нулевыми выбросами, выбросы CO 2 , образующиеся в процессе производства электроэнергии, водорода или синтетического топлива, могут значительно варьироваться. Хотя BEV являются углеродно-нейтральными, если они заряжаются исключительно от возобновляемых источников энергии, их использование в настоящее время приводит к высоким выбросам углерода при подключении к электросети в большинстве регионов (с учетом высокой углеродоемкости глобальной структуры сетей). Выбросы углерода при производстве водорода также сильно различаются, но их легче контролировать.Например, «зеленый» водород можно производить из 100% солнечной и ветровой энергии в регионах, богатых возобновляемыми источниками энергии, и доставлять его на любую заправочную станцию. Углеродная интенсивность для биотоплива и синтетического топлива зависит от источников биомассы и углерода, соответственно.

Качество воздуха. В то время как BEV и FCEV не производят никаких выбросов в выхлопной трубе, h3-ICE по-прежнему выделяют оксиды азота (NOx), которые требуют дополнительной обработки, аналогичной таковой для дизельных двигателей (биотопливо и синтопливо выделяют NOx и твердые частицы).Некоторые производители двигателей h3-ICE утверждают, что условия эксплуатации двигателя допускают гораздо меньшее образование NOx, чем у дизельных двигателей, и, таким образом, могут считаться нулевым воздействием. Будут ли эти двигатели пригодны для использования в городских условиях или для подземных горных работ, будет зависеть от точных уровней выбросов и пороговых значений, разрешенных местными правилами загрязнения воздуха.

Эффективность. Эффективность переключения между баками и колесами составляет от 75 до 85 процентов для BEV, примерно до 50 процентов для FCEV и от 40 до 45 процентов для двигателей внутреннего сгорания.На уровне от скважины до колеса различия еще более заметны: с учетом потерь при преобразовании при производстве водорода из электричества и синтетического топлива из водорода КПД падает примерно до 35 процентов для FCEV, примерно до 30 процентов для h3-ICE и примерно до 20 процентов для синтетических топлив. Эффективность от скважины к колесу для BEV зависит от того, где производится возобновляемая энергия (поскольку более длинные линии передачи подразумевают более высокие потери) и используется ли быстрая зарядка.

В целом, показатели эффективности являются приблизительными и различаются в зависимости от характера движения: двигатели внутреннего сгорания становятся более эффективными при более высоких нагрузках (стимул для уменьшения объема двигателя в дизельных транспортных средствах), тогда как FCEV наиболее эффективны при низких нагрузках (мотив для топлива увеличение размера клеток и гибридизация).

Хотите узнать больше о нашей автомобильной и монтажной практике?

Капзатраты на трансмиссию. Капитальные затраты следуют обратному порядку эффективности: высокая эффективность BEV влечет за собой дорогие батареи, в то время как менее эффективные водород и биотопливо / синтопливо можно сжигать в простых двигателях внутреннего сгорания, которые в значительной степени идентичны сегодняшним дизельным двигателям — на самом деле, они могут быть даже дешевле, чем дизельные двигатели, из-за более низких требований к очистке выхлопных газов (хотя для разработки технологии необходимы дальнейшие исследования и разработки).Тем временем топливные элементы снова оказываются посередине. Таким образом, оптимальный компромисс между первоначальными капитальными затратами и текущим расходом топлива, который сводит к минимуму совокупную стоимость владения (TCO), значительно отличается в зависимости от типа транспортного средства и варианта использования. Например, размер и вес транспортного средства определяют необходимую трансмиссию и количество потребляемого топлива. Схема движения и маршрут, например время, затраченное на ускорение, определяют эффективность трансмиссии и требуемый запас хода. Не менее важно то, как региональные и местные рыночные условия формируют картину оптимизации совокупной стоимости владения, включая доступность и стоимость электроэнергии, водорода и биотоплива, а также необходимую инфраструктуру для подзарядки или заправки топливом.

Прочие ограничения. Помимо эффективности и капиталовложений, дополнительные факторы играют роль в формировании показателей совокупной стоимости владения для различных силовых агрегатов: аккумуляторным батареям требуется больше времени для перезарядки, чем любому топливу, будь то водород (для топливных элементов или сжигания) или биотопливо и синтопливо. Это может привести к сокращению времени безотказной работы, что может повлиять на совокупную стоимость владения в случаях использования, требующих круглосуточной работы. И батареи, и водород требуют жертв в плане полезной нагрузки и / или места: батареи тяжелые, а топливные элементы и h3-ICE требуют больших баков.Транспортные средства, которые особенно ограничены по полезной нагрузке или пространству, могут поэтому быть ограничены более энергоемким биотопливом или синтетическим топливом.

Следовательно, h3-ICE может быть жизнеспособным вариантом трансмиссии в различных условиях, включая карьерные самосвалы (Иллюстрация 3).

Приложение 3

Мы стремимся предоставить людям с ограниченными возможностями равный доступ к нашему сайту. Если вам нужна информация об этом контенте, мы будем рады работать с вами.Напишите нам по адресу: [email protected]

Сжигание водорода — это новое решение, но оно может заполнить важную нишу за счет использования устоявшихся технологий и цепочек поставок.

Среди четырех технологий с нулевым уровнем выбросов сжигание водорода все еще находится в зачаточном состоянии, несмотря на (неоднородную) историю, восходящую к двигателю де Риваза 1806 года, который работал на водородно-кислородной смеси. Долгое время водородные двигатели внутреннего сгорания не принимались во внимание, поскольку очень высокая стоимость водорода делала трансмиссию неэкономичной.Однако сегодня некоторые автопроизводители, поставщики компонентов и стартапы пересматривают сжигание водорода как дополнительный компонент своих будущих портфелей силовых агрегатов, наряду с батареями и топливными элементами.

Несмотря на впечатляющие разработки, аккумуляторы и технология топливных элементов еще не готовы удовлетворить очень высокие требования к мощности, необходимые для суровых условий, которым подвергаются многие тяжелые автомобили (особенно в сегменте внедорожников). Например, карьерные самосвалы требуют мощности в несколько мегаватт, работают круглосуточно и подвергаются сильным вибрациям и тепловыделению, а также загрязнению воздуха.Двигатели внутреннего сгорания соответствовали этим требованиям на протяжении десятилетий, и переход с дизельного топлива на водород может стать прямым способом обезуглероживания этих двигателей с относительно небольшими потребностями в дальнейших технических инновациях.

Повышение рентабельности аккумуляторных электромобилей за счет снижения затрат на конструкцию

Даже там, где батареи и топливные элементы технически осуществимы, сжигание водорода может занять ниши. Низкие требования к капитальным затратам для двигателей внутреннего сгорания, снижение цен на водород и относительно высокий КПД, достигаемый с помощью h3-ICE при высоких нагрузках, создают условия, в которых сжигание водорода может быть конкурентоспособным решением для TCO (Иллюстрация 4).Более того, поскольку двухтопливные двигатели внутреннего сгорания могут работать на водороде, сжиженном природном газе (СПГ) или дизельном топливе (или смесях водород-газ), в зависимости от наличия, они могут помочь декарбонизировать сегменты транспортных средств, где водородные поставки и инфраструктура еще не полностью реализованы. покрытие.

Приложение 4

Мы стремимся предоставить людям с ограниченными возможностями равный доступ к нашему сайту. Если вам нужна информация об этом контенте, мы будем рады работать с вами.Напишите нам по адресу: [email protected]

Помимо этих соображений, h3-ICE предлагают другие преимущества для автомобильных OEM-производителей и поставщиков компонентов: они используют текущие инженерные ноу-хау и рабочие места, опираются на существующие цепочки поставок и производственные мощности в автомобильной промышленности и не создают устойчивости и целостности. проблемы, связанные с поставкой и переработкой драгоценных металлов или редкоземельных элементов.

Сжигание водорода и водородные топливные элементы дополняют друг друга, поскольку они процветают в одной экосистеме

Одна из проблем, связанных с h3-ICE, — это их предполагаемая конкуренция с водородными топливными элементами.Однако, хотя есть некоторые приложения, в которых две технологии могут конкурировать, более вероятно, что обе могут помочь увеличить долю водорода в будущей смеси силовых агрегатов и способствовать успеху друг друга.

Для обоих силовых агрегатов наличие водородных заправочных станций и стоимость водорода в насос — это ключевые факторы, определяющие успех, и сегодня они вызывают наибольшую озабоченность. Однако обе трансмиссии требуют (в основном) одной и той же инфраструктуры. ; таким образом, каждый автомобиль h3-ICE поможет снизить затраты на водородные топливные элементы, и наоборот.Точно так же в обеих трансмиссиях используется одна и та же технология водородного бака, что составляет значительную долю общих затрат на трансмиссию. Разрешение OEM-производителям и поставщикам резервуаров амортизировать НИОКР и капитальные вложения для большего количества автомобилей поможет снизить кривую затрат для всех водородных автомобилей и поддержит конкурентоспособность обоих решений. Наконец, некоторые игроки активно разрабатывают гибридные решения с водородными двигателями внутреннего сгорания, топливными элементами и батареями, чтобы максимизировать эффективность при переменных профилях нагрузки.

Достижение нулевых выбросов в транспортных сегментах во всем мире — огромная задача; тем не менее, h3-ICE могут играть свою роль в нескольких приложениях, обеспечивая дополнительные решения для FCEV и BEV.

Преимущества

h3-ICE включают меньшие потери полезной нагрузки и занимаемое пространство, более быстрое время заправки по сравнению с грузовиками BEV, более низкие затраты и более высокую устойчивость к нагреву и вибрации. Эти преимущества могут быть полезны для различных сегментов транспортных средств, в том числе:

  • легковых автомобилей, таких как эвакуаторы
  • автомобилей средней грузоподъемности, в том числе среднемагистральных и пожарные машины
  • большегрузных автомобилей, таких как автобетононасосы
  • горнодобывающая и строительная техника, такая как гусеничные бульдозеры, экскаваторы и самосвалы
  • сельскохозяйственных машин, таких как уборочная техника и тракторы

Несколько игроков, в том числе производители автомобилей, поставщики двигателей, инженерные компании и стартапы h3-ICE, уже исследуют сжигание водорода в рамках своих предложений решений с нулевым уровнем выбросов на дорогах и бездорожье.Важно отметить, что они сравнивают этот потенциал с дополнительными ресурсами НИОКР, необходимыми для разработки технологий, связанных с батареями и топливными элементами. В частности, Китай набирает обороты в отношении h3-ICE. Будущее портфолио силовых агрегатов будет сложным, но добавление к нему автомобилей, работающих на водороде, может окупиться.

Центр данных по альтернативным видам топлива: основы водорода

Водород (H 2 ) — альтернативное топливо, которое можно производить из различных внутренних источников.Хотя рынок водорода в качестве транспортного топлива находится в зачаточном состоянии, правительство и промышленность работают над чистым, экономичным и безопасным производством и распределением водорода для широкого использования в электромобилях на топливных элементах (FCEV). Легковые автомобили FCEV теперь доступны в ограниченных количествах для потребительского рынка в локализованных регионах внутри страны и по всему миру. Рынок также развивается для автобусов, погрузочно-разгрузочного оборудования (такого как вилочные погрузчики), наземного вспомогательного оборудования, грузовиков средней и большой грузоподъемности, морских судов и стационарного оборудования.Для получения дополнительной информации см. Свойства топлива и Центр ресурсов по анализу водорода.

В нашей окружающей среде много водорода. Он хранится в воде (H 2 O), углеводородах (таких как метан, CH 4 ) и других органических веществах. Одной из проблем использования водорода в качестве топлива является его эффективное извлечение из этих соединений.

В настоящее время паровой риформинг — сочетание высокотемпературного пара с природным газом для извлечения водорода — составляет большую часть водорода, производимого в Соединенных Штатах.Водород также можно получить из воды путем электролиза. Это более энергоемко, но может быть выполнено с использованием возобновляемых источников энергии, таких как ветер или солнце, и избегая вредных выбросов, связанных с другими видами производства энергии.

Почти весь водород, производимый в США каждый год, используется для очистки нефти, обработки металлов, производства удобрений и обработки пищевых продуктов.

Хотя производство водорода может приводить к выбросам, влияющим на качество воздуха, в зависимости от источника, FCEV, работающий на водороде, выделяет только водяной пар и теплый воздух в качестве выхлопных газов и считается автомобилем с нулевым уровнем выбросов.Основные усилия в области исследований и разработок направлены на то, чтобы сделать эти автомобили и их инфраструктуру практичными для широкого использования. Это привело к развертыванию легких серийных автомобилей для розничных потребителей, а также к первоначальному внедрению автобусов и грузовиков средней и большой грузоподъемности в Калифорнии и доступности автопарка в северо-восточных штатах.

Узнайте больше о водороде и топливных элементах из отдела технологий водородных и топливных элементов.

Водород в качестве альтернативного топлива

Водород считается альтернативным топливом в соответствии с Законом об энергетической политике 1992 года.Интерес к водороду как альтернативному транспортному топливу проистекает из его способности приводить в действие топливные элементы в транспортных средствах с нулевым уровнем выбросов, его потенциала для внутреннего производства, а также быстрого времени заполнения топливного элемента и его высокой эффективности. Фактически топливный элемент, соединенный с электродвигателем, в два-три раза эффективнее двигателя внутреннего сгорания, работающего на бензине. Водород также может служить топливом для двигателей внутреннего сгорания. Однако, в отличие от FCEV, они производят выбросы из выхлопной трубы и менее эффективны.Узнайте больше о топливных элементах.

Энергия 2,2 фунта (1 кг) газообразного водорода примерно такая же, как энергия 1 галлона (6,2 фунта, 2,8 кг) бензина. Поскольку водород имеет низкую объемную плотность энергии, он хранится на борту транспортного средства в виде сжатого газа для достижения дальности движения обычных транспортных средств. В большинстве современных приложений используются резервуары высокого давления, способные хранить водород с плотностью 5 000 или 10 000 фунтов на квадратный дюйм (psi). Например, FCEV, производимые производителями автомобилей и доступные в дилерских центрах, имеют резервуары на 10 000 фунтов на квадратный дюйм.Розничные диспенсеры, которые в основном расположены рядом с автозаправочными станциями, могут заполнить эти резервуары примерно за 5 минут. В электрических автобусах на топливных элементах в настоящее время используются баки емкостью 5000 фунтов на квадратный дюйм, для заполнения которых требуется 10–15 минут. Другие способы хранения водорода находятся в стадии разработки, включая химическое связывание водорода с таким материалом, как гидрид металла или низкотемпературные сорбирующие материалы. Узнайте больше о хранении водорода.

Данные с розничных заправок водородом, собранные и проанализированные Национальной лабораторией возобновляемых источников энергии, показывают, что среднее время, затрачиваемое на заправку топливом FCEV, составляет менее 4 минут.

Калифорния является лидером в строительстве водородных заправочных станций для автомобилей FCEV. По состоянию на середину 2021 года 47 розничных водородных станций были открыты для публики в Калифорнии, а также одна на Гавайях, а еще 55 находились на различных стадиях строительства или планирования в Калифорнии. Эти станции обслуживают более 8000 автомобилей FCEV. Калифорния продолжает предоставлять финансирование для строительства водородной инфраструктуры в рамках своей Программы чистого транспорта. Калифорнийская энергетическая комиссия уполномочена выделять до 20 миллионов долларов в год до 2023 года и инвестирует в первые 100 общественных станций для поддержки и поощрения этих транспортных средств с нулевым уровнем выбросов.Кроме того, в северо-восточных штатах планируется построить 14 станций розничной торговли, некоторые из которых уже обслуживают клиентов автопарка.

Производители автомобилей предлагают FCEV только потребителям, живущим в регионах, где есть водородные станции. Неразничные станции в Калифорнии и по всей стране также продолжают обслуживать автопарк FCEV, включая автобусы. Многие распределительные центры используют водород в качестве топлива для погрузочно-разгрузочных машин в своей нормальной работе. Кроме того, было сделано несколько заявлений относительно производства большегрузных автомобилей, таких как линейные грузовики, для которых потребуются заправочные станции с гораздо большей мощностью, чем существующие заправочные станции малой грузоподъемности.Найдите водородные заправочные станции в Соединенных Штатах.

Под кожей: станут ли водородные двигатели внутреннего сгорания жизнеспособными?

Водород до сих пор изо всех сил пытался оправдать свои первые надежды в качестве альтернативного топлива для дорожного транспорта, но это тема, которая просто отказывается уходить.

Его использование в водородных топливных элементах для выработки электроэнергии без вредных выбросов по-прежнему имеет огромный потенциал, но импульс, стоящий за запуском двигателей внутреннего сгорания на нем, уменьшился. Тем не менее интерес остается, примером является разработка Toyota трехцилиндрового гоночного двигателя с водородным двигателем, взятого у GR Yaris и используемого для питания специально разработанной Corolla Sport, участвующей в гонке Fuji 24 Hours.

Хотя водород является более чистым топливом по сравнению с бензином или дизельным топливом, он полностью исключает выбросы только при преобразовании в системе топливных элементов для выработки электроэнергии. Когда сжигается в двигателе внутреннего сгорания, это не совсем так. Хотя несгоревшие углеводороды (HC), монооксид углерода (CO) или CO2 не образуются, оксиды азота (NOx) образуются. Воздух на 78% состоит из азота, и при сгорании он окисляется с образованием токсичных NOx — но насколько сильно зависит от того, насколько горячие предметы попадут в камеру сгорания, и именно здесь водородные двигатели могут иметь преимущество.

Водород гораздо менее требователен, чем бензин или дизельное топливо, он смешивается и сжигается полностью и эффективно в гораздо более широком диапазоне соотношений воздух-топливо. В результате водородный двигатель может работать на очень бедной смеси (больше воздуха, меньше топлива) и при этом производить гораздо более низкие уровни выбросов NOx на выходе из двигателя, чем бензин или дизель. Выбросы из выхлопной трубы могут быть уменьшены до минимального уровня с помощью существующей технологии выхлопных газов.

Эти привлекательные факты зависят от многих вещей. Хотя водород несет в себе большое количество энергии по весу, он намного менее плотен, чем жидкое топливо, поэтому двигатели с впрыском портов, в которых топливо впрыскивается во впускной коллектор и смешивается с воздухом за пределами цилиндров, вырабатывают значительно меньшую мощность, работающую на водороде. чем на бензине.Прямой впрыск улучшает ситуацию и, в сочетании с турбонаддувом с изменяемой геометрией, делает двигатели внутреннего сгорания, работающие на водороде, более жизнеспособными.

Водородные двигатели — обзор

2.5.3 Использование для сжигания в транспортных средствах

Водород можно использовать в качестве топлива в обычных двигателях с искровым зажиганием, таких как двигатели Отто и дизельные двигатели, используемые в легковых автомобилях, и газовые турбины, используемые в обычных источниках энергии растения. Первый водородный двигатель был продемонстрирован в 1808 году Франсуа де Риваз (Википедия, 2017).Время от времени появлялись усовершенствованные конструкции, не вызывающие коммерческого интереса. КПД двигателя такой же высокий, как у бензина или дизельного топлива, а водородное пламя быстро распространяется от ядра воспламенения (см. Таблицу 2.5). Однако из-за более низкой плотности энергии при давлениях, подходящих для поршневых цилиндров, объем смещения должен быть в два-три раза больше, чем для бензиновых двигателей, что вызывает проблемы с пространством в моторных отсеках пассажирских транспортных средств. Один производитель автомобилей, занимающийся разработкой легковых автомобилей на водородном топливе, использовал огромные 8- или 12-цилиндровые двигатели с рабочим объемом более 4 литров, чтобы приблизиться к приемлемым характеристикам (BMW, 2004).Эффективные обычные бензиновые или дизельные автомобили имеют общий рабочий объем около 1,2 литра, распределенный на трех-четырех цилиндрах (VW, 2003).

Таблица 2.5. Связанные с безопасностью свойства водорода и других видов топлива (с использованием Dell и Bridger, 1975; Zittel and Wurster, 1996)

Свойство Водород Метанол Метан Пропан Бензин Установка
Минимальная энергия зажигания 0.02 0,29 0,25 0,24 10 — 3 J
Температура пламени 2045 1875 20020 90 ° -температура возгорания на воздухе585 385540 510 230–500 ° C
Максимальная скорость пламени 3,46 0.43 0,47 м с — 1
Диапазон воспламеняемости в воздухе 4–75 7–36 5–15 2,5–9,3 1,0–7,6 об. %
Диапазон взрывоопасности в воздухе 13–65 6,3–13,5 1,1–3,3 об.%
Коэффициент диффузии в воздухе 0,61 0.10 0,05 10 — 4 м 2 с — 1

На рисунке 2.49 показаны результаты компьютерного моделирования процесса горения водорода в воздухе (в камере сгорания, которая может представлять собой цилиндр двигателя или, скорее, газовая турбина), обосновывая замечание о быстром расходе впрыскиваемого водорода. H 2 входит с левой стороны. Распределение кислорода показывает «неиспользованный» кислород вдоль камеры, в которую воздух втягивается через многочисленные отверстия на внешней поверхности.Внизу рис. 2.49 показано распределение образовавшихся оксидов азота. Это похоже на только что показанное распределение высоких температур, поскольку образование оксидов азота резко возрастает при температурах выше 1700 К. Образование высоких уровней NO x является проблемой для сжигания водорода, что в данном случае больше не является экологически чистым. Однако добавление каталитического нейтрализатора может существенно уменьшить проблему (Verhelst, 2014).

Поведение водорода в термодинамических двигателях было установлено с помощью моделирования, такого как показанное на рис.2.49, а также измерениями — например, чтобы установить влияние степени сжатия (Verhelst and Sierens, 2003; Karim and Wierzba, 2004). Высокая степень сжатия важна из-за низкой объемной плотности энергии водорода. У широкого диапазона воспламеняемости и легкости возгорания есть две стороны. Один из них — плавная работа при низких нагрузках. Однако при высоких нагрузках возникает ряд проблем, связанных с преждевременным зажиганием, обратным зажиганием или детонацией, которые необходимо решать (Shoiji et al., 2001). Существуют важные аспекты безопасности из-за широкого диапазона воспламеняемости водорода (см. Таблицу 2.2). Их необходимо контролировать, например, с помощью двухклапанных систем на каждом цилиндре или с помощью лазерного зажигания (NFC, 2000; Pal and Agarwal, 2015).

Были проведены работы по двигателям, работающим на смесях водорода с бензином или с природным газом (Fontana et al., 2004; Akansu et al., 2004), и по использованию сжигания водорода только для выработки электроэнергии для двигателя (van Blarigan and Келлер, 1998; Юань и др., 2016).

Из-за большого количества водорода по объему, необходимого для использования в двигателях внутреннего сгорания, приличный рабочий диапазон для легкового автомобиля обычных размеров требует гораздо более высокой плотности хранения H 2 , чем это возможно в газовой форме.Поэтому используется жидкий водород, подразумевающий охлаждение до температуры 20 К (с использованием энергии, которая еще больше снижает эффективность) и использование очень специальных заправочных станций. Эти технологии были разработаны и использованы для прототипов автомобилей, работающих на водороде (Fischer et al., 2003). Были сконструированы специальные резервуары для хранения жидкого водорода с использованием множества слоев металлических цилиндров с высококачественной изоляцией между ними (Michel et al., 1998). Но даже в этом случае существует утечка тепла и проблема утечки водорода.

Сгорание водорода несколько легче внедрить в автобусы, потому что больший размер моторного отсека составляет меньшую часть от общего размера и — из-за более низких рабочих скоростей (при городском использовании) автобусы могут размещать водород, хранящийся на крыше, как это сделано в прототипах водородных автобусов производства MAN (Knorr et al., 1998). Кроме того, корабли могли использовать водородное топливо вместо дизельного топлива в обычных двигателях.

Предложение об использовании водорода для прямого сгорания в турбинах привлекло большое внимание в случае самолетов.Запасы жидкого водорода могут быть встроены в крылья или фюзеляж, и могут использоваться почти обычные газотурбинные двигатели. Первые испытания самолетов на жидком водороде включают бомбардировщик Boeing B57 1957 года и в 1988 году Туполев Ту-154, а недавно был начат аналогичный проект под названием Криоплан на базе самолета Airbus A310 (Pohl, Malychev, 1997; Klug and Faass, 2001 ). Более громоздкие запасы топлива привели к предположению, что эти самолеты должны работать на меньшей высоте, что положительно повлияет на выбросы NO x (Svensson et al., 2004). Это также снижает значимость воздействия выбросов в воду, поскольку поглощение солнечной радиации водой (приводящее к потеплению парниковых газов) более выражено на высоте более 10 км. Разработан проект самолета, способного работать от нуля до 5 Маха (в пять раз больше скорости звука, что составляет 1,22 × 10 6 м / с — 1 на уровне моря), при этом в транспортном средстве используется жидкий водород. обычный режим газотурбинного двигателя с ТРДД до 3 Маха и режим прямоточного воздушно-реактивного двигателя выше этой скорости (Qing and Chengzhong, 2001).

Жидкость H 2 уже несколько лет используется в космических аппаратах. Здесь общая масса при отталкивании является существенным ограничивающим параметром. Таким образом, высокое содержание энергии по массе делает водород более предпочтительным по сравнению с любой другой системой на основе топлива, и считается целесообразным дополнительное усложнение криогенного хранения. Двигатель может быть газовой турбиной или ракетным двигателем, в зависимости от режима работы космического корабля (полет в атмосфере Земли или уход от гравитации Земли).И водород, и кислород должны переноситься в жидкой форме, поскольку космическая среда за пределами атмосферы Земли не содержит воздуха или кислорода. Основной особенностью ракетного двигателя является сопло, через которое отводятся пороховые газы для обеспечения прямой тяги. Новые разработки в области высокоэффективной конструкции с несколькими соплами все еще продолжаются (Yu et al., 2001), как и эксперименты с несколькими видами топлива (обычно жидким водородом и твердыми углеводородами) для удовлетворения требований на различных этапах полета в околоземном пространстве. с многоразовыми космическими кораблями типа «шаттл» (Chibing et al., 2001). Оптимальное относительное расположение мест нагнетания жидкого водорода и жидкого кислорода было изучено путем экспериментов и моделирования (Kendrich et al., 1999).

Toyota разрабатывает водородные двигатели внутреннего сгорания — для гонок

Toyota пыталась использовать водородные топливные элементы во всем, от легковых автомобилей до автобусов и грузовиков, но теперь автопроизводитель приступает к совершенно другому проекту водородной силовой установки.

Вместо топливных элементов Toyota разрабатывает двигатель внутреннего сгорания, работающий на водороде, а не для использования на дорогах.На этот раз для гонок.

В четверг автопроизводитель объявил, что он разрабатывает двигатель на водороде для использования в 24-часовой гонке на японской трассе Fuji Speedway, запланированной на 21-23 мая. Гонка является частью японской серии Super Taikyu, в которой используются автомобили, основанные на серийных моделях.

Гонки серии Super Taikyu

1,6-литровый рядный 3-цилиндровый двигатель с турбонаддувом будет использоваться в модифицированной Toyota Corolla Sport, работающей на сжатом газообразном водороде, а не на жидком бензине.Двигатели внутреннего сгорания могут работать на газообразном водороде с некоторыми модификациями, и Toyota даже утверждает, что сгорание водорода происходит более быстрыми темпами, что улучшает отзывчивость.

Идея не нова, но большинство автопроизводителей намеренно избегают такой попытки — отчасти для того, чтобы избежать необходимости производить расчеты эффективности, углеродного следа и выбросов для такого сценария. В начале 2000-х BMW ненадолго предложила водородную версию своего роскошного седана 7-й серии, но по большей части автомобильное использование водорода было сосредоточено на топливных элементах, которые производят электричество для работы электродвигателей.Даже BMW переключила внимание на топливные элементы и фактически сотрудничает с Toyota в разработке.

Аналогичным образом, использование водорода в автоспорте практически не исследовалось. Одна команда планирует запустить экспериментальный автомобиль на топливных элементах на престижной гонке «24 часа Ле-Мана» в 2024 году, но гоночные серии в первую очередь ориентированы на гибридные и аккумуляторно-электрические силовые агрегаты как способ сокращения выбросов.

Однако водородный гоночный двигатель соответствует амбициозным планам автопроизводителя в отношении водорода.

Toyota стремится создать водородную экономику для всего, от промышленного использования до высококлассного использования, например, луноходов. Он также только что подписал с Chevron стратегическое партнерство для достижения этой цели, охватывающее развитие инфраструктуры и исследования, связанные с транспортировкой и хранением водорода.

Автопроизводитель продемонстрировал свою технологию топливных элементов при транспортировке грузов по малой петле и разработал модуль топливных элементов для питания грузовиков и автобусов будущего.Однако Toyota часто избегает рассмотрения того, как поставляется большая часть водорода, и экологических последствий этой цепочки поставок.

Что касается единственного серийного автомобиля Toyota с топливными элементами, мы думаем, что Mirai — лучший или один из лучших седанов Toyota в настоящее время.

Лучше ли внутреннее сгорание водорода, чем топливные элементы?

Хотя водород — и водородные топливные элементы — все еще могут играть важную роль в транспорте будущего, даже многие сторонники водорода признают, что внутреннее сгорание водорода, вероятно, не будет.

Так было не всегда. Около 15 лет назад была большая надежда на идею внутреннего сгорания водорода — по сути, запуск двигателей, мало чем отличающихся от бензиновых, на хранении первого элемента таблицы Менделеева.

BMW предлагала версию BMW 7-й серии 2005-2007 годов под названием Hydrogen 7 с 6,0-литровым двигателем V-12, который мог работать на бензине или водороде. Он заявлял, что КПД на водороде составляет около 40 процентов — по сравнению с большинством бензиновых двигателей.

НЕ ПРОПУСТИТЕ: Энергопотребление для автомобилей на водородных топливных элементах: выше, чем у электриков, даже у гибридов

Mazda была особенно активна в этой области и утверждала, что ее роторный двигатель Ванкеля особенно хорошо подходит для работы с водородом, поскольку конструкция двигателя уже имеет тенденцию работать при более низких температурах, чем обычные поршневые двигатели, и, таким образом, может снизить опасения по поводу NOx. Сначала у него была двухтопливная версия RX-8, которая могла при необходимости переключаться между водородом и бензином, а затем в Premacy h3 RE как часть серийной гибридной системы.Когда мы ездили на этом автомобиле в первые дни Green Car Reports , мы обнаружили, что он довольно веселый благодаря своей системе электродвигателя.

Mazda Premacy Hydrogen RE Гибрид

Проблемой для любого из этих транспортных средств — не считая чистой стоимости — была непрактичность хранения достаточного количества водорода для получения значимого диапазона. Hydrogen 7 мог проехать всего 125 миль на 17,6 фунтах водорода, после чего в игру вступил бензин. С другой стороны, нынешний автомобиль на топливных элементах Hyundai Nexo 2019 года может проехать 380 миль на 13.7 фунтов водорода.

В последние годы эффективность транспортных средств на топливных элементах превысила 50-процентную отметку, что означает, что более половины энергии, содержащейся в водороде, используется для работы транспортного средства. Hyundai, например, заявила, что сама батарея топливных элементов в Nexo работает с КПД до 60 процентов.

ПРОВЕРКА: Эта диаграмма 11-летней давности объясняет проблему с автомобилями на водородных топливных элементах

Хранение водорода в автомобиле по-прежнему остается проблемой, поэтому технология, которая может идти дальше за драгоценную унцию водорода (то есть топливные элементы), является победителем.Топливный элемент Honda Clarity, например, проезжает 366 миль на своих 12 фунтах водорода, хранимых при давлении 10000 фунтов на квадратный дюйм и требующих трех отдельных цилиндрических баков для поддержания достаточно практичной упаковки (даже при этом спинки задних сидений не складываются и не позволяют сквозной.

2017 Honda Clarity Топливный элемент

Кроме того, внутреннее сгорание водорода не решает основную проблему с водородом, а именно его доставку и распределение из устойчивых источников. Ассортимент водородных транспортных средств является еще одним препятствием, поскольку инфраструктура постепенно развивается.

Конечно, должна была быть причина, по которой руководители отделов исследований и разработок и инженеры нескольких крупных автопроизводителей, часто имеющие докторскую степень и очень хорошо понимающие, как работают энергия и сгорание, а также проблемы, с которыми сталкиваются топливные элементы и производство водорода, принимали во внимание в первую очередь внутреннее сгорание водорода.

Я посетил несколько таких презентаций. В то время топливные элементы были громоздкими и непомерно дорогими. Сохранение схемы внутреннего сгорания считалось более дешевым и могло производиться наряду с существующими моделями.

ПОДРОБНЕЕ: из-за нехватки водорода автомобили на топливных элементах задыхаются в Калифорнии

Но времена изменились. Топливные элементы стали намного меньше и более энергоемкими и теперь имеют размер примерно с чемодан для ручной клади, а в следующем поколении потенциально могут стать еще меньше.

Водородные двигатели внутреннего сгорания по-прежнему производят одни из самых скандальных загрязняющих веществ, NOx, из-за которых их выбросы «от колодца к колесам» были хорошими, а не такими экологичными, даже до того, как скандал с выбросами Volkswagen сосредоточился на этом компоненте выхлопных газов.

Хотя приведенное ниже видео из Engineering Explained, выпущенное в конце прошлого года, объясняет, почему внутреннее сгорание водорода сейчас выглядит глупой идеей, стоит вспомнить, почему: инженерные разработки и экономическое обоснование того, что работает в настоящее время (и почему), очень сильно развиваются. быстро.

Итак, объявите водородное внутреннее сгорание мертвым. Но мы не готовы делать такие заявления в отношении топливных элементов. По мере того, как растет количество электрических и электрифицированных транспортных средств, топливные элементы могут все больше функционировать как часть всей экосистемы электромобилей; и, возможно, обменять на батареи — в промышленных приложениях или в контурах коммерческих автомобилей, где они, в конце концов, могут оказаться разумной идеей.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *