Виды моторов: виды, типы и особенности ДВС

Содержание

Виды моторов в машинках для стрижки

Как выбрать подходящую машинку для стрижки? У всех профессионалов есть свои любимые бренды, например Oster. Но даже среди профессионалов не всегда есть понимание технической стороны инструмента, который они используют. Что внутри каждой конкретной модели? Какая разница между моторами? На что влияет тип мотора, и насколько это важно для вашей работы?

В этой статье разберем все основные виды моторов и расскажем о принципе их действия.

Все машинки можно разделить на два больших вида: роторные и вибрационные. Давайте разглядим каждый из них поближе.

Вибрационные

В этих машинках движение ножа обеспечивается за счет создания электромагнитного поля. Внутри эту группу можно также разделить по принципу действия на две подгруппы:

  • Индукционные. Большинство машинок бюджетного сегмента (особенно, производящихся в Китае) оснащены именно таким типом двигателя. Состоит он из магнитной катушки и соединенного с ножом подпружиненного рычага. При подаче тока на катушку рычаг притягивается к ней, сдвигая нож в одну сторону, при отключении тока — возвращается в исходное положение.

Плюс у таких машинок, по сути, только один — цена. Это самый дешевый в производстве моторчик. Минус — в очень низком КПД. И без того не самая большая мощность в 3-7 Ватт большей частью теряется при передаче на нож и превращается в тепло. Двигатель греется, а вместе с ним и корпус машинки. Такие машинки нельзя использовать без перерыва продолжительный срок, их нужно остужать. А значит, в качестве основного профессионального инструмента они подходят плохо.

  • Пивотные (Анкерные). Это развитие идеи обычных индукционных машинок, но с важными доработками. Здесь движение передается на нож через пару магнитов: один устанавливается на катушку, другой — на нож.

В анкерных машинках частота движений совпадает с частотой тока, поэтому она в два раза меньше, чем у обычных индукционных. Но это одновременно означает прирост мощности на катушке в полтора раза, а на ноже — сразу в 4 раза. Двигатель меньше греется, а машинкой уже свободно можно работать по разным типам волос, в том числе и по влажным.

Для профессионального использования эти модели подходят, и среди них очень много действительно достойных и качественных образцов, в том числе и машинки, ставшие легендарными в своих категориях.

Это, конечно же, сказывается и на стоимости: анкерные машинки обойдутся дороже. Но нужно понимать, что в данном случае вы платите за вполне реальные характеристики: мощность, КПД, функциональные возможности.

Роторные

В них используется полноценный мотор, который вращается и передает через систему рычагов движение на нож. Самые мощные машинки — всегда роторные, потому что у этих двигателей самый высокий КПД. Это, например, машинки для грумеров.

За счет высокого КПД получается более экономно расходовать электроэнергию, поэтому все аккумуляторные машинки тоже оснащены именно роторными моторами. Правда, если мощность действительно большая, то аккумулятор большой емкости устанавливать в корпус нецелесообразно (машинка получится слишком громоздкой), поэтому такие модели обычно работают только от сети. Но в салонах такая мощность избыточна, поэтому если вы не работаете с животными, то вам топовые модели вряд ли пригодятся.

За мощность и прохладный корпус приходится платить, этот тип машинок — самый дорогой. Поэтому не всегда его можно рекомендовать, особенно начинающим парикмахерам: в большинстве случаев для нормальной работы хватает анкерной индукционной машинки.

Если у вас остались вопросы по машинкам, мы готовы на них ответить: свяжитесь с нами и получите бесплатную консультацию.



Виды лодочных моторов - полезная информация от "МедузаМоторс"

Главная Полезная информация Виды лодочных моторов

Выбирая лодочный мотор, человек, прежде всего, надеется на то, чтобы двигатель обладал заявленной мощностью, бесперебойно функционировал и эксплуатировался на протяжении длительного времени. При этом также важно, чтобы он соответствовал тем требованиям, которые будут к нему предъявляться.

Плавание на моторной лодке, это не гребля на деревянном плоту вдоль берега и не сноутюб на ватрушках. Это быстрая езда по воде, и любая неисправность лодочного двигателя может обернуться большими неприятностями.

Какими же бывают моторы для лодок?

В зависимости от топлива они бывают бензиновыми, дизельными, водометными и электрическими.

В последнее время в среде лодочников на слуху бензиновые лодочные моторы Ямаха. Это двигатели очень разной мощности (2-400 лошадиных сил).

Более экономными и долговечными являются дизельные моторы. Они используются для больших судов.

Перемещение по мелководью хорошо осуществлять на лодке с водометным мотором, который изготавливается на базе 2-х или 4-хтактного двигателя. Это безопасные моторы, позволяют подводить плавательное средство непосредственно к берегу и рекомендуются для любителей серфинга и водных лыж.

С целью защиты окружающей среды на многих водоемах вводятся запреты на ДВС. Поэтому начали появляться электрические лодочные моторы. Они менее мощные чем, например, моторы Gladiator, зато не создают шума и имеют достаточное количество лошадиных сил для небольшого прогулочного или рыболовного судна. Современные модели оснащаются системой автоматического и дистанционного управления, что очень удобно.

Двигатели внутреннего сгорания в свою очередь подразделяются на 2-тактные и 4-тактные. Первые отличаются компактностью, простотой в обслуживании. Вторые обладают более высоким ресурсом производительности и тихой работой. Четырехтактные моторы более экономичны своих двухтактных собратьев.

Сегодня на рынке представлены модели японских, американских и китайских производителей. Первые две категории отличаются высокой надежностью, но и немалой ценой. Китайские моторы являются полными аналогами оригиналов, но изготавливаются из металла низшего качества. Поэтому двигатели из Поднебесной несколько уступают оригинальным моделям японских и американских производителей, но зато они в два раза дешевле.

Типы двигателей автомобилей – принципы работы, виды топлива + видео » АвтоНоватор

В настоящее время существуют различные типы двигателей автомобилей, основанные на принципе внутреннего сгорания. По характеру работы они разделяются на карбюраторные и дизельные. Рассмотрим их отличия и поговорим о видах моторов в современных автомобилях.

Цикл работы двигателя – критерий для классификации

Принцип действия двигателя основан на превращении тепловой энергии в механическую с помощью определенных повторяющихся процессов, представляющих собой рабочий цикл. В зависимости от количества ходов поршня, затрачиваемых на осуществление такого цикла, двигатели бывают четырехтактными или двухтактными. Все типы двигателей внутреннего сгорания, используемые в автомобилях, работают по четырехтактному рабочему циклу. Он включает в себя впуск и сжатие топлива, а также рабочий ход и выпуск отработанных газов.

Двухтактный мотор за один цикл осуществляет всего два хода поршня: сжатие и рабочий ход. А вот очистка и наполнение цилиндров происходит во время этих двух тактов, практически в предкритических точках. Эти двигатели имеют некоторые недостатки, например, больший уровень загрязнения выхлопных газов. Но при равных объемах двухтактный мотор мощнее четырехтактного, а также проще его конструкция. Главным минусом, из-за которого они не нашли распространение в автомобилях, является большой расход топлива, оно не сгорает в значительной степени, из-за чего и получаются слишком загрязненные выхлопы.

Инжекторные виды автомобильных двигателей

Инжекторный мотор работает несколько по-другому: не воздух подается в топливо, а топливо дозированно подается в воздушную среду методом мелкого вспрыска. Форсунка под давлением распыляет горючую жидкость, что уменьшает ее расход, потому что это количество дозируется специальными устройствами. По этой же причине такие моторы экономичнее, а за счет оптимальной пропорции компонентов полученной смеси увеличивается чистота выхлопа и КПД двигателя.

Те виды автомобильных двигателей, которые используют инжекторы, разделяются на электронные и механические. В первом случае составление и впрыск топлива происходит с применением специального электронного блока управления. Механическая дозировка топлива осуществляется рычагами плунжерного типа, где саму топливную смесь контролирует электроника. При использовании таких инжекторных систем обеспечивается более тщательное сгорание топлива и до минимума уменьшаются вредные выбросы отработанных продуктов.

Карбюраторные виды двигателей автомобилей – что придет им на смену?

Рассмотрим, какие виды двигателей бывают в современных машинах. Все они различаются между собой по типу используемого топлива, по расположению и количеству цилиндров, по способу образования рабочей смеси и прочим параметрам, характеризующим их работу. Очень многие виды бензиновых двигателей до сих пор устанавливаются на современные модели автомобилей.

Бензин, проходящий через топливную систему,  попадает в карбюратор или впускной коллектор. Туда же поступает воздух, под действием его потока происходит активное смешивание, в результате получается смесь. Затем осуществляется подача готовой воздушно-топливной смеси в цилиндры, где она сжимается под действием усилий поршней, после чего поджигается электрической искрой, вырабатываемой свечами зажигания.

Все виды двигателей автомобилей, где используются карбюраторы, считаются устаревшими. В настоящее время широкое применение получила подача топлива при помощи инжектора. В этом случае распыление топлива осуществляется форсунками либо сразу в цилиндр или через специальный впускной коллектор.

Типы двигателей автомобилей: дизель – модно или практично?

Рассматривая виды двигателей внутреннего сгорания, следует выделить отдельно дизельные двигатели внутреннего сгорания, принцип работы которых основан на воспламенении рабочей смеси в процессе сжатия. При втягивании воздуха происходит его сильное сжатие, намного превышающее это же значение в карбюраторных двигателях. В результате высокого давления происходит разогрев воздуха до очень высокой температуры, вызывающий самовоспламенение рабочей смеси. После этого наступает цикл рабочего хода поршня и последующее вытеснение им отработанных газов через выпускной клапан.

Такие типы автомобильных двигателей отличаются более низким расходом топлива и небольшим количеством вредных веществ в отработанных газах. Коэффициент полезного действия дизелей также выше. Сегодня минусов у этого типа моторов становится все меньше, даже заморозки уже не являются преградой к запуску автомобиля. Установка внутреннего подогрева системы решила вечную головную боль владельцев «дизелей».

Различные виды дизельных двигателей работают почти на идентичном топливе, отличающемся только характеристиками, зависящими от времени года. У этих двигателей отсутствует система зажигания, поскольку топливо взрывается под высоким давлением, которое обеспечивает движение поршня. Таким образом, множество видов двигателей внутреннего сгорания обеспечивает производство самых разных моделей автомобилей. Это позволяет использовать их практически во всех областях жизни.

Оцените статью: Поделитесь с друзьями!

8 самых известных типов двигателей в мире и их отличия

После прочтения нашего обзора вы будете понимать, как работают восемь типов двигателей в мире. 

 

Двигатель – это агрегат, который может преобразовать одну энергию в механическую. В эту категорию входит множество видов двигателей, начиная от паровых (двигатели внешнего сгорания) и электрических и заканчивая двигателями внутреннего сгорания (бензиновые, дизельные моторы и т. д.). Мы покажем вам восемь самых известных в мире двигателей, а также просто и интуитивно понятно расскажем вам, как они работают, описав принципы их работы. 

 

1. Оппозитный двигатель

 

В горизонтально противоположном двигателе (оппозитном) поршни двигаются по обеим сторонам коленчатого вала влево и вправо в горизонтальном направлении. В этом случае высота двигателя уменьшена. За счет использования оппозитного двигателя уменьшается центр тяжести транспортного средства – автомобиль движется более плавно. Крутящий момент, создаваемый поршнями с обеих сторон, компенсирует друг друга, значительно уменьшая вибрацию транспортного средства во время движения.

 

Также подобная конструкция позволяет сделать двигатели высокооборотистыми. Но, несмотря на высокие обороты, оппозитные моторы имеют меньше шума, чем обычные ДВС. 

Двигатели с горизонтальным ходом поршней использует компания Porsche почти во всех моделях. Но, например, в Porsche Cayenne и Panamera оппозитные двигатели не применяются. 

 

2. Рядный двигатель

 

В рядном двигателе все его цилиндры расположены рядом друг с другом в одной плоскости. Конструкция цилиндров и коленвала довольно-таки проста. Головка блока цилиндров имеет небольшую стоимость при изготовлении. Также рядные двигатели отличаются высокой стабильностью, характеристиками крутящего момента на низких оборотах, низким расходом топлива и компактным размером. Рядные двигатели обычно обозначаются латинской буквой «L-n», где n – количество цилиндров рядного двигателя. Современные автомобили в основном имеют двигатели с обозначением L3, L4, L5, L6.

 

3. Двигатель V-типа (V-образный силовой агрегат)

 

V-образный двигатель разделяет все цилиндры на две группы друг напротив друга под определенным углом. В итоге мотор образует плоскость под углом. Если посмотреть на этот тип двигателя со стороны, то он будет иметь V-образную форму. V-образные двигатели имеют небольшую высоту и длину. Этот тип моторов удобнее размещать в автомобиле по сравнению с обычными рядными моторами, которые по своим размерам гораздо больше. 

 

В настоящее время во многих автомобилях среднего и люкс-класса используются V-образные двигатели. Чаще всего это 6-цилиндровые силовые агрегаты. Например, такие двигатели стоят на Volkswagen Passat, Audi A6 и Mercedes E-класса AMG. 

 

4. Квазитурбинный двигатель

 

Квазидвигатель представляет собой модифицированный двигатель, основанный на роторном силовом агрегате. Если в обычном роторном двигателе задействованы три лопасти, то квазидвигатель использует цепной ротор, состоящий из четырех частей. Это беспоршневой роторный мотор с ромбовидным ротором. Преимущество двигателя: это новый тип двигателя небольшого размера, с высокой мощностью, высоким крутящим моментом, который может работать на множестве источников энергии. 

 

 

В настоящий момент квазидвигатель не используется ни на одном автомобиле, поэтому невозможно проверить, подходит ли он для замены обычных поршневых двигателей внутреннего сгорания или в качестве лучшей альтернативы обычным роторным моторам. Квазидвигатель все еще находится в стадии создания прототипа. 

 

5. Роторный двигатель

 

Внутреннее пространство корпуса роторного двигателя всегда разделено на три рабочие камеры. Во время движения ротора объем трех рабочих камер постоянно изменяется. Двигатель также имеет четыре такта: впуск, сжатие, сгорание и выпуск последовательно завершаются в циклоидальном цилиндре.

 

Роторный двигатель сильно отличается от обычных поршневых двигателей внутреннего сгорания. Себестоимость производства роторных моторов существенно больше, также как и их последующее обслуживание и ремонт. Кроме того поршневой двигатель по сравнению с роторным эффективней с точки зрения мощности, веса, выбросов и энергопотребления.

 

В сочетании с этим, а также в связи со странности технологий роторного двигателя, крупные автомобильные компании пришли к выводу, что использование роторных силовых агрегатов в автопромышленности бессмысленно. Так как роторные моторы не показали своих преимуществ перед обычными, у автомобильных компаний не появилось энтузиазма по их дальнейшей разработке. Только компания Mazda до сих пор тратит огромные деньги на разработку новых поколений роторных моторов. 

 

6. Двигатель Green Steam

 

Green Steam – эффективный, экономичный и простой двигатель, разработанный изобретателем Робертом Грином из Лагуна Вудс, Калифорния, США. Этот мотор преобразует избыточное тепло в водяной пар, который и приводит в движение силовой агрегат. Легкий и компактный двигатель Green Steam преобразует возвратно-поступательное движение во вращательное. Его основной характеристикой является гибкий вал, который передает возвратно-поступательное движение от поршней к кривошипу «Z», таким образом, совершая вращательное движение, не используя запястья, шатуны или коленчатые валы.

 

Этот мотор может использоваться для воздушных насосов, генераторов, водяных насосов, воздуходувок горячего воздуха, аппаратов дистилляции воды, тепловых насосов, кондиционеров, модельных самолетов и т. д. 

 

 

 

Одним из наиболее уникальных преимуществ двигателя является его способность генерировать энергию из тепла двигателей. По существу, отработанное тепло выхлопных газов от двигателя транспортного средства может быть преобразовано в энергию, используемую для некоторых систем охлаждения и насосов транспортного средства. Этот двигатель повысит уровень эффективности любого транспортного средства или системы машины, на которой он установлен.

 

7. Двигатель Стирлинга

 

Двигатель Стирлинга относится к типам силовых агрегатов внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменении давления. Принцип работы двигателя Стирлинга заключается в постоянном сжатии рабочего цилиндра, в результате чего происходит нагревание его внутренней части, а затем охлаждение. Из-за перепада давления из цилиндра извлекается энергия, образуемая при изменении давления. Обычно в качестве рабочего тела используется водород или гелий. Но чаще в таких моторах используется воздух. 

 

Двигатели Стирлинга отлично подходят для преобразования тепла в электроэнергию. Например, многие специалисты считают, что эти моторы подходят для солнечных электрических установок. 

То есть это идеальные силовые агрегаты для преобразования солнечной энергии в электричество. 

 

8. Радиальный двигатель (звездообразный)

 

Звездообразный двигатель представляет собой поршневой двигатель внутреннего сгорания, в котором цилиндры расположены вокруг коленчатого вала. Один поршень соединен с коленвалом через главный шатун. Остальные поршни прикреплены через шатуны к кольцам главного ведущего шатуна. 

 

Двигатель преимущественно создан для использования в самолетах. До появления реактивных двигателей в большинстве поршневых авиационных двигателей использовались подобные звездообразные конструкции силовых агрегатов. Эти моторы, как правило, устанавливались на самолеты небольшой дальности. Остальные самолетные моторы имели V-образную форму. 

 

Некоторые современные легкие самолеты до сих пор оснащаются радиальными моторами.

Ряд компаний продолжает строить радиальные системы сегодня. Например, вот современный авиационный радиальный 9-цилиндровый двигатель Веденеев мощностью 360–450 л. с., который в настоящий момент используется на самолетах Яковлева и Сухого.

Типы двигателей внутреннего сгорания в мотоциклах, а также различия.

Начинающие водители иногда думают, что самое главное качество, которое имеют двигатели мотоциклов, — это количество лошадиных сил, и считают, что средство будет ездить хорошо, лишь обладая мощностью более ста сил. Однако, помимо этого показателя, существует множество характеристик, влияющих на качество работы мотора.

Виды двигателей мотоциклов

Бывают двухтактные и четырехтактные моторы, принцип работы которых несколько отличен.

Также на мотоциклах устанавливают разное количество цилиндров.

Помимо родного карбюраторного мотора, часто можно встретить инжекторные агрегаты. И если первый вид мотоциклисты привыкли исправлять самостоятельно, то инжекторный двигатель с прямой системой впрыска своими руками чинить уже проблематично. Давно уже выпускают дизельные мотоциклы и даже с электродвигателем. В статье будут рассматриваться характеристики двигателя мотоцикла карбюраторного типа.

https://www.youtube.com/watch?v=e1lbqglXJaI

Как работает двигатель

В цилиндрах двигателя тепловая энергия сгорающего топлива преобразовывается в механическую работу. При этом движущийся из-за давления газа поршень приводит к вращению коленчатый вал через кривошипно-шатунный механизм. Этот механизм состоит из коленчатого вала, шатуна, поршня с кольцами, поршневого пальца, цилиндра.

Различия в конструкции ведут к разной работе двух- и четырехтактного двигателя.

Четырехтактный двигатель

Такие моторы имеют рабочий цикл в четыре такта поршня и два оборота коленвала. Схема двигателя наглядно показывает устройство поршневого ДВС и его рабочий процесс.

  1. При впуске поршень опускается от верхней мертвой точки, засасывая смесь через открытый клапан.
  2. При сжатии поршень, поднимающийся от нижней мертвой точки, сжимает смесь.
  3. При рабочем ходе смесь, загоревшись от электрической свечи, сгорает, и газы перемещают поршень вниз.
  4. При выпуске поршень, поднимаясь, выталкивает отработавшие уже газы через открытый выпускной клапан. Когда им снова достигается верхняя мертвая точка, выпускной клапан закрывается, и все повторяется заново.

Преимуществами четырехтактников являются:

  • надежность;
  • экономичность;
  • менее вредный выхлоп;
  • небольшой шум;
  • масло с бензином предварительно не смешивается.

Конструкцию этого вида может отобразить следующая схема двигателя.

Двухтактный двигатель

Объем двигателя мотоцикла этого вида, как правило, меньше, а рабочий цикл занимает один оборот. Кроме того, в нем нет впускных и выпускных клапанов. Эту работу воспроизводит сам поршень, который открывает и закрывает каналы и окна на цилиндрическом зеркале. Также при газообмене применяется картер.

Преимуществами этого двигателя являются:

  • при одинаковом объеме цилиндра он имеет мощность, превосходящую четырехтактник в 1,5-1,8 раз;
  • не имеет распределительного вала и клапанной системы;
  • изготовление обходится дешевле.

Цилиндры и рабочий процесс в них

Рабочий процесс одного и другого двигателя происходит в цилиндре.

Поршень здесь перемещается по цилиндрическому зеркалу или вставной гильзе. Если работает воздушное охлаждение, то цилиндрические рубашки имеют ребра, а при водном охлаждении — внутренние полости.

Коленвал через шатун воспринимает движение поршня, трансформируя его во вращательное, а затем передавая крутящий момент трансмиссии. Также от него начинают работать газораспределительный механизм, насос, генератор и уравновешивающие валы. Коленчатый вал имеет одно или несколько колен в зависимости от количества цилиндров.

В четырехтактном моторе, чтобы цилиндр лучше наполнялся смесью, впуск начинается еще до достижения поршнем верхней мертвой точки, а заканчивается после прохождения им нижней мертвой точки.

Очистка его начинается еще до достижения нижней мертвой точки, а выталкиваются отработавшие газы при движении поршня к верхней мертвой точке. После этого выпускной клапан закрывается, чтобы газы покидали цилиндр.

На моторе этого вида используются следующие типы газораспределительного механизма:

В последнем типе имеется минимальное количество элементов, благодаря чему коленчатый вал может вращаться быстрее. Поэтому DOHC получает все большее распространение.

Четырехтактные моторы имеют более сложную конструкцию по сравнению с двухтактными, так как имеют систему смазки и газораспределительный механизм, отсутствующий у двухтактников.

Тем не менее они стали широко распространяться из-за экономичности и менее вредного воздействия на окружающую среду.

Двигатели мотоциклов чаще всего бывают одно-, двух- и четырехцилиндровыми. Но встречаются агрегаты и с тремя, шестью и десятью цилиндрами. Цилиндры при этом бывают рядными — продольными или поперечными, горизонтальными оппозитными, V-образными и L-образными. Рабочий объем моторов обычно имеют не выше полутора тысяч кубов эти мотоциклы. Мощность двигателя — от ста пятидесяти до ста восьмидесяти лошадиных сил.

Моторное масло

Смазка необходима для того, чтобы между деталями мотора не возникало чрезмерное трение. Она реализуется при помощи моторных масел, имеющих стойкую структуру от воздействия высоких температур и малую вязкость при низких показателях. Помимо этого, они не образуют нагар, не агрессивны к пластмассовым и резиновым деталям.

Масла бывают минеральными, полусинтетическими и синтетическими. Полусинтетика и синтетика стоят дороже, но эти виды предпочитают больше, так как считается, что они полезнее для двигателя. Для двухтактников и четырехтактников применяются разные виды масел. Также они отличаются по степени форсировки.

«Мокрый» и «сухой» картер

В четырехтактных двигателях используют три способа подачи масла:

  • самотек;
  • разбрызгивание;
  • подача под давлением.

Причем большинство трущихся пар смазываются под давлением от масляного насоса. Но есть и те, которые смазываются масляным туманом, образующимся вследствие разбрызгивания кривошипно-шатунного механизма, а также детали, к которым масло стекается по каналам и желобам. При этом поддон картера служит резервуаром. Его называют в этом случае «мокрым».

В других мотоциклах предусмотрена система «сухого» картера, где одной секцией масло откачивается в бак, а другой подается под давлением к местам трения.

В духтактниках смазка происходит маслом, которое находится в парах топлива. Его смешивают с бензином предварительно, или во впускном патрубке оно подается насосом-дозатором. Этот последний вид получил название «система раздельной смазки». Он особенно распространен на зарубежных моторах. В России система входит в двигатель мотоцикла «Иж Планета 5» и «ЗиД 200 Курьер».

Система охлаждения

Когда топливо в двигателе сгорает, выделяется тепло, из которого почти тридцать пять процентов уходит на полезную работу, а остальное рассеивается. При этом, если процесс неэффективен, детали в цилиндре перегреваются, что может привести к их заклиниванию и повреждению. Чтобы такого не произошло, применяется система охлаждения, которая бывает воздушной и жидкостной в зависимости от вида мотора.

Воздушная система охлаждения

В этой системе детали охлаждаются за счет встречного воздуха. Иногда для лучшей работы поверхности цилиндра его головки делают ребристыми. Иногда используется принудительное охлаждение с помощью вентилятора с механическим или электроприводом. У четырехтактников еще и тщательно охлаждают масло, для чего поверхность картера увеличивают и устанавливают специальные радиаторы.

Жидкая система охлаждения

Вариант подобен тому, что устанавливается на автомобилях. Теплоносителем здесь выступает антифриз, который является низкозамерзающим (от минус сорока до минус шестидесяти градусов по Цельсию) и высококипящим (от ста двадцати до ста тридцати градусов по Цельсию). Помимо этого, антифризом достигается антикоррозийный и смазывающий эффект. Чистую воду в этом качестве использовать нельзя.

Перегрев системы охлаждения может быть вызван перегрузкой или загрязнением поверхностей, отводящих тепло. Также в ней могут сломаться отдельные элементы, из-за чего жидкость вытечет. Поэтому за работой охлаждения необходимо постоянно следить.

Система питания

В качестве топлива для карбюраторных мотоциклов используют бензин, октановое число которого не ниже 93.

Двигатели мотоциклов имеют систему питания, в которую входит топливный бак, кран, фильтр, воздушный фильтр и карбюратор. Бензин находится в баке, который в большинстве случаев установлен выше мотора для того, чтобы самотеком поступать в карбюратор. В иных случаях он может подаваться при помощи специального насоса или вакуумного привода. Последний можно встретить на двухтактниках.

В топливном баке имеется крышка со специальным отверстием, куда поступает воздух. Во многих зарубежных мотоциклах, впрочем, воздух попадает через угольные резервуары. А некоторые имеют на крышке замок.

Благодаря топливному крану предотвращается подтекание топлива.

Через воздушный фильтр в карбюратор поступает воздух. Фильтр бывает трех видов.

  1. В компактно-масляном типе воздух поступает в центр, поворачивает на 180 градусов и проходит в фильтр. При этом он очищается при повороте потока, где тяжелые частицы оседают в масле. Таким фильтром снабжен двигатель мотоцикла «Урал» и «Иж». Однако за рубежом используются другие виды, бумажные и поролоновые.
  2. Бумажные фильтры являются одноразовыми. Их необходимо менять на каждом техническом обслуживании.
  3. Поролоновые фильтры многоразовые — их можно промывать и вновь пропитывать маслом.

Спортивные мотоциклы, у которых двигатель 250 кубов и выше, сегодня имеют систему так называемого «прямого впуска», когда забор воздуха происходит спереди обтекателя, благодаря чему наполнение цилиндров на высоких скоростях увеличивается.

Карбюратор и его виды

Это устройство подготавливает и дозирует воздушно-топливную смесь, которая после него перейдет в цилиндр. Современные карбюраторы бывают трех видов:

  • золотниковые;
  • постоянного разрежения;
  • регистровые.

Все отечественные моторы, а также двигатель мотоцикла «Урал» имеют золотниковые карбюраторы. Исключение составляет только «Урал-Восток», на котором установлен карбюратор постоянного разрежения.

В золотниковом карбюраторе ручка газа связана с золотником. Через воздействие на него регулируется поступающий в мотор воздух. С золотником связана конусная игла, которая входит в распылитель. При ее изменении смесь обогащается или обедняется. На распылителе установлен топливный жиклер. А вместе все элементы составляют дозирующую систему.

В карбюраторах постоянного разрежения движение ручки газа передается дроссельной заслонке, которая находится ближе к выходу из карбюратора. Воздух в камере над золотником взаимодействует со смесительной карбюраторной камерой. Так получается, что движение золотника регулируется разряжением во впускном тракте.

Регистровые карбюраторы, которыми снабжены многие иностранные одноцилиндровые четырехтактники, например двигатели Honda, совмещают в себе два предыдущих типа. В нем имеются две смесительные камеры, где в одной золотник приводится от ручки, а в другой — от разрежения в смесительной камере.

Запуск

Для того чтобы завести холодный мотор, необходима обогащенная смесь. В камере некоторых карбюраторов для этого имеется утопитель поплавка. Когда нажимается его стержень, уровень топлива в камере резко возрастает до уровня выше допустимого. Из-за этого топливо начинает перетекать во впускной трубопровод. А часть топлива вытекает наружу. С некоторых пор, правда, конструкции карбюраторов выполняют таким образом, чтобы пары не попадали наружу. Такие конструкции предполагают использование обогатительной смеси, представляющей собой воздушную заслонку или еще один топливный канал. Ее применяют вместо утопителя.

В последнее время четырехтактные двигатели мотоциклов часто имеют систему впрыска топлива на электроуправлении. Она состоит из топливного насоса с электроприводом, аккумулятора, электромагнитных форсунок, электронного БУ, который соединен с различными датчиками, распределительного трубопровода.

Встречаются также системы регулирования моторов, где регулировка систем питания и зажигания объединены, что повышает экономичность и в то же время мощность агрегата.

Основная неисправность системы питания, из-за которой может потребоваться ремонт двигателя мотоцикла, — сокращение или даже прекращение подачи топлива из-за засора. Чтобы этого избежать, используют топливный фильтр. Кроме этого, необходимо следить за состоянием воздушного фильтра и герметичности патрубков.

Система выпуска

Выпускная система состоит из цилиндрического выпускного канала, патрубка и глушителя. В двухтактниках от размеров и формы деталей системы напрямую зависят экономичность и мощность. Поэтому для них используют выпускные системы на каждом цилиндре в отдельности. Они имеют резонатор, патрубок и глушащую насадку.

У четырехтактников выпуском управляют клапаны газораспределительной системы, поэтому резонанс в них особой роли не играет. В них обычно все патрубки сводятся к единственному глушителю.

На некоторых мотоциклах выпуски снабжены каталитическими нейтрализаторами, снижающими токсичность выбросов (они установлены, например, на двигатели Honda и других японских производителей). Такие устройства были разработаны вследствие ужесточающихся требований к отработавшим газам в странах Евросоюза, США и Японии. Для того чтобы предотвратить обратный выброс смеси из цилиндров на холостом ходу и малом вращении коленчатого вала, в выпускных системах многих мотоциклов предусматриваются специальные мощностные клапаны.

Статью прочитали: 21 366

Лодочный мотор. Виды и работа. Особенности и как выбрать

Лодочный мотор – это специальный двигатель, предназначенный для фиксации к транцу лодки для обеспечения быстрого движения без применения весел. Это подвесная конструкция, которая не занимает полезное пространство судна. Она используется на компактных лодках, предназначенных для прогулок, охоты или рыбной ловли. Мощность серийных моторов может достигать 350 л.с.

Типы моторов по разновидности силового агрегата
Лодочные двигатели отличаются между собой в зависимости от способа обеспечения движения. В качестве силового агрегата может использоваться несколько типов моторов:
  • Электрический.
  • Бензиновый двухтактный.
  • Бензиновый четырехтактный.
  • Дизельный.

Электрические характеризуются небольшой мощностью и габаритами, что компенсирует значительный вес батареи для их питания. Обычно в продаже встречаются только устройства до 5 л.с. Они недорогие и компактные, к тому же могут легко сниматься для хранения в безопасном месте для предотвращения воровства. Это важно если лодка постоянно находится на причале. Электромоторы тихоходные агрегаты. Их обычно выбирают для движения на водоемах с особым экологическим статусом, на которых запрещено использовать агрегаты с опасными выбросами или повышенным шумом.

Бензиновые двухтактные более распространены. Они являются самыми легкими устройствами, работающими на топливе. К сожалению, они более прожорливы и шумные. Для их заправки необходимо смешивать бензин с моторным маслом в пропорции рекомендуемой производителем. Такие устройства имеют ограниченный ресурс. У них значительная часть топлива сбрасывается в воду вместе с выхлопными газами, поскольку оно не успевает прогорать.

Четырехтактный мотор, работающий на бензине, более совершенный. Он тихоходный и потребляет на 30% меньше горючего, но и весит больше. Для него не нужно специально подготавливать топливо, поскольку бензин и масло заливаются по отдельности. Такой вариант подойдет для установки на судна длиной больше 3-4 м.

Дизельные наиболее экономичные в плане потребления топлива. Они тяжелее, и запускаются сложнее, особенно в зимнее время. При этом у них огромный ресурс и очень надежная конструкция. Мощность таких моторов на порядок выше, поэтому их часто устанавливают на прогулочные катера, когда на агрегат ложится большая нагрузка, сопровождаемая минимальными перерывами между поездками.

Виды лодочных моторов в зависимости от способа движения
Силовые агрегаты могут по-разному передавать создаваемое усилие на формирование движущей силы. Подвесной лодочный мотор может быть:
  • С винтом.
  • С турбиной.
Преимущества и недостатки винтов

Такие моторы имеют в своей конструкции гребной винт. Это самые распространенные устройства, которые хорошо подходят для движения на глубоководье. Они сравнительно недорогие и предусматривают более простое техническое обслуживание, которое зачастую можно провести самостоятельно без обращения в мастерскую. При этом такая конструкция имеет и недостатки. В первую очередь вращающийся винт может наматывать на себя водную растительность. Если она довольно жесткая, то двигатель останавливается. Также недостатком является высокая вероятность повреждения винта при движении на отмели. Он может деформироваться при ударе о камни.

Параметры винтовых двигателей во многом зависят от конструкции самого винта. Чем больше лопастей, тем более маневренной и быстроходной будет лодка. При этом форма винта должна соответствовать мощности силового агрегата. Обычно винты вращаются в правую сторону. В том случае если лодка имеет два мотора, то второй должен совершать обороты влево. Это предотвратит снос в сторону во время движения.

Турбинный лодочный мотор

Мотор с турбиной еще называют водометным. Он также имеет винт, но тот укрыт в специальном канале, выполненном в виде трубки. Лопасти захватывают воду с передней части лодки и выбрасывают ее через более узкий проход, создавая тонкую струю. Повторяется принцип работы водомета. Такая конструкция не имеет открытых вращающихся частей. Благодаря этому она меньше страдает от длинных водорослей, а также не так подвержена механическим повреждениям при движении в условиях мелководья. Обычные суда с турбинным агрегатом способны двигаться даже на глубине 30 см. Это позволяет подходить на созданной тяге прямо к берегу, не используя весла.

Важным преимуществом турбинных лодочных моторов является их тихоходность и низкая вибрация. Их часто выбирают охотники для установки на резиновые лодки, чтобы меньше распугивать дичь. Также двигатели с водометами применяют для развлекательных лодок, которые курсируют на оживленных пляжах. Они более безопасны для пловцов.

Почему требуется настройка погружения винта или водомета

Чтобы лодочный мотор работал как следует, необходимо правильно выставить глубину погружения его винта или турбинного механизма. Если поставить привод слишком высоко, то лодка не сможет развивать свою оптимальную скорость. Если перестараться и заглубить слишком сильно, то создастся повышенная нагрузка, что может сопровождаться вибрацией от мотора, передаваемой на корпус судна. Также если перестараться с глубиной, то повышается вероятность случайного повреждения винта или водомета в случае движения на высокой скорости по участку с выступающими камнями.

Многие типы топливных лодочных моторов предусматривают систему выхлопа газов через винт, а не сверху. Для них чрезмерное заглубление приводит к созданию дополнительной нагрузки на агрегат. Ему сложнее вытолкнуть отработанные газы из камеры сгорания. В результате мотор больше греется и не может набрать свою полную мощность.

У электрических двигателей предусматривается специальный механизм для регулировки глубины винта. У моторов на ДВС это осуществляется путем наклона самого агрегата. Для этого предусматривается специальный механизм, который дает возможность менять положение оси относительно горизонта.

Выбор мотора под габариты лодки

Покупая лодочный мотор, следует обратить внимание на рекомендации производителя. Он всегда указывает максимальные параметры судна, для которого может подойти данный агрегат. В первую очередь это касается длины лодки и ее веса. Вполне возможно установить более слабый двигатель, но при этом нужно понимать, что динамика движения понизится. При этом если поставить слишком мощное устройство, то использование такого водного средства небезопасно. Чтобы это компенсировать, необходимо нагрузить нос лодки, это уберет ее чрезмерный подъем при разгоне.

Также важным критерием являются габариты транца лодки. Это задняя жесткая часть, предназначенная для фиксации двигателя. Информация о том, какой транец подходит под агрегат имеется в инструкции для мотора. Если данные показатели не будут совпадать, то не удастся настроить правильное заглубление винта. Зачастую параметры рекомендуемого транца указываются в название самого мотор.

Для этого используются латинские буквы:
  • S – 38-45 см.
  • L – 50-57 см.
  • X – 60-64 см.
  • U – 65-68 см.
Способы запуска двигателя

Лодочный мотор может иметь различную систему запуска. В плане электрических устройств никаких проблем нет. Достаточно нажать кнопку и винт начинает вращаться. В случае с агрегатами на ДВС все гораздо сложнее. В них применяется несколько способов пуска:

  • Ручной.
  • Электрический.
  • Комбинированный.

Моторы с ручным пуском самые распространенные, поскольку недорогие и обладают меньшим весом. В качестве стартера у них применяется шнурок, наподобие используемого в бензопилах и мотокосах. Сначала нужно прокачать топливо с помощью специального ручного насоса, после чего дернуть за шнурок. Это требует значительной физической силы. Хотя это и популярная конструкция, но она имеет и недостаток. Зачастую после рывка за шнур тот может потянуть в обратную сторону, вызвав болевые ощущения и растяжение связок руки. Особенно эта проблема актуальна для дизельных двигателей.

Электронный пуск намного удобнее. Лодочные моторы более высокого класса имеют электростартер, который при нажатии кнопки или повороте ключа, в зависимости от модели, раскручивает коленвал и мотор запускается. Это действительно очень удобно, но за это придется доплатить и поплатиться весом устройства. Это большой недостаток, поскольку такие агрегаты стоят дорого, и оставлять их на лодке возле причала нежелательно. В связи с этим большинство рыбаков вынуждены снимать двигатель и переносить его для хранения в защищенное место. Также такие агрегаты имеют аккумуляторную батарею, которая необходима для пуска стартера.

Комбинированный лодочный мотор может запускаться как от стартера, так и вручную. Если аккумулятор сел, то это не проблема и всегда можно воспользоваться шнурком. Подавляющее большинство агрегатов являются именно комбинированными. Моторы чисто с электронным пуском более редкие.

Генератор

Практически любой лодочный мотор, который работает на топливе, имеет в своей конструкции генератор. Он вырабатывает электроэнергию, требуемую для подзарядки аккумулятора. Даже те устройства, которые запускаются вручную, могут иметь генератор, что необходимо для подключения внешних электрических приборов. В первую очередь это система навигации, рация, эхолот или другое оснащение. Генераторы вырабатывают постоянный ток напряжением 12В. При выборе двигателя необходимо ориентироваться по тому, какой способ подключение внешнего оборудования в нем предусматривается, чтобы избежать несовместимости.

Похожие темы:

Лодочные моторы: типы, характеристики, управление

В виду большого количества моделей лодочных моторов с разными параметрами сложно определиться в выборе. Чтобы не ошибиться, нужно разбираться в параметрах и понимать подходит ли агрегат для эксплуатации в планируемых условиях.

Типы лодочных моторов


На современных лодках используются два типа двигателей – бензиновые (ДВС) и электрические.

Электрические моторы имеют небольшой вес и почти не шумят, проще по конструкции и дешевле в эксплуатации. Однако из-за того, что для мощных электромоторов потребовались бы слишком большие аккумуляторы они выпускаются маленькой мощности – до 5 л.с. (3677,5 Вт).

Кроме этого, в зависимости от емкости аккумулятора ограничена длительность плавания.


Электрические моторы обычно используют на водоемах где применение бензиновых двигателей запрещено по экологическим соображениям или где лишний шум нежелателен.

Диапазон мощностей ДВС намного шире, их хватает даже для эксплуатации на самых быстроходных и тяжелых судах. Дальность плавания значительно выше, чем на лодках с электромотором. Такие суда могут выходить в режим глиссирования, что снижает расход топлива. Однако подобные модели весят больше электрических. Кроме этого они дороже как сами по себе, так и в эксплуатации.

Двигатели отличаются и по своему назначению. Существуют классические лодочные моторы и вспомогательные.

  • Классические – используются в качестве источники основного хода. Это могут быть и небольшие моторы для одноместной лодки, и мощные, для большого катера или яхты;
  • Вспомогательные – используются на достаточно крупных судах как помощники при различных маневрах, поворотах, швартовке и других подобных случаях. Приводы имеют большую мощность, усиленный редуктор. Так же они могут использоваться в качестве классических лодочных моторов.


Существуют два типа конструкции, которая заставляет лодку перемещаться – это винт и турбина.

Винтовые

Винтовые конструкции используют вращение гребного винта. Модели могут быть использованы на всех видах водного транспорта, имеют несложную конструкцию и невысокую стоимость. Однако на мелководье вращающийся винт может задеть за дно или другой твердый предмет и поломаться.

Расстояние, на которое винт переместиться за один оборот без проскальзывания, называется шагом. Это основная характеристика винта, влияющая на нагрузку мотора. С увеличением шага винта скорость передвижения лодки увеличивается, и нагрузка на привод становится больше.

Проскальзывание винта это величина равная разнице между идеальным и реальным шагом винта.

Чем меньше проскальзывание, тем выше коэффициент полезного действия всего привода лодки.

От шага зависит и диаметр лопастей винта, эти два параметра взаимосвязаны и зависят от крутящего момента и мощности мотора.

Еще одна характеристика винта это количество лопастей. Чем больше лопастей, тем выше плавность хода и манёвренность. Однако при увеличении количества лопастей проскальзывание становится больше (увеличивается сопротивление воды) и эффективность привода уменьшается.

Следует учесть направление вращения винта. Вращение по ходу часовой стрелки при движении лодки вперед назвали правым, а в сторону противоположную движению часовой стрелки левым.

Стандартными являются винты с правым вращением, но если на лодке установлено два привода, винты должны крутиться в разные стороны, если винты будут совершать обороты в одну, сторону судно будет сносить при прямом положении руля.

Полезным устройством для судна с двумя моторами будет синхронизатор, который согласовывает работу обеих устройств, чтобы они работали совместно как один агрегат.

Для того, чтобы синхронизатор правильно работал, требуется использовать моторы одной модели.

Для того чтобы подобрать гребной винт нужно включить двигатель и подождать, пока он не выйдет на свою номинальную мощность, после измерить число оборотов в минуту тахометром на максимальных оборотах.

Если измеренное число вращения окажется меньше указанного в документации для данного мотора, нужно установить винт с меньшим шагом (это компенсирует нехватку оборотов). Уменьшение шага винта на один дюйм увеличивает количество оборотов на 200 об/мин.

Турбинные

В турбинном приводе винт спрятан в специальную трубу, он движет лодку за счет того, что засасывает воду с одной стороны трубы, после чего разгоняет ее винтом и выбрасывает с узкой стороны водомета. Такое расположение винта повышает безопасность использование судна в местах проведения водолазных работ, при катании на водных лыжах и вблизи пляжей.

Турбинные приводы идеально подходят для движения по мелководью, для их работы достаточно глубины в 30 сантиметров. Они более защищены от водорослей и плавающего в воде мусора. Суда, оборудованные турбинными конструкциями, отличаются мягкостью хода и небольшой вибрацией при работе на высоких и средних оборотах.

Требования к конструкции лодки при использовании турбинного привода:

  • Она должна иметь запас грузоподъемности, чтобы нести кроме мотора еще и водомет;
  • Лодка должна быть достаточно прочной, чтобы переходить в режим глиссирующего плавания;
  • Резиновая лодка должна иметь достаточно прочные боковые баллоны и днище.

На большие катера устанавливаются несъемные турбины, которые становятся частью корпуса. Управление судном осуществляется со штурвала при помощи электрического или гидравлического привода.

Для лодок поменьше устанавливаются съемные турбины. Управлять приводом можно с кормы румпелем и со штурвала.

Регулировка погружения винта

У электромоторов существует регулировка заглубления гребного винта без его наклона. У ДВС глубина погружения регулируется наклоном мотора относительно горизонтальной оси.

Недостаточное заглубление приведет к тому, что гребной винт будет находиться в зоне гидродинамической тени кормы и не сможет развить тягу. В результате судно даже с мощным мотором не наберет высокую скорость.

Если гребной винт расположить ниже оптимальной отметки это вызовет ненужные напряжения в конструкции привода, и система выхлопа будет действовать менее эффективно, что уменьшит развиваемую мощность, а при прохождении мели увеличится риск поломки устройства.

Физические параметры лодки и двигателя

Вес и габариты лодочного мотора

Вес и основные размеры двигателя зависят от мощности и отличительных черт конструкции – чем он мощнее, тем больше размеры. Его масса находится в пределах от 3 до 350 килограмм.
Вес агрегатов:

  • мощностью 6 лошадиных сил – 20 килограмм;
  • 8 лошадиных сил – 30 килограмм;
  • 35 лошадиных сил – 70 килограмм.

Вес ДВС указывается без учета топливного бака.

  • Электрические моторы весят меньше, чем ДВС.
  • Вес понадобится при расчете баланса лодки и ее полезной грузоподъемности.
  • Габариты должны находиться в соответствии с размерами лодки.

Для ДВС существенным параметром считается диаметр цилиндра. В продаже можно найти моторы с диаметром цилиндра 40 – 100 миллиметров.

С увеличением диаметра цилиндра увеличивается угловая скорость, но уменьшается крутящий момент.

Еще одной существенной характеристикой ДВС считается ход поршня. В продаже имеются двигатели с ходом поршня 30 – 100 миллиметров. При увеличении хода поршня увеличивается крутящий момент, но одновременно уменьшается скорость вращения.

При выборе мотора необходимо учитывать соотношение диаметра цилиндра к ходу поршня, у скоростных моделей это отношения стремится к единице.

Вес и длина лодки

Производители моторов указывают наибольший вес и длину лодки, для которой предназначено их устройство.

В данном случае учитывается вес не только корпуса лодки, но и снаряжения пассажиров и багажа.

Показатель не является жестким, но его соблюдение гарантирует наиболее эффективную работу привода.

Чем короче судно, тем больше следует загрузить нос, чтобы скомпенсировать вес двигателя, находящегося на корме.

Лодки длиной два метра рассчитаны на одного человека и могут выдерживать груз до 500 килограмм. При необходимости в такую лодку поместится до четырех человек. Трехметровые плавучие средства считаются наилучшим выбором для занятий рыбалкой или охотой. Лодки длиной четыре метра могут выдержать 6 человек.

Высота транса для лодочного мотора

Для того чтобы правильно подобрать лодочный привод нужно определить высоту транца судна.

Транцем называется задняя часть лодки, на которой устанавливается двигатель. Высота транца это расстояние от низа до верха судна.

Чтобы гребной винт был расположен на оптимальной глубине, высота транца должна быть равна рекомендованной для привода.


В характеристиках двигателя рекомендованная высота транца обозначается латинскими буквами:
  • S высота транса 380-450 миллиметров;
  • L высота транса 500-570 миллиметров;
  • X высота транса 600-640 миллиметров;
  • U высота транса 650-680 миллиметров;

Длина дейдвуда это расстояние от места монтажа двигателя до нижней точки транса. Между антикавитационной плитой и нижней точки транца должно быть 15-25мм. В некоторых случаях наилучшая глубина погружения гребного винта определяется опытным путем.

У отдельных электрических приводов длина дейдвуда регулируется, в таких случаях в паспорте двигателя указывается его максимальное значение.

Типы крепления лодочного мотора

Существуют четыре способа крепления:

  1. Жесткое – привод зафиксирован на транце лодки без возможности поворота в какую-либо сторону;
  2. Поворотное – поворачивается по своей вертикальной оси;
  3. Откидное – способен вращаться по горизонтальной оси;
  4. Поворотно откидное – поворачивается относительно горизонтальной и вертикальной оси.

Поворотно откидное крепление обеспечивает простоту управления судном, за счет вращения по вертикальной оси и смягчает удары подводной части конструкции о препятствие за счет вращения двигателя по горизонтальной оси.

Чтобы вибрация корпуса судна была меньше подвеска должна быть сделана из упругих материалов.

Подъем мотора

Для предотвращения повреждения винта при швартовке лодки на отмели требуется поднимать мотор из воды. Во время длительной стоянки подъем двигателя уменьшает повреждения от коррозии. Существуют два типа механизмов подъема – ручной и электрогидравлический.

  • Ручной механизм. Подъем осуществляется с помощью румпеля. Преимуществом является дешевизна и простота механизма подъема. Механизм нельзя использовать для подъема тяжелых мощных моделей.
  • Электрогидравлический механизм. Для подъема человеку достаточно нажать кнопку. Единственный недостаток – высокая стоимость, поэтому конструкция используются только для подъема мощных двигателей.

Характеристики лодочных моторов внутреннего сгорания

Количество цилиндров

Камера двигателя, в которой ходит поршень, называется цилиндром. Бензиновые моторы могут быть двухтактными или четырехтактными.

Двухтактные бензиновые. По своей конструкции примитивны. В качестве топлива применяется смесь бензина и масла. Соотношение масла и бензина должно быть строго определенным.

Если в смеси масла будет больше чем нужно, мотор будет чадить, а если меньше, греться.


Из-за того, что в выхлопных газах находится больше вредных веществ не желательно использовать устройства поблизости от мест купания.

Дорогие модели комплектуются автоматическими механизмами смешивания, которые избавляют человека от ручного труда.

Двухтактные двигатели являются более дешевыми в эксплуатации, если сравнивать их с четырехтактными.

Четырехтактные. Работают плавно, тише и мощнее двухтактных двигателей, а их габариты больше. Уровень выброса вредных веществ невысокий. С увеличением количества цилиндров растет плавность хода и уменьшается расход топлива. У многоцилиндровых устройств меньше чувствительность к весу судна.

С уменьшением количества цилиндров увеличивается надежность изделия, так как его конструкция упрощается. Моторы, которые имеют небольшое количество цилиндров, отличаются небольшими размерами и весом.

Таким образом:

  • Двухцилиндровый двигатель обеспечивает большую мощность при сравнительно небольших габаритах и весе, но его нельзя использовать в водоемах, в которых предъявляются повышенные требования к экологии.
  • Четырехцилиндровый двигатель устанавливается на судах, использующиеся для лова рыбы методом троллинга, они работают сравнительно тихо и стабильно на низких оборотах.

    Устанавливаются на судах имеющих большой вес и габариты.

Рабочий объем

Важной характеристикой бензинового двигателя является рабочий объем камеры сгорания, от него зависит потребление топлива и мощность привода. Для одноцилиндрового мотора вычисляется умножением площади поршня на его ход. Для многоцилиндровых бензиновых двигателей объем одного цилиндра следует умножить на количество цилиндров.

С увеличением рабочего объема увеличивается мощность, габариты мотора и расход горючего. Однако мощность зависит не только от рабочего объема, но и от других особенностей конструкции, например наличия турбонаддува и количества тактов.

Расход топлива

Величина, которая показывает, сколько горючего расходуется за один час работы двигателя, называется расход топлива. Чем выше мощность двигателя, тем больше он расходует бензина, поэтому нужно стремиться выбрать модель, которая при той же мощности имеет меньший расход.

Тип топлива

Это марка горючего, с наименьшим допустимым октановым числом, который можно заливать в двигатель.

Допустимо использовать горючее, имеющее более высокое октановое число, но следует исключить топливо с показателями ниже указанного.

Стойкость горючего к детонации определяется по его октановому числу. Детонация вредное явление, которое приводит к падению мощности, возрастанию нагрузок и увеличению концентрации вредных элементов в выхлопных газах. Она возникает при использовании в качестве топлива бензина, у которого октановое число ниже, чем указано в техническом паспорте двигателя.

Например, маркировка бензина в странах СНГ начинается с букв АИ, в Азиатско-Тихоокеанском регионе RON, а в Европе EURO. В любом случае после букв стоят цифры, которые указывают значение октанового числа. Чем выше требования к топливу предъявляет двигатель, тем оно больше. Модели способные работать на 90-м бензине, можно использовать с 92-м или 95-м, но нельзя с 87-м и 76-м. Самые неприхотливые устройства работают на 76-м бензине.

Топливный бак

Для хранения запаса горючего служат топливные баки. Чем больше объем бака, тем большее расстояние преодолеет судно без дозаправки.

Кроме этого, чем больше мощность двигателя, тем больше горючего он потребляет, и соответственно бак для топлива должен быть более емким.

Большие баки занимают много места на судне, следует учесть, что с увеличением размеров и емкости бака возрастает его вес.

Топливные баки бывают двух типов: встроенные и внешние.

  • Всторенные баки. Составляю одно целое с двигателем, что избавляет от необходимости сооружать отдельную систему подачи топлива. Однако это увеличивает вес и габариты агрегата, что негативно сказывается на управлении судном при помощи румпеля. Она не подходит для мощных устройств, потребляющие много бензина и требуют баков большой емкости. Встроенные баки обычно используются с двигателями, мощность которых не превышает 5 лошадиных сил;
  • Внешняя система подачи топлива. Горючее подается по специальному шлангу из стоящего отдельно бака. Устройство делает мотор легче и подвижнее и для мощных двигателей требующих большое количество топливо является единственным возможным решением.

Перед тем, как приступить к выбору бака, нужно знать, сколько топлива расходует мотор и, исходя из этого, рассчитывать нужный объем, ведь во время плавания вы не сможете дозаправиться. Следует обратить внимание на прочность материала, из которого изготовлен бак. Обычно баки изготавливают из алюминия или нержавеющей стали. Материал должен быть прочным, упругим и эластичным.

Если в качестве горючего используется керосин, то емкость для него должна обладать повышенной герметичностью, так как это вещество очень текучее.


Бак должен иметь воздушный штуцер сбрасывающий избыточное внутреннее давление, возникающее в солнечную погоду в результате нагревания стенок и испарения горючего.

Рекомендуется покупать баки с рельефным дном для скапливания конденсата. Обратите внимание на качество комплектующих – шлангов, уплотнителей, штуцера, ведь именно от этих деталей зависит герметичность всей конструкции.

Тип системы смазки

Моторное масло требуется для смазки бензиновых моторов, и с увеличением мощности привода требуется больше масла. Поэтому чем больше двигатель, тем больший объем бака для масла потребуется.

Существуют два типа смазки, используемые в бензиновых моторах, это ручная и раздельная.

Ручная смазка используется в самых простых конструкциях. При таком типе смесь готовится вручную, после чего топливо заливается в бак. При подготовке смеси самостоятельно, важно не ошибиться с пропорциями, чтобы двигатель не перегревался и не чадил.

Раздельная – используется в более дорогих моделях. При этом масло заливается в свой бак, а бензин в свой и смешивание производится при подаче топлива в рабочую камеру. Данный механизм позволяет правильно выдерживать пропорции составляющих топлива.

Система подачи топлива

Для поддачи в рабочую камеру подготовленной смеси из горючего и воздуха предназначена система для подачи горючего.

Существуют два варианта систем: карбюратор и электронный впрыск.

В карбюраторной, горючее вместе с воздухом всасывается в рабочую камеру цилиндра во время фазы впуска. Они нетребовательны к качеству топлива и стоят дешевле, чем устройства с электронным впрыском. Однако моторы, использующие такую систему, потребляют больше горючего и сложнее в запуске.

В системах с электронным впрыском горючее подается принудительно, через форсунки. Концентрация воздуха в смеси регулируется на основании показаний датчиков. В двигателях снижается расход топлива при той же мощности, кроме того они проще в запуске. Однако они имеют сложную конструкцию, и отремонтировать своими руками не получится.

Выхлопная система

Бывает двух типов:

  • над винтом,
  • через винт.

В самых простых конструкциях устроенных по принципу над винтом, газы сбрасываются непосредственно в воздух. Они самые простые и дешевые, но создают неудобства для людей находящихся в лодке из-за создаваемого ими шума и вредных выхлопов.

Более комфортным вариантом являются системы, в которых выхлопные газы сбрасываются в воду выше винта.

В системах через винт выхлопные газы сбрасываются в воду через ступицу винта. Они считаются наиболее технически совершенными, в них низкий уровень шума и лучше тяговые характеристики. Недостатком является высокая стоимость и сложность конструкции.

Запуск

В ДВС, устанавливаемых на судах, могут использоваться три типа стартеров: электрические, ручные и смешанные.

Для запуска двигателя с ручным механизмом человек управляющий судном должен дернуть за тросик, чтобы мотор заработал. Механизм меньше весит и более компактен, так как для ее работы не нужен аккумулятор. При использовании ручного механизма не нужно беспокоиться о том, заряжен ли аккумулятор.

Недостатком данной системы является то, что для запуска нужно приложить достаточно большую физическую силу.


Такой запуск применяется в приводах малой мощности.

В электрической системе для запуска применяется стартер, получающий питание от аккумулятора. Главное преимущество удобство запуска – нужно нажать кнопку или сделать поворот ключом в замке зажигания. Большие габариты и вес являются недостатком.

Устройства стоят достаточно дорого, применяются совместно с мощными двигателями, для которых использование ручных механизмов невозможно.

При смешанном типе в штатном режиме используется электрическая система, но имеется и ручной запуск на случай поломки либо разряженного аккумулятора. Смешанный тип запуска используется совместно с мощными двигателями, но не настолько, чтобы создать серьезные проблемы для ручного завода.

Смешанная система может быть использована на моделях мощностью 25 – 45 лошадиных сил.

Лодочные моторы с электронной системой зажигания

Для работы ДВС применяется система зажигания, воспламеняющая горючее при помощи электрической искры. Существуют два вида зажигания – механический и электронный.

Преимущества электронной системы зажигания по сравнению с механической:

  • Создает сильную и устойчивую искру;
  • Экономит горючее;
  • Обеспечивает стабильный запуск;
  • Надежно работает на малых оборотах;
  • Более долговечно.

Лодочные моторы с турбонаддувом

В двигателях с турбонаддувом энергия выхлопных газов используется для нагнетания в цилиндры горючей смеси. В рабочую камеру при каждом такте попадает больше топлива, мощность возрастает без увеличения рабочего объема конструкции.

Двигатель с турбонаддувом будет занимать меньше места по сравнению с моделями той же мощности, но без него.

Устройства являются более экологичными, так как они обеспечивают полное сгорание топлива и поэтому их выхлопы содержат меньше вредных веществ.

При использовании необходимо неукоснительно соблюдать правила эксплуатации.

Генератор

В конструкции любого бензинового ДВС присутствует генератор, который вырабатывает электрическую энергию, необходимую для работы системы зажигания. Однако не ко всякому генератору можно подключить внешние устройства. Питание от него удобнее, чем от аккумулятора и многие системы эхолокации, навигации, радиосвязи и другие рассчитаны на питание именно от генератора.

Стандартное напряжение на выходе генератора 12 вольт.

Одна из характеристик генератора – максимальный вырабатываемый ток (мощность, измеряется в амперах), чем он больше, тем больше различных устройств можно подключить к генератору.

Характеристики электромоторов

Тяга

Для электрических лодочных моторов указывают движущую силу, которую он может создать или тягу. Этот параметр измеряется в килограммах и служит объективным показателем возможностей мотора.

Параметр тяги нужно учитывать при выборе веса лодки. Тяга измеряется в фунтах (1 фунт = 0,453 кг). Расчеты данного параметра достаточно сложны и определяются по существующим таблицам, опираясь на вес лодки.

Аккумулятор

Аккумуляторы служат в качестве источников питания электромоторов. Мотор может быть рассчитан на питание от источника напряжением в 12 или 24 вольта, а все, наиболее распространенные аккумуляторы выдают напряжение 12 вольт.

Поэтому для питания двигателя работающего от источника напряжения в 24 вольт нужно два аккумулятора, которые включают последовательно (важно – аккумуляторы должны быть идентичными по параметрам и одного производителя).

Для электрических лодочных приводов существуют два типа аккумуляторов: стартовые и тяговые.

Стартовые аккумуляторы способны выдавать большие значения тока, но только на протяжении короткого промежутка времени. При длительной работе происходит глубокая разрядка аккумуляторов, и они становятся непригодными для дальнейшей эксплуатации.

Тяговые аккумуляторы отлично выдерживают полный разряд и лучше приспособлены для работы в качестве источника тока для лодочных электрических двигателей.

Тяговые аккумуляторы послужат в 6-10 раз дольше стартовых.

Существуют тяговые аккумуляторы с гелевидным электролитом, который защищает пластины от вибрации и протечек при наклоне, батарея имеет высокую прочность. Даже через месяц, после того, как он полностью разрядится, аккумуляторы зарядятся на сто процентов своей первоначальной емкости.

Максимальный ток

Чем больше мощность двигателя, тем выше потребляемый максимальный ток, он важен при выборе аккумулятора. Максимальный ток разрядки аккумулятора должен быть больше максимального тока потребляемого мотором на 15-20%.

Зная емкость аккумуляторов и потребление мотора можно рассчитать время работы. Для этого нужно емкость аккумулятора разделит на потребляемый ток.

Например, при полностью заряженном аккумуляторе емкостью 80 ампер в час и двигателе, у которого максимальный ток равен 20 ампер двигатель будет работать 4 часа.

Важные характеристики

Мощность

Мощность двигателей измеряется в лошадиных силах. Это справедливо как при использовании бензиновых, так и электрических моделей. Это связанно с тем, что на рынке лодочных моторов известность завоевали бензиновые двигатели, и поэтому производители электрических изделий показывают мощность в лошадиных силах.

В техническом паспорте некоторых электромоторов мощность написана в киловаттах.

Чтобы перевести киловатты в лошадиные силы нужно умножить мощность в киловаттах на 1,3596.

Маркировка изделий производителей западных стран и СНГ отличаются. В технических характеристиках моторов произведенных в СНГ указываются максимальные данные на выходном валу привода. Западные производители указывают в паспорте мощность на гребном валу.

Таким образом, производители СНГ не учитывают потери на передачу движения от вала мотора до гребного вала, и поэтому мощность Западных приводов, при одинаковых значениях, будет немного выше.

Для того чтобы развить высокую скорость нужен сильный двигатель. Также он нужен для тяжелого судна с большой грузоподъемностью. Но с увеличением мощности привода растет и его вес, цена и расход топлива. Превышать мощность мотора, написанную в техническом паспорте лодки опасно по двум причинам:

  1. Лодка может не выдержать разгона до высоких скоростей;
  2. Транец лодки не рассчитан на большой вес.

С учетом эффективности и безопасности рекомендуется выбирать мотор, мощность которого составляет 60 – 80% максимально возможной для лодки.

Как выбрать мощность лодочного мотора

Для лодок, длинной не превышающих 3 метров, и на борту которых одновременно находится не более одного человека, подойдут двигатели мощностью 2 – 4 лошадиные силы.

На небольших и средних судах длиной до 4 метров устанавливаются модели в 5 – 8 лошадиных сил. Эти моторы удобны в транспортировке, так как их вес не превышает 30 килограмм. Устройства могут вывести маленькие лодки в особый режим – глиссирования. В таком режиме, только незначительная часть дна касается воды, а большая часть парит в воздухе. Это намного снижает сопротивление передвижению и нагрузку на двигатель.

Самыми популярными являются модели мощностью от 10 до 20 лошадиных сил, которые устанавливаются на лодки, длина которых находится в диапазоне 3 – 5 метров, а вес от 50 до 300 килограмм.


Их модно использовать для рыбалки, перевозки грузов на большие расстояния. Эти двигатели обеспечивают движение лодки с несколькими пассажирами и грузом.

Для лодок, длина которых достигает 6 метров (но не более), рекомендуется приобретать модели мощностью от 25 до 35 лошадиных сил. Лодки с таким мотором могут развивать скорость до 40 километров в час и выходить в режим глиссирования даже при большой загрузке.

Лодки длиной более 6 метров, служащие для перевозки больших грузов, и способные плавать с высокой скоростью, оснащены приводом мощностью 40-45 лошадиных сил. Они способны развивать скорость 50 километров в час.

На катера и яхты длиной 5 – 8 метров выбирают модели мощностью 90 – 140 лошадиных сил. Двигатели обеспечивают скорость судна, превышающую 100 километров в час, и применяются на значительных водных пространствах, также могут применяться для плавания в море.

На маленьких круизных судах и яхтах применяются моторы, мощность которых превышает 140 лошадиных сил.

Существуют три режима передвижения судна по воде:

  1. Водоизмещающий, в этом режиме плавают лодки с мотором малой мощности на небольшой скорости. Это самый неэкономичный режим из-за большого трения днища о поверхность воды;
  2. Переходный, это промежуточный режим, в котором лодка еще не вышла в режим глиссирования, но нос уже начинает приподниматься над водой. Обычно данный режим характерен для лодок, движущихся со скоростью 16 – 18 километров в час.
  3. Глиссирующий режим характерен для лодок, движущихся со скоростью более 20 километров в час. В этом режиме площадь соприкосновения дна с водой достигает минимума.

Судно при таком движении не раздвигает воду, а удерживается на ее поверхности подъемной силой, создаваемой за счет скорости передвижения. Затраты энергии, для достижения глиссирования больше, чем для поддержания такого движения.

Для того, чтобы судно могла войти в режим глиссирования оно должна иметь мощный двигатель и плоское дно.

Скорость необходимая для выхода в данный режим зависит от конструкции дна лодки, ее веса, распределения груза, гребного винта и двигателя.

Аварийный выключатель

Аварийный выключатель мотора предназначен для того, чтобы заглушить мотор при падении за борт человека управляющего судном, и таким образом, он предотвращает несчастный случай, причиной которого может стать неуправляемая лодка.

В комплектацию аварийного выключателя входит шнур, который крепится к запястью с помощью специального крепления. Когда человек сильно дергает за шнур в момент падения за борт, происходит аварийное отключение двигателя.

Максимальное число оборотов в минуту

При увеличении частоты вращения мотора увеличивается скорость судна. Количество оборотов винта лодки зависит от передаточного числа редуктора и шага винта. Однако на скорость судна кроме числа оборотов влияет еще множество факторов: конструкция винта, мощность двигателя и т.д.

Следует учесть, что модели с большим числом оборотов издают больше шума при своей работе.

В некоторых двигателях для защиты от перегрузки встроена система ограничения оборотов. При увеличении температуры выше критической автоматика снижает обороты, что позволяет агрегату остыть – скорость судна при этом падает, но двигатель остается неповрежденным.

В некоторых приводах встроена система стабилизация скорости судна. Она полезна в случаях, когда судно должно двигаться с постоянной скоростью без рывков, например при ловле рыбы методом троллинга. Недостаток – высокая стоимость.

Редуктор лодочного мотора

В лодочных приводах используется редуктор для понижения числа оборотов винта. Скорость винта равна величине угловой скорости вращения вала мотора деленной на передаточное число редуктора. Данный параметр не имеет большого практического значения и является справочным. Основные параметры привода, такие как мощность, тяга и другие практически не зависят от передаточного числа редуктора.

Внутри редуктора имеются трущиеся детали, которые время от времени нужно смазывать специальным трансмиссионным маслом. Хотя редуктор защищен от воды сальниками, со временем вода все равно попадает внутрь.

Поэтому рекомендуется для смазки редуктора использовать специальные масла, которые имеют в своем составе специальные антиэмульсионные присадки.

Производители не рекомендуют использовать обычные масла, которые используются для смазки коробки передач в автомобилях. Экономия на качественном масле закончиться дорогостоящим ремонтом редуктора.

Количество скоростей

Изменение скоростей привода, как передних, так и задних очень просто можно сделать для электрических моторов.

Для изменения скоростей в приводах использующих бензиновые двигатели служит коробка передач, что значительно усложняет конструкцию. В современных приводах обычно бывает реализовано от 2 до 5 скоростей.

Охлаждение лодочного мотора

Системы охлаждения бывают двух типов:

  1. Воздушное,
  2. Водяное.

Воздушная система охлаждения бывает:

  1. активная использующая вентилятор,
  2. пассивная с радиаторами.

Это очень простая конструкция и ее эффективность невысока. Применяется для двигателей, мощность которых меньше 15 лошадиных сил.

Плюс воздушной системы то, что ее можно использовать на водоемах с грязной водой.

Водяная система охлаждения использует воду из водоема и после использования сбрасывается за борт. Ее нельзя использовать, если вода за бортом сильно загрязнена. Данная конструкция более эффективны, чем воздушная и применяется в приводах большой мощности, однако она дороже и сложнее.

Передача

Система передач предназначена для измерения скорости и направления движения судна. Может находиться в трех положениях «передняя», «задняя» и «нейтрал».

«Передняя» передача включена при движении вперед, может иметь несколько скоростей.

При включении «задней» винт вращается в обратную сторону и заставляет судно двигаться в противоположную сторону. Эта функция отсутствует у дешевых моделей. «Задняя» передача удобна при экстренном торможении и маневрировании на небольшом пространстве. В электрических двигателях осуществляется за счет изменения полярности питания мотора.

При включенной «нейтральной» передачи вращение не передается от двигателя на вал и лодка не будет двигаться при работающем моторе. Система полезна в бензиновых моделях, так как их запуск достаточно сложная процедура. В электрических двигателях пуск и остановка не представляют никаких проблем, поэтому обычно не применяется для данных типов приводов.

Производить запуск двигателя нужно только с выключенной передачей, так как в противном случае запуск вызывает перегрузки в узлах конструкции привода и способствует рывку судна и столкновению с берегом или падению за борт людей.


Поэтому в некоторых моделях для предотвращения несчастных случаев предусмотрена система не дающая завести двигатель, если включена передача.

Индикаторы


Для того чтобы человек, управляющий судном мог следить за состояние привода, на лодку могут быть установлены дополнительные индикаторы. Если в паспорте мотора заявлена совместимость с индикатором, то это означает, что в конструкции присутствует датчик, а для снятия с него показаний индикатор нужно приобрести отдельно.

Наиболее часто на судах присутствуют:

  • Спидометр определяет скорость передвижения судна относительно поверхности воды. Так как он определяет скорость передвижения судна относительно воды, а не берега, при быстром течении его показания значительно отличаются от фактической скорости передвижения судна относительно суши;
  • Тахометр показывает угловую скорость вращения мотора и используется для контроля режима работы;
  • Счетчик моточасов демонстрирует время работы двигателя. Данные получаемые с этого датчик нужны для того чтобы определить общий ресурс. Кроме этого процедуры технического обслуживания, замены масла и т.д. также выполняется после того, как двигатель отработал определенное количество часов;
  • Индикатор давления масла нужен для того, чтобы вовремя предупредить о неполадках в системе смазки или о необходимости выполнить процедуру смены масла, потому что отсутствие масла грозит преждевременным износом мотора и даже аварией из-за его заклинивания;
  • Индикатор температуры масла предупреждает о чрезмерном его перегреве. Когда масло нагревается да температуры выше допустимой оно теряет свои свойтства и не выполняет возложенных на него задач. Кроме этого резкое увеличение температуры сигнализирует о неполадках в механизме привода;
  • Индикатор уровня масла показывает, сколько масла осталось в моторе и предупреждает, в случае необходимости, о необходимости пополнить его запасы;
  • Индикатор заряда аккумулятора показывает уровень зарядки аккумулятора, с его помощью можно приблизительно рассчитать время работы электрического двигателя. В электрическом приводе он играет ту же роль, что и индикатор остатков топлива в бензиновом. Такими индикаторами могут оснащаться не только электрические, но и бензиновые двигатели с электрической системой запуска, чтобы можно было осуществлять контроль состояние аккумулятора и своевременно его заряжать;
  • Индикатор остатков топлива демонстрирует, сколько горючего осталось в баке. Информация получаемого с этого датчика не совсем точна, но ее достаточно для практического применения;
  • Индикатор расхода топлива демонстрирует, сколько горючего расходует двигатель при данном режиме работы в данный момент. По его показаниям, а также по показаниям индикатора остатков топлива, можно определить, какое время способен проработать мотор при данном режиме работы;
  • Индикатор перегрева двигателя сигнализирует о повышении температуры выше предельно допустимой. Перегрев становится причиной различных неприятностей. Например, заклинивание или даже возгорание мотора, и это не зависит от причин его вызвавших, был ли он вызван технической неисправностью или естественной причиной, например, перегрев под воздействием прямых солнечных лучей;
  • Индикатор превышения количества оборотов двигателя предупреждает о превышении частоты вращения выходного вала выше предельно допустимой. Отличается от тахометра тем, что не показывает частоту вращения вала, а только сигнализирует о превышении;
  • Индикатор положения тримма, показывает текущее положение «ноги» двигателя. При наличии данного индикатора человеку управляющему судном не нужно постоянно присматриваться к устройству;
  • Индикатор положения дросселя, выдает информацию о том, в каком положении находится дроссель, а значит, в каком режиме работает двигатель. С его помощью можно диагностировать неполадки привода;
  • Индикатор, сигнализирующий о наличии в горючем воды, предупреждает о попадании в топливо посторонней жидкости, что ведет к снижению мощности и перебоям в работе, или может стать причиной гидроудара, который серьезно повредит мотор.

Управление

Разновидности систем управления

Управления производится румпелем или дистанционно. Существуют комбинированные приводы, управление которыми осуществляется как румпелем, так и дистанционно.

Румпель используется для управления двигателями малой и средней мощности. Он конструктивно выполнен в виде рычага. На румпеле находится ручка дросселя, с помощью которой регулируется подача топлива и кнопка остановки двигателя. Также румпель используется для выбора направления движения судна.

При таком способе, человек управляющий судном, должен все время находиться возле двигателя. Данные системы управления недороги, имеют несложную конструкцию и достаточно функциональны. У электрических моделей для регулировки скоростей существует специальный переключатель.

Наиболее удобное положение для управления лодкой выбирают, изменяя наклон румпеля. Поэтому следует искать привод с максимально возможным наклоном.

В дистанционной системе органы управления выведены на нос судна. Ее устанавливают на достаточно дорогих лодках, поэтому перед тем как покупать привод с дистанционным управлением следует убедиться, что его можно смонтировать на вашем судне.

Двигатели, которые могут управляться как при помощи румпеля, так и дистанционно стоят дорого и устанавливаются на судах топ класса.

Дистанционные системы управления судном

Существуют три типа рулевого управления:

  • механическое,
  • электрическое,
  • гидравлическое.

В механическом управлении рулем, управление осуществляется с помощью тросов положенных вдоль борта. При повороте руля трос наматывается на шестерню рулевого редуктора, что вызывает поворот привода. Такая система стоит недорого и ее легко смонтировать самому.

Однако механизм имеет небольшой срок службы и для управления тяжелыми и мощными двигателями необходимо прикладывать значительные усилия.

Гидравлическая дистанционная система управления применяется на судах с двигателями мощностью более 150 лошадиных сил. Положительные качества: усилие, прикладываемое при управлении судном очень маленькое, такой механизм можно использовать на судах с несколькими двигателями, она имеет высокую надежность, к ней подключается автопилот. Недостаток только один – высокая стоимость.

Электрическая система позволяет отказаться от тросов, пульт управления связан с двигателем посредством кабеля, по которому передаются сигналы, а они приводят в действие поршни гидроцилиндров. Это устройство дает возможность синхронно управлять несколькими устройствами одновременно.

Эксплуатация

Лодочные приводы, предназначенные для эксплуатации в пресноводных водоемах, не рекомендуется использовать в морской воде. В морской воде применяются специальные конструкции с повышенной защитой от коррозии.

Передвижение по мелководью

В отдельных моделях приводов, для предотвращения контакта винта с водорослями и илом, предусмотрена регулировка глубины погружения мотора. Для передвижения по мелководью лучше использовать турбинный двигатель.

Чехол сумка для транспортировки

При перевозке двигателя в автомобиле чехол лодочного мотора защитит багажник от масла, которое могло остаться в агрегате, от водорослей, тины и другого мусора. Кроме этого чехол защищает сам мотор от царапин, сколов, ударов и продлит срок его службы.

Существует два типа чехлов сумок:

  1. Предназначенные для хранения двигателей – изготавливаются из крепкой водонепроницаемой ткани и снабжаются застежкой;
  2. Для транспортировки – обычно комплектуются специальными вставками, которые предохраняют двигатель от различных повреждений. Для их изготовления используется, прочная водонепроницаема ткань, которая не позволяет влаги и грязи попасть внутрь.

При выборе сумки нужно обратить внимание на такие моменты:

  • Сумка должна подходить для вашей модели, то есть максимально повторять ее форму, для того чтобы мотор не болтался в сумке во время его транспортировки.
  • Чехол должен быть изготовлен из водонепроницаемой ткани высокой прочности и укомплектован специальными вставками, чтобы защитить двигатель во время транспортировки.
Реклама от спонсоров: // // //

Типы электродвигателей

Электродвигатели теперь более разнообразны и адаптируемы, чем когда-либо прежде. При планировании системы управления движением чрезвычайно важен выбор двигателя. Двигатель должен соответствовать назначению и общим рабочим характеристикам системы. К счастью, существует конструкция двигателя, подходящая для любых мыслимых целей.

К наиболее распространенным электродвигателям, используемым сегодня, относятся:

Бесщеточные двигатели переменного тока

Бесщеточные двигатели переменного тока

являются одними из самых популярных в управлении движением.Они используют индукцию вращающегося магнитного поля, генерируемого в статоре, для вращения как статора, так и ротора с синхронной скоростью. Для работы они полагаются на постоянные электромагниты.

Щеточные двигатели постоянного тока

В щеточном двигателе постоянного тока ориентация щетки на статоре определяет ток. В некоторых моделях решающее значение имеет ориентация щетки относительно сегментов стержня ротора. Коммутатор особенно важен в любой конструкции щеточного двигателя постоянного тока.

Бесщеточные двигатели постоянного тока

Бесщеточные двигатели постоянного тока

были впервые разработаны для достижения более высоких характеристик в меньшем пространстве, чем щеточные двигатели постоянного тока, и они меньше, чем сопоставимые модели переменного тока.Встроенный контроллер используется для облегчения работы при отсутствии контактного кольца или коммутатора.

Прямой привод

Прямой привод - это высокоэффективная технология с низким уровнем износа, которая заменяет обычные серводвигатели и сопутствующие им трансмиссии. Эти двигатели не только намного проще обслуживать в течение длительного периода времени, но и ускоряются быстрее.

Линейные двигатели

Эти электродвигатели имеют раскрученный статор и двигатель, создающий линейную силу по длине устройства.В отличие от цилиндрических моделей, они имеют плоскую активную секцию с двумя торцами. Как правило, они быстрее и точнее вращающихся двигателей.

Серводвигатели

Серводвигатель - это любой двигатель, соединенный с датчиком обратной связи для облегчения позиционирования; Таким образом, серводвигатели являются основой робототехники. Используются как поворотные, так и линейные приводы. Недорогие щеточные двигатели постоянного тока широко распространены, но их заменяют бесщеточные двигатели переменного тока для высокопроизводительных приложений.

Шаговые двигатели

В шаговых двигателях

используется внутренний ротор, управляемый электроникой с помощью внешних магнитов.Ротор может быть изготовлен на постоянных магнитах или из мягкого металла. Когда обмотки находятся под напряжением, зубья ротора выравниваются по магнитному полю. Это позволяет им перемещаться от точки к точке с фиксированным шагом.

Перед тем, как начать работу над какой-либо новой системой, тщательно подумайте о конкурирующих свойствах различных двигателей. Выбор правильного двигателя позволяет лучше начать любой проект.

Готовы узнать больше? Ознакомьтесь с курсом «Основы проектирования электродвигателей», предлагаемым колледжем движения и моторизации MCMA.

Электродвигатели различных типов и их применение

Как мы знаем, электродвигатель играет жизненно важную роль во всех секторах промышленности, а также в широком спектре приложений. На рынке доступно множество типов электродвигателей. Выбор этих двигателей может быть сделан в зависимости от режима работы, напряжения и применения. Каждый двигатель состоит из двух основных частей: обмотки возбуждения и обмотки якоря. Основная функция обмотки возбуждения - создание фиксированного магнитного поля, тогда как обмотка якоря выглядит как проводник, расположенный внутри магнитного поля.Из-за магнитного поля обмотка якоря использует энергию для создания крутящего момента, необходимого для вращения вала двигателя. В настоящее время классификация двигателей постоянного тока может быть сделана на основе соединений обмоток, что означает, как две катушки в двигателе связаны друг с другом.


Типы электродвигателей

Типы электродвигателей доступны в трех основных сегментах, таких как электродвигатели переменного тока, электродвигатели постоянного тока и электродвигатели специального назначения.

типы двигателей

Двигатели постоянного тока

Типы двигателей постоянного тока в основном включают последовательные, шунтирующие, электродвигатели с комбинированной обмоткой и постоянным током постоянного тока.

двигатель постоянного тока
1). Параллельный двигатель постоянного тока
Шунтирующий двигатель постоянного тока

работает от постоянного тока, и обмотки этого электродвигателя, такие как обмотки якоря и обмотки возбуждения, соединены параллельно, что называется шунтом. Этот тип двигателя также называется двигателем постоянного тока с шунтирующей обмоткой, а тип обмотки известен как шунтирующая обмотка. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о работе шунтирующего двигателя постоянного тока и приложениях

.
2). Двигатель с автономным возбуждением

В двигателе с независимым возбуждением соединение статора и ротора может быть выполнено с использованием другого источника питания.Таким образом, двигателем можно управлять с помощью шунта, а обмотку якоря можно усилить для создания магнитного потока.

3). Двигатель постоянного тока серии

В двигателе постоянного тока обмотки ротора соединены последовательно. Принцип работы этого электродвигателя во многом зависит от простого электромагнитного закона. Этот закон гласит, что всякий раз, когда магнитное поле может быть сформировано вокруг проводника, оно взаимодействует с внешним полем, создавая вращательное движение. Эти двигатели в основном используются в стартерах, которые используются в лифтах и ​​автомобилях.Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о работе двигателей постоянного тока и их применениях

Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о ДВИГАТЕЛЕ постоянного тока - Основы, типы и применение

4). Двигатель PMDC

Термин PMDC означает «двигатель постоянного тока с постоянными магнитами». Это один из видов двигателей постоянного тока, в который может быть встроен постоянный магнит для создания магнитного поля, необходимого для работы электродвигателя. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о двигателе PMDC: конструкция, работа и применение

5).Составной двигатель постоянного тока

Как правило, составной двигатель постоянного тока представляет собой гибридный компонент последовательного и параллельного двигателей постоянного тока. В этом типе двигателя присутствуют оба поля, такие как последовательный и шунтирующий. В этом типе электродвигателя статор и ротор могут быть соединены друг с другом через соединение последовательных и шунтирующих обмоток. Последовательная обмотка может быть спроектирована с несколькими витками широких медных проводов, что дает небольшой путь сопротивления. Шунтирующая обмотка может быть спроектирована с несколькими обмотками из медного провода для получения полного i / p напряжения.

Двигатели переменного тока

Типы двигателей переменного тока в основном включают синхронные, асинхронные и асинхронные двигатели.


двигатель переменного тока
1). Синхронный двигатель

Работа синхронного двигателя в основном зависит от трехфазного источника питания. Статор электродвигателя генерирует ток возбуждения, который вращается со стабильной скоростью в зависимости от частоты переменного тока. Так же как и ротор, от аналогичной скорости зависит ток статора. Между скоростью тока статора и ротора нет воздушного зазора.Когда уровень точности вращения высок, эти двигатели применимы в автоматизации, робототехнике и т. Д. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о типах синхронных двигателей и их применениях.

2). Асинхронный двигатель

Электродвигатель, работающий с асинхронной скоростью, известен как асинхронный двигатель, и альтернативное название этого двигателя - асинхронный двигатель. Асинхронный двигатель в основном использует электромагнитную индукцию для изменения энергии с электрической на механическую. По конструкции ротора эти двигатели подразделяются на два типа: с короткозамкнутым ротором и с фазовой обмоткой.Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о типах и преимуществах асинхронных двигателей

Двигатели специального назначения

К двигателям специального назначения в основном относятся серводвигатели, шаговые двигатели, линейные асинхронные двигатели и т. Д.

электродвигатель специального назначения
1). Шаговый двигатель

Шаговый двигатель может использоваться для обеспечения углового шага вращения в качестве альтернативы стабильному вращению. Мы знаем, что для любого ротора полный угол вращения составляет 180 градусов. Однако в шаговом двигателе полный угол вращения может быть разделен на множество шагов, например, 10 градусов X 18 шагов.Это означает, что за полный цикл оборота ротор совершит ступенчатое движение восемнадцать раз, каждый раз на 10 градусов. Шаговые двигатели применимы в плоттерах, производстве схем, инструментах управления технологическим процессом, генераторах обычных движений и т. Д. Пожалуйста, обратитесь по этой ссылке, чтобы узнать больше о типах шаговых двигателей и их применениях

2). Бесщеточные двигатели постоянного тока

Бесщеточные двигатели постоянного тока были впервые разработаны для достижения превосходных характеристик на меньшем пространстве, чем щеточные двигатели постоянного тока. Эти двигатели меньше по размеру по сравнению с моделями переменного тока.Контроллер встроен в электродвигатель, чтобы облегчить процесс за счет отсутствия коммутатора и контактного кольца. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о бесщеточном двигателе постоянного тока - преимущества, применение и управление

3). Гистерезисный двигатель

Работа гистерезисного двигателя чрезвычайно уникальна. Ротор этого двигателя может быть вызван гистерезисом и вихревым током для создания необходимой задачи. Работа двигателя может зависеть от конструкции, однофазное питание или трехфазное питание.Эти двигатели обеспечивают очень плавный процесс со стабильной скоростью, как и другие синхронные двигатели. Уровень шума этого двигателя довольно мал, по этой причине они применимы во многих сложных приложениях, где бы ни использовался звуконепроницаемый двигатель, например, в аудиоплеере, аудиомагнитофоне и т. Д.

4). Электродвигатель сопротивления

В основном, реактивный двигатель - это однофазный синхронный двигатель, и эта конструкция двигателя аналогична асинхронному двигателю, например, клеточного типа. Ротор в двигателе похож на короткозамкнутый ротор, а статор двигателя включает в себя наборы обмоток, такие как вспомогательная и основная обмотка.Вспомогательная обмотка очень полезна при запуске двигателя. Поскольку они предлагают ровную работу со стабильной скоростью. Эти двигатели обычно используются в приложениях для синхронизации, которые включают генераторы сигналов, записывающие устройства и т. Д.

5). Универсальный мотор

Это особый тип двигателя, и этот двигатель работает от одного источника переменного тока, иначе от источника постоянного тока. Универсальные двигатели имеют последовательную намотку, при этом обмотки возбуждения и якоря соединены последовательно и, таким образом, создают высокий пусковой момент.Эти двигатели в основном предназначены для работы на высоких оборотах свыше 3500 об / мин. Они используют источник переменного тока при низкой скорости и источник постоянного тока аналогичного напряжения. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше об универсальном двигателе

.

Итак, речь идет о типах электродвигателей. В настоящее время существуют разные и гибкие. Мотор предназначен для управления движением, это лучший выбор. Двигатель должен поддерживать использование и общее функционирование системы. Вот вам вопрос, что такое моторы особого типа?

12 основных типов двигателей, используемых для промышленных электроприводов

Несколько слов об электрических приводах

Практически все современные промышленные и коммерческие предприятия используют электрический привод вместо механического привода, поскольку он обладает следующими преимуществами:

12 основных типов двигателей, используемых для Промышленные электроприводы (фото из презентации DOE Navigant Master)
  • Он прост по конструкции и требует меньших затрат на обслуживание
  • Его регулировка скорости легкая и плавная
  • Он аккуратный, чистый и не содержит дыма или дымовых газов
  • Его можно установить в любом удобном месте, что обеспечивает большую гибкость в компоновке.
  • Можно дистанционно управлять. жизнь.

Однако системе электропривода присущи два недостатка:

  1. Она останавливается при отключении электроснабжения и
  2. Ее нельзя использовать в удаленных местах, не обслуживаемых электроснабжением.

Однако указанные выше два недостатка можно преодолеть путем установки дизельных генераторов постоянного тока и трехфазных генераторов переменного тока с турбинным приводом, которые могут использоваться как при отсутствии, так и при отказе от нормального электроснабжения.


Типы двигателей для промышленных электроприводов

Хорошо, давайте кратко рассмотрим двенадцать основных типов двигателей, используемых для различных промышленных электроприводов:

  1. Двигатель серии постоянного тока
  2. Параллельный двигатель постоянного тока
  3. Накопительный составной двигатель
  4. Трехфазный синхронный двигатель
  5. Асинхронный двигатель с короткозамкнутым ротором
  6. Двигатель с двойным короткозамкнутым ротором
  7. Асинхронный двигатель с контактным кольцом
  8. Однофазный синхронный двигатель
  9. Однофазный последовательный двигатель
  10. Отталкивающий двигатель
  11. Запуск конденсатора Асинхронный пуск Конденсатор двигателя
  12. Запуск двигателя

1.Двигатель серии постоянного тока

Поскольку он имеет высокий пусковой момент и регулируемую скорость , он используется для тяжелых приложений , таких как электровозы, сталепрокатные станы, подъемники, подъемники и краны.

Вернуться к Типам двигателей ↑

2. Шунтирующий двигатель постоянного тока

Он имеет средний пусковой момент и почти постоянную скорость.

Параллельный двигатель постоянного тока используется для привода линейных валов с постоянной скоростью, токарных станков, пылесосов, деревообрабатывающих станков, стиральных машин, лифтов, конвейеров, шлифовальных машин, небольших печатных машин и т. Д.

Вернуться к Типам двигателей ↑

3. Накопительный составной двигатель

Накопительный составной двигатель - это двигатель с переменной скоростью и высоким пусковым моментом , который используется для привода компрессоров, центробежных насосов с регулируемым напором, роторных прессы, дисковые пилы, ножницы, элеваторы, непрерывные конвейеры и т. д.

Вернуться к Типам двигателей ↑

4. Трехфазный синхронный двигатель

Поскольку его скорость остается постоянной при переменных нагрузках , Трехфазный синхронный двигатель используется для привода непрерывно работающего оборудования с постоянной скоростью, такого как аммиачные и воздушные компрессоры, мотор-генераторные установки, непрерывные прокатные станы, бумажная и цементная промышленность.

Вернуться к Типам двигателей ↑

5. Асинхронный двигатель с короткозамкнутым ротором

Этот двигатель довольно простой, но прочный и обладает высокой перегрузочной способностью. Он имеет почти постоянную скорость и плохой пусковой крутящий момент.

Асинхронный двигатель

с короткозамкнутым ротором используется для приводов малой и средней мощности , где регулирование скорости не требуется, например, для водяных насосов, трубчатых колодцев, токарных станков, сверл, шлифовальных машин, полировальных машин, строгальных станков по дереву, вентиляторов, воздуходувок, стиральных машин и компрессоров. и т.п.

Вернуться к Типам двигателей ↑

6. Двигатель с двойной беличьей клеткой

Он имеет высокий пусковой момент, большую перегрузочную способность и почти постоянную скорость.

Двигатель с двойным короткозамкнутым ротором используется для привода нагрузок, требующих высокого пускового момента, таких как компрессорные насосы, поршневые насосы, большие холодильники, дробилки, расточные станки, текстильное оборудование, краны, пуансоны и токарные станки и т. Д.

Двигатель вентилятора с двойным короткозамкнутым ротором - 3 скорости; 110V

Вернуться к типам двигателей ↑

7.Асинхронный двигатель с контактным кольцом

Обладает высоким пусковым моментом и большой перегрузочной способностью. Скорость асинхронного двигателя с контактным кольцом может быть изменена до 50% от его нормальной скорости.

Асинхронный двигатель с контактным кольцом

используется для тех промышленных приводов, которые требуют высокого пускового момента и управления скоростью , таких как лифты, насосы, намоточные машины, печатные машины, линейные валы, элеваторы, компрессоры и т. Д.

Индукционный двигатель с контактным кольцом мощностью 6000 кВт для испытательный стенд компрессора (фото: emz.de)

Вернуться к Типам двигателей ↑

8. Однофазный синхронный двигатель

Из-за своей постоянной скорости однофазный синхронный двигатель используется в телепринтерах, часах, всех типах синхронизирующих устройств, записывающих приборах, звукозаписи и т. д. воспроизводящие системы.

Синхронный двигатель / однофазный / IP65 (фото предоставлено directindustry.com)

Вернуться к типам двигателей ↑

9. Однофазный двигатель серии

Он обладает высоким пусковым моментом, а его скорость можно регулировать в широком диапазоне . Однофазный серийный двигатель обычно используется для привода небольших бытовых приборов, таких как холодильники, пылесосы и т. Д.

Однофазный серийный двигатель 1,0 кВт; 1000 Вт; 230 В

Вернуться к Типам двигателей ↑

10. Отталкивающий двигатель

Обладает высоким пусковым моментом и может регулировать скорость в широких пределах.

Кроме того, имеет высокую скорость при высоких нагрузках. Отталкивающий двигатель обычно используется для приводов, требующих большого пускового момента и регулируемой, но постоянной скорости, как в машинах для намотки катушек.

Вернуться к Типам двигателей ↑

11. Индукционный двигатель с конденсаторным пуском

Он имеет довольно постоянную скорость и умеренно высокий пусковой крутящий момент. Регулирование скорости невозможно. Асинхронный двигатель с конденсаторным пуском обычно используется для компрессоров, холодильников и небольших переносных подъемников.

Вернуться к Типам двигателей ↑

12. Конденсаторный двигатель запуска и запуска

Его рабочие характеристики аналогичны вышеуказанному двигателю , за исключением того, что он имеет лучший коэффициент мощности и более высокий КПД .Следовательно, электродвигатели с конденсаторным пуском и пуском обычно используются для приводов, требующих бесшумной работы.

Hitachi конденсатор пусковой конденсатор рабочий двигатель

Вернуться к типам двигателей ↑

Ссылка // Справочник ASHRAE: системы отопления, вентиляции и кондиционирования 2004

Общие типы промышленных двигателей | Центр энергоэффективности

Индукционный / асинхронный переменный ток

Большинство промышленных двигателей представляют собой асинхронные двигатели трехфазного переменного тока из-за их надежности и низкой стоимости.

В этом случае электрический ток в обмотке статора создает вращающееся магнитное поле, которое «индуцирует» (отсюда и название) электрический ток в роторе. Ток, индуцируемый в роторе, создает магнитное поле, которое противодействует полю статора, вызывая вращение в роторе. Асинхронный двигатель должен работать со скоростью, немного меньшей, чем синхронная, поскольку вращение с синхронной скоростью не приведет к возникновению индуцированного тока ротора.

Вот почему асинхронные двигатели называются асинхронными, потому что ротор вращается медленнее, чем вращающееся магнитное поле статора, создавая крутящий момент вокруг выходного вала.

Если ротор вращается быстрее, чем вращающееся магнитное поле статора, в статоре будет индуцироваться ток. В этом сценарии асинхронные двигатели могут действовать как генераторы.

Асинхронные двигатели недороги, потому что для их работы требуются только электромагниты в статоре и роторе. Они также надежны, потому что им не нужны коммутаторы для передачи тока на ротор, что снижает вероятность искрения и износа от трения.

Большинство промышленных предприятий используют асинхронные двигатели из-за их желаемых характеристик, таких как надежность, простота и доступность.


Асинхронный двигатель с короткозамкнутым ротором ( Википедия, )

AC синхронный

В синхронных двигателях вращение вала синхронизируется с частотой тока, подаваемого на двигатель. Статор двигателя содержит электромагниты, которые создают магнитное поле, которое вращается в соответствии с характеристиками приложенного к нему тока. Ротор содержит постоянные магниты или электромагниты, которые противодействуют магнитному полю, создаваемому в роторе, вызывая вращение вала.Ротор требует физического подключения к электроэнергии с помощью коммутатора, обычно состоящего из токопроводящей щетки, которая может изнашиваться при использовании.

Эти двигатели называются синхронными, потому что ротор вращается с той же скоростью, что и вращающееся магнитное поле статора.

Хотя синхронные двигатели переменного тока используются реже из-за более высокой стоимости, они обладают более высокой энергоэффективностью, чем асинхронные двигатели переменного тока.

Синхронные двигатели переменного тока уникальны тем, что могут использоваться для корректировки коэффициента мощности промышленного объекта.


Векторы магнитного поля синхронного двигателя ( Википедия, )

DC синхронный

Двигатели постоянного тока - наименее распространенный тип двигателей, на смену которым пришли современные двигатели переменного тока.

Статор создает статическое магнитное поле, а ротор создает вращающееся магнитное поле, питаемое от коммутатора.

В результате магнитное поле ротора пытается выровняться с магнитным полем статора, которое создает крутящий момент вокруг выходного вала.

Вместо того, чтобы использовать электромагниты для создания статического магнитного поля, двигатели постоянного тока с постоянными магнитами используют магниты для создания поля. Поскольку магнитное поле присутствует всегда, независимо от состояния питания двигателя, двигатели с постоянными магнитами могут притягивать другие близлежащие ферромагнитные материалы, создавая потенциальный риск в промышленных условиях.

Двигатели постоянного тока с постоянными магнитами также тяжелее и громоздче из-за использования магнитов в статоре.


Анимация работающего двигателя постоянного тока ( Википедия, )

Электродвигатели

- различные типы и применения каждого двигателя

Электродвигатель - это удобное устройство, вырабатывающее механическую энергию из электрической энергии.Сегодня двигатели используются как в жилых, так и в промышленных условиях. Однако выбор двигателя будет зависеть от ваших конкретных потребностей.

Во-первых, различные типы двигателей на рынке делают процесс покупки утомительным. Вы должны выбирать между двигателями переменного тока, двигателями постоянного тока и двигателями специального назначения.

Типы двигателей переменного тока

Асинхронный двигатель переменного тока

Асинхронный двигатель - это наиболее распространенный тип электродвигателя переменного тока на современном рынке.Асинхронный двигатель переменного тока работает с импульсом ниже его синхронной скорости. Здесь электрический ток создает крутящий момент в роторе. Асинхронные двигатели используют электромагнитную индукцию для преобразования энергии из электрической в ​​механическую.

Классификация асинхронных двигателей основана на типе ротора; беличья клетка или контактное кольцо. Асинхронные двигатели отлично подходят для промышленности из-за их допустимой нагрузки.

Конструкция компрессоров, насосов, подъемных механизмов и конвейерных систем входит в число его многочисленных областей применения.

Синхронный двигатель переменного тока

Этот тип двигателя в основном зависит от трехфазного источника питания. Статор генерирует ток возбуждения, в то время как ротор зависит от тока возбуждения для своего вращения. Скорость вращения ротора соответствует частоте подаваемого тока. В этом двигателе импульс не зависит от нагрузки.

Синхронные двигатели переменного тока

находят широкое применение в робототехнике, управлении технологическими процессами и автоматизации. Эти двигатели используются в большинстве приводов с постоянной скоростью.

Типы двигателей постоянного тока

Матовый электродвигатель постоянного тока

В этом двигателе устройство щеток статора определяет ток. Его крутящий момент создается от источника постоянного тока с помощью электромагнитов. Они дешевы и очень эффективны.

В машинах с высоким пусковым моментом, таких как краны, подъемники и лифты, используются щеточные электродвигатели постоянного тока. Они также применимы для целей с постоянной скоростью, таких как пылесосы и конвейеры.

Бесщеточный двигатель постоянного тока

Эти двигатели обеспечивают высокую производительность при меньшем размере по сравнению с щеточными двигателями постоянного тока.Они работают с контактными кольцами, коммутаторами или встроенным контроллером.

Их эффективность, улучшенный динамический отклик, бесшумная работа и высокая скорость переключения делают их отличным выбором для большинства отраслей промышленности. Фиксированная нагрузка, переменная нагрузка и положение зависят от этого типа двигателя.

Другие типы двигателей

Серводвигатели

Это двигатели, соединенные с датчиками обратной связи для помощи в позиционировании, что является ключом к робототехнике. Они позволяют точно контролировать угловое положение, ускорение и скорость.Серводвигатели обладают высокой эффективностью и точностью, поэтому используются во вращающихся компонентах машин.

Его приложения включают строительство игрушек, автомобилей, самолетов, бытовой электроники и т. Д.

Шаговый двигатель

Судя по названию, шаговые двигатели работают ступенчато. Он преобразует электрическую энергию в обширные дискретные механические ступени. Поскольку другие двигатели вращаются на 180 градусов, шаговые двигатели могут делать десять шагов по 18 градусов каждый.

В этом случае для завершения оборота потребуется десять электрических импульсов.Они используются в плоттерах, производстве схем, инструментах управления технологическим процессом, медицинских сканерах, жидкостных насосах, респираторах, автоматической фокусировке цифровых камер и т. Д.

Гистерезисный двигатель

В гистерезисных двигателях магнитные поля статора и ротора противоположны. Как только ротор намагничен, вам потребуется мощное обратное магнитное поле, чтобы перевернуть его. Гистерезис и вихревые токи от ротора создают крутящий момент.

Двигатели с гистерезисом

могут генерировать крутящий момент без пульсаций, пока вы не достигнете синхронной скорости.Они используются при изготовлении звуковых проигрывателей, диктофонов и т. Д.


В Mader Electric наша команда экспертов готова помочь вам со всеми вашими потребностями в обслуживании двигателей как в бизнесе, так и в быту. Свяжитесь с нами сегодня, если у вас возникнут какие-либо вопросы или проблемы, связанные с электродвигателями, и наши специалисты будут рады помочь вам найти нужные решения.

Электродвигатель: что это такое? (Типы электродвигателей)

Что такое электродвигатель?

Электродвигатель (или электродвигатель) - это электрическая машина, преобразующая электрическую энергию в механическую.Большинство электродвигателей работают за счет взаимодействия магнитного поля двигателя и электрического тока в проволочной обмотке. Это взаимодействие создает силу (согласно закону Фарадея) в виде крутящего момента, который прилагается к валу двигателя.

Электродвигатели могут питаться от источников постоянного тока, таких как батареи или выпрямители. Или от источников переменного тока (AC), таких как инверторы, электрические генераторы или электросеть.

Двигатели - причина того, что у нас есть многие технологии, которыми мы наслаждаемся в 21 веке.

Без двигателя мы все еще жили в эпоху сэра Томаса Эдисона, когда электричество использовалось только для лампочек.

Электродвигатели используются в автомобилях, поездах, электроинструментах, вентиляторах, кондиционерах, бытовой технике, дисковых накопителях и многом другом. В некоторых электрических часах даже используются небольшие моторы.

Существуют различные типы двигателей s, которые были разработаны для различных целей.

Основным принципом функционирования электродвигателя является закон индукции Фарадея.

То есть сила создается при взаимодействии переменного тока с изменяющимся магнитным полем.

С момента изобретения двигателей в этой области техники произошло много достижений, и она стала предметом чрезвычайной важности для современных инженеров.

Ниже мы обсудим все основные электродвигатели, используемые в настоящее время.

Типы электродвигателей

Различные типы двигателей включают:

Двигатели классифицированы на диаграмме ниже:

Среди четырех основных классификаций двигателей , упомянутых выше, двигатель постоянного тока, как следует из названия, единственный, который приводится в действие постоянным током.

Это самая примитивная версия электродвигателя, в которой вращающий момент создается за счет протекания тока через проводник внутри магнитного поля.

Остальные - это электродвигатели переменного тока, приводимые в действие переменным током, например, для синхронного двигателя, который всегда работает с синхронной скоростью.

Здесь ротор представляет собой электромагнит, который магнитно заблокирован вращающимся магнитным полем статора и вращается вместе с ним. Скорость этих машин варьируется путем изменения частоты (f) и количества полюсов (P), так как N s = 120 f / P.

В электродвигателях переменного тока другого типа, где вращающееся магнитное поле перерезает проводники ротора, следовательно, в этих короткозамкнутых проводниках ротора индуцируется циркулирующий ток.

Из-за взаимодействия магнитного поля и этих циркулирующих токов ротор начинает вращаться и продолжает свое вращение.

Это асинхронный двигатель, также известный как асинхронный двигатель, он работает со скоростью, меньшей, чем его синхронная скорость, а вращающий момент и скорость регулируются изменением скольжения, которое дает разницу между синхронной скоростью N с и скорость ротора N r ,

Он работает, управляя принципом индукции ЭДС из-за переменной плотности потока.Отсюда и название индукционная машина.

Однофазные асинхронные двигатели, как и трехфазные двигатели, работают по принципу индукции ЭДС за счет магнитного потока.

Но, в отличие от трехфазных двигателей, однофазные двигатели работают от однофазного источника питания.

Способы пуска однофазных двигателей регулируются двумя хорошо известными теориями, а именно теорией двойного вращающегося поля и теорией Кроссфилда.

Помимо четырех основных типов двигателей, упомянутых выше, существует несколько типов специальных электродвигателей.

К ним относятся линейные асинхронные двигатели (LIM), гистерезисные двигатели, шаговые двигатели и серводвигатели.

Каждый из этих двигателей имеет особые характеристики, которые были разработаны в соответствии с потребностями отрасли или для использования в конкретном устройстве.

Например, гистерезисный двигатель используется в ручных часах из-за его небольшого размера и компактности.

История двигателей

В 1821 году британский ученый Майкл Фарадей объяснил преобразование электрической энергии в механическую, поместив проводник с током в магнитное поле, что привело к вращению проводника из-за крутящего момента, создаваемого магнитным полем. взаимное действие электрического тока и поля.

Основываясь на его принципе, самая примитивная из машин, машина постоянного тока, была разработана другим британским ученым Уильямом Стердженом в 1832 году. Но его модель была слишком дорогой и не использовалась для каких-либо практических целей.

Позже, в 1886 году, первый электрический двигатель был изобретен ученым Фрэнком Джулианом Спрагом. Он был способен вращаться с постоянной скоростью в различном диапазоне нагрузок и, таким образом, приводил к двигательному движению.

Типы двигателей и принцип их работы (для коммерческого и промышленного применения)

Двигатели - это механические или электромеханические устройства, преобразующие энергию в движение.Энергия в форме электрической, гидравлической или пневматической преобразуется во вращательное или линейное движение, а затем выводится на вал или другой компонент передачи энергии, где она обеспечивает полезную работу. Электродвигатели включают разновидности переменного или постоянного тока, которые далее подразделяются на электродвигатели специального назначения, включая мотор-редукторы, шаговые двигатели, серводвигатели и линейные двигатели. Гидравлические и пневматические двигатели используют жидкость (масло, воздух) в качестве движущей силы. К химическим двигателям относятся подвесные моторы для использования на лодках и ракетных двигателях, оба из которых используют внутреннее сгорание и часто называются двигателями.Электродвигатель, используемый для приведения в движение небольших рыбацких лодок, называется троллинговым двигателем. Ни одна из этой последней группы здесь не обсуждается.

Типы двигателей (и принцип их работы)

Двигатели переменного тока

Двигатели переменного тока

- это электромеханические устройства, приводимые в действие переменным током для создания вращательного движения. Вращение обеспечивает механическую работу для привода других вращающихся машин, таких как насосы. Для облегчения взаимозаменяемости доступны стандартные размеры корпуса с разным диапазоном мощности. Корпуса могут варьироваться от простых открытых конструкций до взрывозащищенных невентилируемых конструкций, обычно полностью закрытые с вентиляторным охлаждением (TEFC).Международная рейтинговая система также предписывает уровни охлаждения и защиты. Двигатели переменного тока составляют значительную часть используемых сегодня двигателей и приводят в действие насосы, вентиляторы, компрессоры и т. Д. Диапазон размеров от машин с малой мощностью до 20 000 л.с. Двигатели переменного тока будут одно- или трехфазными.

Трехфазные машины классифицируются по конструкции ротора: с короткозамкнутым ротором или с фазным ротором. В конструкции с короткозамкнутым ротором используются медные или алюминиевые стержни ротора, закороченные концевыми кольцами, и в определенном смысле они представляют собой настоящие индукционные машины - своего рода вращающийся трансформатор.Роторы с обмоткой используют проволочные роторы, количество полюсов которых равно количеству полюсов статора, а контактные кольца обеспечивают метод вставки сопротивления для запуска и изменения скорости. Пуск трехфазных машин при полном напряжении или через линию возможен примерно до 200 л.с., после чего часто требуется метод пониженного напряжения, особенно для двигателей, которые запускаются часто, из-за заметного падения напряжения, влияющего на освещение. , двигатели прочие и др.

Однофазные двигатели используются в основном в диапазонах малых л.с.Они не запускаются автоматически и могут быть сгруппированы по способу запуска. Наиболее широко используемая конструкция - двигатель с расщепленной фазой - использует две обмотки статора для получения пары несбалансированных токов обмотки, при этом вспомогательная обмотка отключается, когда двигатель приближается к синхронной скорости. Конденсаторный двигатель вставляет конденсатор во вспомогательную обмотку, который в случае конденсаторной пусковой машины выпадает, когда двигатель приближается к рабочей скорости, а в случае двухзначного конденсаторного двигателя переключается на второй конденсатор по мере приближения. скорость бега.В конструкции постоянного разделенного конденсатора вспомогательная обмотка и конденсатор остаются под напряжением на рабочей скорости. Наконец, в двигателе с экранированными полюсами используются неравномерно разделенные полюса с экранирующими катушками, которые заставляют вращающееся поле перемещаться в направлении заштрихованного полюса (т. Е. Необратимо). Двигатели с расщепленными полюсами - одни из самых дешевых из однофазных машин. В синхронизирующих устройствах используются синхронные однофазные двигатели.

Для получения дополнительной информации ознакомьтесь с нашей полной статьей о типах двигателей переменного тока.

Двигатели постоянного тока

Двигатели постоянного тока

- это электромеханические устройства, приводимые в действие постоянным током для создания вращательного движения. Движение обеспечивает вращательную работу для приведения в движение других вращающихся машин, таких как подъемники, с разными скоростями. Определенные схемы проводки могут создавать сильный крутящий момент на низкой скорости, что делает их пригодными в качестве тяговых двигателей для локомотивов, хотя они в значительной степени были заменены двигателями с регулируемой частотой вращения. Точно так же двигатели для гольф-каров неуклонно переделываются от щеточных конструкций к более продвинутым формам с электронными приводами.Для облегчения взаимозаменяемости доступны стандартные размеры корпуса с разным диапазоном мощности. Корпуса могут быть от простых открытых до взрывозащищенных, невентилируемых. Международная рейтинговая система также предписывает уровни охлаждения и защиты. Двигатели постоянного тока находят множество применений в игрушках и потребительских товарах и широко используются автопроизводителями. Они находят обслуживание на лифтах, вилочных электропогрузчиках и конвейерах, где нагрузки с постоянным крутящим моментом являются нормальным явлением. Двигатели постоянного тока доступны как в щеточной, так и в бесщеточной (с постоянными магнитами) конструкциях, причем для работы последних требуются электронные приводы и контроллеры.

Традиционные щеточные электродвигатели постоянного тока классифицируются на основе возбуждения, используемого в обмотке возбуждения, с тремя основными различиями: шунтирующие, последовательные и составные. Шунтовые двигатели имеют низкий пусковой момент, низкую перегрузочную способность, минимальное изменение скорости в ответ на нагрузку и плохую стабильность при нулевой нагрузке. Серийные двигатели обладают высокими пусковыми моментами, высокой перегрузочной способностью, значительным изменением скорости в зависимости от нагрузки и хорошей стабильностью при нулевой нагрузке. Составные двигатели находятся где-то между двумя другими по характеристикам, хотя они тоже остаются стабильными при нулевой нагрузке.

Для двигателей постоянного тока мощностью более 3/4 л.с. необходимо использовать стартеры для ограничения пускового тока во избежание возгорания коммутаторов.

Мотор-редукторы

Мотор-редукторы

- это электромеханические устройства, приводимые в действие переменным или постоянным током для создания вращательного движения. Движение обеспечивает вращательную работу, которая затем понижается через встроенный редуктор для привода других вращающихся машин, таких как конвейеры или упаковочные машины. Мотор-редукторы используются там, где требуется, чтобы двигатели и редукторы скорости обеспечивали высокий крутящий момент на низких скоростях.За счет интеграции этих двух компонентов мотор-редукторы достигают КПД по размеру, устраняют внешние муфты, улучшают сопротивление смыванию и т. Д. Часто редукторы взаимозаменяемы между производителями. Хотя мотор-редукторы редко используются для больших двигателей, они довольно часто имеют дробную мощность. Они доступны с различными типами выходных валов с выбором среди двигателей переменного тока, щеточных и бесщеточных двигателей постоянного тока.

Шаговые двигатели

Шаговые двигатели

- это электромеханические устройства, приводимые в действие переменным током для создания вращательного движения и позиционирования.Как правило, шаговые двигатели не включают в себя контур обратной связи, как серводвигатели, а вместо этого достигают управления положением, поворачивая ротор двигателя на дискретное количество шагов. Они специфичны для приложений управления движением. Шаговые двигатели используются в приложениях позиционирования, где важно удерживать позицию, и используются на упаковочных машинах, принтерах и т. Д., Где потеря положения из-за перегрузки не критична и где важна экономия.

Серводвигатели

Серводвигатели

- это электромеханические устройства, приводимые в действие переменным или постоянным током для создания вращательного движения и позиционирования.Серводвигатели используют контур обратной связи для управления радиальным положением ротора двигателя по отношению к его статору. Они специфичны для приложений управления движением. Серводвигатели используются в приложениях для позиционирования, где первостепенное значение имеет плавное управляемое движение, например, в промышленных роботах. Во втором примере упаковочная машина может использовать серводвигатель для индексации точного количества упаковочной пленки в зону формования, где в прошлом такая подача могла регулироваться с помощью механического индексатора с приводом от двигателя.

Линейные двигатели

Линейные двигатели

- это электромеханические устройства, приводимые в действие переменным или постоянным током для создания линейного, а не вращательного движения. Линейное движение полезно в приложениях, где можно использовать воздушный цилиндр, но где требуется большая точность и позиционная обратная связь, или где движение может изменяться от хода к ходу. Конфигурация двигателя и форма движка / ползуна также могут быть проблемой. Линейные двигатели используются в упаковочных машинах, сборочных машинах, подъемно-транспортном оборудовании и в различных областях медицинского оборудования.

Пневматические двигатели

Пневматические двигатели

- это механические устройства, приводимые в действие давлением воздуха для создания вращательного движения. Движение обеспечивает вращательную работу для привода других вращающихся машин, таких как приемные бобины и инструменты. Пневматические двигатели используются там, где есть источник сжатого воздуха, и где необходим постоянный крутящий момент независимо от скорости, например, в приемной бобине на упаковочной машине. Они также используются во взрывоопасных средах, где считаются искробезопасными.

Гидравлические двигатели

Гидравлические двигатели

- это механические устройства, приводимые в действие жидкостью для создания вращательного движения. Движение обеспечивает вращательную работу для привода других вращающихся элементов, таких как ведущие колеса экскаватора тяжелого оборудования. Гидравлические двигатели широко используются в строительной технике, где требуется вращательное движение от компактного устройства, а гидравлическая энергия уже доступна. Гидравлические двигатели могут быть лопастными, шестеренчатыми или поршневыми, как и гидравлические насосы. Двигатели LSHT или низкоскоростные двигатели с высоким крутящим моментом доступны у некоторых производителей.Модифицированный лопаточный двигатель, называемый роторным двигателем абатмента, имеет более низкое трение и лучшее уплотнение, чем эквивалентный лопастный двигатель.

Различные области применения двигателей и отрасли

Среди двигателей переменного тока, постоянного тока, зубчатых, пневматических и гидравлических двигателей обеспечивается вращательное движение, в то время как шаговые, сервомоторы и линейные двигатели обеспечивают позиционирование. Электродвигатель переменного тока - вероятный выбор для привода насоса; двигатель постоянного тока хорошо подходит для привода барабана крана, где важна регулируемая скорость; мотор-редукторы выполняют те же функции, что и двигатели постоянного и переменного тока без покрытия, за исключением того, что они имеют встроенные редукторы; а воздушные и гидравлические двигатели удовлетворяют аналогичные потребности в ситуациях, когда электричество нецелесообразно или неприемлемо.

Позиционирование - это область трех других типов, что означает, что эти типы используются там, где элементы машины необходимо переместить в точные места. В то время как машины вращательного движения охватывают весь спектр размеров от очень маленьких субфракционных единиц HP до самых больших машин, превышающих NEMA, шаговые, сервоприводы и линейные двигатели обычно имеют максимальную мощность в несколько лошадиных сил и превосходят в меньших размерах.

Трехфазные асинхронные двигатели переменного тока широко используются в промышленности. В них используются роторы с короткозамкнутым ротором (бесщеточные), которые создают магнитные поля в обмотках полюсов, которые затем взаимодействуют с магнитными полями обмоток статора, вызывая вращение.Скорость двигателя переменного тока зависит от количества полюсов и частоты подаваемого напряжения, особенно часто встречаются 1800 (4-полюсный) и 3600 об / мин (2-полюсный). Фактическая скорость немного отстает от номинальной скорости вращающегося магнитного поля или линейной скорости и зависит от нагрузки. Синхронные двигатели переменного тока точно соответствуют скорости вращающегося поля независимо от нагрузки, но их применение обычно ограничивается особыми случаями, когда это важно, например, в двигателях-генераторах. Другой синхронный двигатель, так называемый двигатель переменного тока с постоянными магнитами, использует ту же технологию с постоянными магнитами, что и бесщеточные конструкции постоянного тока, для создания синхронных двигателей переменного тока, которые доступны в дробных и интегральных размерах л.с.Эти двигатели требуют электронных приводов. Двигатели переменного тока по своей сути не подходят для управления скоростью, хотя существует ряд методов как в конструкции двигателя (с фазным ротором), так и в схеме контроллера, чтобы сделать возможным управление скоростью. Несколько обмоток - это один из способов получения двухскоростного асинхронного двигателя. Частотно-регулируемые приводы могут обеспечивать плавную регулировку скорости. Также доступны различные пускатели, такие как устройства плавного пуска, которые помогают снизить воздействие запуска двигателя, например, на бутылки на конвейерной линии.

Другой электродвигатель переменного тока, получивший название универсального или электродвигателя переменного тока серии , используется во многих устройствах, таких как пылесосы, дрели, вакуумные системы и т. Д. Он имеет те же щетки и коммутатор, что и электродвигатель постоянного тока, но может работать от переменного тока. ток также, потому что направление переключения тока возбуждения точно совпадает с направлением коммутируемого тока якоря. Они имеют тенденцию к шуму при работе и лучше всего подходят для периодического использования, например, в электроинструментах, из-за износа щеток, но они могут регулировать скорость.

Двигатели постоянного тока предлагают внутреннее регулирование скорости в силу своей конструкции и использования нечастотного постоянного тока в качестве движущей силы. В двигателе постоянного тока обычно используются щетки для подачи постоянного тока на ротор. Контролируя уровень постоянного напряжения, оператор может напрямую управлять скоростью двигателя. Двигатели постоянного тока этой конструкции, иногда называемые коллекторными двигателями для установленного на валу коммутатора, на котором движутся щетки, используются в автомобилях и в основном в небольших приложениях.В своих более крупных размерах они используются в приложениях, где регулирование скорости является обязательным: подъемники и краны, станки, прессы и т. Д. С появлением более сильных магнитов стали популярными двигатели постоянного тока с постоянными магнитами, которые обходятся без щеток. Эти двигатели несколько ограничены по размеру, примерно в одну лошадиную силу в верхней части, и для их электронного переключения требуются приводы. Прорези между зубьями обмотки статора вызывают явление, известное как «зубчатость», а конструкция без зазоров представляет собой попытку преодолеть это явление.Доступны определенные конструкции с постоянными магнитами, которые обеспечивают высокий крутящий момент на низких скоростях, например, двигатели BLDC типа «блины», которые особенно подходят для роботизированных приложений. Существуют также небольшие двигатели постоянного тока, называемые микродвигателями, которые используются в электронных устройствах и т.п., часто питающихся от батареи.

Мотор-редукторы доступны как блоки переменного тока, так и постоянного тока, как правило, небольшого размера, где целесообразно тесное соединение двигателя и коробки передач. Мотор-редукторы доступны с различными редукторами, такими как параллельный вал, прямой угол, планетарный редуктор и т. Д.

Шаговые двигатели предназначены для позиционирования. В их роторах используются постоянные магниты, которыми можно управлять через дискретные промежутки времени, возбуждая поле статора. Шаговый двигатель нуждается в контроллере / приводе для работы. Шаговые двигатели обычно имеют угол поворота 1,8 или менее градусов для каждого шага, но они могут быть дополнительно подразделены за счет использования так называемых микрошаговых контроллеров. Конструкция двигателя также играет роль в разрешающей способности шагового двигателя - количестве шагов на оборот - при этом 5-фазные двигатели предлагают большее количество шагов, чем 2-фазные двигатели.Шаговые двигатели обеспечивают относительно недорогой способ имитации позиционирования сервоприводов, хотя, как правило, им не хватает обратной связи по положению. Шаговые двигатели обычно могут удерживать нагрузку в остановленном состоянии, что является преимуществом для приложений позиционирования.

Серводвигатели - это позиционеры с истинной обратной связью, которые включают энкодеры для передачи информации о положении обратно своим контроллерам. Они контролируют как скорость, так и точность за счет использования контуров обратной связи. Специальный серводвигатель, называемый моментным двигателем, предназначен для приложения крутящего момента к валу без необходимости его вращения, что может потребоваться для поддержания постоянного натяжения натяжного устройства полотна.Конструкция позволяет двигателю создавать крутящий момент при остановке без перегрева. Его также можно использовать для прямого доступа к индексным таблицам.

Линейные двигатели лучше всего рассматривать как роторные двигатели, которые были «развернуты» для создания роторов, движущихся по линейным путям. Обычно они управляются сервоприводом, но также могут быть основаны на шаговом двигателе и использоваться для позиционирования и точного управления скоростью, чего нельзя достичь с помощью более дешевых средств, таких как воздушные цилиндры и т. Д. Некоторые производители предлагают линейные двигатели, которые также могут вращаться.Как и для любого серво- или шагового двигателя, для линейных двигателей требуются электронные приводы / контроллеры.

Пневматические двигатели просто приводятся в действие воздухом, а не электричеством и обычно используются в пневматических инструментах, таких как пневматические ключи и т. Д. Пневматические двигатели используются там, где требуется постоянный крутящий момент, например, на приемных барабанах на машинах для обработки полотна. Они также используются во взрывоопасных средах, поскольку считаются искробезопасными. Скорость пневмодвигателя можно несколько изменить, дросселируя впускной клапан, что дает возможность бесплатно регулировать скорость, например, при использовании на подъемнике.

Гидравлические двигатели приводятся в действие гидравлической жидкостью и обычно используются на вращающихся элементах строительного оборудования, например, на колесных двигателях. Они мощные для своего размера, легко переворачиваются и регулируются по скорости. Для них требуются источники гидравлической энергии, которая на строительном оборудовании с приводом от двигателя обычно поступает в виде гидравлических насосов / систем. Стационарные станции с меньшей вероятностью будут иметь гидравлическую энергию, доступную в качестве коммунальных услуг, поскольку они будут использовать сжатый воздух, но для них доступны так называемые гидравлические силовые агрегаты.

Соображения

Двигатели переменного и постоянного тока доступны в стандартных типоразмерах NEMA, что делает эти двигатели взаимозаменяемыми. Их иногда называют интегральными агрегатами высокого давления или просто средними машинами. Двигатели также бывают в виде дробных блоков HP, получивших название FHP или, проще говоря, малых, и имеют нестандартную конструкцию за пределами встроенных рамок NEMA, иногда называемых большими машинами. IEC предлагает аналогичные стандартизированные моторные корпуса и подразделения метрических размеров.

Варианты защиты обычно указываются в одной из двух форм: кода или классификации NEMA и кода IEC.Большинство двигателей представляют собой полностью закрытые двигатели с вентиляторным охлаждением, сокращенно TEFC, но существует множество разновидностей от открытых, каплезащищенных (ODP) до полностью закрытых, невентилируемых (TENV). Код IEC обеспечивает аналогичную классификацию с помощью двузначного цифрового кода, первый из которых определяет защиту корпуса от твердых предметов, а второй - уровень защиты от проникновения влаги. Например, двигатель со степенью защиты IP67 считается пыленепроницаемым и водонепроницаемым. Погружные двигатели, охлаждаемые иммерсивной жидкостью, доступны для скважинных насосов и т.п.

NEMA также делает различие между двигателями, работающими в непрерывном и прерывистом режиме. Двигатель с прерывистым режимом работы спроектирован для нечастого использования с достаточным охлаждением между пусками, как это может быть в случае с воздушным компрессором нижнего уровня, который также имеет рабочий цикл менее 100%. Также существует пятибуквенная рейтинговая система NEMA для описания работы двигателя, например «A», которая может использоваться для вентилятора, который не нужно запускать под нагрузкой, или «C», который подходит для конвейер, который, вероятно, запустился бы под нагрузкой.

Эти же коды могут применяться и к другим типам двигателей, особенно к редукторным, шаговым и серводвигателям.

Варианты монтажа включают монтаж на основании или на лапах и лицевой монтаж. В первом варианте двигатели поддерживаются на собственных основаниях - часто на одной раме с приводным оборудованием, тогда как во втором варианте двигатели прикреплены к корпусам ведомого оборудования, что иногда используется с насосами. Некоторые двигатели специально разработаны для работы в вертикальной ориентации.Эти так называемые специализированные двигатели предназначены для привода насосов и особенно подходят для работы в ограниченном пространстве, например, на борту судов.

Номинальная частота вращения и мощность являются основными характеристиками для определения электродвигателей ротационного типа. Количество фаз тоже важно, обычно одна или три.

Важные атрибуты и критерии выбора

Тип двигателя

Для блоков переменного тока основной выбор - между асинхронными и синхронными машинами. Двигатели с тормозом - это асинхронные машины со встроенными тормозами, которые могут удерживать нагруженный двигатель на месте.Для машин постоянного тока основной выбор - между бесщеточными агрегатами и агрегатами, в которых используются щетки. Мотор-редукторы предлагают многие из этих вариантов.

Ориентация на отрасль / предполагаемое применение

Многие двигатели предназначены для использования в обычных условиях, в то время как некоторые из них обладают специальными функциями или характеристиками, позволяющими использовать их в определенных областях применения. NEMA определяет множество двигателей специального назначения, в том числе для вентиляторов и воздуходувок, деревообрабатывающих станков и т. Д. Производители часто классифицируют свои двигатели специального назначения по этим линиям, т.е.например, работа на ферме, система отопления, вентиляции и кондиционирования воздуха, промывка и т. д. Специалисты по двигателям могут полагаться на эти атрибуты, чтобы сузить выбор, выходя за пределы диапазона двигателей общего назначения. Один пример - 400 Гц. двигатели, предназначенные для авиационной и космической техники. В некоторых приложениях, таких как вибраторы для погрузочно-разгрузочных работ, могут использоваться электрические или пневматические двигатели.

Вращение вала

Обычно трехфазные асинхронные двигатели реверсивны. Многие из них могут работать в противоположном направлении, переключая провода в месте их подсоединения к двигателю.Некоторые двигатели, особенно небольшие синхронные двигатели, используемые для управления заслонкой и т. Д., Являются однонаправленными, но часто могут быть указаны как вращение по часовой стрелке или против часовой стрелки. Вращение двигателя обычно определяется, если смотреть со стороны привода (DE), то есть конца двигателя на стороне нагрузки или соединенной стороне. Для нереверсивных двигателей постоянного тока, однофазных двигателей переменного тока, синхронных и универсальных двигателей обычное направление - CW.

Напряжение двигателя

Двигатели среднего напряжения обычно работают от 2300 или 4000 вольт.Меньшие трехфазные двигатели общего назначения могут работать от источников питания 208–230 или 460 вольт. Однофазные двигатели обычно работают от источника питания 115 или 230 В.

Расчетный класс NEMA

NEMA поддерживает ряд номинальных характеристик двигателя, которые определяют изоляцию и превышение температуры, которое он должен выдерживать.

Конструкция вала

Валы двигателей и могут быть заказаны со шпоночными пазами или плоскими шлицами для крепления муфт и т. Д. Они также могут быть короче стандартных валов. Валы также могут иметь резьбу для крепления резьбовых крепежных элементов.

ресурса

Торговые ассоциации

Нормы и стандарты

Стандартов на двигатели

слишком много, чтобы их перечислить, но читатель может обратиться к организациям по стандартизации, таким как NEMA, IEC и NFPA (Nat’l Fluid Power Assn.), За их исчерпывающими сборниками стандартов на двигатели. Выборка включает:

  • Гидравлический насос SAE J744, размеры опоры двигателя и привода
  • Двигатели и генераторы NEMA MG1
  • Малые электродвигатели NEMA SEM S1
  • IEC 60034 Вращающиеся электрические машины
  • NEMA ICS 16 Двигатели с управлением движением / положением, управление, обратная связь

Внешние ссылки

Сводка

Это руководство дает общее представление об электродвигателях и двигателях с гидравлическим приводом, а также об их выборе и использовании в различных средах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *