Трансмиссионное масло таблица вязкости: Масло для трансмиссии: классификация и критерии выбора

Содержание

Вязкость трансмиссионных масел

Трансмиссионные масла обладают рядом свойств, но вязкость – одна из главных характеристик. Ведь именно от показателей вязкости зависит слаженная работа всех деталей трансмиссии. В инструкции к автомобилю всегда есть сведения о том, какая вязкость масла лучше всего подойдет для КПП.

Каким должно быть трансмиссионное масло?

Трансмиссионное масло подвергается высокому давлению, работает при высокой скорости скольжения и при разной температуре. Поэтому качество трансмиссионной жидкости оценивается согласно жестким требованиям.

Трансмиссионное масло работает в довольно «тяжелых» условиях

Трансмиссионное масло, прежде всего, должно хорошо смазывать детали трансмиссии и, тем самым, продлевать срок их службы. Противозадирные и противоизносные свойства масла не дадут деталям разрушиться раньше времени, антикоррозионные свойства сохранят их от коррозии, а способность отталкивать воду – от ржавчины. Кроме того, трансмиссионная жидкость не должна разрушать резиновые детали системы. Масло также не должно окисляться, менять свои свойства при перепадах температуры.

Также жидкость для трансмиссий помогает снизить ударные нагрузки на детали, отвести лишнее тепло, созданное при трении, а также снизить энергозатраты.

На что влияет вязкость?

Именно оптимальная вязкость масла влияет на его способность бесперебойно смазывать как поверхность механизмов, так и места соединения деталей между собой. В частности, такие характеристики трансмиссии, как скорость скольжения и нагрузки на зубья, определяют, масло какой вязкости нужно применить. Ведь при увеличении вязкости, смазывающие свойства масла могут ухудшиться.

Также вязкость влияет на срок службы деталей – масло с нужной вязкостью существенно продлевает их жизнь.

Правильная вязкость масла может существенно продлить срок службы трансмиссии

Масло с нужными показателями вязкости обеспечивает возможность автомобиля трогаться с места в условиях низкой температуры воздуха, способно уменьшить гидравлические потери, а также повысить КПД трансмиссии и уменьшить расход топлива.

Если характеристики вязкости масла не подходят автомобилю, то возможны поломки деталей коробки передач и сцепления.

Классы вязкости по SAE

Безусловно, вязкость масла напрямую зависит от температуры. Так называемые вязкостно-температурные свойства трансмиссионных жидкостей определяют по классификации SAE J 300 DEC 95. Нормативы этой классификации были разработаны Американским обществом автомобильных инженеров и именно их придерживаются многие мировые марки.

Вязкость масла, согласно этой классификации, определяют в условных единицах, их называют «степени вязкости».

Разделение масла на классы по SAE основано на показателях вязкости в условиях низких и высоких температур. При выборе масла нужно учитывать, в каких условиях используется автомобиль и какая самая высокая и самая низкая температура будет за бортом.

Что означают степени вязкости?

Жидкости для трансмиссий разделены на зимние и летние.

Маркировки зимних классов — 70W, 75W, 80W, 85W. Буква W означает «зима» (winter). Чем меньше цифра, тем жидкость температурно стабильней, то есть сохраняет оптимальную вязкость при низкой температуре. К примеру, для масла 70W максимальная температура, при которой жидкость не теряет своих свойств, -50°С, а для масла 75W – уже -40°С.

Летние классы обозначаются числами 80, 85, 90, 140 и 250. Чем больше показатель, тем при более высокой температуре жидкость сохранит свои вязкостные свойства.

Все большую популярность набирают всесезонные масла. Их обозначают двойной маркировкой. К примеру — SAE 80W-90, SAE 75W-90.

Свойства масла определяются лабораторно – просчитывается предел нормальной вязкости при 100°С и определяется минусовая температура, при воздействии которой динамическая вязкость не превышает показателя 150 000 сантипуазов (сП). Пределы нормального состояния масла важны, так как при изменении вязкости начинают разрушаться детали трансмиссии.

Можно ли смешивать?

Смешивать масла разных по SAE не рекомендуется. Нарушится баланс вязкости, который определил производитель, и гарантии того, что трансмиссия будет работать исправно, никто не даст. Перед заливкой нового масла детали трансмиссии стоит промыть. 

Классификации трансмиссионных масел по API и SAE J 306 C

Классификации трансмиссионных масел по API и SAE J 306 C

Эксплуатационные свойства трансмиссионных масел согласно условиям эксплуатации и конструкции агрегатов устанавливает наиболее распространенный в мире стандарт, разработанный American Petroleum Institute (API). Указателем класса API для трансмиссионных масел является аббревиатура GL (Gear Lubricant) с нумерацией от 1 до 6. В современных легковых автомобилях различных типов используются масла GL-4 и GL-5. GL 1 – GL-3 применяются только в трансмиссиях старых автомобилей.

Группа GL-6 в настоящее время не используется, так как считается, что класс GL-5 отвечает наиболее строгим требованиям.
В 1998 г. API, работая в контакте с SAE (Society of Automotive Engineers – Американская Ассоциация Автомобильных Инженеров) и ASTM (American Society for Testing and Materials – Американское общество испытаний материалов), предложил две новые категории оценки качества трансмиссионных масел: PG-1 и PG-2 (PG-1 – для ручных коробок передач тяжелых грузовых автомобилей и автобусов; PG-2 – для ведущих осей грузовых автомобилей и автобусов). Особое внимание уделялось высокотемпературным свойствам этих масел. В технической литературе категорию PG-2 иногда обозначают группой GL-7.

Классификация API предусматривает деление трансмиссионных масел в основном по уровню противозадирных свойств. Чем больше номер группы GL, тем эффективнее присадки, обеспечивающие эти свойства. В них содержатся сернистые соединения, что в критических режимах работы зубчатых пар приводит к химическим изменениям поверхностного слоя металла, который преобразуется в тонкую модифицированную пленку – продукт износа. Несмотря на то, что металл при этом химически разъедается, суммарный ущерб в тяжелых условиях работы оказывается меньше.

Но такая химическая модификация масла позволяет снизить износ стали или чугуна. Цветные же металлы, из которых изготавливают синхронизаторы механических КПП, не всегда уживаются с сернистыми соединениями, поэтому изнашиваются быстрее. Именно поэтому на переднеприводных ВАЗах, пока российскими заводами не было налажено производство соответствующей «трансмиссионки», применялось обычное моторное масло. В этом случае при отличной сохранности синхронизаторов повышался износ шестерен.

Использование в механических КПП масла класса GL-5 может стать причиной затрудненного включения передач, так как принцип работы синхронизаторов основан на использовании такого явления как трение. Чем выше коэффициент трения рабочих поверхностей механизма синхронизации, тем легче включаются передачи. А так как эффективные противоизносные присадки этого масла снижают коэффициент трения, для включения передачи к рычагу КПП необходимо прикладывать большие усилия.

Эти примеры показывают, что классификация API во многом не отражает важных свойств масел, необходимых для эффективной работы агрегатов трансмиссий. В связи с этим автопроизводители выдвигают дополнительные требования к трансмиссионным маслам, используя классификацию API лишь как основу. Свои спецификации имеют такие фирмы-производители автомобилей и агрегатов как Chrysler, Ford, General Motors, Mack, MAN, Mercedes, Volvo.

Подводя итоги, можно сказать, что масло уровня GL-4 предназначено для работы в синхронизированных коробках передач легковых заднеприводных и переднеприводных автомобилей. Масло этого класса обеспечивает надежную защиту КПП и в то же время не агрессивно по отношению к синхронизаторам.

Масло GL-5 рекомендуется для работы в тех агрегатах трансмиссии, где имеются гипоидные зацепления. Одна из наиболее часто допускаемых ошибок – заправка маслом класса GL-4 редукторов заднеприводных автомобилей – ведет к более быстрому износу и, как следствие, быстрому выходу из строя шестерен главной пары.

Оптимальным выбором можно считать трансмиссионное масло, получившее спецификацию производителя данного автомобиля. Как правило, ведущие производители масел указывают эти данные на канистре. Следует знать, что некоторые производители выпускают универсальные масла, предназначенные как для коробки передач с синхронизаторами, так и для нагруженных гипоидных передач.

Уровень противоизносных и противозадирных свойств трансмиссионного масла определяется не только составом и концентрацией присадок, но и вязкостью. Масла должны, с одной стороны, сохранять высокую вязкость при рабочих температурах, чтобы не разрушалась масляная пленка и нормально уплотнялись зазоры, с другой – не становиться слишком вязкими при минусовых температурах окружающей среды, чтобы на «холодную» не препятствовать вращению шестерен агрегатов. Слишком высокая вязкость усложняет работу синхронизаторов, ведь лишнее очень вязкое масло при переключении передач необходимо постоянно выдавливать из зазоров между контактирующими рабочими поверхностями.

В сильные морозы из-за этого на «холодную» также затрудняется включение передач, а автомобиль может двигаться даже на нейтральной передаче (при включенном сцеплении).

SAE J 306 C классифицирует трансмиссионные масла следующим образом: 70W, 75W, 80W, 85W, 80, 85, 90, 140 и 250 (см. таблицы 3.3. и 3.4). Буква W (winter) означает, как и в маслах моторной группы, что вязкость определена при низких температурах, т.е. масло предназначено для эксплуатации в зимнее время. При указанных в таблице минусовых температурах вязкость масел должна быть в пределах 150000 сП (Санти-пуазов). Кроме того, масло должно соответствовать определенным минимальным требованиям при 1000С. Маркировка вязкости без буквы W – 85, 90 и т.д. говорит о принадлежности к летнему сорту. Для масел других классов SAE предельные характеристики вязкости в Санти-стоксах (сСт) определены при температуре 100

0С. Довольно широкое признание получили всесезонные трансмиссионные масла, в маркировку которых введены два обозначения – зимнее 75W, 80W и т. д. и летнее 85, 90 – например, 75W-90 или 80W-90. Чтобы исключить нецелесообразную процедуру замены масел каждые полгода, автопроизводители рекомендуют использовать трансмиссионную «всесезонку».

Трансмиссионное масло должно выбираться с учетом максимальных и минимальных температур, при которых планируется эксплуатация автомобиля. Исходя из этих соображений, классификация SAE основана на показателях низкотемпературной и высокотемпературной вязкостей. Как показано в таблице 2, чтобы исключить большие потери энергии на трение, оптимальная «зимняя» вязкость в нашей климатической зоне должна соответствовать классу 80W. «Летнюю» вязкость лучше подбирать в соответствии с требованиями автопроизводителя, которые указаны в руководстве по эксплуатации машины.

Таблица 1. Классификация трансмиссионных масел по уровню эксплуатационных свойств (API)

Группа Область применения
GL-1 Предназначены для спирально-конусных, червячных передач и механических коробок передач (без синхронизаторов) грузовых автомобилей и сельскохозяйственных машин
GL-2 Червячные передачи, работающие при низких скоростях и нагрузках. Обычно применяются для смазывания трансмиссии тракторов и сельскохозяйственных машин
GL-3 Спирально-конические передачи, работающие в умеренно жестких условиях. Предназначены для смазывания конусных и других передач грузовых автомобилей. Не предназначены для гипоидных передач
GL-4 Гипоидные передачи, работающие в условиях высоких скоростей при малых крутящих моментах и малых скоростей при больших крутящих моментах. В настоящее время эти масла являются основными и для синхронизированных передач
GL-5 Гипоидные передачи, работающие в условиях высоких скоростей при малых крутящих моментах и ударных нагрузках на зубья шестерен. Основное предназначение – для гипоидных передач, имеющих смещение осей. Для синхронизированной механической коробки передач применяются только масла, имеющие специальное подтверждение о соответствии требованиям производителей машин. гипоидных передач, имеющих смещение осей. Для синхронизированной механической коробки передач применяются только масла, имеющие специальное подтверждение о соответствии требованиям производителей машин
GL-6 Гипоидные передачи с увеличенным смещением, работающие в условиях высоких скоростей, больших крутящих моментов и ударных нагрузок. В настоящее время класс GL-6 больше не применяется, так как считается, что класс API GL-5 достаточно хорошо удовлетворяет наиболее строгие требования

Таблица 2. Классификация трансмиссионных масел по вязкости (SAE)

Класс вязкости Минимальная температура, 0C Вязкость, сСт
70W -55 4,1 / –
75W -40 4,1 / –
80W -26 7,0 / –
85W -12 11,0 / –
80   7,0 / < 11,0
85   11,0 / < 13,5
90   13,5 / 24,0
140   24,0 / 41,0
250   41,0 / –

Классификация и таблица вязкости трансмиссионных масел

06. 01.2021

Реклама наших партнеров

В коробке передач, как и в двигателе, время от времени требуется обновлять или полностью менять масло. Чтобы не навредить агрегату, нужно знать следующее: что лучше лить в КПП и какой подобрать аналог, если нет той трансмиссионной жидкости, которая указана в техническом руководстве автомобиля. В этом поможет классификация трансмиссионных масел.

 

Функции масла в КПП

Коробка передач любого автомобиля – это сложное устройство, в котором имеется множество шестеренок, расположенных на вращающихся валах. Во время включения той или иной передачи соответствующие шестеренки входят во взаимодействие между собой. При этом они вращаются на высоких скоростях.

Чтобы продлить срок их службы и снизить вероятность механических повреждений, (например, возникновение задиров) необходима хорошая постоянная смазка, которую обеспечивает трансмиссионное масло или специальная жидкость АТФ, если речь идет об АКПП. Кроме того, масло обеспечивает охлаждение деталей и вывод в фильтр металлических микрочастиц, неизбежно образующихся в процессе работы.

Однако не всегда для работы трансмиссии требуется специальное масло. Например, во многих переднеприводных автомобилях, в частности, в современных ВАЗах, используется моторное масло. А в коробках-автоматах используют специальную маслообразную жидкость ATF (Automatic Transmission Fluid), которая представляет собой смесь из масла и специальных добавок, присадок. Хотя в обиходе АТФ часто имеют название трансмиссионные масла АКПП. 

 

Как выбрать трансмиссионное масло

Самый лучший способ выбора трансмиссионного масла МКПП и АКПП заключается в том, чтобы посмотреть рекомендации производителя машины в техническом руководстве. Если же такой возможности нет, то первым критерием выбора станет то, какая именно трансмиссия установлена на автомобиле: автоматическая или механическая. Также рекомендуется учитывать тип привода (передний или задний).

Одним из важнейших показателей можно считать вязкость трансмиссионного масла. Это способность масла сохранять свою текучесть и одновременно оставаться на поверхности трущихся деталей при определенных температурах. По классификации SAE обозначается цифрами и буквой W. Первая цифра обозначает по международным стандартам минимальную температуру, при которой масло может прокачаться по каналам.

Иными словами, это минимальная температура для запуска двигателя. Вторая цифра (уже после буквы) указывает на вязкость при нагретом двигателе. Чем выше цифра, тем гуще масло. Важно помнить, что цифры не обозначают температуру напрямую. Только условно. На примере масла для двигателя: 10W-40 соответствует температурному диапазону от минус 20 до плюс 35 градусов по Цельсию.

В случае с коробкой, все эти данные содержит таблица вязкости трансмиссионных масел по температуре — SAE J306. Здесь имеется шесть классов вязкости: 75W, 80W, 85W, 90, 140, 250. При этом буква W в данном случае обозначает зиму (winter), то есть, соответствует сезонным видам масел для холодного времени года. Остальные три класса – «летние». А вот если обозначение содержит цифру с буквой и еще одну цифру, как было описано выше, то это уже всесезонный продукт, то есть сочетающий в себе свойства и зимнего и летнего масла.

Существует еще одна классификация моторных масел — АРI (American Petroleum Institute или Американский Институт Топлива). В отличие от первой описанной таблицы, в ней масла классифицируются по эксплуатационным свойствам. По международным стандартам здесь применяются буквенно-циферные обозначения. Например, GL-1. Всего их пять. Само собой, каталоги трансмиссионных масел содержат международную классификацию.

Из этих обозначений можно узнать, содержит ли масло присадки и какие, а также где оно применяется. К слову, GL-1 – это минеральное масло без каких-либо добавок и присадок. Необходимо помнить, что использование трансмиссионных масел и жидкостей более низкой категории, чем та, которая рекомендована производителем автомобиля, приводит в лучшем случае к сокращению срока службы коробки передач, а в худшем – к полному выходу ее из строя.

 

Что в итоге

Трансмиссионные масла классифицируются по двум показателям: вязкость и эксплуатационные свойства. Первый указывает на температурный диапазон применения, а второй – на содержащиеся присадки и добавки, а также на область применения.

При этом выбор масла для МКПП или ATF для коробки передач автомат поможет сделать таблица вязкости трансмиссионных масел и классификация по АРI. Используя данные, можно подобрать аналог смазки, залитой производителем автомобиля на заводе, причем без риска повредить коробку передач или сократить ресурс агрегата.

 

 

Источник: krutimotor.ru

Реклама наших партнеров

Акционные товары

стандарты, вязкость масел для АКПП

Вязкость трансмиссионного масла прямо влияет на надежность смазки трансмиссии, а следовательно, и на ее ресурс. Поэтому оно должно одновременно и быть достаточно жидким, чтобы распространяться по объему картера, и хорошо проникать в зазоры, и сохранять прочность пленки на деталях.

Современные автомобильные масла для трансмиссии – всесезонные, поэтому от них требуется работоспособность в широком диапазоне температур. Зимой масло не должно затруднять вращение валов и шестерен и тем более замерзать (характерное «ведение» автомобиля на нейтральной передаче), чтобы исключить сухое трение в начале движения машины. Одновременно летом оно не должно терять вязкость, чтобы масляная пленка не разрушалась под нагрузкой.

Стандартизация вязкости трансмиссионных масел

Для трансмиссионных масел классификация SAE предусматривает ту же систему зимних и летних классов, что и для моторных. Однако цифровые значения индексов намеренно выбраны не пересекающимися с теми, что применены для моторных масел. Таким образом, по одной маркировке вязкости можно однозначно установить, какое именно масло находится в канистре.

Для всесезонных трансмиссионных масел вязкостные характеристики измеряются следующим образом:

  • низкотемпературная вязкость (классы SAE от 70W до 85W по мере возрастания) не должна превышать 150000 сП при заданной для каждого класса температуре;
  • высокотемпературная вязкость (классы SAE от 80 до 250) для каждого класса должна попадать в заданный диапазон значений: например, для SAE 140 от 24 до 41 сСт.

Как правило, высоконагруженные трансмиссии используют масла с более высоким классом высокотемпературной вязкости по SAE. В легковом автотранспорте, в связи с ростом требований к экономичности, общая тенденция – использование маловязких трансмиссионных масел (например, ROLF TRANSMISSION S7 GE 75W-80), поскольку они снижают механические потери в коробках передач и мостах.

Выбор трансмиссионного масла по вязкости

В сервисной книжке любого автомобиля указываются требования к вязкости трансмиссионных масел, используемых в коробке передач при наличии заднего или полного привода и в мостах. Выбранное для замены масло должно иметь индекс высокотемпературной вязкости, строго соответствующий перечисленным производителем.

Индекс низкотемпературной вязкости имеет смысл по возможности выбирать ниже указанных, если машина эксплуатируется в северных регионах: это улучшит смазку шестерен, валов, подшипников и синхронизаторов в начале движения, когда коробка передач и мосты еще не прогреты.

Вязкость масел для АКПП

Масла для автоматических трансмиссий имеют гораздо более высокие требования к стабильности вязкости. Здесь оно не только смазывает пары трения, но и участвует в передаче крутящего момента (гидротрансформатор) и управлении переключением передач (гидроблок), подвергается значительно более высоким температурным нагрузкам при переключении фрикционов. Чрезмерно густое или жидкое масло ощутимо сказывается на поведении трансмиссии, отклонения вязкости способны значительно уменьшить ресурс АКПП. Из-за этого автоматические трансмиссии оборудуются масляными радиаторами или связанными с системой охлаждения двигателя теплообменниками, в то время как даже сильно нагруженные механические коробки не нуждаются в охлаждении масла.

Для масел АКПП используются собственные стандарты и допуски производителей, включающие в себя и требования к вязкости, а не классы SAE. При выборе необходимо ориентироваться на указания сервисной документации автомобиля: помимо общеупотребимых спецификаций DEXRON, автопроизводители обычно указывают и собственные допуски.

Трансмиссионные масла ROLF

ГОСТ 17479.2-2015 Масла трансмиссионные. Классификация и обозначение (Переиздание с Поправками), ГОСТ от 12 августа 2015 года №17479.2-2015


ГОСТ 17479.2-2015



МКС 75.100

Дата введения 2017-01-01

Предисловие


Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

1 РАЗРАБОТАН Межгосударственным техническим комитетом по стандартизации МТК 31 «Нефтяные топлива и смазочные материалы», Открытым акционерным обществом «Всероссийский научно-исследовательский институт по переработке нефти» (ОАО «ВНИИ НП»)

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 18 июня 2015 г. N 47-П)

За принятие проголосовали:

Краткое наименование страны по
МК (ИСО 3166) 004-97

Код страны по
МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Армения

AM

Минэкономики Республики Армения

Беларусь

BY

Госстандарт Республики Беларусь

Киргизия

KG

Кыргызстандарт

Россия

RU

Росстандарт

Таджикистан

TJ

Таджикстандарт

Украина

UA

Минэкономразвития Украины


(Поправка)

4 Приказом Федерального агентства по техническому регулированию и метрологии от 12 августа 2015 г. N 1140-ст межгосударственный стандарт ГОСТ 17479.2-2015 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2017 г.

5 Настоящий стандарт соответствует международному документу SAE J306:2005* «Наземные транспортные средства. Классификация автомобильных трансмиссионных масел по вязкости» (SAE J306:2005 «Surface vehicle standard. Automative gear lubricant viscosity classification», NEQ)
________________
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.

6 ВЗАМЕН ГОСТ 17479.2-85

7 ИЗДАНИЕ (сентябрь 2019 г.) с Поправкой (ИУС 11-2017), Поправкой (ИУС 8-2019)


Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

1 Область применения

1.1 Настоящий стандарт устанавливает классификацию и обозначение трансмиссионных масел для агрегатов трансмиссий автомобилей, тракторов, тепловозов, сельскохозяйственных, дорожных, строительных машин и судовой техники.

1.2 Настоящий стандарт не распространяется на масла, используемые в зубчатых передачах промышленного оборудования, а также на масла для гидромеханических и гидрообъемных передач.

2 Нормативные ссылки


В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 33 Нефтепродукты. Прозрачные и непрозрачные жидкости. Определение кинематической вязкости и расчет динамической вязкости
________________
В Российской Федерации действует ГОСТ 33-2016 «Нефть и нефтепродукты. Прозрачные и непрозрачные жидкости. Определение кинематической и динамической вязкости».


ГОСТ 1929 Нефтепродукты. Методы определения динамической вязкости на ротационном вискозиметре

ГОСТ 9490 Материалы смазочные жидкие и пластичные. Метод определения трибологических характеристик на четырехшариковой машине

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов и классификаторов на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации (www.easc.by) или по указателям национальных стандартов, издаваемым в государствах, указанных в предисловии, или на официальных сайтах соответствующих национальных органов по стандартизации. Если на документ дана недатированная ссылка, то следует использовать документ, действующий на текущий момент, с учетом всех внесенных в него изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то следует использовать указанную версию этого документа. Если после принятия настоящего стандарта в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение применяется без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Обозначение трансмиссионных масел

3.1 Обозначение трансмиссионных масел состоит из групп знаков:

— первая группа знаков — буквы ТМ (трансмиссионное масло), она не зависит от состава и свойств масла;

— вторая группа знаков — цифры, характеризующие принадлежность масла к группе в зависимости от области его применения;

— третья группа знаков — цифры, характеризующие класс трансмиссионного масла в соответствии с величиной вязкости, которую определяют при высокой температуре по ГОСТ 33 и при низкой температуре по ГОСТ 1929.

Примечание — Допускается в обозначении класса трансмиссионного масла в скобках указывать класс трансмиссионного масла в соответствии с классификацией SAE J306 (см. таблицу А.1, приложение А).

4 Группы трансмиссионных масел

4.1 В зависимости от области применения трансмиссионные масла подразделяют на пять групп, которые приведены в таблице 1.

Таблица 1 — Группы трансмиссионных масел

Группа трансмиссионного масла по области применения

Состав трансмиссионного масла

Рекомендуемая область применения

1

Трансмиссионные масла без присадок

Цилиндрические конические и червячные передачи, работающие при контактных напряжениях от 900 до 1600 МПа и температуре масла в объеме не выше 90°С

2

Трансмиссионные масла с противоизносными присадками

Цилиндрические конические и червячные передачи, работающие при контактных напряжениях до 2100 МПа и температуре масла в объеме 130°С

3

Трансмиссионные масла с противозадирными присадками умеренной эффективности

Цилиндрические, конические, спирально-конические передачи, работающие при контактных напряжениях до 2500 МПа и температуре масла в объеме не выше 150°С

4

Трансмиссионные масла с противозадирными присадками высокой эффективности

Цилиндрические, спирально-конические и гипоидные передачи, работающие при контактных напряжениях до 3000 МПа и температуре масла в объеме не выше 150°С

5

Трансмиссионные масла с противозадирными присадками высокой эффективности и многофункционального действия, а также универсальные масла

Гипоидные передачи, работающие с ударными нагрузками при контактных напряжениях выше 3000 МПа и температуре масла в объеме не выше 150°С


Примечание — Допускается при обозначении масла по настоящему стандарту в скобках указывать примерную группу трансмиссионного масла в соответствии с классификацией API (см. таблицу А.2, приложение А).

4.2 При разработке новых масел и постановке на производство, а также при периодических испытаниях товарных масел 1 раз в 2 года (по графикам, согласованным с потребителем) группу трансмиссионных масел устанавливают по результатам оценки их эксплуатационных свойств в соответствии с таблицей 2.


Таблица 2 — Группы трансмиссионных масел в зависимости от эксплуатационных свойств

Определяемое свойство

Группа масла

Метод испытания

1

2

3

4

5

Предельная нагрузочная способность по нагрузке сваривания Р, Н, не менее

2930

3283

3685

По ГОСТ 9490

Противоизносное свойство по показателю износа Д при осевой нагрузке 392 Н при (20±5)°С в течение 1 ч, мм, не более

0,55

По ГОСТ 9490

5 Классы трансмиссионных масел

5. 1 В зависимости от значения кинематической вязкости, измеренной при температуре 100°С и температуре, при которой динамическая вязкость не превышает 150000 мПа·с, трансмиссионные масла подразделяют на классы, указанные в таблице 3.


Таблица 3 — Классы трансмиссионных масел

Класс трансмиссионного масла

Кинематическая вязкость* при 100°С, мм/с (сСт)

Температура, при которой динамическая вязкость** не превышает 150000 мПа·с, °С, не выше


Св. 4,1

-55


Св. 7,0

-40

12з

Св. 11,0

-26

18з

Св. 13,5

-12

9

Св. 7,0 до 11,0 включ.

12

Св. 11,0 до 13,5 включ.

18

Св. 13,5 до 24,0 включ.

34

Св. 24,0 до 41,0 включ.

* Определяют по ГОСТ 33.

** Определяют по ГОСТ 1929.


Примечание — Допускается в обозначении в скобках указывать класс трансмиссионного масла в соответствии с классификацией SAE J306 (см. таблицы А.1 и А.3, приложение А).


(Поправка)

5.2 В зависимости от сезона эксплуатации трансмиссионные масла подразделяют на зимние, летние и всесезонные, которые обозначают:

— для эксплуатации в зимнее время — числовым значением с буквой «з» (зимнее). Например,»9з»;

— для эксплуатации в летнее время — только численным значением. Например, «18»;

— для всесезонной эксплуатации — дробью, при этом цифра в числителе указывает на низкотемпературные свойства масла, цифра в знаменателе — на высокотемпературные свойства масла.

5.3 Примеры обозначения трансмиссионных масел

Примеры

1 ТМ-3-18 (типа GL-3 по API, SAE 90),

где ТМ — трансмиссионное масло;

3 — группа масла по области применения трансмиссионного масла в соответствии с таблицей 1;

18 — класс вязкости летнего трансмиссионного масла в соответствии с таблицей 2 и 5. 2, которому при температуре 100°С соответствует кинематическая вязкость в пределах от 13,5 до 24 мм/с. В скобках указана примерная принадлежность трансмиссионного масла к группе по API и классу SAE.

2 ТМ-5-9з/18 (типа GL-5 по API, SAE 75W-90),

где ТМ — трансмиссионное масло;

5 — группа масла по области применения трансмиссионного масла в соответствии с таблицей 1;


9з/18 — класс вязкости всесезонного трансмиссионного масла в соответствии с таблицей 2 и 5.2, в обозначении которого первая цифра обозначает низкотемпературные свойства масла (т.е. масло гарантированно работоспособно до температуры минус 40°С, так как динамическая вязкость масла при этой температуре не превышает 150000 мПа·с), а вторая — высокотемпературные свойства масла (т.е. кинематическая вязкость масла при температуре 100°С находится в пределах от 13,5 до 24 мм/с). В скобках указана примерная принадлежность трансмиссионного масла к группе по API и классу SAE.

Приложение А (справочное). Классификация трансмиссионных масел по SAE и API

Приложение А
(справочное)

А.1 Классификация трансмиссионных масел по SAE J306:2005 приведена в таблице А.1.

Таблица А.1 — Классификация трансмиссионных масел по SAE J306:2005

Класс вязкости по SAE J306

Температура для вязкости 150000 сП,, °С, не выше

Кинематическая вязкость при 100°С, мм/с (сСт), не ниже

Кинематическая вязкость при 100°С, мм/с (сСт), не выше

70W

-55

4,1

75W

-40

4,1

80W

-26

7,0

85W

-12

11,0

80

7,0

11,0

85

11,0

13,5

90

13,5

18,5

110

18,5

24,0

140

24,0

32,5

190

32,5

41,0

250

41,0

Определяют по стандарту [1].

Дополнительные низкотемпературные требования по вязкости могут быть введены для жидкостей, предназначенных для использования в малонагруженных синхронизированных механических трансмиссиях.

Определяют по стандарту [2].

Предел устанавливают после испытаний по СЕС L-45-T-93, метод С (20 ч).

Следует учитывать, что для испытаний по стандарту [1], проведенных при температурах ниже минус 40°С, прецизионность не установлена.

А.1.1 Примеры обозначения трансмиссионных масел в соответствии с классификацией SAE J306:2005.

Примеры

1 SAE 75W — обозначение трансмиссионного масла для эксплуатации в зимнее время.

2 SAE 80 — обозначение трансмиссионного масла для эксплуатации в летнее время.

3 SAE 75W-90 — обозначение трансмиссионного масла для всесезонной эксплуатации, в котором первая цифра класса вязкости (75W) обозначает низкотемпературные свойства масла (т. е. динамическая вязкость масла не превышает 150000 мПа·с при температуре минус 40°С), а вторая (90) — высокотемпературные свойства масла (т.е. кинематическая вязкость масла при температуре 100°С находится в пределах от 13,5 до 18,5 мм/с).

А.2 Примерное соответствие обозначений групп трансмиссионных масел по настоящему стандарту классификациям по API и SAE J306:2005 приведено в таблицах А.2 и А.3.


Таблица А.2 — Примерное соответствие групп трансмиссионных масел по настоящему стандарту группам по API

Группа трансмиссионного масла по настоящему стандарту

Группа трансмиссионного масла по API

ТМ-1

GL-1

ТМ-2

GL-2

ТМ-3

GL-3

ТМ-4

GL-4

ТМ-5

GL-5



Таблица А. 3 — Примерное соответствие классов вязкости трансмиссионных масел по настоящему стандарту классам вязкости по SAE J306:2005

Класс вязкости трансмиссионного масла по настоящему стандарту

Класс вязкости трансмиссионного масла по SAE J306:2005


70W


75W

12з

80W

18з

85W

9

80

12

85

18

90-110

34

140-190

Библиография

[1]

ASTM D 2983-09

Standard test method for low-temperature viscosity of lubricants measured by Brookfield viscometer (Стандартный метод определения низкотемпературной вязкости смазочных материалов вискозиметром Брукфилда)

[2]

ASTM D 445-15

Standard test method for kinematic viscosity of transparent and opaque liquids (and the calculation of dynamic viscosity) [Стандартный метод определения кинематической вязкости прозрачных и непрозрачных жидкостей (и расчет динамической вязкости)]

УДК 621. 892.21:006.354

МКС 75.100

Ключевые слова: трансмиссионные масла, классификация, обозначение

Электронный текст документа
подготовлен АО «Кодекс» и сверен по:
официальное издание
М.: Стандартинформ, 2019

Трансмиссионное масло 80W-90 SAE — Масла для трансмиссии

Масло SAE 80W-90 применяется в механических коробках передач и мостах как всесезонное в регионах, где температура зимой не падает ниже -25 °С: для России это вся средняя полоса и юг, и только в северных широтах есть смысл выбрать менее вязкое SAE 75W-90. Трансмиссионные масла ROLF с этим классом вязкости – как специализированные, предназначенные для конкретного класса агрегатов, так и универсальные, что прямо указывается маркировкой по группам API GL.

Задачи и функции

Для трансмиссии наиболее важны противоизносные и противозадирные свойства смазочного материала. Если, допустим, нагрузка на вкладыши коленчатого вала распределяется по всей их площади, то в коробке передач усилие передается в очень ограниченном пятне контакта шестерен. Одновременно масло должно иметь достаточно жестко определенную вязкость. При недостаточной вязкости пленка масла будет легче продавливаться, хуже удерживаться на поверхностях, но и более густое масло перестанет в достаточном объеме разбрызгиваться вращающимися шестернями. Поэтому трансмиссионное масло 80W-90 не рекомендуется применять в коробках передач, рассчитанных под менее вязкие сорта масла.

Отсутствие принудительной подачи масла насосом требует от масел для трансмиссии нормированных характеристик по образованию пены. Противопенные свойства масел этой группы задаются специфическим набором присадок и должны сохраняться на протяжении всего срока между заменами.

Изначально достаточные противозадирные свойства трансмиссионных жидкостей обеспечивались либо естественным содержанием в базовом минеральном масле соединений серы, либо дополнительным введением серных и фосфорных присадок. Однако такие масла имели неизбежно повышенную коррозионную активность по отношению к цветным металлам, именно поэтому масла категории API GL-5 для гипоидных редукторов запрещалось применять в синхронизированных коробках передач – ресурс синхронизаторов значительно падал. В дальнейшем пакеты присадок модернизировались, разрабатывались более качественные полусинтетические и синтетические базы, что позволило ROLF Lubricants GmbH создать масла универсального применения.

Так как сроки замены трансмиссионного масла в автомобилях велики, а в ряде моделей применяется одна заливка на весь срок службы, от масла требуется и надежная защита от коррозии: в объеме картера неизбежно скапливается конденсат. Объем вводимых в состав ингибиторов коррозии составляет немалую долю в общем пакете присадок.

Вязкостно-температурные характеристики

Любое масло меняет свою вязкость в зависимости от температуры, поэтому для всесезонной эксплуатации нужно обеспечить достаточно широкий диапазон, в котором масло сохраняет нужные свойства. В зависимости от стабильности самой базы вводится определенный набор модификаторов вязкости, которым и отличаются масла одной линейки, но разной вязкости.

По мере старения и окисления базового масла происходит дрейф характеристик: оно легче густеет на морозе, разжижается при высоких температурах. Срок, в течение которого модификаторы вязкости способны поддерживать параметры, соответствующие заявленной спецификации, определяет в немалой степени интервал между заменами.

Расшифровка 80W-90

Для того чтобы просто и понятно описать температурно-вязкостные характеристики автомобильных масел, наиболее широко в мире применяется спецификация SAE J300. В ней использовано разбитие на условные группы по вязкости в определенных температурных точках, и в маркировке указывается один или два класса:

  • «Летние» масла, у которых нормируются только свойства при высоких температурах, имеют в маркировке один цифровой индекс. Чем он выше, тем больше вязкость масла при прочих равных условиях, то есть масло SAE 40 гуще, чем SAE 30.
  • «Зимние» масла, напротив, по стандарту испытываются при отрицательных температурах, а символический класс получает суффикс W (winter, зима). Здесь использовано то же правило: масло SAE 10W менее вязкое, чем SAE 20W.
  • Всесезонные масла испытываются на соответствие стандарту по обеим методикам. То есть SAE 80W-90 – это маркировка масла, имеющего низкотемпературную вязкость класса 80W и высокотемпературную класса 90.

Нужно помнить, что символические классы вязкости для моторных и трансмиссионных масел по SAE имеют разные обозначения, и прямо сравнивать их нельзя. Трансмиссионное масло SAE 80W-90 по вязкостным свойствам при высокой температуре находится посередине между моторными SAE 40 и SAE 50.

Как выбрать?

Основной показатель применяемости масла в конкретном типе трансмиссии – это его соответствие стандартам API. Здесь наиболее актуальны два класса.

  • GL-4 включает в себя масла для механических коробок передач, раздаточных коробок, ведущих мостов со спирально-коническими парами или гипоидными, имеющими малое смещение осей. Обязательно нормируется коррозионное воздействие на цветные металлы, то есть масла API GL-4 должны быть совместимыми с синхронизированными коробками передач.
  • GL-5 выделен для специализированных масел с увеличенными противоизносными и противозадирными свойствами, необходимыми для работы смазочного материала в гипоидных парах ведущих мостов. Такие масла нельзя применять в синхронизированных трансмиссиях, если это прямо не указано в инструкции.

Маркировки наподобие GL-4+, применяемые рядом производителей масла, не предусмотрены стандартной классификацией и являются не более чем коммерческой уловкой. Трансмиссионные масла ROLF маркируются строго в соответствии со стандартом, для масел универсального применения указывается двойной класс API GL-4/GL-5.

При наличии у производителя автомобиля дополнительных требований к качеству масла необходимо выбирать продукт с соответствующими допусками. Например, масло ROLF Transmission 80W-90 GL-5 имеет допуски ZF для применения в механических коробках своего производства и рекомендовано для трансмиссий, где эти допуски указаны в сервисной документации.

Каталог трансмиссионных масел ROLF 80w-90

Таблица значений вязкости

В большинстве развитых стран мира общепринятой служит классификация моторных масел по вязкости, установленная SAE (Американским обществом автомобильных инженеров) в стандарте SAE J300 DEC 99, введенная в действие с августа 2001 г. Данная классификация содержит 11 классов:

6 зимних — 0w, 5w, 10w, 15w, 20w, 25w (w — winter, зима) и 5 летних — 20, 30, 40, 50, 60.

Всесезонные масла имеют двойное обозначение через дефис, причем первым указывается зимний (с индексом w) класс, а вторым — летний, например SAE 5w-40, SAE 10w-30 и т.д. Зимние масла характеризуют два максимальных значения низкотемпературной (динамической, в отличие от кинематической для ГОСТ) вязкости и нижний предел кинематической вязкости при 100 °С. Летние масла характеризуют пределы кинематической вязкости при 100 °С, а также минимальное значение динамической высокотемпературной (при 150 °С) вязкости и градиенте скорости сдвига 106 с-1.

Чем меньше цифра перед буквой «w» (SAE), тем меньше вязкость масла при низкой температуре и соответственно легче холодный пуск двигателя. Чем больше цифра, стоящая  после дефиса (SAE), тем больше вязкость масла при высокой температуре и надежнее смазывание двигателя в летнюю жару. 

 

В настоящее время в категории «S» классификация API включает 10 классов масел в следующем порядке возрастания требований к их качеству (SA, SB, SD, SE, SF, SG, SH, SJ, SL), а в категории «С» — 11 классов (CA, CB, CC, CD, CD-II, CF, CF-4, CF-2, CG-4 и CH-4). Цифры при обозначении классов CD-II, CF-4, CF-2 и CG-4 дают дополнительную информацию об использовании данного класса масел в 2-тактных или 4-тактных дизелях соответственно. Для обозначения универсальных масел принята двойная маркировка, например, SF/CC, SG/CD, CF-4/SH и т.п.

В настоящее время в настоящее время API выдает лицензии на выпуск масел только высших категорий качества (не ниже SH), предназначенных для бензиновых двигателей не позднее 1994 г. выпуска. Для эксплуатации бензиновых двигателей, выпущенных после 1997 года, предназначены масла класса SJ. Наиболее совершенное масло категории SL на частично или полностью синтетической основе с высокоэффективным пакетом присадок надлежит эксплуатировать в самых совершенных бензиновых турбонаддувных, многоклапанных двигателях производства 2001 г. и позже, вынужденных работать в наиболее напряженных условиях. Для дизельных масел лицензии API выдаются на продукты категории качества не ниже CF. Высшей группой масел категории «С» является CI-4, предназначенная для эксплуатации высокооборотных четырехтактных дизелей, по токсичности выбросов удовлетворяющих нормам 2004 г. Данная категория масел предназначена к введению с октября 2002 г. Однако при поставке масел на экспорт и при их производстве в третьих странах могут вырабатываться масла и более низких классов по API.

Американские и японские автомобилестроители, сотрудничая в рамках Международного комитета по стандартизации и одобрению смазочных материалов (ILSAC), разработали минимальные стандартные требования к моторным маслам для автомобильных бензиновых двигателей. Классификация ILSAC содержит два класса масел, обозначаемых GF-1 и GF-2. С 2002 г. вводятся новые требования GF-3, а с 2004 г. ожидается введение требований GF-4. По уровню требований к эксплуатационным свойствам они практически идентичны требованиям к маслам классов SJ и SL по API, но обязательно предъявляются высокие требования по экономии топлива и отсутствию компонентов, отрицательно влияющих на каталитический дожигатель отработанных газов.

По классификации ILSAC при испытаниях на стандартизованном моторном стенде SEQ IIIE, масла группы GF-1, должны экономить не менее 1,5% бензина (Energy Conserving I), а масла группы GF-2 (Energy Conserving II) — 2,3% в сравнении с работой двигателя на эталонном масле класса вязкости 15W-40.

Масла, сертифицированные по API на соответствие требованиям ILSAC, маркируются стандартным символом (знаком качества в виде шестеренки с текстом внутри рисунка на английском языке: «Американский институт нефти, для бензиновых двигателей, сертифицировано»). Классификация масел по API на получение знака «Донат» в сочетании со знаком ILSAC характерна для американских производителей масел и не нашла широкого применения в Европе.

Несмотря на исторический приоритет, в настоящее время американская классификация API утрачивает свою монополию в Европе. Учитывая тот факт, что основными критериями эксплуатационных свойств масел являются результаты испытаний на специальных серийных двигателях, различия в конструктивных решениях и методиках определения свойств моторных масел привели к появлению европейской классификации ACEA.

Европейская ассоциация автомобильных производителей (ACEA), в которую входят ведущие гиганты автомобилестроения: BMW, DAF, Ford of Europe, General Motors Europe, MAN, Mercedes-Benz, Peugeot, Porche, Renault, Rolss-Royce, Rover, Saab-Scania, Volkswagen, Volvo, FIAT и др. ввела с 1996 г. новую классификацию моторных масел, которая базируется на европейских методах испытаний, а также использует некоторые общепризнанные американские моторные и физико-химические методы испытаний по API, SAE и ASTM. Данная классификация заменила существовавшую с середины 90-х годов классификацию ССМС (Комитет автопроизводителей стран общего рынка).

С 1 марта 1998 года требования к эксплуатационным свойствам моторных масел были ужесточены, что нашло отражение в новом европейском стандарте АСЕА-98. В 1998-99 гг. происходило уточнение и дополнение классификации АСЕА 98-99 с исключением старых и введением новых классов, требования которых обязательны к выполнению с 1 сентября 2000 г. В 2002 г. состоялся очередной пересмотр классификации моторных масел, оформленный в виде стандарта АСЕА 2002. Введение новых классов намечено с 1 февраля 2003 года (табл. 5).

В отличие от американской классификации API, в которой до сих пор не выделены в самостоятельный класс масла для дизелей легковых автомобилей, европейская — АСЕА классифицирует моторные масла на три основные категории по назначению: 
А — для бензиновых двигателей; 
В — для дизельных двигателей легковых автомобилей; 
Е — для дизельных двигателей грузовых автомобилей.

Внутри каждой категории эксплуатационные свойства соответствующих масел выделены в отдельные группы, обозначаемые цифрой после буквы. Чем больше цифра, тем в более жестких условиях работает двигатель и, соответственно, выше требования к качеству масла. Последние две цифры (через дефис) в маркировке масла обозначают год введения данной категории. Для некоторых новых классов оставлено обозначение старого класса, но с добавлением более позднего номера выпуска.

 

Класс вязкости по SAE

Классы вязкости моторных масел по SAE

Система классификации вязкости моторных масел, разработанная Обществом автомобильных инженеров (SAE), состоит из классов «W», которые определяют низкотемпературную вязкость, и «прямых» марок, которые устанавливают дополнительные ограничения на вязкость при высоких температурах. Диаграмма, показанная в нижней части страницы, графически представляет зависимость вязкости от температуры по системе классификации SAE с линиями, показывающими характеристики вязкости для некоторых популярных моторных масел.

Классы вязкости моторных масел по SAE — SAE J300 Dec 99

График вязкости и температуры

Сервисное обозначение API для трансмиссионных смазок

Автомобильная и нефтяная промышленность в сотрудничестве с Американским обществом испытаний и материалов (ASTM), Обществом автомобильных инженеров (SAE) и Американским нефтяным институтом (API) разработали систему классификации услуг, которая служит руководством для рекомендаций и маркетинга. трансмиссионные смазки.Ниже приводится описание API:

Классы вязкости по SAE для трансмиссионных смазок

Общество автомобильных инженеров (SAE) также разработало метод классификации вязкостных характеристик трансмиссионных смазок. Классы вязкости трансмиссионного масла не следует путать с классами вязкости моторного масла. Трансмиссионное масло и моторное масло, имеющие одинаковую вязкость, будут иметь очень разные обозначения класса вязкости SAE, как определено в двух классификациях вязкости. Например, трансмиссионное масло SAE 80W может иметь ту же вязкость, что и моторное масло SAE 20W или SAE 30, а вязкость трансмиссионного масла SAE 90 может быть аналогична вязкости моторного масла SAE 40 или SAE 50. Ниже представлена ​​таблица с классами вязкости трансмиссионного масла по SAE:

.
  • Класс вязкости смазочных материалов для мостов и механических трансмиссий

  • SAE J306 OCT 91 Обзор

Классификация классов вязкости AGMA и ISO

Американская ассоциация производителей зубчатых передач (AGMA) и Международная организация по стандартизации (ISO) установили стандарты вязкости для гидравлических жидкостей и промышленных трансмиссионных смазок.Ниже приведены номера смазочных материалов AGMA, соответствующий класс по ISO и диапазоны вязкости:

.

Примечание : Компаундированные масла должны содержать 3-10% подходящих животных жиров. Смазочные материалы без противозадирных присадок обладают ингибитором ржавчины и окисления, только смазки с противозадирными присадками относятся к мягким противозадирным смазкам.

Жидкости — кинематическая вязкость

Вязкость — это сопротивление сдвигу или течению в жидкости и мера адгезионных / когезионных или фрикционных свойств. Вязкость, возникающая из-за внутреннего молекулярного трения, вызывает эффект сопротивления трению.

Существует два связанных показателя вязкости жидкости: динамическая (или абсолютная ) и кинематическая вязкость.

Кинематическая вязкость некоторых распространенных жидкостей:

10970 мин 900 Раствор кукурузного крахмала , 25 Baumé Нефть 40 o API Decane
46,8 n 9010 -39

3 900 Глицерин 100% 9018
1048
54,4 100

1,728
0,807 900 90. 4
71,18
93,370 706 Гудрон, сосна лонжерон

03


130 103
Жидкость Температура Кинематическая вязкость
( o F) ( o C) сантистоксов (сСт) ) Секунды Saybolt Universal (SSU)
Ацетальдегид CH 3 CHO 61
68
16. 1
20
0,305
0,295
36
Уксусная кислота — уксус — 10% CH 3 COOH 59 15 1,35 31,7
% 59 15 2,27 33
Уксусная кислота — 80% 59 15 2,85 35
Уксусная кислота — концентрированная ледяная34 31,7
Ангидрид уксусной кислоты (CH 3 COO) 2 O 59 15 0,88
Ацетон CH 3 COCH 20 0,41
Спирт — аллил 68
104
20
40
1,60
0,90 сП
31,8
Спирт — бутил-n 68 6864 38
Спирт этиловый (зерно) C 2 H 5 OH 68
100
20
37,8
1,52
1,2
31,7
31,5
Спирт метиловый (дерево) CH 3 OH 59
32
15
0
0,74
1,04
Спирт — пропил 68
122
20
50
2,8
1. 4
35
31,7
Сульфат алюминия — 36% раствор 68 20 1,41 31,7
Аммиак 0 -17,8 68
50
20
10
4,37
6,4
40
46,4
Асфальт RC-0, MC-0, SC-0 77
100
25
37.8
159-324
60-108
737-1.5M
280-500
Автоматическое масло для картера SAE 10W 0 -17,8 1295-макс. Масло для картера автоматической коробки передач SAE 10W 0 -17,8 1295-2590 6M-12M
Масло для автоматической коробки передач SAE 20W 0 -17.8 2510 12M-
Масло для автоматической коробки передач SAE 20210 98.9 5,7-9,6 45-58
Масло для автоматических картеров SAE 30 210 98,9 9,6-12,9 58-70
210 Масло для автоматических картеров SAE 40 98,9 12,9-16,8 70-85
Масло для автоматических картеров SAE 50210 98,9 16,8-22,7 85-110
Автомобильное трансмиссионное масло SAE103 75W 98. 9 4,2 мин 40 мин
Автомобильное трансмиссионное масло SAE 80W 210 98,9 7,0 мин 49 мин
Автомобильное трансмиссионное масло SAE 85W 210103 63 мин
Автомобильное трансмиссионное масло SAE 90W210 98.9 14-25 74-120
Автомобильное трансмиссионное масло SAE 140210 98.9 25-43 120-200
Автомобильное трансмиссионное масло SAE150 210 98.9 43 — мин 200 мин
Пиво 68 20 32
Бензол (бензол) C 6 H 6 32
68
0
20
1,0
0,74
31
Костное масло 130 213 544
100
47,5
11,6
220
65
Бром 68 20 0,34
Бутан-н-50
30

30
Масляная кислота n 68
32
20
0
1,61
2,3 сП
31,6
Хлорид кальция 5% 65 18. 3 1,156
Хлорид кальция 25% 60 15,6 4,0 39
Карболовая кислота (фенол) 65
194
18,3 3 65
Тетрахлорид углерода CCl 4 68
100
20
37,8
0,612
0,53
Дисульфид углерода CS 2 0.33
0,298
Касторовое масло 100
130
37,8
54,4
259-325
98-130
1200-1500
450-600
Китайское древесное масло 69
100
20,6
37,8
308,5
125,5
1425
580
Хлороформ 68
140
20
60
0,38
0,35
.8
54,4
29,8-31,6
14,7-15,7
140-148
76-80
Рыбий жир (рыбий жир) 100
130
37,8
54,4
32,1
19,4
150
95
Кукурузное масло 130
212
54,4
100
28,7
8,6
135
54
Раствор кукурузного крахмала, 22 Baumé 70
100
21. 1
37,8
32,1
27,5
150
130
Раствор кукурузного крахмала, 24 Baumé 70
100
21,1
37,8
129,8
95,2
600
440
70
100
21,1
37,8
303
173,2
1400
800
Масло семян хлопка 100
130
37.8
54,4
37,9
20,6
176
100
Сырая нефть 48 o API 60
130
15,6
54,4
3,8
1,6
39
31,8
60
130
15,6
54,4
9,7
3,5
55,7
38
Сырая нефть 35,6 o API 60
130
15.6
54,4
17,8
4,9
88,4
42,3
Сырая нефть 32,6 o API 60
130
15,6
54,4
23,2
7,1
110
46,8
0
100
17,8
37,8
2,36
1,001
34
31
Диэтилгликоль 70 21,1 32 149. 7
Диэтиловый эфир 68 20 0,32
Дизельное топливо 2D 100
130
37,8
54,4
2-6
900 1.-3.97.628
Дизельное топливо 3D 100
130
37,8
54,4
6-11,75
3,97-6,78
45,5-65
39-48
Дизельное топливо 4D 100
130
100
130
100
130
37.8
54,4
29,8 макс
13,1 макс
140 макс
70 макс
Дизельное топливо 5D 122
160
50
71,1
86,6 макс
35,2 макс
400 макс
165 макс
Этилацетат CH 3 COOC 2 H 3 59
68
15
20
0,4
0,49
Этил бромид C 2 Br 20 0. 27
Бромистый этилен 68 20 0,787
Хлорид этилена 68 20 0,668
88,4
Муравьиная кислота 10% 68 20 1,04 31
Муравьиная кислота 50% 68 20 1.2 31,5
Муравьиная кислота 80% 68 20 1,4 31,7
Концентрированная муравьиная кислота 68
77
20
25
1.48 900
Трихлорфторметан, R-11 70 21,1 0,21
Дихлордифторметан, R-12 70 21.1 0,27
F Дихлорфторметан, R-21 70 21,1 1,45
Фурфурол 68
77
Мазут 1 70
100
21,1
37,8
2,39-4,28
-2,69
34-40
32-35
Мазут 2 70
100
21. 1
37,8
3,0-7,4
2,11-4,28
36-50
33-40
Мазут 3 70
100
21,1
37,8
2,69-5,84
2,06-3,97
35 -45
32,8-39
Мазут 5A 70
100
21,1
37,8
7,4-26,4
4,91-13,7
50-125
42-72
Мазут 5B 70
100
21.1
37,8
26,4-
13,6-67,1
125-
72-310
Мазут 6 122
160
50
71,1
97,4-660
37,5-172
450-3M
175-780
Газойли 70
100
21,1
37,8
13,9
7,4
73
50
Бензин a 60
100
15,6
37,8
88
0,71
Бензин b 60
100
15,6
37,8
0,64
Бензин c 60
100
15,6
37,8
68,6
100
20,3
37,8
648
176
2950
813
Глицерин 50% вода 68
140
20
60
5. 29
1,85 сП
43
Гликоль 68 52
Глюкоза 100
150
37,8
65,6
7,7M-2220M 3510 -22M 35108-22M
4М-11М
Гептаны-н 0
100
-17,8
37,8
0,928
0,511
Гексан-н 0
100
-17.8
37,8
0,683
0,401
Мед 100 37,8 73,6 349
Соляная кислота 68 900
130
37,8
54,4
550-2200
238-660
2500-10M
1100-3M
Изоляционное масло 70
100
21.1
37,8
24,1 макс
11,75 макс
115 макс
65 макс
Керосин 68 20 2,71 35
Jet Fuel -30. -34,4 7,9 52
Сало 100
130
37,8
54,4
62,1
34,3
287
160
8
54,4
41-47,5
23,4-27,1
190-220
112-128
Масло льняное 100
130
37,8
54,4
30,5
143
93 93
Меркурий 70
100
21,1
37,8
0,118
0,11
Метилацетат 68
104
20
40
0,44
0,32 3 6 9018 9018
20
40
0.213
0,42 сП
Масло Менхадена 100
130
37,8
54,4
29,8
18,2
140
90
Молоко 68 900,5
Меласса A, первая 100
130
37,8
54,4
281-5070
151-1760
1300-23500
700-8160
Меласса B, вторая 100
130
. 8
54,4
1410-13200
660-3300
6535-61180
3058-15294
Меласса C, черная полоска 100
130
37,8
54,4
2630-5500 6 1320-120-1 12190-25500
6120-76500
Нафталин 176
212
80
100
0,9
0,78 сП
Масло Neatstool 100
130
100
130
49,7
27,5
230
130
Нитробензол 68 20 1,67 31,8
Нонан-н 32
Octane-n 0
100
-17,8
37,8
1,266
0,645
31,7
Оливковое масло 100 283 130

54,4
43,2
24,1
200
Пальмовое масло 100
130
37,8
54,4
47,8
26,4
Арахисовое масло 42
23,4
200
Пентан-н 0
80
17,8
26,7
0,508
0,342
Петролатум 130 3 160 20,5
15
100
77
Петролейный эфир 60 15,6 31 (эст) 1,1
Фенол, карболовая кислота 11,777
Пропионовая кислота 32
68
0
20
1,52 сП
1,13
31,5
Пропиленгликоль 70 21.1 52 241
Закалочное масло
(типовое)
100-120 20,5-25
Рапсовое масло 100
130
37106
54,4
250
145
Канифольное масло 100
130
37,8
54,4
324,7
129,9
1500
600
Канифоль (дерево) 100 3 200216-11M
108-4400
1M-50M
500-20M
Кунжутное масло 100
130
37,8
54,4
39,6
23
10 186
Силикат натрия 79
Хлорид натрия 5% 68 20 1,097 31,1
Хлорид натрия 25% 60 151066 2,4 34
Гидроксид натрия (каустическая сода) 20% 65 18,3 4,0 39,4
Гидроксид натрия (каустическая сода) 30% 10,0 58,1
Гидроксид натрия (каустическая сода) 40% 65 18,3
Соевое масло 100
130
37. 8
54,4
35,4
19,64
165
96
Масло спермы 100
130
37,5
54,4
21-23
15,2
110
78
68
140
20
60
14,56
7,2 cp
76
Серная кислота 95% 68 20 14,5 75
Сера 20 4.4 41
Серная кислота 20% 3M-8M
650-1400
Деготь коксовый 70
100
21,1
37,8
600-1760 308 15М-300М
2М-20М
Гудрон газовый 70
100
21,1
37,8
3300-66М
440-4400
2500
500
100
132
37.8
55,6
559
108,2
200-300
55-60
Толуол 68
140
20
60
0,68
0,38 сП
185,7
21,1 40 400-440
185-205
Скипидар 100
130
37,8
54,4
86,5-95,2
39,9-44,3
1425
650 9010
68
100
20
37. 8
313
143
Вода, дистиллированная 68 20 1.0038 3104 15,6
54,4
1,13
0,55
31,5
Вода, море 1.15 31,5
Китовый жир 100
130
37,8
54,4
35-39,6
19,9-23,4
163-184
97-112
X 68
104
20
40
0,93
0,623 сП

Вязкость масла — как это измеряется и указывается

По данным Общества трибологов и инженеров по смазкам (STLE), вязкость является одним из важнейших физических свойств масла. Часто это один из первых параметров, измеряемых большинством лабораторий по анализу масла, поскольку он важен для состояния масла и смазки. Но что мы на самом деле имеем в виду, когда говорим о вязкости масла?

Вязкость смазочного масла обычно измеряется и определяется двумя способами: либо на основе его кинематической вязкости, либо на основе его абсолютной (динамической) вязкости. Хотя описания могут показаться похожими, между ними есть важные различия.

Рисунок 1.Вискозиметр с капиллярной трубкой

Кинематическая вязкость масла определяется как его сопротивление течению и сдвигу под действием силы тяжести. Представьте, что один стакан наполняется турбинным маслом, а другой — густым трансмиссионным маслом. Какой из стаканов потечет быстрее, если его наклонить набок? Турбинное масло будет течь быстрее, поскольку относительные скорости потока зависят от кинематической вязкости масла.

Теперь рассмотрим абсолютную вязкость.Чтобы измерить абсолютную вязкость, вставьте металлический стержень в те же два стакана. Используйте стержень, чтобы перемешать масло, а затем измерьте усилие, необходимое для перемешивания каждого масла с одинаковой скоростью. Сила, необходимая для перемешивания трансмиссионного масла, будет больше, чем сила, необходимая для перемешивания турбинного масла.

Основываясь на этом наблюдении, может возникнуть соблазн сказать, что трансмиссионное масло требует большего усилия для перемешивания, поскольку оно имеет более высокую вязкость, чем турбинное масло. Однако в этом примере измеряется сопротивление масла течению и сдвигу из-за внутреннего трения, поэтому правильнее сказать, что трансмиссионное масло имеет более высокую абсолютную вязкость, чем турбинное масло, поскольку для перемешивания требуется большее усилие. трансмиссионное масло.

Для ньютоновских жидкостей абсолютная и кинематическая вязкость связаны с удельным весом масла. Однако для других масел, таких как те, которые содержат полимерные улучшители индекса вязкости (VI), или сильно загрязненные или деградированные жидкости, это соотношение не выполняется и может привести к ошибкам, если мы не знаем о различиях между абсолютной и кинематической вязкостью. .

Для более подробного обсуждения абсолютной и кинематической вязкости см. Статью Дрю Тройера «Общие сведения об абсолютной и кинематической вязкости».

Метод испытания вискозиметра с капиллярной трубкой

Самый распространенный метод определения кинематической вязкости в лаборатории — это вискозиметр с капиллярной трубкой (рис. 1). В этом методе проба масла помещается в стеклянную капиллярную U-образную трубку, и проба всасывается через трубку с помощью всасывания, пока не достигнет начального положения, указанного на стороне трубки.

Затем всасывание прекращается, позволяя образцу течь обратно через трубку под действием силы тяжести.Узкая капиллярная секция трубки регулирует расход масла; более вязкие сорта масла растекаются дольше, чем более жидкие сорта масла. Эта процедура описана в ASTM D445 и ISO 3104.

Поскольку расход определяется сопротивлением масла, протекающего под действием силы тяжести через капиллярную трубку, в этом тесте фактически измеряется кинематическая вязкость масла. Вязкость обычно указывается в сантистоксах (сСт), что эквивалентно мм2 / с в единицах СИ, и рассчитывается исходя из времени, которое требуется маслу для протекания от начальной точки до точки остановки, с использованием калибровочной константы, предоставленной для каждой трубки.

В большинстве коммерческих лабораторий по анализу масла метод вискозиметра с капиллярной трубкой, описанный в ASTM D445 (ISO 3104), модифицируется и автоматизируется с использованием ряда имеющихся в продаже автоматических вискозиметров. При правильном использовании эти вискозиметры способны воспроизводить аналогичный уровень точности, достигаемый методом ручного вискозиметра с капиллярной трубкой.

Заявление о вязкости масла бессмысленно, если не определена температура, при которой вязкость была измерена. Обычно вязкость указывается при одной из двух температур: 40 ° C (100 ° F) или 100 ° C (212 ° F). Для большинства индустриальных масел принято измерять кинематическую вязкость при 40 ° C, поскольку это основа для системы классификации вязкости ISO (ISO 3448).

Аналогичным образом, большинство моторных масел обычно измеряются при 100 ° C, поскольку система классификации моторных масел SAE (SAE J300) ссылается на кинематическую вязкость при 100 ° C (таблица 1). Кроме того, 100 ° C снижает возникновение помех при измерениях для загрязнения моторного масла сажей.

Рис. 2. Ротационный вискозиметр

Метод испытания роторным вискозиметром

Менее распространенный метод определения вязкости масла использует роторный вискозиметр. В этом методе испытаний масло помещается в стеклянную трубку, помещенную в изолированный блок при фиксированной температуре (рис. 2).

Затем металлический шпиндель вращается в масле с фиксированной частотой вращения, и измеряется крутящий момент, необходимый для вращения шпинделя. Абсолютная вязкость масла может быть определена на основе внутреннего сопротивления вращению, обеспечиваемого сдвигающим напряжением масла. Абсолютная вязкость указывается в сантипуазах (сП), что эквивалентно мПа · с в единицах СИ.

Этот метод обычно называют методом Брукфилда и описан в ASTM D2983.

Хотя абсолютная вязкость и вискозиметр Брукфилда используются реже, чем кинематическая вязкость, при разработке моторных масел.Например, обозначение «W», которое используется для обозначения масел, подходящих для использования при более низких температурах, частично основано на вязкости по Брукфилду при различных температурах (Таблица 2).

Основанное на SAE J300 всесезонное моторное масло, обозначенное как SAE 15W-40, должно поэтому соответствовать пределам кинематической вязкости при повышенных температурах в соответствии с таблицей 1 и минимальным требованиям для запуска холодного двигателя, как показано в таблице 2.

Индекс вязкости

Еще одно важное свойство масла — индекс вязкости (VI).Индекс вязкости — это безразмерное число, используемое для обозначения температурной зависимости кинематической вязкости масла.

Он основан на сравнении кинематической вязкости испытуемого масла при 40 ° C с кинематической вязкостью двух эталонных масел, одно из которых имеет индекс вязкости 0, а другое — 100 единиц (рис. та же вязкость при 100ºC, что и тестовое масло. Таблицы для расчета VI на основе измеренной кинематической вязкости масла при 40 ° C и 100 ° C приведены в ASTM D2270.


Рисунок 3. Определение индекса вязкости (VI)

На рис. 3 показано, что масло, кинематическая вязкость которого изменяется в меньшей степени с температурой, будет иметь более высокий индекс вязкости, чем масло с большим изменением вязкости в том же диапазоне температур.

Для большинства парафиновых промышленных масел на минеральной основе селективной очистки типичные ИВ находятся в диапазоне от 90 до 105. Однако многие минеральные масла высокой степени очистки, синтетические масла и масла с улучшенным ИВ имеют ИВ, превышающие 100.Фактически, синтетические масла типа PAO обычно имеют индекс вязкости от 130 до 150.

Мониторинг и анализ вязкости

Мониторинг вязкости и отслеживание тенденций — это, пожалуй, один из самых важных компонентов любой программы анализа масла. Даже небольшие изменения вязкости могут увеличиваться при рабочих температурах до такой степени, что масло больше не может обеспечивать адекватную смазку.

Типичные пределы промышленного масла устанавливаются на уровне ± 5 процентов для предосторожности и ± 10 процентов для критических, хотя для тяжелых условий эксплуатации и чрезвычайно критических систем должны быть поставлены еще более жесткие цели.

Значительное снижение вязкости может привести к:

  • Потеря масляной пленки, вызывающая чрезмерный износ
  • Повышенное механическое трение, вызывающее чрезмерное потребление энергии n Выделение тепла из-за механического трения n Внутренняя или внешняя утечка
  • Повышенная чувствительность к загрязнению частицами за счет уменьшения масляной пленки
  • Разрушение масляной пленки при высоких температурах, высоких нагрузках или при пусках или остановках.

Аналогичным образом, слишком высокая вязкость может привести к:

  • Чрезмерное тепловыделение, приводящее к окислению масла, образованию шлама и нагара
  • Газовая кавитация из-за недостаточного потока масла к насосам и подшипникам
  • Недостаточная смазка из-за недостаточного потока масла
  • Масляный венчик в опорных подшипниках
  • Избыточное потребление энергии для преодоления жидкостного трения
  • Плохая деэмульгируемость или деэмульгируемость воздуха
  • Плохая прокачиваемость при холодном пуске.

Каждый раз, когда наблюдается значительное изменение вязкости, необходимо всегда исследовать и устранять первопричину проблемы. Изменения вязкости могут быть результатом изменения химического состава базового масла (изменение молекулярной структуры масла) или попадания в него загрязняющих веществ (таблица 3).

Изменения вязкости могут потребовать дополнительных испытаний, таких как: кислотное число (AN) или инфракрасная спектроскопия с преобразованием Фурье (FTIR), чтобы подтвердить начальное окисление; тестирование на загрязняющие вещества для выявления признаков попадания воды, сажи или гликоля; или другие, менее часто используемые тесты, такие как ультрацентрифужный тест или газовая хроматография (ГХ), для выявления изменения химического состава базового масла.

Вязкость — важное физическое свойство, которое необходимо тщательно контролировать и контролировать, поскольку оно влияет на масло и влияет на срок службы оборудования.

Независимо от того, измеряете ли вязкость на месте с помощью одного из многих местных приборов для анализа масла, способных точно определять изменения вязкости, или отправляете ли пробы в обычную внешнюю лабораторию, важно знать, как определяется вязкость и как изменения могут повлиять на надежность оборудования.Необходимо проявлять упреждающий подход к определению состояния источника жизненной силы оборудования — масла!

Влияние вязкости смазочных материалов двигателя и трансмиссии на низкотемпературное проворачивание и запуск двигателя JSTOR

Вязкость моторного масла и жидкости для автоматической коробки передач является основным фактором обеспечения хороших пусковых и эксплуатационных характеристик в холодную погоду. Чтобы определить вклад двигателя и трансмиссии в усилие проворачивания и хода, мгновенный крутящий момент и мощность, полученные с помощью приборного оборудования двигатель-трансмиссия, были определены для пяти моторных масел с вязкостью от 4 до 184 пуаз (от SAE 5W до SAE 20W. ) и для четырех трансмиссионных жидкостей с вязкостью от 3200 до 83000 сП при -20 F. Были детально проанализированы специфические параметры двигателя и трансмиссии — трение, сжатие и расширение двигателя, вращательная инерция двигателя, трение трансмиссии и вращательная инерция.Двигателю требовалось наибольшее усилие проворачивания, которое увеличивалось с увеличением вязкости моторного масла. Увеличение вязкости моторного масла увеличивало момент трения двигателя, но уменьшало мощность трения двигателя из-за снижения скорости вращения коленчатого вала. Чистый крутящий момент, поступающий в цилиндр с воздухом в результате сжатия и расширения воздуха в цилиндре, уменьшался с уменьшением скорости вращения коленчатого вала. Инерцией двигателя и трансмиссии можно пренебречь для большинства условий запуска. Термодинамический анализ процесса запуска показал, что частота вращения коленчатого вала должна быть высокой для хорошего запуска, поскольку тепловые потери от газов в цилиндре низкие, а давление и температура газа в цилиндре высокие.Коэффициент проворачиваемости, определяемый как отношение мгновенного момента трения двигателя к скорости вращения коленчатого вала, показал, что проворачиваемость двигателя резко ухудшилась по мере того, как вязкость моторного масла увеличивалась более чем примерно на 30 баллов и приближался останов стартера. Результаты, полученные с аппаратом двигатель-трансмиссия, были подтверждены результатами испытаний автомобилей. В целом запуск и работа улучшились благодаря снижению вязкости моторного масла и трансмиссионной жидкости. Характеристики трансмиссии были неудовлетворительными при вязкости жидкости более 30 000 сП из-за недостаточного потока жидкости.Из-за остановки двигателя для работы при низких температурах желательна вязкость трансмиссионной жидкости менее 3200 сП.

SAE International — это глобальная ассоциация, объединяющая более 128 000 инженеров и технических экспертов в аэрокосмической, автомобильной и коммерческой промышленности. Основные направления деятельности SAE International — обучение на протяжении всей жизни и разработка добровольных согласованных стандартов. Благотворительным подразделением SAE International является SAE Foundation, который поддерживает множество программ, включая A World In Motion® и Collegiate Design Series.

Мотор, трансмиссионное масло и смазка с пояснением классификации вязкости / классов

КЛАССИФИКАЦИЯ ПРОМЫШЛЕННЫХ СМАЗОК

Классификация вязкости ISO (Международная организация по стандартизации). Классификация вязкости ISO использует единицы измерения в мм2 / с (сСт) и относится к вязкости при 40oC. Он состоит из 18 групп значений вязкости от 1,98 мм2 / с до 1650 мм2 / с, каждая из которых обозначается числом. Цифры указывают до ближайшего целого числа, середины соответствующих скобок. Например, класс вязкости 32 по ISO относится к диапазону вязкости от 28,8 до 35,2 мм2 / с, средняя точка которого составляет 32,0 мм2 / с. Это проиллюстрировано в таблице ниже, в которой указаны номера классов вязкости по ISO, средние точки каждого брекета и пределы вязкости

Эта система теперь используется для классификации всех промышленных смазочных масел, в которых вязкость является важным критерием при выборе. масла. Режущее масло и некоторые другие специализированные продукты более важны при выборе марки.

Кинематическая вязкость при 40 ° C (мм 2⁄с)

80700
Класс вязкости по ISO (ISO VG) Минимум Максимум Средняя точка
2 1,98 2,42 2,20
3 2,88 3,52 3,20
5 4,14 5,06 4,60
7 6,128
10 9,0 11,0 10,0
15 13,5 16,5 15,0
22 19,8 22 19,8 900 28,8 35,2 32,0
46 41,4 50,6 46,0
68 61,2 74,8 68
110 100
150 135 165 150
220 198 242 220
320
460 414 506460
680 612 748 680
1000 900 1100 900 1100 900 1650 1500

КЛАССИФИКАЦИЯ СМАЗКИ

Классификация консистенции смазки NLGI

Обычно используется классификация консистенции консистентной смазки, установленная в США много лет назад Национальным институтом смазочных материалов (NLG). Это классифицирует смазки исключительно по их твердости или мягкости; никакие другие свойства или уровень производительности не принимаются во внимание.

Классификация состоит из ряда диапазонов консистенции, каждый из которых определяется числом (или цифрами) от 000 до 6. Консистенция, определяемая расстоянием в десятых долях миллиметра, на которое стандартный конус проникает в образец количество смазки при стандартных условиях при 25oC. Эта система используется для классификации промышленных смазок.

Классификация пластичных смазок NLGI (Национальный институт смазочных материалов

115
Консистенция NLGI (номер марки) ASTM Пенетрация при 25 ° C
000 445 — 475
00 400 — 430
0 355 — 385
1
2 265-295
3 220-250
4 175-205
5 130-160
6

AGMA Спецификации смазочных материалов для зубчатых передач

Американская ассоциация производителей зубчатых передач (AGMA) выпустила спецификации и рекомендации для трансмиссионных смазок, используемых в различных типах зубчатых передач. В стандарте AGMA 250.04 подробно описаны смазочные материалы с ингибитором ржавчины и окисления (R и O) и противозадирные (EP), используемые в закрытых зубчатых передачах. Скобки вязкости соответствуют тем, которые приведены в Стандартной рекомендуемой практике ASTM D 2422 для системы определения вязкости промышленных жидких смазочных материалов.

Классы вязкости AGMA для закрытых зубчатых передач

90 900 Comp, 8EP
Смазка AGMA No. Пределы вязкости прежних классификаций AGMA SUS при 100 ° F Соответствующий класс вязкости ISO
1 193-235
2, 2 EP 284-347 68
3, 3 EP 417-510 100
4, 4 EP 626-765 15070 5, 5 EP 918 — 1122 220
6, 6 EP 1335 — 1632 320
7 Comp, 7EP 1919 — 2346 460 2837-3467 680
8 A Comp 4171-5098 1000

Масла с пометкой «comp» содержат от 3 до 10% вязкости tty материал.
Стандарт AGMA 251.02 детализирует спецификации для трех типов смазок для открытых зубчатых передач — редукторных масел с ингибитором ржавчины и окисления (R и O), противозадирных (EP) и остаточных трансмиссионных масел. В этом случае шкалы вязкости для более высоких классов вязкости измеряются при 100 ° C.

КЛАССИФИКАЦИЯ ВЯЗКОСТИ СМАЗКИ / КЛАССИФИКАЦИЯ МОТОРНОГО МАСЛА

SAE J300 Сентябрь 1980 г. (моторные масла)
Наиболее широко используемая система классификации вязкости моторных масел — это: учреждена Обществом автомобильных инженеров (SAE) в США.В этой системе определены две серии классов вязкости — те, которые содержат букву W, и те, что без буквы W.
Марки с буквой W предназначены для использования при более низких температурах и основаны на максимальной вязкости при низких температурах и максимальной пограничной перекачке температура, а также минимальная вязкость при 100С. Низкотемпературная вязкость измеряется с помощью мультитемпературной версии ASTM D2602 «Метод испытания кажущейся вязкости моторных масел при низкой температуре с использованием имитатора холодного пуска». Было обнаружено, что вязкость, измеренная этим методом, коррелирует с частотой вращения двигателя, развиваемой при низкотемпературном запуске. Граничная температура нагнетания измеряется в соответствии с ASTM D3829 «Стандартный метод прогнозирования предельной температуры откачки моторного масла». Это позволяет оценить способность масла поступать на вход масляного насоса двигателя и обеспечивать соответствующее давление масла в двигателе на начальных этапах работы.

Масла без буквы W, предназначенные для использования при более высоких температурах, основаны на вязкости только при 100 ° C.Они измеряются с помощью ASTM D445 «Метод испытания кинематической вязкости при температуре и непрозрачных жидкостях». «Всесезонное» масло — это масло, низкотемпературная вязкость и граничная температура которого удовлетворяют требованиям одного из классов W, а вязкость при 100 ° C находится в пределах установленного диапазона классов W.

Классы вязкости автомобильных смазочных материалов 1
Моторные масла — SAE J 300, JUne 2001 (декабрь 1999)

9025 60106 7000 при 7000 при -30 при -20
Класс вязкости SAE Вязкость (сП) при температуре (° C), макс. Вязкость (сП) при температуре (° C), макс.
Перекачивание 2
Вязкость 4 (сСт) при 100 ° C
мин.
Вязкость 4 (сСт) при 100 ° C
макс.
Вязкость при высоком сдвиге 5 (сП) при 150 ° C и 10 сек -1
0w 6200 при -35 60000 при -40 3.8

5w 6600 при -30 60,00 при -35 3,8

10w 4,1

15 Вт 7000 при -20 60 000 при 25 5,6

6010 5.6

25 Вт 135000 при -10 60 000 при -15 9,3

20 9010 9,3 2,6
30

9,3 <12,3 2,9
40

12. 5 <16,3 2,9 6
40

12,5 <16,3 3,7 7
<21,9 3,7
60

21,9 <26,1 3,7

1 6 — Все значения являются критическими спецификациями, как определено в ASTM 9 2 D32 — ASTM D5293

3 — ASTM D4684.Обратите внимание, что наличие любого напряжения текучести, обнаруживаемого этим методом, представляет собой отказ независимо от вязкости

4 — ASTM D445

5 — ASTM D4683, CEC L-36-A-90 (ASTM D 4741) или ASTM DS481

6 — классы 0w40, 5w40 и 10w40

7 — 15w40, 20w40, 25w40 и 40 классы

КЛАССИФИКАЦИЯ СМАЗКИ ДЛЯ АВТОМОБИЛЬНЫХ ПЕРЕДАЧ

SAE J306 (трансмиссионные масла): вязкость смазочного материала, измеренная при низких и / или высоких температурах. Значения высоких температур определяются в соответствии с методом ASTM D445. Низкие значения температуры определяют в соответствии с методом ASTM D2983 «Метод испытания кажущейся вязкости при низкой температуре с использованием вискозиметра Брукфилда» и измеряют в мПа · с (сП).

Всесезонное масло удовлетворяет требованиям вязкости одного из классов W при низких температурах и одного из классов, отличных от W, при высоких температурах.
Следует отметить, что нет никакой связи между классификациями моторного масла SAE и трансмиссионного масла.Трансмиссионное масло и моторное масло, имеющие одинаковую вязкость, будут иметь совершенно разные обозначения класса SAE, как определено в двух классификациях.

Классы вязкости автомобильных смазочных материалов
Масла Gaer — кроме SAE J 306, 1998

Класс вязкости SAE ASTM D2983 Температура ° C для вязкости 150000 мПа · с (1)
MAX
ASTM D445 (мм ) 2⁄s Вязкость при 100 ° C
MIN 2
ASTM D445 (мм) 2⁄s Вязкость при 100 ° C
MAX
70w-55 3 4. 1
75w-40 4,1
80w-26 7,0
85w12
80
7,0 <11,0
85
11,0 <13,0
90
13.5 <24,0
140
24,0 <41,0
250
41,0

Дополнительный Требования к температурной вязкости могут быть применимы к жидкостям, предназначенным для использования в синхронных механических коробках передач малой мощности.

2 — Ограничения также должны быть выполнены после тестирования в CEC 1-45-T-93, метод C (20 часов).

3 — Точность ASTM D 2983 не установлена ​​для определений, выполненных при температурах ниже -40 ° C. Этот факт следует учитывать в любых отношениях между производителем и потребителем.

Примечание: 1 сП = 1 мПа · с; 1 сСт = 1 мм2⁄с

Классы вязкости по ISO

Система вязкости для промышленных смазочных материалов

6 100
Класс по ISO Средняя вязкость сСт. При 40 ° C Вязкость, сСт при 40 ° C
Мин.
Вязкость, сСт при 40 ° C
Макс.
2 2.2 1,98 2,42
3 3,2 2,88 3,52
5 4,6 4,14 5,06
6,4
10 10 9,00 11,0
15 15 13,5 16,5
22 22 19.8 24,2
32 32 28,8 35,2
46 46 41,4 50,6
68
100 90,0 110
150 150 135 165
220 220 198 242 320103 242 320103 352
460 460 414 506
680 680 612 748
1000
1000 900 1500 1350 1650

Приблизительное сравнение различных Шкала вязкости

Следующая таблица предназначена для преобразования вязкостей одной системы в вязкость другой системы при той же температуре.

33 900 * 6,03 1133 900 900
Кинематическая вязкость, сСт Градусы Энглера Редвуд № 1 Секунды Универсальные секунды Сейболта Кинематическая вязкость сСт Градусы Энглера Редвуд № 1 Секунды 3 Универсальные секунды Сейболта 1,0 28,5 20,0 2,9 86 97,5
1,5 1,06 30 20.5 2,95 88 99,6
2,0 1,12 31 32,6 21,0 3,0 90 101,7 101,7 21,5 3,05 92 103,9
30. 1,22 33 36,0 22,0 3,1 93 106.0
3,5 1,16 34,5 37,6 22,5 3,15 95 108,2
4,0 1,30 110,3
4,5 1,35 37 40,7 23,5 3,3 99 112,4
5,0 1. 40 38 42,3 24,0 3,35 101 114,6
* 5,5 1,44 39,5 43,9 24,5 103 43,9 24,5 103 1,48 41 45,5 25,0 3,45 105 118,9
* 6,5 1,52 42 4710 3,6 109 123,2
* 7,0 1,56 43,5 48,7 27,0 3,7 113 127,710 127,710 50,3 28,0 3,85 117 132,1
* 8,0 1,65 46 52,0 29,0 3,95 121 132
* 8,5 1,70 47,5 53,7 30,0 4,1 125 140,9
* 9,0 1,75 129 145,3
* 9,5 1,79 50,5 57,1 32,0 4,35 133 140,7
10. 0 1,83 52 58,8 33,0 4,45 136 154,2
10,2 1,85 52,5 59106 52,5 59103
10,4 1,87 53 60,2 35,0 4,7 144 163,2
10,6 1,89 53.5 60,9 36,0 4,85 148 167,7
10,8 1,91 54,5 61,6 37,0 900 55 62,3 38,0 5,1 156 176,7
11,4 1,97 56 63,7 39.0 5,2 160 181,2
11,8 2,00 57,5 ​​ 65,2 40,0 5,35 164 185103 41,0 5,45 168 190,2
12,6 2,08 60 68,1 42,0 5,6 1727
13,0 2,12 61 69,6 43,0 5,75 177 199,2
13,5 2,17 203,8
14,0 2,22 64,5 73,4 45,0 6,0 185 208,4
14,5 2. 27 66 75,3 46,0 6,1 189 213,0
15,0 2,32 68 77,2 47,0103 900 2,38 70 79,2 48,0 6,45 197 222,2
16,0 2,43 71,5 81.1 49,0 6,5 201 226,8
16,5 2,5 73 83,1 50,0 6,65 205103 85,1 52,0 6,9 213 240,6
17,5 2,6 77 87,1 54,0 7,1 2216
18,0 2,65 78,5 89,2 56,0 7,4 229 259,0
18,5 2,7 268,2
19,0 2,75 85 93,3 60,0 7,9 245 277,4
19,5 2. 8 84 95,4 70,0 9,2 285 323,4

Для более высоких вязкостей следует использовать следующие коэффициенты.

  • Кинематика = 0,247 Редвуд Сэйболт = 35,11 Энглер
  • Энглер = 0,132 Кинематика Энглера = 0,0326 Редвуд
  • Редвуд = 4,05 Кинематика Сэйболта = 1,14 Редвуд
  • Сэйболт = 4,62 Кинематика Кинематика = 0,216 Сэйболт
  • 7,5
  • Двигатель Кинематика = 0,216 Сэйболт
  • 7,5
  • Двигатель Кинематика .0285 Saybolt
  • Redwood = 30,70 Engler Redwood = 0,887 Saybol

Примечание: первая часть метки таблицы со знаком * должна использоваться только для преобразования кинематической вязкости в вязкости по Engler, Redwood или Saybolt, или для Engler, Redwood и Сэйболт между собой. Их нельзя использовать для преобразования значений вязкости по Энглеру, Редвуду или Сейболту в кинематическую вязкость.

СРАВНИТЕЛЬНАЯ КЛАССИФИКАЦИЯ ВЯЗКОСТИ

Примечание:

Вязкость может быть связана только по горизонтали.

Вязкость рассчитана на основе масел одного сорта VI 95 VI.

Вязкость по ISO и AGMA указана при 40oC.

Вязкости SAE 5W, 10W, 75W, 80W и 85W указаны для низких температур. Показаны эквивалентные вязкости при 100 ° F и 210 ° F.

SAE 90-250 (трансмиссионные масла) и SAE 20-50 (моторные масла) указаны при 210oF / 99oC.

Классификация вязкости

Классификация вязкости
Динамическая вязкость
Кинематическая вязкость
Индекс вязкости (VI)
ISO 3448 Классификация вязкости
AGMA 9005-D94 Классификация вязкости трансмиссионных масел
SAE J300 Автомобильная классификация вязкости, моторные масла
SAE J306 Автомобильная классификация вязкости, трансмиссионные масла
Сравнительная классификация вязкости

Калькуляторы:
(Абсолютно) Динамическая вязкость / температура
Кинематическая вязкость / температура ASTM D341
Индекс вязкости (VI)
Кинематическая вязкость с использованием T @ 40C и индекс вязкости (VI)
Кинематическая вязкость смесь двух базовых масел
Вискозиметр с коаксиальным цилиндром
Вискозиметр конус на пластине
Динамическая вязкость / чувствительность к давлению

Динамическая вязкость [мПа · с = cP]
Динамическая вязкость — это вязкость, которая связывает напряжение сдвига τ и скорость сдвига du / dz в жидкости, т. е.е. τ = η du / dz. В вязкое напряжение сдвига τ пропорционально скорости сдвига, динамическое вязкость η — коэффициент пропорциональности. Итак, более густые масла имеют более высокое значение вязкости, вызывающее относительно более высокие напряжения сдвига при том же скорость сдвига.

Динамическая вязкость обычно измеренные в условиях высокого сдвига, например, конус на тарелке или цилиндрический вискозиметр в котором крутящий момент вязкого сдвига измеряется между двумя цилиндрами.

с вязкость, известная при двух эталонных температурах, вязкость может быть рассчитано для промежуточных температур со специальной интерполяцией функции от Reynolds или Vogel & Cameron.

Кинематическая вязкость [мм 2 / с = сСт]
Кинематическая вязкость — это отношение динамической вязкости. вязкость η и плотность жидкости ρ, ν = η / ρ. Физический принцип измерение основано на скорости, с которой жидкость течет под действием силы тяжести через капиллярная трубка.

С вязкостью, известной при двух эталонных температурах вязкость может быть рассчитана для промежуточных температур с помощью интерполяционная функция Уббелоде-Вальтера, который принят ASTM D341.

Индекс вязкости ISO 2909 / ASTM D2270-226
Во многих случаях температурная зависимость выражается в Вязкость Индекс стандартизирован ISO 2909 / ASTM D2270-226.
ISO 3448 Классификация вязкости
Классификация вязкости ISO рекомендуется для промышленных Приложения. Эталонная температура 40 C представляет собой рабочая температура в машинах. Каждый последующий класс вязкости (VG) в пределах классификации имеет примерно на 50% более высокую вязкость, тогда как минимум en максимальные значения каждой оценки составляют 10% от средней точки. За Например, ISO VG 22 относится к классу вязкости 22 сСт 10%. при 40C. Вязкость при разной температуры можно рассчитать, используя вязкость при 40 ° C и индекс вязкости (VI), который представляет собой температурную зависимость смазка.
ISO 3448
Класс вязкости
Кинематическая вязкость при 40C
[мм 2 / с = сСт]
Средняя точка Минимум Максимум
ISO VG 2 2.2 1,98 2,42
ISO VG 3 3,2 2,88 3,52
ISO VG 5 4,6 4,14 5,06
ISO VG 7 6,8 6,12 7,48
ISO VG 10 10 9. 0 11,0
ISO VG 15 15 13,5 16,5
ISO VG 22 22 19,8 24,2
ISO VG 32 32 28,8 35,2
ISO VG 46 46 41.4 50,6
ISO VG 68 68 61,2 74,8
ISO VG 100 100 * 90 110
ISO VG 150 150 135 165
ISO VG 220 220 198 242
ISO VG 320 320 288 352
ISO VG 460 460 414 506
ISO VG 680 680 612 748
ISO VG 1000 1000 900 1100
ISO VG 1500 1500 1350 1650
Любая вязкость может быть получена смесь двух базовых масел ISO VG
AGMA 9005-D94 Классификация вязкости для шестерен масла

Смазка AGMA No.

вязкость
мПа.с при 40C

Эквивалентный класс вязкости ISO
(ISO 2448)

Трансмиссионные масла EP
AGMA

мин.

макс

смаз. нет.

0

28.8

35,2

32

1

41,4

50,6

46

2

61,2

74. 8

68

2 EP

3

90

110

100

3 EP

4

135

165

150

4 EP

5

198

242

220

5 EP

6

288

352

320

6 EP

7C 1)

414

506

460

7 EP

8C 1)

612

748

680

8 EP

8AC 1)

900

1100

1000

8 A EP

Классы вязкости моторных масел по SAE 1 SAE J300 декабрь 99
Фактический класс вязкости смазочного материала определяется Обществом Автомобильные инженеры, например SAE-15W40 для всесезонного масла и SAE-40 для всесезонного масла.Первое число (15W) относится к вязкости сорт при низких температурах (W от зимы), тогда как второй номер (40) относится к классу вязкости при высокой температуре.

Классы вязкости автомобильных смазок 1
Моторные масла SAE J 300, декабрь 1999 г.

SAE

Низкотемпературная вязкость

Вязкость при высоких температурах

Вязкость
Оценка

Коленчатый вал 2 (МПа.с)
макс при температуре C

Насос 3 (мПа.с)
макс при температуре C

Кинематика 4
(мм 2 / с)
при 100C

Высокий сдвиг 5 Скорость (мПа.с)
при 150 ° C, 10 / с

мин.

макс

мин.

0 Вт

6200 при -35

60 000 при -40

3.8

5 Вт

6600 при -30

60 000 при -35

3,8

10 Вт

7000 при -25

60 000 при -30

4.1

15 Вт

7000 при -20

60 000 при -25

5,6

20 Вт

9500 при -15

60 000 при -20

5.6

25 Вт

13 000 при -10

60 000 при -15

9,3

20

5.6

<9,3

2,6

30

9,3

<12,5

2,9

40

12.5

<16,3

2,9 6

40

12,5

<16,3

3.7 7

50

16,3

<21,9

3,7

60

21.9

<26,1

3,7

1 Все значения критичны спецификации согласно определению ASTM D3244
2 ASTM D5293
3 ASTM D4684. Учтите, что наличие какой-либо доходности напряжение, обнаруживаемое этим методом, представляет собой отказ независимо от вязкости.
4 ASTM D445
5 ASTM D4683, CEC L-36-A-90 (ASTM D 4741) или ASTM DS481
6 марок 0W-40, 5W-40 и 10W-40
7 15W-40, 20W-40, 25W-40 и 40 марок
Вязкость автомобильных трансмиссионных масел по SAE a SAE J306, январь 2005 г.

Автомобильная промышленность Смазка Вязкость Классы
Трансмиссионные масла За исключением SAE J 306, 1998 г.

SAE
Класс вязкости

Максимальная температура
для вязкости
150 000 сП (C)

Минимальная вязкость
при (сСт) при 100 ° C

Максимальная вязкость
при (сСт) при 100 ° C

ASTM D 2983

ASTM D 445

ASTM D 445

70 Вт

-55

4.1

75 Вт

-40

4.1

80 Вт

-26

7.0

85 Вт

-12

11.0

80

7.0

<11,0

85

11.0

<13,5

90

13.5

<18,5

110

18.5

<24,0

140

24.0

<32,5

190

32.5

<41,0

250

41.0

1 Используя ASTM D 2983, дополнительный низкий требования к температуре и вязкости могут быть применимы к жидкостям Предназначен для использования в синхронизированной механической коробке передач малой мощности.
2 Предел также должен быть соблюден после тестирования в CEC l-45-T-93, метод C (20 часов)
3 Точность ASTM D 2983 имеет не установлено для определений, сделанных при температурах ниже 40 С. Этот факт следует учитывать при любые отношения производителя и потребителя.
Сравнительная классификация вязкости
ISO 3348
Индустриальные масла
AGMA 9005-D94
Масла трансмиссионные
SAE J300
Масла моторные
SAE J306
Масла трансмиссионные
1500 250
1000 8A
680 8 140
460 7
320 6 60 90
220 5 50
150 4 40
85 Вт
100 3 30 80 Вт
68 2 20
75 Вт
46 1
32 0 15 Вт
22 10 Вт
15 5 Вт, 10 Вт
10
7
3
2
ISO и AGMA указаны при температуре 40C.SAE 75 Вт, 80 Вт, 85, 5 Вт и 10 Вт
указаны для низких температур. SAE От 90 до 250 и от 20 до 50 указаны при 100 ° C. Вязкость может быть относящиеся по горизонтали, принимая 96 масел VI класса.

Практическое правило: SUS @ 100F / 5 = сСт @ 40C.

www.tribology-abc.com

База знаний — подробности

Расшифровка вязкости масла (таблица)

Как читать таблицу?

Зимние масла — температура в ячейках, в которые включены следующие данные:

— максимальная структурная вязкость — определяет самую низкую температуру, при которой довольно легко запустить двигатель с этим маслом,

— максимальная возможность откачки — определяет самую низкую температуру, при которой у нас есть шанс запустить двигатель (масло должно подаваться насосом),

Летние масла — значения вязкости масла при 100С и 150С означают:

— стабильность смазки маслом при термических нагрузках, чем выше вязкость, масло может работать при более высокой температуре окружающей среды в объеме масла,

— чем выше вязкость масла, тем больше сопротивление перекачке и потеря энергии и рост расхода топлива

Класс вязкости по SAE

Максимальная структурная вязкость CCS [мПа · с]

Максимальная возможность откачки [мПа · с]

Минимальная кинематическая вязкость при темп.из 100 ° C [мм² / с]

Максимальная кинематическая вязкость при темп. из 100 ° C [мм² / с]

Минимальная вязкость HTHS 150 ° C; [мПа · с]

0 Вт

6200 при -35 ° C

60000 при -40 ° C

3.8

5 Вт

6600 при -30 ° C

60000 при -35 ° C

3,8

10 Вт

7000 при -25 ° C

60000 при -30 ° C

4.1

15 Вт

7000 при -20 ° C

60000 при -25 ° C

5,6

20 Вт

9000 при -15 ° C

60000 при -20 ° C

5.6

25 Вт

13000 при -10 ° C

60000 при -15 ° C

9,3

20

5.6

<9,3

2,6

30

9,3

<12,5

2,9

40

12.5

<16,3

2,9 для 0W-40, 5W-40, 10W-40

40

12,5

<16,3

3.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *