Показания лямбда зонда на холостом ходу: Диагностика по лямбдам

Диагностика по лямбдам

Прежде чем поговорить об устройстве, работе и диагностике лямбда- зонда, обратимся к некоторым особенностям работы топливной системы. Нам поможет в этом эксперт журнала, Федор Александрович Рязанов, диагност с большим стажем работы, руководитель курсов обучения диагностов в компании «ИнжКар».

Современный автомобилист хочет владеть мощным, но в тоже время экономичным автомобилем. У экологов другое требование – минимальное содержание вредных веществ в выхлопе машины. И в данных вопросах интересы автомобилистов и экологов в итоге совпадают. И вот почему.

Известно, что когда двигатель не сжигает все топливо, расход горючего возрастает, растут затраты и на эксплуатацию автомобиля. Мощность двигателя (или ДВС) в условиях неполного сгорания топлива неизбежно падает, а крутящий момент снижается. Одновременно с этим увеличивается уровень вредных веществ в выхлопе автомобиля.

В этой связи одной из основных задач современного автомобилестроения является максимально полное сжигание топливной смеси в двигателе.

На сжигание смеси прямым образом влияет ее состав. Идеальной ситуацией является стехиометрический состав топлива. Говоря более простым языком, должна быть соблюдена пропорция – на 14,7 кг воздуха должен приходиться 1 кг топлива. Именно такое соотношение позволяет оптимально использовать и то, и другое. Владелец автомобиля получает больший крутящий момент и, как следствие, — адекватное ускорение автомобиля, равномерную работу двигателя во всех режимах работы. Также падает расход топлива, и автомобиль перестает загрязнять окружающую среду.

Отклонения от правильного состава топливной смеси – богатая и бедная смесь. Богатая топливная смесь образуется, когда в цилиндрах мало кислорода, но много топлива, которое, конечно же, из-за недостатка кислорода, полностью сгореть не сможет. Следовательно, автомобиль, работающий на богатой смеси, будет больше расходовать топливо, а избыток несгоревшего топлива, в этом случае, охладит камеру сгорания, мощность двигателя при этом будет падать, несгоревшое топливо попадет в атмосферу, загрязняя ее.

Другая ситуация: двигатель получает обедненную топливную смесь. В этом случае топливо в цилиндрах будет сгорать не полностью из-за недостатка топлива. Об экономичности, ради которой и разрабатывались такие двигатели, в этом случае также придется забыть. Ведь бедная смесь плохо горит, и это автоматически приводит к падению крутящего момента. Водителю приходится больше нажимать на газ, что в свою очередь, ведет к перерасходу топлива.

Таким образом, понятно, что со всех аспектов только стехиометрия топливной смеси (пропорция 14,7/1) является самым оптимальным режимом работы двигателя. И, конечно же, автомобиль, который только-только сошел с конвейера, обычно, укладывается во все рамки этого критерия. Но и «заводская» настройка может отличаться от идеала. Более того, в процессе эксплуатации автомобиля неизбежно наступает износ некоторых компонентов, датчики, отвечающие за настройку топливной системы, могут терять точность настроек. В итоге состав топливной смеси все больше уходит от идеальных показателей.

В этом случае как раз и необходим лямбда- зонд, он фиксирует количество кислорода в выхлопе автомобиля. И если в выхлопе окажется большое количество кислорода, это «сигнализирует» о бедной топливной смеси и, наоборот, если в выхлопе нет кислорода, это указывает на то, что смесь стала богатой. А мы уже выяснили, что и в том, и в другом случае уменьшается мощность двигателя, растет расход топлива, снижается экологичность выхлопа. Задача лямбда-зонда как раз и заключается в том, чтобы скорректировать эти отклонения.

Возьмем в качестве примера такую ситуацию: в топливной системе засорились форсунки, их производительность снизилась, смесь стала обедненной. Лямба-зонд фиксирует этот факт, а блок управления топливной системой реагирует на эту информацию и «доливает» немного топлива в цилиндры. Так происходит корректировка возникающих отклонений с учетом показаний этого датчика.

Таким образом, основное назначение лямбда- зонда заключается в том, чтобы компенсировать неизбежно возникающие в процессе эксплуатации автомобиля отклонения в составе топливной смеси.

Однако нужно понимать, что лямбда-зонд как таковой не является панацеей от всех бед, он лишь позволяет вернуть состав топливной смеси в состояние стехиометрии. Но это не устранение дефектов, а только их компенсация.

Вернемся к нашим форсункам. При загрязненных форсунках нарушается эффективность распыления бензина, топливо распыляется крупными каплями, испаряются они с трудом. И система топливоподачи рассчитывает тот объем топлива, который необходим для достижения состояния стехиометрии, для этого фиксируются показания датчика расхода воздуха. Однако если бензин в системе выпрыскивается крупными каплями, его пары полностью не смешиваются с воздухом, часть паров сгорает, а часть капель бензина попросту вылетает в выхлопную трубу. Лямбда-зонд трактует такую ситуацию как бедную смесь, а датчик топливной системы, который «не видит» отдельные капли бензина, добавляет топлива, чтобы привести смесь в состояние стехиометрии. Но в этом случае, резко повышается расход топлива.

Поэтому для работы лямбда-зонда важен не фактор того, как система справляется с выводом смеси на стехиометрию, а фактор того, какой «ценой» ей удается это сделать.

Рассмотрим осциллограмму работы лямбда- зонда. Датчик сам по себе не может отличить состояние стехиометрии от состояния богатой топливной смеси, так как и в том, и в другом случае кислорода в выхлопе нет. При отсутствии кислорода в топливе блок управления (ЭБУ – электронный блок управления) немного уменьшает количество подаваемого в цилиндр топлива. Как следствие, в выхлопе появляется кислород.

И в этом случае показания лямбда-зонда находятся ниже отметки 0,4 В, что для датчика является признаком того, что топливная смесь обеднела (LEARN). При низких показателях лямбда-зонда (ниже 0,4 В), блок управления увеличивает подачу топлива на несколько процентов, смесь становится богатой и показания датчика достигают уровня выше 0,6В. ЭБУ воспринимает это как признак того, что в топливной системе находится богатая смесь (RICH). Подача топлива уменьшается, показания лябда-зонда падают, цикл повторяется — состав смеси начинает колебаться. В такт изменению состава смеси меняются показания лямбда-зонда.

Такие колебания ЭБУ понимает как нормальное явление, указывающее на то, что состав топливной смеси находится в зоне стехиометрии.

Вспомним также, что в катализаторе автомобиля обязательно есть цирконий, этот металл способен накапливать кислород. И в фазе бедной смеси кислород запасается в катализаторе, а в фазе богатой смеси он расходуется. В результате на выходе топливной смеси катализатор дожигает все ее остатки.

На холостом ходу такие колебания возникают с частотой одно колебание примерно в одну секунду. Время такого переключения – еще один важный показатель для лямба-зонда. В нашем случае (см. осциллограмму, Рис. 1) время переключения составило 88 мс, при этом нормой является – 120 мс.

Если переключение длится долго, как в случае нашей осциллограммы (см. осциллограмму, Рис. 2) – 350 мс, да к тому же такая ситуация повторяется многократно, блок управления выдаст ошибку: «замедленная реакция лямбда-зонда».

Величины, при которых появляется эта ошибка, определяются, главным образом, настройками программного обеспечения блока управления.

Таким образом, для диагностики по лямбда-зонду необходимо изучить фазы переключения датчика. И если на осциллограмме появится хотя бы одно переключение с низкого показания на высокое (максимальное – 1В, минимальное – 0В), это значит, что лямбда-зонд работает исправно. Исправный датчик делает примерно одно переключение в секунду. Напомним, что в алгоритме работы блока управления о бедной смеси «сигналят» показания лямбда-зонда ниже 0,4В, а о богатой – выше 0,6 В. Поэтому оценить состояние топливной системы автомобиля можно и по работе датчика. В нашем случае (см. осциллограмму, Рис. 3) блоку управления удалось скомпенсировать все дефекты и вывести стехиометрию.


 
Вернемся к примеру с загрязненными форсунками. При обедненной смеси показания лямбда-зонда падают ниже 0,4В. Блок управления добавляет топлива до того момента, когда смесь станет богатой. Отметим, что в этом случае блок управления «самостоятельно» отклонился от установленных заводом-изготовителем в его карте параметров.

Величину отклонения он записывает в своей памяти как топливную коррекцию (fuel trime). Предельно допустимые показатели топливной коррекции для большинства современных автомобилей составляют ±20-25%. Коррекция в «плюс» означает, что блоку пришлось добавлять топлива, коррекция в «минус» — наоборот, убавлять.

Допустим, неисправность носит долговременный характер: блок управления уже дошел до предела топливной коррекции, загорается код ошибки — «Превышение пределов топливной коррекции». Стерев код, исправить такой дефект нельзя, а наличие этой неисправности повлечет за собой перерасход топлива. Стоит отметить, что уже на 15% топливной коррекции обнаруживаются проблемы: автомобиль почти не едет, но расходует большое количество топлива.

То есть важно помнить, что показатель топливной коррекции и работа лямбда-зонда – это комплексный параметр, он указывает на наличие дефекта, но не указывает конкретную причину, которую придется найти и устранить на автосервисе.

И немного об особенностях строения лямбда-зонда. Такой датчик имеет циркониевую колбочку, которая одной стороной помещена в выхлопные газы. Цирконий уникальный материал, так как сквозь него может проходить кислород. Ион кислорода, «прилипая» к атомам циркония, движется по ним, при этом на циркониевом колпачке возникает напряжение. И если все идет в штатном порядке, то диффузия ионов кислорода осуществляется равномерно, и напряжение на обкладках колбочки составляет 1В. Если в выхлопе появляется кислород, диффузия невозможна, и напряжение в этом случае равно 0В. Вместо циркония в лямбда-зондах может использоваться окись титана. Отличие циркониевого лямбда-зонда от титанового заключается в том, что первый вырабатывает напряжение, а другой – меняет свое сопротивление (в переделах от 0 до 5В), и ему нужна схема, которая переводит меняющееся сопротивление в напряжение.

Слой платины на колбочке поверх циркония позволяет снять с него напряжение, играет роль катализатора, дожигает бензин и несгоревший кислород. Все ухудшается при использовании некачественного топлива, а также топливных присадок, которые в прямом смысле закупоривают слой платины и циркония, и зонд выходит из строя. Однако в этом случае, если у зонда нет физических повреждений, обычная промывка вернет его в рабочее состояние. «Современный бич» – это добавки антидетонационных присадок в топливо. До недавнего времени в качестве присадки использовался ферроцент — опасное вещество, которое мы окрестили «красная смерть» за ее красный оттенок, а также за способность быстро выводить из строя свечи, лямбда-зонды и катализатор», — отмечает Федор Александрович. Зонд может «замерзнуть» в высоком или в низком положении, то есть или в фазе богатой, или в фазе бедной смеси. И в этом случае датчик достигнет пределов топливной коррекции и прекратит попытки выравнивать состав смеси до стехиометрии.

Диагностику состояния системы топливоподачи начинаем с подключения сканера к автомобилю. Отсутствие кода «Превышение пределов топливной коррекции» еще не говорит об отсутствии дефектов в системе топливоподачи. Необходимо в потоке данных (Data Stream) убедиться в наличии колебаний лямбда-зонда (стехиометрия достигнута), а также по величине топливной коррекции оценить, какой ценой она достигнута.

Подводя итог, еще раз отметим, что при проверке лямбда-зонда необходимо обращать внимание на колебания датчика, если они есть, датчик исправен; если же система лямбда регулирования не совершает колебаний, это может указывать или на неисправность лямбда-зонда или на бедную или богатую топливную смесь. То есть сначала надо проверить сами датчики. Для этого нужно принудительно обогатить или обеднить смесь, чтобы получить колебания лямбды и убедиться в том, что он исправен.

Рассмотренные выше лямбда-зонды носят название «скачковые». Т.е. они указывают на то, есть кислород в выхлопе или нет. Но все более ужесточающиеся требования к экологии заставили производителей разработать датчики, которые способны не только работать по принципу «Да-Нет», но и определять процент кисло- рода в выхлопе. Такие датчики получили название «широкополосные датчики кислорода».

Принципы их работы и особенности диагностики автомобиля по показаниям широкополосных лямбда-зондов будут рассмотрены в следующих публикациях.

МНЕНИЕ
Максим Пастухов, технический специалист компании «ДЕНСО Рус»: «Практика показывает, что основными причинами выхода из строя лямбда зондов являются: 1. Загрязнение лямбда-зонда продуктами сгорания топлива. Фактически это присадки, которые используются для повышения октанового числа бензина, устранения детонации или для других целей. Также на это влияет степень очистки топлива. Присадки, сера и парафины «закупоривают» проводящий слой лямбда-зонда, и он «слепнет». Блок управления переводит двигатель в аварийный режим, и мы видим на приборной панели значок «Проверьте двигатель». Кстати, от вышеописанных вещей страдают также свечи зажигания, клапаны, катализатор и др. компоненты двигателя. Имеет смысл комплексно подходить к ремонту, если лямбда-зонд вышел из строя. 2. Агрессивная смесь, которой посыпают наши дороги. Она разъедает изоляцию проводов и сами провода. Мы для защиты от этого используем двойную изоляцию проводов, а также прячем место сварки проводов с датчиком внутрь лямбда-зонда».

09.04.2014 г.

Ваше Имя:

Ваш комментарий: Внимание: HTML не поддерживается! Используйте обычный текст.

Оценка: Плохо           Хорошо

Введите код, указанный на картинке:

Продолжить

Как работает и что показывает датчик кислорода

Если вы попали сюда по запросу о показаниях второго (2) лямбда-зонда, то вам СЮДА.

Итак, попробуем разобраться в том как работает датчик кислорода. Ну, как вы уже знаете есть много датчиков, необходимых для работы современного двигателя, но, однако функция других датчиков зачастую не так важна, как функция датчиков кислорода.

Эти датчики считывают количество несгоревшего кислорода в выхлопных газах. Затем компьютер использует это значение для баланса топливной смеси. Когда содержание кислорода в выхлопных газах увеличивается (характеризует смесь как обедненную) выходное напряжение датчиков уменьшается. Это является сигналом для ЭБУ к увеличению объема топлива подаваемого через форсунки. В свою очередь, когда содержание кислорода в выхлопных газах снижается (характеризует смесь как богатую), датчик кислорода увеличивает напряжение выходного сигнала, а компьютер реагирует путем уменьшение подачи топлива. Как только количество топлива уменьшается, мы возвращаемся к обедненной смеси, и напряжение на датчике падает. Этот процесс многократно повторяется пока двигатель работает. Это непрерывный цикл обратной связи является сердцем системы контроля подачи топлива.

Типичные показания датчика при обедненной смеси — напряжение между 0 и 0.3 В и для богатой смеси показания в диапазоне от 0.6 до 1 вольта. Идеальная воздушно-топливная смесь (14.7:1) создает напряжение на выводах датчика 0.5 В

Так почему бы просто не поддерживать постоянно дозированное количество топлива, которое изменяется с положения дроссельной заслонки? На самом деле, довольно много факторов влияют на количество топлива, которое необходимо для поддержания отношения 14. 7:1. Некоторые из этих факторов: качество топлива, атмосферное давление, влажность и многое другое. Таким образом, необходимы О2-датчики (датчики кислорода)! Количество раз в единицу времени обновлений информации датчиками весьма разнятся, но большинство современных датчиков в среднем обновляют показания минимум полдюжины раз в секунду. Старые датчики обновляли показания медленно порядка одного раза в секунду, так что вы можете себе представить насколько лучше стали контролировать выхлоп современные датчики.

Старые кислородные датчики, использовавшиеся до 1982 года были 1 или 2 проводные неподогреваемого типа. Эти датчики не будут на самом деле начинать правильно регистрировать состояние выхлопной пока датчик не нагреется, чтобы достичь свой рабочий диапазон. В результате компьютер работает в режиме «открытого контура» (использование заданных топливных значений, которые фактически заставляют двигатель работать на переобогащенной смеси) в течение более длительных периодов времени. Все датчики нового типа «с подогревом» (датчик ho2s), которые включают нагревательный элемент для приведения датчика до рабочей температуры быстрее, обычно это занимает меньше минуты, так быстро, как это возможно, даже за 10 секунд — это возможно! Нагревательные элементы предотвращают охлаждение датчиков, когда двигатель работает на холостом ходу. Эти подогреваемые датчики имеют обычно 3 и 4 провода в конструкции своих разъемов.

Есть несколько различных видов датчиков, которые различаются по химическому составу и дизайну, но их назначение и функции остаются неизменными. Техника за эти годы вышла далеко за рамки того, что описано на этой странице, но есть несколько вещей, которые нужно понимать. Датчики кислорода сравнивают содержание кислорода в окружающем воздухе с содержанием кислорода в выхлопных газах. Наружного воздух попадает в датчик через отверстие в корпусе датчика или через разъем проводки. Некоторые типы датчиков генерируют (изменяют) напряжение, когда изменяется содержание кислорода в выхлопных газах, а некоторые изменяют сопротивление. Новейший тип, обогреваемые широкополосные O2 датчики (кислородные датчики) имеют диапазон напряжений от 2 до 5 вольт.

Несмотря на все их различия и фактические показания выдаваемые датчиками, компьютер обрабатывает информацию так, что у нас ожидаются значения от 0 до 1 В. Есть пара исключений, конечно. Некоторые типы кислородных датчиков «Титания» с подогревом могут производить напряжение до 5 вольт. Это значение не изменяется с помощью компьютера. Еще один тип того же датчика настроен для чтения значений противоположное тому, что вы ожидаете. Высокое напряжение указывают на бедную смесь и низкое напряжение на богатую. Эти 2 типа датчиков кислорода не распространены и использовались в основном на некоторых Ниссанах, Jeep’ах и Иглах. В каждом правиле должны быть исключения! Инженеры они такие, да, я знаю.

Вы также заметите, что на большинстве автомобилей после ’96 года, есть второй комплект датчиков кислорода за каталитическим нейтрализатором (т. е. там стоит вторая лямбда, он же 2 датчик кислорода). Их функция такая же, как и передних О2 датчиков, а их показания используются по-разному, и их целью является измерить эффективность преобразователей, а не контролировать соотношение топлива двигателя. Вы можете обратиться к нашей статье «коды по датчику кислорода» и «помощь в диагностике» для дальнейшего уточнения показаний датчиков кислорода. Эти статья содержат ценную диагностическую информацию и процедуры проведения испытаний, а также возможные причины кодов ошибок по богатой или бедной смеси. Я надеюсь, что вы нашли эту информацию полезной.

Англоязычный оригинал

С уважением, перевод предоставлен коллективом мастерской Works-Garage.

Works-Project.ru

Как протестировать датчик кислорода

 

  Следующая статья взята из моей книги «Стратегии диагностики современных автомобильных систем – тестирование датчиков». Здесь я не буду вдаваться в подробности конструкции датчика O2, так как это скорее обучение его тестированию и диагностике. Не стесняйтесь звонить мне с любыми вопросами по номеру, указанному здесь. Наслаждайтесь…

Датчик O2 или кислорода работает как крошечный генератор напряжения. Фактически он выдает напряжение в теоретическом диапазоне от 0,01 до 0,9 В.8 вольт. Это происходит в зависимости от содержания кислорода в выхлопе. Этот сигнал является основным входом для ECM, который он использует для управления топливно-воздушной смесью и выбросами.

Принцип действия

Датчик O2 измеряет содержание кислорода в выхлопных газах. Чувствительная способность датчика O2 достигается за счет создания небольшого напряжения, пропорционального содержанию кислорода в выхлопных газах. Другими словами, при низком содержании кислорода возникает высокое напряжение (0,90 В — богатая смесь), а при высоком содержании кислорода — низкое напряжение (0,10 В — бедная смесь). Хотя теоретически датчик O2 должен циклически колебаться между 0,00 вольт и 1,00 вольт, в действительности он колеблется между 0,10 вольт и 0,9 вольт. 0 вольт.

Во многих современных автомобилях датчик O2 заменен датчиком AFR или широкополосным датчиком. Но задний или задний датчик O2 — это все тот же старомодный датчик O2.

При анализе сигналов датчика O2 очень важны несколько ключевых моментов.

• Датчик O2 будет циклически изменяться от 0,10 до 0,90 или почти 1 вольт.

• Датчик O2 должен достигать отметки амплитуды 0,8x В при полной работе.

• Датчик O2 также должен достигать отметки амплитуды 0,1x В при полной работе.

(Полная работа означает, что двигатель полностью прогрет, рабочая температура датчика O2 превышает 600 градусов по Фаренгейту, и отсутствуют топливные или механические проблемы.

• Передний кислородный датчик должен циклически переключаться не реже одного раза в секунду, что будет показывать 3 перекрестных отсчета на сканирующем PID-индикаторе.

• Силикон является основной причиной загрязнения кислородом.

• Датчику O2 легче перейти от богатого к бедному, чем наоборот.

• Датчики O2 склонны к сбою при богатом смещении. Другими словами, они склонны смещать свою цикличность в верхнюю или богатую сторону шкалы напряжения.

• В корпусе датчика O2 имеется небольшое отверстие, которое позволяет ему брать внешний эталонный кислород.

• Вопреки мнению многих людей, датчик O2 НЕ БУДЕТ работать сам по себе. Цикл датчика O2 является прямым результатом реакции ECM на изменения в смеси.

• Когда O2 циклически повторяется и каждую секунду пересекает отметку 0,450 В, система находится в ЗАМКНУТОМ КОНТУРЕ.

• Несмотря на то, что датчик O2 работает циклически и пересекает 0,450 вольта (ECM в замкнутом контуре), это НЕ означает, что он работает правильно.

• Работа датчика O2 чрезвычайно важна не только для поддержания низкого уровня выбросов HC и CO, но и для снижения NOx.

• Эффективность каталитического нейтрализатора зависит от правильного цикла работы датчика O2. Каталитическому нейтрализатору необходимо, чтобы датчик O2 работал с соответствующей амплитудой и частотой, чтобы он работал с максимальной эффективностью.

• Датчик O2 с высоким напряжением не обязательно означает, что смесь богата или имеет высокое содержание топлива. Проблема с клапаном рециркуляции отработавших газов также приведет к высокому уровню сигнала O2.

• Сигнал датчика O2 застрял на уровне 450 мВ, что свидетельствует об обрыве цепи датчика O2 (сигнальный провод) или неисправности заземления сигнала O2. Значение 450 мВ называется напряжением смещения и не является одинаковым для всех производителей. Некоторые производители используют специальное заземление датчика O2. Такой провод заземления крепится к блоку цилиндров или шасси и питает только контакт заземления ECM O2. Цепь O2 затем заземляется через внутреннюю часть электронной платы ECM с помощью этого заземляющего провода. Потеря этого заземления также приведет к тому, что сигнал датчика O2 будет около 450 мВ, что делает его похожим на разомкнутую цепь. То же самое верно и для Chrysler, но они используют другое напряжение смещения O2, которое обычно составляет от 2,00 до 4,00 вольт. Помните, что эта цепь напряжения смещения имеет очень малый ток.

Большое заблуждение техников, пытающихся понять датчики O2, состоит в том, что они работают сами по себе. Датчик O2 просто считывает содержание кислорода в выхлопных газах, ВОТ ЭТО . Избыток кислорода в виде обычного окружающего воздуха приведет к низкому сигналу напряжения датчика O2 (ниже 0,450 вольт), а его недостаток приведет к высокому сигналу напряжения (более 0,450 вольт). Заклинивший открытый клапан рециркуляции отработавших газов создаст недостаток кислорода в выхлопных газах, поскольку весь кислород в рециркулирующих выхлопах уже сожжен. ECM иногда использует датчик O2 для проверки правильной работы EGR и при необходимости устанавливает код. Итак, имейте в виду тот факт, что автомобиль может работать на обедненной смеси, потому что ECM видит сигнал богатого O2 из-за неисправного (застрявшего в открытом положении) клапана EGR. Поскольку модуль ECM видит богатый сигнал, он попытается скорректировать его с помощью команды обеднения и понизить сигнал высокого напряжения датчика O2. В более новых системах без EGR этой проблемы нет, поскольку эффект EGR достигается за счет изменения фаз газораспределения. Однако проблема с перекрытием фаз газораспределения создаст тот же эффект, что и заклинивший открытый клапан рециркуляции отработавших газов.

 

Условия, влияющие на работу

ПРИМЕЧАНИЕ: ПРИ ПРОВЕРКЕ ДАТЧИКА O2 ВАЖНО ПРОВЕСТИ ИЗМЕРЕНИЯ НА ХОЛОСТОМ ХОЛОСТОМ ХОДУ И 2000 ОБ/МИН. ПОМНИТЕ, ЧТО ПРЕДВАРИТЕЛЬНАЯ ПОДГОТОВКА ДАТЧИКА O2 ВАЖНА ДАЖЕ НА НОВЫХ ДАТЧИКАХ O2 С ПОДОГРЕВОМ (не датчики AFR). ПРЕДВАРИТЕЛЬНО ПОДГОТОВЬТЕ ДАТЧИК O2, ПОВЫШАЯ ОБОРОТЫ ДВИГАТЕЛЯ ДО 2000 ОБ/МИН ПРИМЕРНО НА 15 СЕКУНД. ТЕМПЕРАТУРА ДАТЧИКА O2 ДОЛЖНА БЫТЬ ВЫШЕ 600 ºF. ДЛЯ ПРАВИЛЬНОЙ РАБОТЫ. ДОЛГИЕ ПЕРИОДЫ ПРОСТОЯ МОГУТ СДЕЛАТЬ НЕОБОГРЕВАЕМЫЙ ИЛИ СТАРЫЙ ДАТЧИК O2 СЛИШКОМ ХОЛОДНЫМ, ЧТОБЫ ОНО ВООБЩЕ НЕ РАБОТАЛО. В ТО ЖЕ ВРЕМЯ НЕ ПЫТАЙТЕСЬ ВКЛЮЧИТЬ ПОДОГРЕВАЕМЫЙ ДАТЧИК O2 ПРИНУДИТЕЛЬНО. ДАТЧИК О2 С НЕИСПРАВНЫМ НАГРЕВАТЕЛЕМ ПЕРЕХОДИТ В ЗАМКНУТУЮ КОНТУРУ ПОСЛЕ ХОРОШЕГО ПРОГРЕВАНИЯ.

После того, как двигатель прогреется (датчик кислорода не влияет на работу двигателя, пока двигатель холодный), ЕСМ ищет значение кислорода. Отметка 0,450 вольт почти повсеместно считается промежуточной точкой или точкой пересечения для работы датчика O2. Если сигнал находится на богатой стороне (выше 0,45 В), то ECM ответит командой обеднения (уменьшая пульсацию форсунки), или, если сигнал находится на обедненной стороне (ниже 0,45 В), тогда ECM

ответит. с богатой командой (увеличение пульсации форсунки). Величина коррекции импульса форсунки пропорциональна напряжению, наблюдаемому ECM на сигнальном проводе датчика O2. Чем выше напряжение, тем больше ECM сокращает время включения форсунки. Чем ниже напряжение, тем больше ECM увеличивает время включения форсунки. ECM постоянно делает именно это, слегка увеличивая и уменьшая пульсацию форсунки. Постоянная регулировка придает сигналу датчика O2 вид переключения (синусоидальная волна) на экране осциллографа.

ПРИМЕЧАНИЕ : Корректировка топливного импульса ECM, постоянно выполняемая по сигналу форсунки, на сканере называется КРАТКОВРЕМЕННОЙ РЕГУЛИРОВКОЙ ТОПЛИВА (GM назвала это ИНТЕГРАТОРОМ) и ДОЛГОСРОЧНОЙ РЕГУЛИРОВКОЙ ТОПЛИВА (GM назвала это БЛОК ОБУЧЕНИЕМ). FUEL TRIMS — это системное отклонение импульса BASE-INJECTION. Анализ LTFT и STFT — отличный способ узнать тенденцию потребления топлива конкретным транспортным средством или насколько хорошо этот автомобиль работает в отношении контроля расхода топлива. STFT и LTFT — это первое, на что следует обратить внимание при оценке проблем с контролем подачи топлива.

Тот факт, что сигнал датчика O2 переключается между богатой смесью и обедненной смесью, также указывает на то, что ECM управляет пульсацией форсунки и, следовательно, система находится в режиме замкнутого контура. Считается, что ECM, находящийся в полном контроле (циклирование датчика O2), находится в замкнутом контуре из-за действия замкнутого контура от датчика O2 к ECM и импульсному управлению форсункой, затем к датчику O2 и обратно к ECM. Контроллер ЭСУД должен находиться под контролем все время, за исключением режимов прогрева, WOT, повышения мощности и режима торможения.

Датчик O2 должен не только циклироваться, но и достаточно быстро (правильная частота) и достаточно широко (правильная амплитуда). На сигнальном проводе должен быть виден хотя бы один цикл в секунду (1 Гц), чтобы О2 считался хорошим (не ленивым). При одном цикле в секунду кривая прицела пересекает отметку 0,450 В примерно 3 раза, что ECM распознает как 3 перекрестных отсчета. Медленно работающий кислородный датчик оказывает разрушительное воздействие на каталитический нейтрализатор и выбрасывает в атмосферу чрезмерное количество выбросов.

Цикл — это полные богатые и обедненные гребни сигнала датчика O2 при пересечении точки напряжения 0,45. Правильная амплитуда относится к способности датчика O2 достигать полного обогащения (0,90 вольт) и полного обеднения (0,10 вольт) при езде на велосипеде. Чем выше напряжение на сигнальной линии O2, тем больше ECM уменьшает пульсацию на форсунках. Чем ниже напряжение на сигнальной линии O2, тем сильнее ECM увеличивает пульсацию форсунки. Это причина, по которой датчик O2, который не считывает смесь должным образом, на полной амплитуде и частоте, фактически вводит ECM в заблуждение в сторону неправильной схемы управления подачей топлива. Как только датчик O2 достигнет правильной температуры 600 ºF, найдите цикл сигнала O2 с правильной амплитудой и частотой, и он обязательно укажет на исправно работающий датчик O2.

 

Проверка компонентов

ПРИМЕЧАНИЕ. В ранних системах OBD ​​II датчик O2 после каталитического нейтрализатора не влияет на управление подачей топлива. Посткаталитический датчик O2 изначально отвечал только за контроль эффективности каталитического нейтрализатора. В большинстве систем сигнал датчика O2 после преобразователя никогда не должен имитировать сигнал O2 до катализатора или следовать за ним. Это может указывать на неисправность или низкую способность хранения кислорода в конвертере. В ранних системах OBD ​​II датчик O2 после катализатора должен показывать небольшие колебания напряжения на осциллографе или вообще не показывать их, поскольку все колебания смеси поглощаются каталитическим нейтрализатором.

Примерно в 1999 модельном году на рынке появился новый тип преобразователя под названием «Преобразователь с низким содержанием кислорода» или LOC. При LOC датчики O2 до и после работают с одинаковой скоростью. Эти преобразователи тестируются путем измерения времени задержки между двумя сигналами. Дальнейшее развитие этой системы заключается в том, что сигнал постпреобразователя также используется для коррекции A/F, но в меньшей степени.

Эти простые шаги следует выполнять при проверке датчиков O2.

1. Просканируйте автомобиль на наличие кодов датчика O2 и проанализируйте поток данных PID. Напряжение датчика O2 должно нормально колебаться с надлежащей амплитудой и частотой. Датчик O2, застрявший при фиксированном напряжении смещения, является признаком обрыва цепи O2 или отсутствия заземления датчика O2 (выделенного). Если возможно, используйте графический мультиметр для анализа данных датчика O2, чтобы определить возможные проблемы.

2. Считывая значения сканирования, нажмите на дроссельную заслонку и наблюдайте за минимальными и максимальными значениями датчика O2 (от 0,1x вольт до 0,9).х вольт). Хотя это не является окончательным доказательством правильной работы датчика O2, оно служит предварительным признаком правильной работы.

3. Некоторые производители автомобилей используют специальный провод заземления датчика O2, который заземляется где-то на блоке двигателя или шасси. Потеря или разрыв этого заземляющего провода сделает датчик O2 бесполезным. Этот провод массы питает только цепь датчика кислорода ECM. Масса основного двигателя не питает цепь датчика O2 этого типа.

4. Проверьте целостность провода датчика O2. Большинство датчиков O2 смещены, и открытый сигнальный провод даст показания любого напряжения смещения. Цепи O2 более поздних моделей Jeep / Chrysler, как правило, имеют смещение около 2 или 4 вольт, поэтому постоянное показание около 2 или 4 вольт на Chrysler также является признаком обрыва цепи. Во многих из этих случаев ECM выдает код «Высокое напряжение датчика O2».

5. Наконец, проверьте правильность работы датчика O2 с помощью осциллографа или графического мультиметра. Проверьте правильность амплитуды и частоты. Помните, что показания датчика O2 сканера являются только интерпретируемыми значениями и могут не отображать реальное значение напряжения. Это причина для выполнения этого окончательного ручного теста.

Надеюсь, вам понравилась эта статья о тестировании датчиков O2. Он в значительной степени основан на одной из моих публикаций и доступен здесь, в LinkedIn. Для получения более подробной информации об автомобильных технологиях посетите наш канал YouTube (ADPTraining), DIYCarDoctor и Automotive-Diagnostics-Publishing. Спасибо… Мэнди.

Разница между Lambda и AFR

| How-To — Tech

Объяснение разницы между двумя ценными инструментами для настройки

По мере того, как любители производительности и гонщики работают с более сложными инструментами для настройки, особенно разработанными для двигателей EFI, все чаще возникают споры о том, следует ли использовать пневматические соотношение топлива или лямбда при калибровке и динамометрическом тестировании. У водителей также может быть выбор между ними во время наблюдения в реальном времени на их датчике.

Чтобы было ясно, двигатель не знает разницы между AFR и Lambda. Это просто два разных термина, которые тюнеры используют для эффективной передачи одного и того же измерения воздуха и топлива, используемых в циклах сгорания двигателя. Однако различие в просторечии не такое случайное, как, скажем, сходство между «долларом» и «долларом». Использование A/F или Lambda в определенных ситуациях имеет явные преимущества.

Этот Innovate Motorsports ECB-1 отслеживает лямбда, содержание этанола и наддув. Этот двигатель работает на холостом ходу на 0,97 лямбда, что соответствует почти стехиометрическому 14,2 AFR.

ТАК ЧТО ТАКОЕ ЛЯМБДА?

Лямбда, греческая буква, обозначаемая символом ?, представляет стехиометрическое значение всего топлива как 1,00. Бережливые условия будут представлять значение выше 1,00, а богатые условия ниже. Эти обедненные (более высокие) и богатые (более низкие) значения рассчитываются для шкалы лямбда путем деления наблюдаемого соотношения A/F на стехиометрию этого конкретного топлива. Например: наблюдаемое показание 12,8:1 для бензина делится на 14,7, чтобы получить значение лямбда 0,87.

КАК РАССЧИТАЕТСЯ ЛЯМБДА?

Широкополосный датчик рассчитывает лямбда путем сравнения содержания кислорода в выхлопных газах с эталонной ячейкой насоса датчика, которая соответствует стоич. Поскольку датчик считывает содержание кислорода, он не зависит от используемого типа топлива. Если двигатель сжигает топливо при его определенном стехиометрическом соотношении, весь кислород потребляется во время сгорания. Когда датчик обнаруживает это стехиометрическое состояние (отсутствие кислорода в потоке выхлопных газов), лямбда-метр показывает 1.

Кислородный датчик на самом деле является лямбда-зондом, и для расчета AFR необходимо уравнение (показание лямбда X стехиометрическое соотношение для измеряемого топлива).

СООТНОШЕНИЕ ВОЗДУХ-ТОПЛИВО, МОЩНОСТЬ И СТЕХИОМЕТРИЯ

Как многие из нас усвоили в начале нашего обучения хот-родам, соотношение воздух-топливо (A/F) рассчитывается путем деления количества фунтов воздуха, вдыхаемого двигателем, на количество фунтов топлива. подается в час к двигателю. Поскольку количество топлива, сожженного двигателем, напрямую связано с производимой мощностью, этот уровень топлива требует достаточного количества воздуха для сгорания. Другими словами, A/F — это настраиваемое свойство, которое напрямую влияет на мощность и эффективность двигателя.

Пожалуй, первое большое непроизносимое слово, с которым мы столкнулись в гараже, было «стехиометрический». По определению, это оптимальная смесь воздуха и топлива, и эта формула меняется для каждого типа топлива. Ученые определили, что для насосного бензина требуется 14,7 части кислорода, чтобы один фунт топлива полностью сгорел до такой степени, что не остается остаточного кислорода или топлива — только обычные побочные продукты сгорания, которые включают воду и углекислый газ.

Лямбда — это греческая буква, обозначаемая символом ?, и она означает множество вещей в различных областях науки. В настройке двигателя это соотношение между количеством кислорода, фактически присутствующим в камере сгорания, и количеством, которое должно было присутствовать для достижения идеального сгорания.

Соотношение 14,7:1 является стехиометрическим для бензина, обычно сокращается до «stoich» (произносится «stow-ick») на гоночном жаргоне. Если меньше кислорода и больше топлива — скажем, соотношение 12:1 — тогда смесь считается богатой. больше кислорода и меньше топлива — скажем, соотношение 16: 1 — тогда смесь считается обедненной.Стойч — это, по сути, 50-ярдовая граница между богатой и обедненной. меняется топливо, затем меняется стоич. Формула метанола содержит один атом кислорода, поэтому стоическое соотношение равно 6,45:1. То есть для эффективного сгорания одного фунта топлива требуется всего 6,45 частей воздуха.0003 Lambda и AFR являются индикаторами горючей смеси двигателя. Однако AFR зависит от типа используемого топлива, а лямбда — нет.

Нитрометан, этот чудесный углеводород, содержащий два атома кислорода, имеет стоическое отношение 1,7:1. На трассе двигатель Top Fuel может работать в соотношении 1:1, и именно поэтому ему требуется более 80 галлонов топлива в минуту, чтобы не отставать от всего воздуха, проталкиваемого массивным нагнетателем 14-71, работающим более 60 фунтов. способствовать росту.

НАСТРОЙКА ЛЯМБДА И АЛЬТЕРНАТИВНОГО ТОПЛИВА

Lambda уже давно используется для настройки в высококлассных гонках и OEM-производителями, особенно в странах с метрической системой. Он так и не начал проникать в местный образ мыслей, пока новое высокоэффективное топливо не стало доступно на заправке.

Стехиометрическое соотношение Е85 составляет 9,765. Тем не менее, E85 редко представляет собой смесь 85% этанола и 15% бензина, как утверждается. По этой причине его стоимость может значительно колебаться. Это делает Lambda лучшим инструментом настройки, поскольку он не зависит от типа топлива или смеси.

Проблемы с настройкой с использованием AFR начались, когда E85 стал популярным, — говорит Фелипе Саез, технический консультант Innovate Motorsports по обслуживанию клиентов. — E85 определяется как 85-процентный этанол и 15-процентный бензин со стехиометрическим соотношением 9,8:1. Проблема в том, что E85 редко представляет собой точную смесь 85/15 этанола и бензина, когда вы получаете ее на заправке. Для каждой смеси необходимо рассчитывать различное стехиометрическое соотношение».

В отличие от метанола, который производится из природного газа, этанол производится из кукурузы или других сельскохозяйственных продуктов. В химическом составе обоих веществ содержится один атом кислорода. этанол имеет 9Стоич. соотношение 0:1, а при смешивании с бензином для получения Е85 имеет вышеупомянутое стоич. соотношение 9,8:1.

Этот широкополосный прибор Innovate Motorsports MTX-L может отображать показания либо в AFR, либо в лямбда.

По мере того, как преимущества и использование E85 стали более распространенными, проблема заключалась не только в различных смесях на заправке, но и в том, что многие дорожные энтузиасты переключались между бензином для круиза и E85 для гонок. Калибровка ECM с помощью A/F или наблюдения за датчиком, чтобы убедиться, что вы не наклоняете двигатель, стала довольно запутанной и граничащей с непрактичной.

«Решение этой проблемы состоит в том, чтобы просто использовать лямбда в качестве единицы измерения, поскольку она не меняется независимо от используемого топлива или топливной смеси», — советует Саез. «Я рекомендую использовать Lambda всем, кто работает с E85 или тюнерами, которые настраивают различные виды топлива. В конце концов, вы хотите, чтобы все было согласовано, чтобы сделать интерпретацию данных как можно проще.

Стехиометрическое соотношение, или «стехиометрическое» соотношение. на жаргоне гонщиков, меняется от топлива к топливу, в зависимости от его химического состава. Уникальный стоич бензина составляет 14,7.

«При обсуждении или сравнении мелодий важно, чтобы сравниваемые единицы измерения были одинаковыми», — продолжает Саез. «Я помню один сценарий, когда пользователь задавал значение AFR 7,6, когда он работал по шкале бензина. Число, которое он искал, было дано ему кем-то, у кого в настройках было установлено значение AFR по шкале E85. 7,6 E85. AFR = 11,5 Бензин AFR = 0,8 лямбда».

В гоночных приложениях стоич встречается очень редко. Под нагрузкой двигатель обычно настраивается на 15–25 % богаче, чем стехиометрический. Они сделают топливную смесь жирнее или богаче, чтобы наполнить двигатель немного большим энергетическим потенциалом. Ключом к наблюдению за точным составом топливной смеси является использование качественного широкополосного датчика O2, соединенного с цифровым датчиком, таким как MTX-L Plus от Innovate Motorsports. Широкополосный датчик обычно считывает значения лямбда; то есть он измеряет свободный воздух в отработанных газах и вычисляет соотношение. Заводской узкополосный O2 не будет хорошо работать в приложениях производительности.

Гоночное топливо может иметь немного другое стехиометрическое соотношение из-за измененного химического состава. Стоичность этого топлива VP C9 составляет 14,82. Окисленное гоночное топливо страдает еще больше.

«Узкополосный датчик не будет передавать необходимые данные, которые ищет гонщик», — сказал Саез. «Узкополосный датчик будет считывать только богаче или беднее, чем стехиометрический. Широкополосный считывает конкретные значения в гораздо более широком диапазоне».

«Узкополосный анализатор считывает узкий диапазон, богаче или беднее стехиометрического», — говорит Саез. «Широкополосный датчик будет считывать весь спектр. Линейка широкополосных датчиков Innovate позволяет проводить измерения в диапазоне от 0,5 до 1,5 лямбда. Широкополосный датчик не может точно определить, какое топливо вы используете, потому что он измеряет только кислород или его отсутствие. AFR путем расчета значения лямбда по выбранному стехиометрическому соотношению».

Здравый смысл подсказывает, что это хорошая идея, чтобы освоиться с обоими, но наиболее эффективным способом действий является выбор измерения, которое вам наиболее удобно, и изучение всего, что вы можете о нем «Стратегия должна состоять в том, чтобы выбрать свою единицу измерения измерьте и придерживайтесь его. Худшее, что может сделать пользователь, — это использовать AFR и изменять стехиометрическое соотношение для каждого типа топлива, поскольку это затруднит интерпретацию данных», — призывает Саез.

Нитрометан, излюбленное топливо драгстеров высшего класса, доставляет две собственные молекулы кислорода к месту сгорания. По этой причине его стехиометрическое соотношение составляет чрезвычайно низкое 1,7:1. Когда работает двигатель Top Fuel, цилиндр в ВМТ почти полностью заполнен топливом.

Страх перед лямбдой, безусловно, уменьшился за счет большего внимания к преимуществам E85 в дополнение к датчикам, таким как MTX-L Plus, которые могут быстро переключаться между обоими измерениями.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *