Инжекторная система: Принцип работы инжектора, устройство системы + видео

Содержание

Инжектор, его применение в системе подачи топлива

Инжекторная система подачи топлива — комплекс электронных и механических устройств, обеспечивающих подачи нужного объема топливной смеси непосредственно в коллектор впуска или цилиндр (для систем непосредственного впрыска).

Такое исполнение предусмотрено на всех современных авто с бензиновыми двигателями и пользуется спросом из-за большей эффективности. Ниже рассмотрим, что это за система, как она работает и из каких элементов состоит. Отдельно разберем преимущества и недостатки, о которых должны знать автовладельцы.

Что такое инжекторная система

Инжектор— форсунка или распылитель топлива, которое подается в двигатель для дальнейшего воспламенения и обеспечения движения транспортного средства.

Первые комплекты такой аппаратуры были разработаны в 1936-м в компании Robert Bosch. Сотрудникам компании удалось добиться непосредственного впрыска горючего в цилиндры. Именно такие двигатели использовались на истребителях и позволяли развивать мощность до 1100 лошадиных сил. Подобную систему использовали на БВМ с 1928 года, но в более упрощенной форме. В СССР технология дошла только к 1942 году и сначала применялась в авиационной сфере.

Сегодня все современные ДВС оснащены форсунками.

Это обусловлено более высокой точностью дозировки и экономичностью. Весь процесс контролируется электронным блоком управления (ЭБУ) или специальным контроллером. Они получают данные от разных узлов и регулируют непосредственную подачу горючего с помощью форсунок.

Виды инжекторных систем и распределение впрыска

Сегодня выделяется два типа инжекторных систем двигателя по типу впрыска. Кратко рассмотрим их особенности.

Моно, центральный, одноточечный

Отличие конструкции состоит в наличии только одной форсунки, распределяющей топливо одновременно во все цилиндры. Инжектор устанавливается на месте карбюратора (на коллекторе впуска). Система активно применялась в 80-х годах прошлого века и была механической без управления с помощью ЭБУ. 

Сегодня система не пользуется спросом из-за низкой экологичности и иных недостатков. В частности, в авто с Euro 3 и выше обязательно применение индивидуальной форсунки для цилиндра. Но одноточечная схема не лишена плюсов. Она отличается простотой исполнения и, соответственно, надежностью. Одной из причин явления является правильное расположение инжекторы в зоне холодного потока. Из минусов — высокое сопротивление воздуху и неточное распределение топлива.

Распределенный, многоточечный

Наиболее распространенный вариант, подразумевающий схему «один цилиндр — одна форсунка». Инжектор смонтирован в коллекторе впуска возле клапана. В определенный момент он подает определенный объем подготовленного горючего на впускные клапаны.

Условно такой тип впрыска делится на несколько видов:

  • Одновременный. Команда от электронного блока управления направляется сразу на все инжекторы, после чего они открываются.
  • Парный. Открытие форсунок происходит парами. При этом один инжектор работает перед впускным тактом, а второй — перед выпускным. С учетом того, что за подачу топливной смеси отвечают клапаны, такая особенность не сильно влияет на общий принцип работы. Система работает только в момент пуска ДВС и в случае аварии (к примеру, при поломке ДПРВ).
  • Фазированный. Наиболее современный вариант, который применяется почти во всех двигателях. Управление каждой форсунки происходит индивидуально, что положительно сказывается на расходе, повышает эффективность работы и улучшает экологичность.

Распределенная система обеспечивает точность формирования нужного объема топлива по цилиндрам и имеет минимальное сопротивление воздуху. Из минусов выделяется сложность исполнения и более высокая цена.

В отдельную группу входит непосредственный впрыск, когда горючее подается сразу в цилиндры, а не в коллектор впуска. Аналогичная система работает у дизельных ДВС. В таких двигателях головка блока имеет сложную конструкцию, которая очень дорога в производстве.

Применение этой схемы дает ряд плюсов с позиции мощности, экологичности и экономичности. Минус в том, что двигатель с прямым впрыском работает громче и сильней вибрирует, поэтому производители вынуждены дорабатывать шумоизоляцию и усиливать некоторые элементы.

Составные части систем

Рассматриваемая система состоит из электроники и механики. В функции первой входит контроль характеристик двигателя и подача импульса ко второй части (механической) с последующим исполнением команды.
Конструктивно электронная часть состоит из ЭБУ и множества датчиков инжектора. Они контролируют:

  • детонацию;
  • температуру антифриза;
  • позицию коленчатого вала;
  • расход воздуха;
  • лямбда-зонд;
  • детонацию;
  • давление воздуха в коллекторе впуска и т. д.

В зависимости от марки / модели авто могут устанавливаться и другие датчики. Вне зависимости от типа в их задачу входит определение характеристик мотора и их передача на электронный блок. 
К категории механических устройств относится:

  • емкость для топлива;
  • магистрали, по которым подается горючее;
  • насос;
  • фильтр;
  • инжектор;
  • топливная рампа;
  • устройство-регулятор давления.

Все упомянутые элементы находятся во взаимодействии и выполняют одну задачу — подвод, формирование и подачу нужно топливной смеси для обеспечения нормальной работы двигателя.

Принцип работы инжекторной подачи топлива

Для лучшего понимания системы нужно знать, как работает инжекторный двигатель. Общий алгоритм такой:

  • Упомянутые выше датчики получают сведения о работе системы. К ним приходят данные о скорости коленвала, содержании воздуха в горючем, позиции дросселя, температурных параметрах охлаждающей жидкости и т. д.
  • Собранная информация передается в ЭБУ, который анализирует поступившие параметры и сравнивает их с данными в карте. 
  • Блок управления с учетом проанализированных сведений дает команду к исполнительным (механическим) элементам системы.
  • Одним из главных элементов ЭБУ являются карты, в которых внесены оптимальные характеристики работы силового узла. С учетом того, что сведения поступают на блок управления в непрерывном режиме, система мгновенно принимает решения, раздает команды и обеспечивает нормальное образование смеси.Отметим, что контроль подачи топлива — только одна из опций ЭБУ. Также в его функции входит зажигание и решение иных вопросов.

Что касается механической составляющей, здесь принцип работы еще проще. Он имеет следующий вид:

  • Топливный насос качает бензин из бака и подает его под определенным давлением.
  • Регулятор контролирует параметр давления и регулирует его по мере необходимости.
  • Горючее подходит к рампе с инжекторами.
  • Форсунки при получении команды от ЭБУ открываются.
  • Топливо в нужном объеме впрыскивается к клапанам инжектора, а после поступает к камерам сгорания.

Положительные и отрицательные стороны

Большой опыт применения таких систем позволяет выделить слабые и сильные места.
Преимущества инжекторного двигателя:

  • Повышение экономичности даже на первых системах. Так, снижения расхода удалось добиться уже на «Ниве» от Ваз, где расход снизился сразу на 40%. Сегодня потребление топлива в инжекторном двигателе вдвое меньше, чем в карбюраторном.
  • Расширенные возможности управления ДВС.
  • Улучшение динамических параметров и рост мощности (в среднем на 10-15%).
  • Упрощенный и полностью автоматизированный пуск мотора.
  • Поддержание оборотов ХХ.
  • Возможность обойтись без ручного регулирования системы подачи топлива. Это обусловлено тем, что информацию передают соответствующие датчики (кислорода и позиции коленчатого вала).
  • Проведение самостоятельной диагностики, что упрощает ТО автомобиля. По сути, системы с форсунками от Euro 3 и выше не требуют периодического обслуживания.
  • Поддержание топливного состава, который максимально приближен к стехиометрическому показателю. Как результат, уменьшается выброс опасных веществ, повышается экологичность. К примеру, у первых поколений объем выброса окиси углерода находился на уровне 20-30 грамм /кВт*ч, а на Евро 5 — 1,5 грамма / кВт*ч.
  • Снижение высоты капота, благодаря более удобному расположению рабочих механизмов сбоку мотора, а не над ним.
  • Дополнительная защита машины от злоумышленников. Без получения команды от иммобилайзера ЭБУ запрещает подачу горючего к ДВС.
  • Отсутствие зависимости от положения авто в пространстве. К примеру, в авто с карбюратором возникали трудности с подачей горючего уже при подъеме на 15-градусный уклон.
  • Горючая смесь не накапливается в системе впуска, что исключает воспламенение в случае повреждения системы.
  • Нет зависимости от давления в атмосфере, что позволяет эксплуатировать авто даже в горах и не переживать за возможные сбои.
  • Автоматизация системы подачи топлива. Выполнение всей работы по подготовке горючего берет на себя ЭБУ. Для сравнения в двигателях на карбюраторах многие настройки автовладельцу приходилось делать самостоятельно.

Несмотря на ряд положительных качеств, нельзя не отметить и недостатки инжекторной системы питания. К основным стоит отнести:

  • Повышенные расходы на производство (было актуально до 2005-го).
  • Более строгие требования к составу горючего.
  • Слабая ремонтопригодность узлов из-за полной автоматизации.
  • Подача топлива под высоким давлением, что при аварии может привести к воспламенению. Для защиты применяется контроллер, который при аварии останавливает подачу горючего.
  • Необходимость обслуживания на специальном СТО, где имеется диагностическое оборудование. Соответственно, возрастает и стоимость ремонта. На современном этапе это не так актуально, ведь на сервисах нет дефицита в необходимой аппаратуре и ПО.
  • Зависимость от АКБ и уровня питания.
  • Необходимость периодической очистки форсунок и впускных клапанов. 

Заключение

Инжекторная система обеспечивает своевременную подачу заранее подготовленного топлива в двигатель. Благодаря большому количеству датчиков и точному электронному управлению, владельцу автомобиля не нужно проводить дополнительных настроек. Весь процесс проводится автоматически, а в роли «дирижера» выступает ЭБУ.

Процесс эксплуатации упрощается и тем, что система сама проходит диагностику и выдает ошибки в случае любых сбоев в работе. Это позволяет вовремя принять шаги по устранению неисправности или обратиться на СТО. Сама система почти не имеет конкурентов, кроме непосредственного впрыска, но последний пока не получил широкого применения из-за высокой стоимости и повышенных требований к качеству горючего.

Инжекторное управление системой впрыска топлива

Всего оценок: 3 Комментариев: 3 Просмотров: 1725

Автор статьи: Анатолий Горобцов / Дата публикации: 10-09-2021 / Обновлено: 10-09-2021

Поиск запроса «инжекторная система» по информационным материалам и форуму

Инжекторная система подачи топлива, двигатель инжекторный

Технический прогресс сейчас движется очень быстрыми темпами. Одной из наиболее активно развивающихся отраслей, является автомобилестроение. Здесь постоянно вводятся новые изобретения и конструктивные решения. Помогают в этом деле и ужесточающиеся нормы экологии.

Потому производители машин повсеместно внедряют новые разработки. Инжекторные агрегаты стали одной из разработок, стимулированных ужесточением требований токсичности выхлопа.

В инжекторном моторе горючее попадает в камеру сгорания не через карбюратор, а впрыскивается специальными устройствами. Последние именуются форсунками или инжекторами.

Устройство форсунки:
a — форсунка одноточечного впрыска, б — форсунка распределенного впрыска 1 — фильтр, 2 — электрический разъем, 3 — обмотка электромагнита, 4 — корпус форсунки, 5 — сердечник, 6 — корпус клапана, 7 — клапан (б — игла клапана), 8 — уплотнительное кольцо, 9 — распылительное отверстие.

Откуда появился инжекторный двигатель?

В автомобилестроение инжекторные двигатели пришли в 1951 году, когда был создан автомобиль Goliath 700 Sport.

Правда в то время такая система питания не получила распространения среди автоконцернов. Вспомнили о данной системе питания лишь в 70-х годах, когда изменились нормы токсичности. В результате начался процесс вытеснения данными двигателями карбюраторных.

В итоге к концу века большая часть легковых авто и микроавтобусов имели именно такие моторы. Сегодня же все машины имеют такую систему питания.

Подвиды инжекторной системы питания

Отмечу, что инжекторная система питания имеет несколько подвидов. В зависимости от количества инжекторов выделяют моновпрыск или как его еще именуют, центральный впрыск, а также распределенный впрыск.

Первый имеет одну форсунку, устанавливаемую вместо карбюратора. Она осуществляет впрыск горючего во впускной коллектор единовременно во все цилиндры. Правда эта конструкция уже несколько устарела.

Сейчас все производители применяют распределенный впрыск, имеющий отдельную форсунку на каждом цилиндре.

Устройство системы распределенного впрыска:
1 — топливный бак; 2 — электробензонасос; 3 — топливный фильтр; 4 — регулятор давления топлива; 5 — форсунка; 6 — электронный блок управления; 7 — датчик массового расхода воздуха; 8 — датчик положения дроссельной заслонки; 9 — датчик температуры ОЖ; 10 — регулятор; 11 — датчик положения коленвала; 12 — датчик кислорода; 13 — нейтрализатор; 14 — датчик детонации; 15 — клапан продувки адсорбера; 16 — адсорбер.

Система распределенного впрыска подразделяется на подтипы:

  • одновременный впрыск – все форсунки одновременно впрыскивают порцию топлива;
  • попарно-параллельный. В данном случае форсунки работают попарно. Одни осуществляют впрыск на такте впуска, а другие – на такте выпуска. Данная система применяется в современных агрегатах при запуске;
  • фазированный впрыск осуществляется на такте впуска. Причем каждая форсунка имеет отдельное управление;
  • прямой впрыск имеет форсунки, которые находятся непосредственно возле цилиндров.

Видео — принцип работы системы питания инжекторного двигателя:

Инжекторные агрегаты обладают несомненными «плюсами», по сравнению с карбюраторными. Они менее токсичны, экономны, легко запускаются. Кроме того, крутящий момент таких моторов доступен в широком диапазоне оборотов.

Имеет данная система питания и «минусы»: более сложная конструкция, высокая чувствительность агрегата к качеству горючего. Кроме того, форсунки являются не ремонтируемыми узлами, что удорожает ремонт. Для диагностики же их состояния и очистки, СТО должно иметь современное дорогое оборудование.

Загрузка…

Инжекторная система как современная концепция трехмерной обтурации корневых каналов

К. Г. Караков
д. м. н., профессор, заведующий кафедрой терапевтической стоматологии СтГМУ

Т. Н. Власова
к. м. н., доцент кафедры терапевтической стоматологии СтГМУ

А. В. Оганян
к. м. н., ассистент кафедры терапевтической стоматологии СтГМУ

Д. С. Авшарян
клинический ординатор кафедры терапевтической стоматологии СтГМУ

Не меньшей проблемой, чем обработка канала, является проблема его обтурации, так как именно качество пломбирования во многом определяет успех эндодонтического лечения.

Под качественным пломбированием на сегодняшний день подразумевается трехмерная герметизация всей разветвленной системы корневого канала, играющая роль надежного барьера между полостью зуба и тканями периодонта, что включает в себя необходимость:

  • запломбировать канал биологически инертным материалом, максимально обтурировав не только основные, но и латеральные и ацезорные каналы;
  • плотно запечатать просветы дентинных канальцев, выходящих в просвет корня;
  • исключить возможность возвратного инфицирования;
  • при этом быть уверенным, что находящийся в канале материал не рассосется.

Эти требования обусловили появление в стоматологии большого количества новых методик, материалов и аппаратов. Несомненное преимущество на сегодняшний день имеет трехмерная обтурация корневых каналов горячей термопластифицированной гуттаперчей с использованием новой инжекторной обтурационной системы (рис. 1).

Рис. 1. Инжекторная обтурационная система

Эта система обеспечивает точное и предсказуемое трехмерное пломбирование, дает возможность выбора между вертикальным уплотнением разогретой гуттаперчи, инъекцией термопластифицированной гуттаперчи или сочетанием обеих техник при обтурации каналов. Система обеспечивает точное и предсказуемое трехмерное пломбирование. Обе функциональные системы могут использоваться отдельно либо в сочетании друг с другом в зависимости от конкретных клинических случаев.

Комплектация
  • Наконечник (Obturation Pen) предназначен для разогрева гуттаперчи в корневом канале и ее срезания.
  • Насадки для наконечника (Pen tip) размер F, FM (рис. 2).
  • Пистолет (Obturation Gun) предназначен для порционного введения гуттаперчи.
  • Иглы для пистолета (Gun Needl), размер 23, 25 (рис. 3).
  • Универсальный ключ (рис. 4).
  • Изолятор тепла (рис. 5).
  • Подставка для наконечника, подставка для пистолета.
  • Зарядное устройство с аккумуляторами (рис. 6).
  • Адаптер для зарядочного устройства.
  • Набор для очистки — щетка, ример (рис. 7).
  • Гуттаперчевые стержни для пистолета (рис. 8).
  • Гуттаперчевые штифты (рис. 9).

Рис. 2. Насадки для наконечника

 

Рис. 3. Иглы для пистолета

 

Рис. 4. Универсальный ключ

 

Рис. 5. Изолятор тепла

 

Рис. 6. Зарядочное устройство с аккумуляторами

 

Рис. 7. Набор для чистки

 

Рис. 8. Гуттаперчевые стержни

 

Рис. 9. Гуттаперчевые штифты

Подготовка системы к работе:

Подготовка пистолета Obturation Gan (рис. 10 — 14).

Рис. 10. Установка аккумулятора в пистолет

 

Рис. 11. Максимальный температурный режим

 

Рис. 12. Установка изолятора тепла

 

Рис. 13. Установка инъекционной иглы

 

Рис. 14. Подготовка иглы для работы на нижней челюсти

Введение гуттаперчевого стержня в пистолет (рис. 15 — 23).

Рис. 15. Отодвигаем фиксатор поршня против часовой стрелки до упора

 

Рис. 16. Выдвигаем поршень на себя

 

Рис. 17. Устанавливаем гуттаперчевый стержень в ячейку для гуттаперчи

 

Рис. 18. Выставление температурного режима

 

Рис. 19. Установка аккумулятора в наконечник

 

Рис. 20. Установка насадки для наконечника

 

Рис. 21. Активация наконечника. Установлен рабочий режим для тонких и коротких штифтов (зеленый свет)

 

Рис. 22. Очистка пистолета римером

 

Рис. 23. Очистка пистолета ершиком

Клинический случай

К нам обратился пациент П. с жалобами на самопроизвольные ночные боли. При детальном опросе было определено, что боли также возникают от химических и физических раздражителей и иррадиируют по ходу ветвей тройничного нерва. При осмотре 25 зуб в цвете не изменен, имеется кариозная полость на контактной поверхности. Зондирование болезненно по всему дну кариозной полости, полость зуба не вскрыта. На рентгенограмме в области периапикальных тканей изменений нет (рис. 24).

Рис. 24. Рентгеновский снимок до лечения

Диагноз: острый диффузный пульпит 25 зуба.

Лечение

Под инфильтрационной анестезией было проведено раскрытие кариозной полости 25 зуба, некроэктомия, вскрытие полости зуба, удаление нависающих краев для создания адекватного доступа к корневым каналам. Затем проведена подготовка каналов к пломбированию с использованием современного инструментария и медикаментов.

После инструментальной обработки мы выбрали апикальный мастер-штифт, который соответствует форме конически отпрепарированного корневого канала. Его положение контролируется с помощью рентгенографии. При извлечении мастер-штифта из корневого канала необходимо ощущать сопротивление на апикальном участке (tuqback). Прежде чем гуттаперчевый мастер-штифт затем снова будет установлен, мы подрезали его кончик на 0,5 мм, чтобы при уплотнении гуттаперча не выходила за верхушку канала.

Перед пробным введением мастер-штифта нами были подобраны плагеры. Применяется 3 плагера, которые незначительно меньше диаметра расширения корневого канала, соответствующей глубины. Самый малый плагер должен входить в канал, не доходя 4—5 мм до апикального отверстия, их длина фиксируется с помощью силиконовых стопперов. В коронковой трети должна быть возможность для работы наиболее толстого плагера без соприкосновения со стенками канала. На плагер нанесена маркировка с интервалом 5 мм. Благодаря этому обеспечивается контроль длины также и внутри корневого канала.

Подобрав плагеры и мастер-штифты, мы приступили к первой фазе пломбирования — вертикальной конденсации. После высушивания корневого канала и внесения с помощью каналонаполнителя силера установлены мастер-штифты (рис. 25—27).

Рис. 25. Высушивание корневых каналов с использованием бумажных штифтов

 

Рис. 26. Внесение силера в корневой канал

 

Рис. 27. Внесение мастер-штифтов в корневые каналы

На наконечнике с заранее подобранной насадкой, которая на 5—7 мм не доходит до рабочей длины, выставляется зеленый свет, предназначенный для маленьких и тонких штифтов (рис. 28).

Рис. 28. Установка рабочего режима на наконечнике Obturation Pen

Насадка вводится в канал на отмеренную длину и активируется, срезается гуттаперча в коронковой части (рис. 29).

Рис. 29. Разогрев и срезание гуттаперчи с использованием наконечника Obturation Pen

Осуществляется первая конденсация разогретой гуттаперчи самым толстым плагером (рис. 30).

Рис. 30. Конденсация гуттаперчи с использованием плагера

После этого в канал вновь вводят насадку, подача тепла на нее прерывается, и после небольшой паузы насадка выводится из канала. Затем проводится конденсация разогретой гуттаперчи самым маленьким плагером.

Во время последнего нагревания насадка доходит до апикальной области. Самый тонкий плагер подводится максимально до 5 мм от апикального сужения, во время конденсации заполняет тончайшие разветвления апикальной дельты. Плагер удерживается с постоянным, направленным апикально давлением, пока гуттаперча не охладится для того, чтобы не допустить усадки во время охлаждения. Опасность того, что давление окажется избыточным и произойдет выведение за верхушку, относительно невелика, так как мастер-штифт был укорочен на 0,5 мм и был подогнан под корневой канал.

Далее мы осуществляли пломбирование корневого канала с помощью порционного введения разогретой гуттаперчи с последующим уплотнением. Для этого мы использовали пистолет, который разогревает гуттаперчу до 200 градусов, нами был использован рекомендуемый рабочий режим 160 градусов (система готова к работе через три минуты после установки рабочего режима) (рис. 31, 32).

Рис. 31. Установка рабочего режима на пистолете Obturanion Gan

 

Рис. 32. Внесение термопластифицированной гуттаперчи

Пластифицированная гуттаперча выходит из инъекционной канюли с температурой от 47 градусов до максимальной — 81, не повреждая прилегающих тканей периодонта. После завершения пломбирования пациент был направлен на рентгенографию (рис. 33).

Рис. 33. Рентгеновский снимок после обтурации корневых каналов

Анатомическая форма зуба была восстановлена фотокомпозитным материалом.

Таким образом, трехмерное пломбирование корневых каналов с использованием инжекторной обтурационной системы позволяет провести быструю обтурацию корневых каналов, обеспечивая точное и предсказуемое пломбирование, включая латеральные каналы апикальной дельты, обтурировать сложные корневые каналы различными методиками, исключить фрактуры корня зуба.

Литература

Типы систем питания инжекторных двигателей.


Классификация инжекторных двигателей




Типы систем питания с впрыском бензина

По конструктивным и функциональным признакам системы питания, использующие впрыск бензина вместо карбюрации могут существенно отличаться. Творчество конструкторов и инженеров в этом направлении привело к созданию широкого спектра систем впрыска, из которых можно выделить наиболее широко применяемые и используемые, объединяя их по основным признакам.

Впрыскивающие бензиновые системы, в первую очередь, подразделяют по месту подвода топлива – центральный одноточечный впрыск, распределенный впрыск и непосредственный впрыск в цилиндры двигателя.

При центральном впрыске (Рис. 1, а) используется одна форсунка, которая устанавливается на месте карбюратора и осуществляет впрыск во впускной трубопровод, обслуживая все цилиндры двигателя.
Такие конструкции являются «пионерами» в системах, использующих впрыск бензина, поэтому в свое время получило довольно широкое распространение. Принципиально система центрального впрыска простая: в ней используется одна форсунка, которая постоянно распыляет бензин в один на все цилиндры впускной коллектор. В коллектор из воздушного фильтра подается и воздух, здесь образуется горючая смесь, которая через впускные клапаны поступает в цилиндры и воспламеняется.
Преимущества центрального впрыска (моновпрыска) очевидны: эта система очень проста, для изменения режима работы двигателя нужно управлять только одной форсункой, да и сам двигатель претерпевает незначительные изменения, ведь форсунка ставится на место карбюратора.

Однако центральный впрыск имеет и недостатки, в частности, эта система не позволяет обеспечить выполнение все возрастающих требований экологической безопасности. Кроме того, отказ единственной форсунки фактически выводит двигатель из строя. Поэтому в настоящее время двигатели с центральным впрыском практически не выпускаются.

При распределенном впрыске (Рис. 1, б) отдельные форсунки устанавливаются в зоне впускных клапанов каждого цилиндра. Существует несколько разновидностей систем с распределенным впрыском, которые отличаются режимом работы форсунок:

  • Одновременный впрыск;
  • Попарно-параллельный впрыск;
  • Фазированный спрыск.

Одновременный впрыск.
В этом случае форсунки, хоть и расположены во впускном коллекторе каждая у «своего» цилиндра, но открываются в одно время. Можно сказать, что это усовершенствованный вариант моновпрыска, так как здесь работает несколько форсунок, но электронный блок управляет ими, как одной. Однако одновременный впрыск дает возможность индивидуальной регулировки впрыска топлива для каждого цилиндра. В целом, системы с одновременным впрыском просты и надежны в работе, но по характеристикам уступают более современным системам.

Попарно-параллельный впрыск.
Это усовершенствованный вариант одновременного впрыска, он отличается тем, что форсунки открываются по очереди парами. Обычно работа форсунок настроена таким образом, чтобы одна из них открывалась перед тактом впуска своего цилиндра, а вторая — перед тактом выпуска.
На сегодняшний день этот тип системы впрыска практически не используется, однако на современных двигателях предусмотрена аварийная работа двигателя именно в этом режиме. Обычно такое решение используется при выходе из строя датчиков фаз (датчиков положения распределительного вала), при котором невозможен фазированный впрыск.

Фазированный впрыск.
Это наиболее современный и обеспечивающий наилучшие характеристики тип системы впрыска. При фазированном впрыске число форсунок равно числу цилиндров, и все они открываются и закрываются в зависимости от такта, т. е. подача бензина в цилиндры осуществляется только на впуске каждой форсункой в строго определенный момент времени. При нефазированном впрыске подача осуществляется на каждом обороте коленчатого вала всеми форсунками синхронно.

Также к распределенному впрыску можно отнести системы с непосредственным впрыском, однако последние имеют кардинальные конструктивные отличия, поэтому непосредственный впрыск выделяют в отдельный тип.



При непосредственном впрыске (Рис. 1, в) форсунки устанавливают в головку блока цилиндров и осуществляют впрыск непосредственно в камеру сгорания.
Системы с непосредственным впрыском наиболее сложные и дорогие, однако, их применение позволяет обеспечить наилучшие показатели мощности и экономичности бензиновых двигателей. Непосредственный впрыск позволяет быстро изменять режим работы двигателя, максимально точно регулировать подачу топлива в каждый цилиндр и т.д.
В системах с непосредственным впрыском топлива форсунки установлены непосредственно в головке, распыляя топливо сразу в цилиндр, избегая «посредников» в виде впускного коллектора и впускного клапана (или клапанов).
Такое решение довольно сложно в техническом плане, так как в головке цилиндра, где и так уже расположены клапаны и свеча, необходимо разместить еще и форсунку. Поэтому непосредственный впрыск можно использовать только в достаточно мощных, а поэтому больших по габаритам двигателях. Кроме того, определенные сложности возникают из-за тяжелых условий, в которых приходится работать форсунке, сообщающейся с камерой сгорания. Решение всех этих вопросов связано с повышением стоимости используемых в системах с непосредственным впрыском элементов конструкции. Поэтому непосредственный впрыск в настоящее время используется только на легковых автомобилях высокого класса.

Системы с непосредственным впрыском требовательны к качеству топлива и нуждаются в более частом техническом обслуживании, однако они дают ощутимую экономию топлива и обеспечивают более надежную и качественную работу двигателя. Поэтому в ближайшем будущем они могут потеснить автомобили с инжекторными двигателями, использующими одноточечный и распределенный впрыск.

Кроме перечисленных выше разновидностей систем впрыска по месту подвода топлива их классифицируют, также по следующим признакам:

  • по способу подачи топлива – непрерывный или прерывистый впрыск;
  • по типу узлов, дозирующих топливо – плунжерные насосы, распределители, форсунки, регуляторы давления;
  • по способу регулирования количества горючей смеси – пневматическое, механическое, электронное. Электронный способ регулирования количества подаваемого топлива является наиболее прогрессивным и в настоящее время вытесняет механический и пневматический способы.
  • по основным параметрам регулирования состава горючей смеси – разрежению во впускном трубопроводе, углу поворота дроссельной заслонки, расходу воздуха и др.

Таким образом, смесеобразование в инжекторных двигателях в зависимости от применяемого способа подачи топлива происходит или в определенных зонах впускного трубопровода, или непосредственно в цилиндры двигателя, при этом могут использоваться различные устройства для впрыска и управления впрыском.

***

Системы с центральным впрыском топлива


Главная страница


Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

Инжекторная система питания — avtoartel.by

На всех современных автомобилях с бензиновыми моторами используется инжекторная система подачи топлива, поскольку она является более совершенной, чем карбюраторная, несмотря на то, что она конструктивно более сложная.

Инжекторный двигатель – не новь, но широкое распространение он получил только после развития электронных технологий. Все потому, что механически организовать управление системой, обладающей высокой точностью работы было очень сложно. Но с появлением микропроцессоров это стало вполне возможно.

Инжекторная система отличается тем, что бензин подается строго заданными порциями принудительно в коллектор (цилиндр).

Основным достоинством, которым обладает инжекторная система питания, является соблюдение оптимальных пропорций составных элементов горючей смеси на разных режимах работы силовой установки. Благодаря этому достигается лучший выход мощности и экономичное потребление бензина.

Устройство системы

Инжекторная система подачи топлива состоит из электронной и механической составляющих. Первая контролирует параметры работы силового агрегата и на их основе подает сигналы для срабатывания исполнительной (механической) части.

К электронной составляющей относится микроконтроллер (электронный блок управления) и большое количество следящих датчиков:

  • лямбда-зонд;
  • положения коленвала;
  • массового расхода воздуха;
  • положения дроссельной заслонки;
  • детонации;
  • температуры ОЖ;
  • давления воздуха во впускном коллекторе.

Датчики системы инжектора

На некоторых авто могут иметься еще несколько дополнительных датчиков. У всех у них одна задача – определять параметры работы силового агрегата и передавать их на ЭБУ

Что касается механической части, то в ее состав входят такие элементы:

  • бак;
  • электрический топливный насос;
  • топливные магистрали;
  • фильтр;
  • регулятор давления;
  • топливная рампа;
  • форсунки.

Простая инжекторная система подачи топлива

Как все работает

Теперь рассмотрим принцип работы инжекторного двигателя отдельно по каждой составляющей. С электронной частью, в целом, все просто. Датчики собирают информацию о скорости вращения коленчатого вала, воздуха (поступившего в цилиндры, а также остаточной его части в отработанных газах), положения дросселя (связанного с педалью акселератора), температуры ОЖ. Эти данные датчики передают постоянно на электронный блок, благодаря чему и достигается высокая точность дозировки бензина.

Поступающую с датчиков информацию ЭБУ сравнивает с данными, внесенными в картах, и уже на основе этого сравнения и ряда расчетов осуществляет управление исполнительной частью.В электронный блок внесены так называемые карты с оптимальными параметрами работы силовой установки (к примеру, на такие условия нужно подать столько-то бензина, на другие – столько-то).

Первый инжекторный двигатель Toyota 1973 года

Чтобы было понятнее, рассмотрим более подробно алгоритм работы электронного блока, но по упрощенной схеме, поскольку в действительности при расчете используется очень большое количество данных. В целом, все это направлено на высчитывание временной длины электрического импульса, который подается на форсунки.

Поскольку схема – упрощенная, то предположим, что электронный блок ведет расчеты только по нескольким параметрам, а именно базовой временной длине импульса и двум коэффициентам – температуры ОЖ и уровне кислорода в выхлопных газах. Для получения результата ЭБУ использует формулу, в которой все имеющиеся данные перемножаются.

Для получения базовой длины импульса, микроконтроллер берет два параметра – скорость вращения коленчатого вала и нагрузку, которая может высчитываться по давлению в коллекторе.

К примеру, обороты двигателя составляют 3000, а нагрузка 4. Микроконтроллер берет эти данные и сравнивает с таблицей, внесенной в карту. В данном случае получаем базовую временную длину импульса 12 миллисекунд.

Но для расчетов нужно также учесть коэффициенты, для чего берутся показания с датчиков температуры ОЖ и лямбда-зонда. К примеру, температура составляется 100 град, а уровень кислорода в отработанных газах составляет 3. ЭБУ берет эти данные и сравнивает с еще несколькими таблицами. Предположим, что температурный коэффициент составляет 0,8, а кислородный – 1,0.

Получив все необходимые данные электронный блок проводит расчет. В нашем случае 12 множиться на 0,8 и на 1,0. В результате получаем, что импульс должен составлять 9,6 миллисекунды.

Описанный алгоритм – очень упрощенный, на деле же при расчетах может учитываться не один десяток параметров и показателей.

Поскольку данные поступают на электронный блок постоянно, то система практически мгновенно реагирует на изменение параметров работы мотора и подстраивается под них, обеспечивая оптимальное смесеобразование.

Стоит отметить, что электронный блок управляет не только подачей топлива, в его задачу входит также регулировка угла зажигания для обеспечения оптимальной работы мотора.

Теперь о механической части. Здесь все очень просто: насос, установленный в баке, закачивает в систему бензин, причем под давлением, чтобы обеспечить принудительную подачу. Давление должно быть определенным, поэтому в схему включен регулятор.

По магистралям бензин подается на рампу, которая соединяет между собой все форсунки. Подающийся от ЭБУ электрический импульс приводит к открытию форсунок, а поскольку бензин находится под давлением, то он через открывшийся канал просто впрыскивается.

Виды и типы инжекторов

Инжекторы бывают двух видов:

  1. С одноточечным впрыском. Такая система является устаревшей и на автомобилях уже не используется. Суть ее в том, что форсунка только одна, установленная во впускном коллекторе. Такая конструкция не обеспечивала равномерного распределения топлива по цилиндрам, поэтому ее работа была сходной с карбюраторной системой.
  2. Многоточечный впрыск. На современных авто используется именно этот тип. Здесь для каждого цилиндра предусмотрена своя форсунка, поэтому такая система отличается высокой точностью дозировки. Устанавливаться форсунки могут как во впускной коллектор, так и в сам цилиндр (инжекторная система непосредственного впрыска).

На многоточечной инжекторной системе подачи топлива может использовать несколько типов впрыска:

  1. Одновременный. В этом типе импульс от ЭБУ поступает сразу на все форсунки, и они открываются вместе. Сейчас такой впрыск не используется.
  2. Парный, он же попарно-параллельный. В этом типе форсунки работают парами. Интересно, что только одна из них подает топливо непосредственно в такте впуска, у второй же такт не совпадает. Но поскольку двигатель – 4-тактный, с клапанной системой газораспределения, то несовпадение впрыска по такту на работоспособность мотора влияния не оказывает.
  3. Фазированный. В этом типе ЭБУ подает сигналы на открытие для каждой форсунки отдельно, поэтому впрыск происходит с совпадением по такту.

Примечательно, что современная инжекторная система подачи топлива может использовать несколько типов впрыска. Так, в обычном режиме используется фазированный впрыск, но в случае перехода на аварийное функционирование (к примеру, один из датчиков отказал), инжекторный двигатель переходит на парный впрыск.

Обратная связь с датчиками

Одним из основных датчиков, на показаниях которого ЭБУ регулирует время открытия форсунок, является лямбда-зонд, установленный в выпускной системе. Этот датчик определяет остаточное (не сгоревшее) количество воздуха в газах.

Эволюция датчика лямбда-зонд от Bosch

Благодаря этому датчику обеспечивается так называемая «обратная связь». Суть ее заключается вот в чем: ЭБУ провел все расчеты и подал импульс на форсунки. Топливо поступило, смешалось с воздухом и сгорело. Образовавшиеся выхлопные газы с не сгоревшими частицами смеси выводится из цилиндров по системе отвода выхлопных газов, в которую установлен лямбда-зонд. На основе его показаний ЭБУ определяет, правильно ли были проведены все расчеты и при надобности вносит корректировки для получения оптимального состава. То есть, на основе уже проведенного этапа подачи и сгорания топлива микроконтроллер делает расчеты для следующего.

Стоит отметить, что в процессе работы силовой установки существуют определенные режимы, при которых показания кислородного датчика будут некорректными, что может нарушить работу мотора или требуется смесь с определенным составом. При таких режимах ЭБУ игнорирует информацию с лямбда-зонда, а сигналы на подачу бензина он отправляет, исходя из заложенной в карты информации.

На разных режимах обратная связь работает так:

  • Запуск мотора. Чтобы двигатель смог завестись, нужна обогащенная горючая смесь с увеличенным процентным содержанием топлива. И электронный блок это обеспечивает, причем для этого он использует заданные данные, и информацию от кислородного датчика он не использует;
  • Прогрев. Чтобы инжекторный двигатель быстрее набрал рабочую температуру ЭБУ устанавливает повышенные обороты мотора. При этом он постоянно контролирует его температуру, и по мере прогрева корректирует состав горючей смеси, постепенно ее обедняя до тех пор, пока состав ее не станет оптимальным. В этом режиме электронный блок продолжает использовать заданные в картах данные, все еще не используя показания лямбда-зонда;
  • Холостой ход. При этом режиме двигатель уже полностью прогрет, а температура выхлопных газов – высокая, поэтому условия для корректной работы лямбда-зонда соблюдаются. ЭБУ уже начинает использовать показания кислородного датчика, что позволяет установить стехиометрический состав смеси. При таком составе обеспечивается наибольший выход мощности силовой установки;
  • Движение с плавным изменением оборотов мотора. Для достижения экономичного расхода топлива при максимальном выходе мощности, нужна смесь со стехиометрическим составом, поэтому при таком режиме ЭБУ регулирует подачу бензина на основе показания лямбда-зонда;
  • Резкое увеличение оборотов. Чтобы инжекторный двигатель нормально отреагировал на такое действие, нужна несколько обогащенная смесь. Чтобы ее обеспечить, ЭБУ использует данные карт, а не показания лямбда-зонда;
  • Торможение мотором. Поскольку этот режим не требует выхода мощности от мотора, то достаточно, чтобы смесь просто не давала остановиться силовой установке, а для этого подойдет и обедненная смесь. Для ее проявления показаний лямбда-зонда не нужно, поэтому ЭБУ их не использует.

Как видно, лямбда-зонд хоть и очень важен для работы системы, но информация с него используется далеко не всегда.

Напоследок отметим, что инжектор хоть и конструктивно сложная система и включает множество элементов, поломка которых сразу же сказывается на функционировании силовой установки, но она обеспечивает более рациональный расход бензина, а также повышает экологичность автомобиля. Поэтому альтернативы этой системе питания пока нет.

Инжектор – это своеобразная система, которая предназначена для переправки топлива в цилиндры автомобиля. Для этого используются форсунки, которые получают электронный сигнал от блока управления автомобиля. Стоит отметить, что подача топлива осуществляется исключительно точечным методом. Инжекторная система на сегодняшний день считается достаточно распространенной. Подобные конструкции представляют собой значительно более модифицированные версии карбюратора.

Стоит отметить, что первая подобная система была разработана еще в конце 19 века. А вот внедрение в само автомобилестроение произошло только во второй половине 20 века. Дело в том, что специалисты считали данный механизм слишком сложным и неоправданно дорогим.

На сегодняшний день все современные двигатели, оснащённые инжекторными системами подачи топлива, работающие по точечной поточечной подачи топлива в цилиндры, производится со специальными электронными блоками управления. Альтернативой ему может быть контроллер или система управления двигателем. Но, в любом случае, все эти приборы относятся к компьютерным. Именно они обеспечивают инжекторную систему должной информацией, на основании которой она может работать, корректировать дозу подачи топлива, частоту впрыска и другое.

Когда появился инжектор

Карбюратор, судя по всему, уже смешал отведенное ему количество топлива с воздухом в XX веке и его время стремительно подходит к концу. Несмотря на то что инжекторная система подачи топлива появилась гораздо раньше, чем карбюратор, она только начинает обживаться под капотами автомобилей. Своим происхождением впрыск обязан итальянскому физику и изобретателю Джованни Вентури, который изобрел форсунку с переменным сечением и скромненько назвал ее Труба Вентури.

Использовать ее в автомобилях начали ребята из гаража Леона Левассора. Что-то наподобие современного впрыска они ставили на свои автомобили еще в 1902 году. После этого автомобильные системы питания метались в поисках лучшего устройства, а инжектор нашел себе применение в авиационных двигателях. К концу 40-х годов все военные истребители поголовно пользовались инжекторной системой питания до тех пор, пока военная авиация не перешла на реактивную тягу.

Немного истории

Активно устанавливаться такая система питания на автомобилях стала со средины 80-х годов, когда начали вводиться нормы экологичности выбросов. Сама идея инжекторной системы впрыска топлива появилась значительно раньше, еще в 30-х годах. Но тогда основная задача крылась не в экологичном выхлопе, а повышении мощности.

Первые инжекторные системы применялись в боевой авиации. На то время, это была полностью механическая конструкция, которая вполне неплохо выполняла свои функции. С появлением реактивных двигателей, инжекторы практически перестали использоваться в военной авиатехнике. На автомобилях же механический инжектор особо распространения не получил, поскольку он не мог полноценно выполнять возложенные функции. Дело в том, что режимы двигателя автомобиля меняются значительно чаще, чем у самолета, и механическая система не успевала своевременно подстраиваться под работу мотора. В этом плане карбюратор выигрывал.

Но активное развитие электроники дало «вторую жизнь» инжекторной системе. И немаловажную роль в этом сыграла борьба за уменьшение выброса вредных веществ. В поисках замены карбюратору, который уже не соответствовал нормативам экологии, конструкторы вернулись к инжекторной системе впрыска топлива, но кардинально пересмотрели ее работу и конструкцию.

Основные преимущества инжекторной системы

Современные специалисты отмечают сразу несколько преимуществ подобных видов систем подачи топлива. А именно:

  1. Удалось достигнуть значительного снижения расхода топлива. Это стало возможным благодаря четкому контролю подачи топлива.
  2. Подобная система способствует повышению мощности. Для сравнения карбюраторные двигатели внутреннего сгорания имеют мощность на среднем на 10% меньше нежели идентичные инжекторные.
  3. Автоматизированная система впрыска. Стоит помнить, что в карбюраторных автомобилях функцию регулировки выполняет подсос и регулировочные винты. В данном же случае водителю не придется тратить время, и система все сделаем за него.

Разнообразие инжекторных систем

В современности существует два вида инжекторов. Первый относится к системам моновпрыска. В данном случае одна форсунка осуществляет подачу топлива в коллектор на все цилиндры. Среди автомобилистов подобная система более известна, как электронный карбюратор. Однако, современные производители уже отошли от данной технологии, и встретить подобную систему можно только в старых моделях.

Вторая система подразумевает распределённый впрыск, то есть многоточечный впрыск. В данном случае устанавливается отдельная форсунка во впускном тракте каждого цилиндра и каждая из них осуществляет подачу определённого объёма топлива в камеру сгорания.

По способу распределения впрыска подобные системы делятся на:

  1. Одновременную. Система встречается очень редко, но всё же имеет место быть. Ее особенностью является то, что всего за один оборот коленчатого вала абсолютно все форсунки отрабатывают в одно и тоже время.
  2. Попарную параллельную. В данном случае форсунки работают по парам. Другими словами, за один оборот коленчатого вала только одна пара форсунок работает.
  3. Последовательную. Данный вид распределения впрыска является самым распространенным. Особенностью является то, что за один оборот вала каждая форсунка по разу открывается перед тактом впуска. При этом регулировка происходит отдельно.

Центральный впрыск топлива

Моновпрыск — это самый простой механизм. Второе название — центральный впрыск. И он же был первым в истории. Массовое применение получил в США в начале 2 половины ХХ века. Как работает центральный впрыск? Простота — это именно то, что понравилось не только автовладельцам, но и производителям. Конструкция очень схожа с карбюратором, только вместо него применяется форсунка.

Она устанавливается на впускном коллекторе — одна на все цилиндры двигателя, независимо от их общего количества. Топливо поступает в коллектор постоянно, как и воздух. В результате происходит образование топливовоздушной смеси, которая распределяется по цилиндрам.

Отрицательные характеристики систем

Несмотря на огромный перечень положительных характеристик, данный механизм, как и многие другие, имеет и свою темную сторону. К минусам данной конструкции относятся:

  • довольно большая стоимость ремонта;
  • высокая стоимость комплектующих;
  • маленькая вероятность возможности ремонта;
  • большие требования к качеству топлива;
  • определить неисправность может только профессионал;
  • диагностика стоит достаточно дорого;
  • для ремонта нужно иметь специальное оборудование.

Стоит отметить, что инжекторный тип впрыска топлива со временем может приводить к тому, что впускной клапан закоксовывается. Это происходит из-за того, что он просто не омывается топливом, которое, в некотором роде, его очищает.

Плюсы и минусы

Преимущества, которыми обладает центральная система впрыска:

  • простота и дешевизна конструкции;
  • для смены режимов работы достаточно провести регулировку одной форсунки;
  • при смене карбюратора на инжектор (моновпрыск) существенных изменений в систему питания не производится.

К недостаткам относится то, что не выходит достигнуть высоких показаний экологичности. Поэтому на сегодняшний день автомобили с моновпрыском нельзя встретить в продаже и эксплуатации в развитых странах Америки, Европы и Азии. Разве что в странах третьего мира они будут беспрепятственно колесить по дорогам.

И самое большое неудобство — это то, что при выходе из строя форсунки двигатель останавливается и запустить его невозможно.

Устройство системы

Инжекторная система подачи топлива состоит из электронной и механической составляющих. Первая контролирует параметры работы силового агрегата и на их основе подает сигналы для срабатывания исполнительной (механической) части.

К электронной составляющей относится микроконтроллер (электронный блок управления) и большое количество следящих датчиков:

  • лямбда-зонд;
  • положения коленвала;
  • массового расхода воздуха;
  • положения дроссельной заслонки;
  • детонации;
  • температуры ОЖ;
  • давления воздуха во впускном коллекторе.

Датчики системы инжектора

На некоторых авто могут иметься еще несколько дополнительных датчиков. У всех у них одна задача – определять параметры работы силового агрегата и передавать их на ЭБУ

Что касается механической части, то в ее состав входят такие элементы:

  • бак;
  • электрический топливный насос;
  • топливные магистрали;
  • фильтр;
  • регулятор давления;
  • топливная рампа;
  • форсунки.

Простая инжекторная система подачи топлива

Устройство и принцип работы инжектора (на примере электронной системы распределенного впрыска)

В современных впрысковых двигателях для каждого цилиндра предусмотрена индивидуальная форсунка. Все форсунки соединяются с топливной рампой, где топливо находится под давлением, которое создает электробензонасос. Количество впрыскиваемого топлива зависит от продолжительности открытия форсунки. Момент открытия регулирует электронный блок управления (контроллер) на основании обрабатываемых им данных от различных датчиков.

Датчик массового расхода воздуха служит для расчета циклового наполнения цилиндров. Измеряется массовый расход воздуха, который потом пересчитывается программой в цилиндровое цикловое наполнение. При аварии датчика его показания игнорируются, расчет идет по аварийным таблицам.

Датчик положения дроссельной заслонки служит для расчета фактора нагрузки на двигатель и его изменения в зависимости от угла открытия дроссельной заслонки, оборотов двигателя и циклового наполнения.

Датчик температуры охлаждающей жидкости служит для определения коррекции топливоподачи и зажигания по температуре и для управления электровентилятором. При аварии датчика его показания игнорируются, температура берется из таблицы в зависимости от времени работы двигателя.

Датчик положения коленвала служит для общей синхронизации системы, расчета оборотов двигателя и положения коленвала в определенные моменты времени. ДПКВ — полярный датчик. При неправильном включении двигатель заводится не будет. При аварии датчика работа системы невозможна. Это единственный «жизненно важный» в системе датчик, при котором движение автомобиля невозможно. Аварии всех остальных датчиков позволяют своим ходом добраться до автосервиса.

Датчик кислорода предназначен для определения концентрации кислорода в отработавших газах. Информация, которую выдает датчик, используется электронным блоком управления для корректировки количества подаваемого топлива. Датчик кислорода используется только в системах с каталитическим нейтрализатором под нормы токсичности Евро-2 и Евро-3 (в Евро-3 используется два датчика кислорода- до катализатора и после него).

Датчик детонации служит для контроля за детонацией. При обнаружении последней ЭБУ включает алгоритм гашения детонации, оперативно корректируя угол опережения зажигания.

Здесь перечислены только некоторые основные датчики, необходимые для работы системы. Комплектации датчиков на различных автомобилях зависят от системы впрыска, от норм токсичности и пр.

Про результатам опроса определенных в программе датчиков, программа ЭБУ осуществляет управление исполнительными механизмами, к которым относятся: форсунки, бензонасос, модуль зажигания, регулятор холостого хода, клапан адсорбера системы улавливания паров бензина, вентилятор системы охлаждения и др. (все опять же зависит от конкретной модели)

Из всего перечесленного, возможно, не все знают, что такое адсорбер. Адсорбер является элементом замкнутой цепи рециркуляции паров бензина. Нормами Евро-2 запрещен контакт вентиляции бензобака с атмосферой, пары бензина должны собираться (адсорбироваться) и при продувке посылаться в цилиндры на дожиг. На неработающем двигателе пары бензина попадают в адсорбер из бака и впускного коллектора, где происходит их поглощение. При запуске двигателя адсорбер по команде ЭБУ продувается потоком воздуха, всасываемого двигателем, пары увлекаются этим потоком и дожигаются в камере сгорания.

Как все работает

Теперь рассмотрим принцип работы инжекторного двигателя отдельно по каждой составляющей. С электронной частью, в целом, все просто. Датчики собирают информацию о скорости вращения коленчатого вала, воздуха (поступившего в цилиндры, а также остаточной его части в отработанных газах), положения дросселя (связанного с педалью акселератора), температуры ОЖ. Эти данные датчики передают постоянно на электронный блок, благодаря чему и достигается высокая точность дозировки бензина.

Поступающую с датчиков информацию ЭБУ сравнивает с данными, внесенными в картах, и уже на основе этого сравнения и ряда расчетов осуществляет управление исполнительной частью.В электронный блок внесены так называемые карты с оптимальными параметрами работы силовой установки (к примеру, на такие условия нужно подать столько-то бензина, на другие – столько-то).

Первый инжекторный двигатель Toyota 1973 года

Чтобы было понятнее, рассмотрим более подробно алгоритм работы электронного блока, но по упрощенной схеме, поскольку в действительности при расчете используется очень большое количество данных. В целом, все это направлено на высчитывание временной длины электрического импульса, который подается на форсунки.

Поскольку схема – упрощенная, то предположим, что электронный блок ведет расчеты только по нескольким параметрам, а именно базовой временной длине импульса и двум коэффициентам – температуры ОЖ и уровне кислорода в выхлопных газах. Для получения результата ЭБУ использует формулу, в которой все имеющиеся данные перемножаются.

Для получения базовой длины импульса, микроконтроллер берет два параметра – скорость вращения коленчатого вала и нагрузку, которая может высчитываться по давлению в коллекторе.

К примеру, обороты двигателя составляют 3000, а нагрузка 4. Микроконтроллер берет эти данные и сравнивает с таблицей, внесенной в карту. В данном случае получаем базовую временную длину импульса 12 миллисекунд.

Но для расчетов нужно также учесть коэффициенты, для чего берутся показания с датчиков температуры ОЖ и лямбда-зонда. К примеру, температура составляется 100 град, а уровень кислорода в отработанных газах составляет 3. ЭБУ берет эти данные и сравнивает с еще несколькими таблицами. Предположим, что температурный коэффициент составляет 0,8, а кислородный – 1,0.

Получив все необходимые данные электронный блок проводит расчет. В нашем случае 12 множиться на 0,8 и на 1,0. В результате получаем, что импульс должен составлять 9,6 миллисекунды.

Описанный алгоритм – очень упрощенный, на деле же при расчетах может учитываться не один десяток параметров и показателей.

Поскольку данные поступают на электронный блок постоянно, то система практически мгновенно реагирует на изменение параметров работы мотора и подстраивается под них, обеспечивая оптимальное смесеобразование.

Стоит отметить, что электронный блок управляет не только подачей топлива, в его задачу входит также регулировка угла зажигания для обеспечения оптимальной работы мотора.

Теперь о механической части. Здесь все очень просто: насос, установленный в баке, закачивает в систему бензин, причем под давлением, чтобы обеспечить принудительную подачу. Давление должно быть определенным, поэтому в схему включен регулятор.

По магистралям бензин подается на рампу, которая соединяет между собой все форсунки. Подающийся от ЭБУ электрический импульс приводит к открытию форсунок, а поскольку бензин находится под давлением, то он через открывшийся канал просто впрыскивается.

Почему инжектор лучше карбюратора?

Помнится, еще относительно недавно автомобили с инжекторной системой подачи топлива вызывали недоверие. Пожалуй, единственное логическое объяснение этому – сложность ее конструкции, из-за чего на первых порах возникали проблемы с ремонтом. В отличие от карбюратора, впрыск топлива в инжекторе не нужно регулировать, поскольку это возложено на электронную систему управления. Помимо этого, машина с инжекторным агрегатом потребляет меньше топлива, а мощность ее мотора значительно выше. Плюс ко всему — значительное снижение вредных соединение в выхлопе авто, ввиду лучшего сгорания топливной смеси, которое возможно благодаря ее правильной и дозированной подаче.

Типы инжекторов

1. Система центральной подачи топлива (моновпрыск), представлен одной форсункой, через которую топливная смесь поступает в коллектор, а с него уже распределяется по всем цилиндрам. Самый простой тип, который сегодня уже практически не применяется.

2. Система распределенной топливоподачи (многоточечный впрыск). Здесь уже через отдельные форсунки осуществляется впрыск топлива в цилиндры, то есть количество форсунок соответствует количеству цилиндров.

Многоточечная система впрыска бывает:

— Одновременного типа, когда все форсунки открываются, и впрыск топлива осуществляется в течение одного полного оборота коленвала. Практически не встречается.

— Попарно-параллельного типа, когда топливовпрыск ведется через парные форсунки, цикл работы которых определяется одним вращением коленвала. Также используется редко, однако, может быть встречаться из-за поломки датчика при последовательном типе топливоподачи.

— С последовательным (фазированным) впрыском топлива, в которой за одно вращение коленвала происходит открытие каждой из форсунок для впрыска топлива. Наиболее распространенная и совершенная система топливовпрыска, которая позволяет подать рабочую смесь непосредственной в цилиндр, при этом длительность ее подачи и дозировка рассчитываются максимально точно. Стоит отметить, что рабочее давление системы может возрастать до 200 атм.

Однако есть и ряд своих недостатков, к которым можно отнести наличие множества дорогостоящих элементов, причем некоторые из них, абсолютно неремонтопригодны. Также, в инжекторах с системой последовательного топливовпрыска очень часто закоксовываются клапана впуска, из-за того, что они практически не омываются, следовательно, и не очищаются топливной смесью.

Виды инжекторов

Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электронные элементы, способствовавшие лучшей работе мотора.

Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.

Всего существует три типа инжекторных систем впрыска, различающихся по типу подачи топлива:

  1. Центральная;
  2. Распределенная;
  3. Непосредственная.
Центральная

Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

Распределенная

Распределенный впрыск топлива

Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У такого типа инжекторных двигателей топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

Непосредственная

Система непосредственного впрыска топлива

Система непосредственного впрыска на данный момент – самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она сложная по конструкции и очень требовательна к качеству бензина.

Виды систем впрыска бензиновых двигателей

Впрыск может быть:

  • центральным (ДВС с карбюраторами, наддроссельный впрыск),
  • распределённый или коллекторный (осуществляется отдельной форсункой в каждый цилиндр двигателя),
  • непосредственный (осуществляется напрямую в камеры сгорания, отдельными форсунками), встречается в разных вариациях, характерен для современных автомобилей.

Варианты топливных систем бензиновых двигателей (R R. Bosch)

Решения с карбюраторами

Дольше всего человечество знакомо с подачей топлива посредством карбюратора. И не потому, что такие решения лучшие, а потому что они – первые. И множество лет – единственно доступные. Карбюратор был неотъемлемой частью топливной системы на около сотни лет. Нельзя сказать, что сейчас карбюраторы полностью исчезли из жизни, но на легковой и коммерческий транспорт карбюраторы ставить перестали. Их можно увидеть только на средствах механизации, которые применяются для садовых, строительных работ. Автопром же перестал выпускать машины с карбюраторной системой еще в 90-е годы прошлого века.

Принцип их действия основан на принципе втягивания топлива в поток воздуха, проходящего через карбюратор. Всё это возможно за счет сужения воздушного канала и разрежения воздуха.

Объём воздуха, который проходит через сужение воздушного канала, пропорционален объёму топлива, поступающего через распылитель карбюратора. Благодаря этому несложно в автоматическом режиме поддерживать требуемое соотношение топлива к воздуху.

Как работает устройство?

  1. Топливо из бака забирает насос (управляемый механически или электрически – в зависимости от модели).
  2. ДВС запускается, и поток воздуха, проходящий через сужение воздушного канала карбюратора, создает разрежение.
  3. В смесительную камеру карбюратора поступает топливо.
  4. Жиклер (калиброванное отверстие) дозирует топливо.

С точки зрения работы всё достаточно просто. Так почему же карбюраторы уходят в историю? Здесь достаточно много причин:

  • Низкая экономичность, а соответственно, и низкий уровень топливной эффективности.
  • Проблемы при переменных режимах работы, обусловленные низкими динамическими качествами.
  • Прямая зависимость от положения двигателя.
  • Выброс в окружающую среду большого количества вредных веществ (несоответствие нормативам эмиссии газообразных вредных выбросов в атмосферу).

Особенности системы впрыска

Основным преимуществом системы впрыска считают точную дозировку топлива, необходимую для оптимальной работы двигателя в определенный момент и под определенной нагрузкой. Этого позволила добиться только электронная система управления. Старые инжекторные системы имели механическое управление и подавали бензин по средним потребностям мотора. Современный инжектор способен точно вычислить сколько топлива необходимо и в какой момент его нужно подать. Синхронизация системы питания с зажиганием позволяет оперативно менять как угол опережения подачи искры, так и момент подачи бензина, поэтому теоретически, инжекторные системы должны быть эффективнее и экономичнее карбюраторных.

Краткая история появления

Инжекторная система подачи топлива начала активно внедряться в 70-х годах, явившись реакцией на возросший уровень выбросов загрязняющих веществ в атмосферу. Она была заимствована в авиастроении и являлась экологически более безопасной альтернативой карбюраторному двигателю. Последний был оснащен механической системой подачи топлива, при которой топливо поступало в камеру сгорания за счет разницы давлений.

Первая система впрыска была практически полностью механической и отличалась малой эффективностью. Причиной этого был недостаточный уровень технического прогресса, который не мог полностью раскрыть ее потенциал. Ситуация изменилась в конце 90-х годов с развитием электронных систем управления работой двигателя. Электронный блок управления стал контролировать количество впрыскиваемого топлива в цилиндры и процентное соотношение компонентов топливовоздушной смеси.

Диагностика инжекторных систем

Действительно, с применением электроники и распределенной системы впрыска моторы стали немного экономичнее, но против физики не попрешь, и без нужного количества бензина камера сгорания просто не выдаст ту энергию, которая необходима. С усложнением систем впрыска стали появляться новые проблемы, особенно на дешевых машинах, поскольку система впрыска очень требовательна к материалам топливной аппаратуры и особенно, к качеству топлива. Это вообще больной вопрос для всех инжекторов. Количество серы в отечественном бензине не укладывается ни в какие нормы, поэтому даже на недорогих системах впрыска очень часто требуется вмешательство механика.

Неисправности системы впрыска проявляются по-разному, но методы диагностики на современных СТО позволяют довольно точно определить нерабочий элемент. Чаще всего, это страдают от топлива насосы и форсунки. Определить неисправность просто, для этого даже не нужно ехать в сервис:

  • тяжелый пуск;
  • высокий расход;
  • провалы в работе на средних оборотах и отсутствие холостых;
  • сбои в переходных режимах.

Все это свидетельствует о недостаточном количестве бензина в камере сгорания. Насосы, как правило, не ремонтируют, по крайней мере, на официальных сервисах, а форсунки приходится мыть и прочищать.

Какой впрыск лучше?

Очень часто спорят: какой впрыск лучше. Дешевле всего обойдутся решения, ориентированные на распределённый впрыск. Подкупает и то, что они не требовательны к качеству топлива.
Если вам важно, чтобы была высокая топливная эффективность при минимальных значениях вредных выбросов, однозначно стоит выбирать непосредственный впрыск. Да, эти решения дороже. Но лучше заплатить больше единожды, чем постоянно “съедать” лишнее топливо.

Кстати, дороговизна решения связана, главным образом, с тем, что производителям пришлось внести кардинальные изменения в конструкцию головок цилиндров, однако в ремонте эти двигатели значительно дороже простых и надёжных двигателей с распределённым предкамерным впрыском топлива.

Не просто изучить топливные системы, а попрактиковаться работать в поиске различных неисправностей в них вам поможет специализированный тренажёр на платформе ELECTUDE. Отличное подспорье для автомобильных механиков и диагностов.

Принцип действия системы непосредственного впрыска

Система непосредственного впрыска в результате работы обеспечивает несколько видов смесеобразования:

  • послойное ;
  • стехиометрическое гомогенное ;
  • гомогенное.

Многообразие в смесеобразовании определяет высокую эффективность использования топлива (экономия, качество образования смеси, ее полное сгорание, увеличение мощности, уменьшение вредных выбросов) на всех режимах работы двигателя.

Послойное смесеобразование используется при работе двигателя на малых и средних оборотах и нагрузках. Стехиометрическое (другое наименование – легковоспламеняемое) гомогенное (другое наименование – однородное) смесеобразование применяется при высоких оборотах двигателя и больших нагрузках. На бедной гомогенной смеси двигатель работает в промежуточных режимах.

При послойном смесеобразовании дроссельная заслонка почти полностью открыта, впускные заслонки закрыты. Воздух поступает в камеры сгорания с большой скоростью, с образованием воздушного вихря. Впрыск топлива производится в зону свечи зажигания в конце такта сжатия. За непродолжительное время до воспламенения в районе свечи зажигания образуется топливно-воздушная смесь с коэффициентом избытка воздуха от 1,5 до 3. При воспламенении смеси вокруг нее остается достаточно много чистого воздуха, выступающего в роли теплоизолятора.

Рабочий процесс поддерживается движением воздуха в цилиндрах. В зависимости от нагрузочного и скоростного режимов регулируется интенсивность движения воздуха, при этом, обеспечивается создание гомогенной или послойной смеси.

Гомогенное стехиометрическое смесеобразование происходит при открытых впускных заслонках, дроссельная заслонка при этом открывается в соответствии с положением педали газа. Впрыск топлива производится на такте впуска, что способствует образованию однородной смеси. Коэффициент избытка воздуха составляет 1. Смесь воспламеняется и эффективно сгорает во всем объеме камеры сгорания.

Бедная гомогенная смесь образуется при максимально открытой дроссельной заслонке и закрытыми впускными заслонками. При этом создается интенсивное движение воздуха в цилиндрах. Впрыск топлива производится на такте впуска. Коэффициент избытка воздуха поддерживается системой управления двигателем на уровне 1,5. При необходимости в состав смеси добавляются отработавшие газы из выпускной системы, содержание которых может доходить до 25%.

Промывка инжекторной системы

Есть несколько способов очистки инжекторной системы. Если двигатель находится еще не в критическом состоянии, тогда может помочь промывка при помощи топливных присадок. Они растворяют отложения в насосе, топливопроводе, а главное, в форсунках, и в некоторой степени чистят систему от грязи и шлаков. не всегда это удается и не всегда это безопасно для двигателя, поэтому наиболее эффективным способом прочистки форсунок считают ультразвуковые ванны. Это не механический способ очистки и процесс проходит довольно эффективно.

Инжекторная система подачи топлива продолжает совершенствоваться, полностью вытесняя карбюраторы. Системы вполне работоспособны, только для того, чтобы избежать лишних проблем с очисткой и регулировками, стоит следить за качеством топлива ровно настолько, насколько это позволяют наши нефтеперерабатывающие комбинаты. Чистого всем бензина, и удачи в дороге!

Обратная связь с датчиками

Одним из основных датчиков, на показаниях которого ЭБУ регулирует время открытия форсунок, является лямбда-зонд, установленный в выпускной системе. Этот датчик определяет остаточное (не сгоревшее) количество воздуха в газах.

Благодаря этому датчику обеспечивается так называемая «обратная связь». Суть ее заключается вот в чем: ЭБУ провел все расчеты и подал импульс на форсунки. Топливо поступило, смешалось с воздухом и сгорело. Образовавшиеся выхлопные газы с не сгоревшими частицами смеси выводится из цилиндров по системе отвода выхлопных газов, в которую установлен лямбда-зонд. На основе его показаний ЭБУ определяет, правильно ли были проведены все расчеты и при надобности вносит корректировки для получения оптимального состава. То есть, на основе уже проведенного этапа подачи и сгорания топлива микроконтроллер делает расчеты для следующего.

Стоит отметить, что в процессе работы силовой установки существуют определенные режимы, при которых показания кислородного датчика будут некорректными, что может нарушить работу мотора или требуется смесь с определенным составом. При таких режимах ЭБУ игнорирует информацию с лямбда-зонда, а сигналы на подачу бензина он отправляет, исходя из заложенной в карты информации.

На разных режимах обратная связь работает так:

  • Запуск мотора. Чтобы двигатель смог завестись, нужна обогащенная горючая смесь с увеличенным процентным содержанием топлива. И электронный блок это обеспечивает, причем для этого он использует заданные данные, и информацию от кислородного датчика он не использует;
  • Прогрев. Чтобы инжекторный двигатель быстрее набрал рабочую температуру ЭБУ устанавливает повышенные обороты мотора. При этом он постоянно контролирует его температуру, и по мере прогрева корректирует состав горючей смеси, постепенно ее обедняя до тех пор, пока состав ее не станет оптимальным. В этом режиме электронный блок продолжает использовать заданные в картах данные, все еще не используя показания лямбда-зонда;
  • Холостой ход. При этом режиме двигатель уже полностью прогрет, а температура выхлопных газов – высокая, поэтому условия для корректной работы лямбда-зонда соблюдаются. ЭБУ уже начинает использовать показания кислородного датчика, что позволяет установить стехиометрический состав смеси. При таком составе обеспечивается наибольший выход мощности силовой установки;
  • Движение с плавным изменением оборотов мотора. Для достижения экономичного расхода топлива при максимальном выходе мощности, нужна смесь со стехиометрическим составом, поэтому при таком режиме ЭБУ регулирует подачу бензина на основе показания лямбда-зонда;
  • Резкое увеличение оборотов. Чтобы инжекторный двигатель нормально отреагировал на такое действие, нужна несколько обогащенная смесь. Чтобы ее обеспечить, ЭБУ использует данные карт, а не показания лямбда-зонда;
  • Торможение мотором. Поскольку этот режим не требует выхода мощности от мотора, то достаточно, чтобы смесь просто не давала остановиться силовой установке, а для этого подойдет и обедненная смесь. Для ее проявления показаний лямбда-зонда не нужно, поэтому ЭБУ их не использует.

Как видно, лямбда-зонд хоть и очень важен для работы системы, но информация с него используется далеко не всегда.

Система датчиков инжекторных двигателей

Без этих компонентов работа системы впрыска топлива невозможна. Именно датчики сообщают блоку управления всю информацию, которая необходима для работы исполнительных устройств в нормальном режиме. Неисправности системы питания инжекторного двигателя по большей части вызывают именно датчики, так как они могут неверно производить замеры.

  1. Датчик расхода воздуха устанавливается после воздушного фильтра, так как в конструкции имеется дорогостоящая платиновая нить, которая при попадании мелких посторонних частиц может засоряться, отчего показания окажутся неверными. Датчик считает, какое количество воздуха проходит через него. Понятно, что взвесить воздух не представляется возможным, да и объем его измерить проблематично. Суть работы заключается в том, что внутри пластиковой трубки находится платиновая нить. Она нагревается до рабочей температуры (более 600º, именно это значение закладывается в ЭБУ). Поток воздуха охлаждает нить, блок управления фиксирует температуру и, исходя из этого, вычисляет количество воздуха.
  2. Датчик абсолютного давления необходим для более точного снятия показаний о количестве потребляемого двигателем воздуха. Состоит из 2 камер, одна из которых герметична и внутри у неё вакуум. Вторая камера соединена с впускным коллектором. В последнем при впуске разрежение. Между камерами устанавливается диафрагма с пьезоэлементом, который вырабатывает небольшое напряжение во время изменения давления. Это значение напряжения поступает на вход блока управления.
  3. Датчик положения коленвала располагается рядом со шкивом генератора. Если присмотреться, то можно увидеть, что на шкиве есть зубья, причём они расположены на одинаковом расстоянии друг от друга. Суммарное число зубьев — 60, оси соседних расположены на расстоянии 6º. Но если присмотреться ещё внимательнее, то можно увидеть, что 2-х не хватает. Этот промежуток необходим, чтобы датчик фиксировал положение коленвала максимально точно. Датчик вырабатывает напряжение, которое тем больше, чем выше частота вращения.
  4. Датчик фаз (распредвала) работает на эффекте Холла. В конструкции есть диск с вырезанным сегментом и катушка. При вращении диска вырабатывается напряжение. Но в момент, когда прорезь находится над чувствительным элементом, напряжение снижается до 0. В этот момент первый цилиндр находится в ВМТ на такте сжатия. Благодаря датчику фаз точно подаётся искра на свечу и открывается своевременно форсунка.
  5. Датчик детонации расположен на блоке ДВС между 2 и 3 цилиндрами (чётко посередине). Работает на пьезоэффекте — при наличии вибрации происходит генерирование напряжения. Чем сильнее вибрация, тем выше уровень сигнала. Блок управления при помощи датчика изменяет угол опережения зажигания.
  6. Датчик дроссельной заслонки представляет собой переменный резистор, на который подаётся напряжение 5 В. В зависимости от того, в каком положении находится заслонка, напряжение уменьшается. Иногда случаются поломки — в начальном положении показания датчика прыгают. Стирается резистивный слой, ремонт невозможен, эффективнее установить новый.
  7. Датчик температуры ОЖ, от него зависит качество воспламенения топливовоздушной смеси. С его помощью не только происходит коррекция угла опережения зажигания, но и включение электровентилятора.
  8. Лямбда-зонд расположен в системе выпуска отработанных газов. В современных системах, которые удовлетворяют последним экологическим стандартам, можно встретить 2 датчика кислорода. Лямбда-зонд отслеживает количество кислорода в выхлопных газах. У него есть внешняя часть и внутренняя. За счёт напыления из драгметалла можно оценить количество кислорода в выхлопных газах. Внешняя часть датчика «дышит» чистым воздухом. Показания передаются на блок управления и сравниваются. Эффективные замеры возможны только при достижении высоких температур (свыше 400º), поэтому часто устанавливают подогреватель, чтобы даже в момент начала работы двигателя не наблюдалось перебоев.

Техническое обслуживание

Как любой узел автомобиля, система питания с впрыском топлива требует периодического обслуживания. Прежде всего, это своевременная замена воздушного фильтра, которую нужно делать каждые 20-30 тыс. км пробега. Если фильтр не заменить, то пыль и мелкий мусор извне будут проходить в топливный трубопровод, что приведет к засорению форсунок, неправильному сгоранию топлива, преждевременному износу двигателя.

При выходе из строя любого из датчиков, на приборной панели загорится лампочка CHECK ENGINE или CHECK. Это означает, что в системе двигателя зарегистрирована ошибка, но какая, поможет узнать только электронная диагностика. При этом двигатель продолжит работать по резервной программе, предусмотренной в электронном блоке управления, усредняющей показания датчика, который вышел из строя. Это может никак не сказаться на режиме работы мотора, а в ряде случаев, он переводится на щадящий режим работы с минимальной мощностью, пригодный только для того, чтобы потихоньку доехать до СТО. Иногда наблюдаются перебои в работе или необычный по цвету, более интенсивный выхлоп.

После обращения в автосервис требуется провести компьютерную диагностику, которая точно выявит, какой из датчиков вышел из строя. После потребуется провести его ремонт или замену, и система управления впрыском топлива заработает в нормальном режиме, а индикатор CHECK ENGINE перестанет загораться при работающем моторе. Единственный датчик, при поломке которого автомобиль заглохнет и уже не заведется – датчик положения коленчатого вала.

Устройство системы впрыска топлива на современных автомобилях имеет достаточно сложную конструкцию, которая управляется при помощи цифрового устройства. Поэтому при нарушении ее регулировки или поломке необходимо обращаться в автосервис. Там мастер, применяя специализированное оборудование, выявит причины неполадок и проведёт профессиональный ремонт.

Своевременное обслуживание, эксплуатация двигателя в нормативных режимах и использование качественного топлива позволят избежать серьезных поломок и увеличат интервал между такими дорогостоящими операциями, как замена топливных форсунок, которые стоят достаточно дорого, особенно на дизельных авто.

Исполнительные механизмы инжекторных систем

По названию видно, что эти устройства выполняют то, что им скажет блок управления. Все сигналы от датчиков анализируются, сравниваются с топливной картой (огромной схемой работы при тех или иных условиях), после чего подаётся команда на исполнительный механизм. Следующие исполнительные механизмы входят в состав инжекторной системы:

  1. Электрический бензонасос, установленный в баке. Он нагнетает в рампу бензин под давлением около 3,5 Мпа. Вот какое давление в топливной системе должно быть, при нем распыление смеси окажется наиболее качественным. При повышении оборотов коленвала увеличивается расход бензина, нужно его больше нагнетать в рампу, чтобы удерживать давление на уровне. В нижней части насосов устанавливается фильтр, который нужно менять хотя бы раз в 30000 км пробега.
  2. Электромагнитные форсунки устанавливаются в рампе и предназначены для подачи топливовоздушной смеси в камеры сгорания. Чем дольше открыт клапан форсунки, тем больше смеси поступит в камеру сгорания — именно такой принцип дозирования лежит в основе.
  3. Дроссельный механизм приводится в движение педалью из салона. Но в последние годы набирает популярность электронная педаль газа. Это означает, что вместо тросика используется потенциометр на педали и небольшой электродвигатель на дроссельной заслонке.
  4. Регулятор холостого хода предназначен для контроля количества воздуха, поступающего в топливную рампу при полностью закрытой дроссельной заслонке. На карбюраторных моторах аналогичную функцию выполняет «подсос». Несмотря на то, что топливная система отличается, суть работы остаётся той же — подача смеси и её сгорание.
  5. Модуль зажигания — короб, в котором находится 4 высоковольтные катушки. Хорошая конструкция, но крайне ненадёжная — высоковольтные провода имеют свойство портиться. Намного эффективнее окажется использование для каждой свечи отдельной катушки, выполненной в виде наконечника.

Моновпрыск

На смену карбюратору пришла система так называемого «над дроссельного впрыска» топлива. Она также известна как моновпрыск или система центрального впрыска.
Принцип базируется на впрыске топлива одной форсункой, установленной на впускном коллекторе двигателя.

Самыми популярными конструкциями системы центрального впрыска являются решения Mono-Jetronic от R. R. Bosch и Opel-Multec (как нетрудно догадаться из названия, это решение корпорации Opel).

Появление моновпрыска приходится на середину 70-х годов 20-го века. В то время системой Mono-Jetronic стали оснащать автомобили Volkswagen и Audi.

Главной задачей при разработке моновпрыска стало нахождение альтернативы карбюраторной системе впрыска. Важно было найти более эффективную систему топливоподачи, которая смогла бы удовлетворить возросшим экологическим требованиям.

Mono-Jetronic: конструктивные элементы

  • Регулятор давления. Способен поддержать на стабильном уровне рабочее давление в системе впрыска, а после выключения ДВС сохранить остаточное давление в системе . Это важно для облегчения пуска, создание барьеров против образования паровых пробок.
  • Электромагнитный клапан (форсунка). Обеспечивает импульсный впрыск топлива. Управление клапаном осуществляется посредством электросигнала. Он идёт от блока управления.
  • Дроссельная заслонка. Регулятор объема поступающего воздуха.
  • Привод. Он ответственный за работу дроссельной заслонки.
  • Электронный блок управления. «Мозг», синхронизатор.

Входные датчики (момента впрыска, положения дроссельной заслонки, оборотов двигателя, концентрации кислорода и т.д.).

Распределённый впрыск

В 70-е годы появились и системы распределительного впрыска, основанные на подаче топлива отдельной форсункой в предкамеру, расположенную перед впускным клапаном каждого цилиндра двигателя. Впрыск может быть при этом может быть как импульсным, так и непрерывным.

Мы остановимся на решении K-Jetronic производителя Robert R. Bosch с непрерывным впрыском. K-Jetroniс активно присутствовала на рынке с 1973-го по 1995 годы. Сначала K-Jetroniс выпускалась с механической системой дозирования. С 1982 года — с электронной начинкой и электронным управлением дозирования. Начиная с версий (модификаций) с электронным управлением система стала называться KE-Jetroniс.

Экономические характеристики автомобилей, их уровень топливной эффективности был существенно улучшен, уровень выбросов вредных веществ в выхлопе также снизился.

В системах K/KE-Jetronic впрыск топлива осуществлялся непрерывно в смесительную камеру перед впускным клапаном. При этом количественное дозирование топлива, поступающего в поток воздуха, производилось за счет взаимосвязанных узлов «расходомер – дозатор».

Помимо дозатора-распределителя обязательный элемент решения – дроссельная заслонка, расположенная за дозатором, у первых версий были вакуумно-механические клапаны коррекции топлива(запуск клапанов в работу возможен как от терморегуляторов, так от разряжения воздуха во впускном коллекторе), в поздних модификациях появились электрические клапаны коррекции топлива. Кроме того, системы стали оснащать кислородным датчиком (лямбда-зондом). Огромным плюсом схемотехнического решения стало то, что система впрыска могла быть оснащена катализаторам-, но к уровню надёжности были существенные вопросы.

Дискретный впрыск топлива

Новой эрой стал дискретный впрыск топлива. Первой здесь стала электронная система распределенного впрыска топлива L-Jetronic – опять-таки от R. R. Bosch. С появлением этого решения стало возможным говорить о качественной управляемости, безотказности, надёжности. Да, сразу же стало ясно, что это средний и высокий ценовой сегмент. Поэтому долгое время системы дискретного впрыска топлива сосуществовали с системами непрерывного распределительного впрыска типа K/KE-Jetronic.
Но постепенно L-Jetronic обрела массовость. Её стал активно использовать практически весь европейский автопром. Явные плюсы оценили и водители, и персонал автосервиса: повысилась топливная экономичность авто. Для обслуживания перестали быть нужны сложные навыки (в первую очередь, это стало возможным за счёт того, что отпала надобность выполнять механические настройки).

L-Jetronic несколько раз модернизировалась и уверенно держалась на рынке до появления стандарта Евро-3. После чего более актуальными стали решения на основе термоанемометрических датчиков массметра (массового расхода воздуха). В частности, популярность приобрела модификация LH-Jetronic .

У новой разработки стала доступна индивидуальная регулировка подачи топлива в каждый из цилиндров Объединяющая черта систем Mono-Jetronic, L-Jetronic, LH-Jetronic состоит в том, это все эти решения управляют только впрыском топлива, при этом для воспламенения топлива задействована система зажигания с модулем электронного управления.

Устройства, в которых система и зажигания и впрыск были синхронизированы и объединены, корпорация R.R. Bosch начала выпускать с 1979 года.

Ярким примером решения с объединёнными системами впрыска и зажигания – стала система Motronic от R.R. Bosch. Она существовала в нескольких модификациях, появившихся в 90-е годы 20-го века. В эти годы в их конструкции входили механические расходомеры воздуха. Но вскоре вместо них стали использоваться термоанемометрические датчики-расходомеры, расширились возможности для самодиагностики.

Правда, полностью удовлетворить запросам диагноста системы не могли, поскольку протокол выявления неисправностей не обладал высокой результативностью. В последующих модификациях эта проблема была успешно решена.

Но самым революционным решением Motronic стало появление датчика абсолютного давления во впускном коллекторе (MAP-sensor).

Использование MAP-сенсора в системе управления двигателем позволило готовить качественную топливовоздушную смесь, состав которой близок к желаемому, и, главное, не сложно соблюсти европейские требования к выхлопам автомобилей.

Но для выхода на американский рынок даже этого было недостаточно. По стандартам США в топливной системе должна быть обязательная система контроля утечек паров топлива из бака. Так появилось инновационное решение Motronic M5. С ним появились все условия для того, чтобы исключить эксплуатацию автомобиля с потерявшей герметичность пробкой заливной горловины или неисправной системой вентиляции топливного бака.


Кроме того, эта система соответствует требованиям самого строгого протокола самодиагностики OBD-II/CARB.

А благодаря электроуправлению дроссельной заслонкой отлажено взаимодействие между системой управления двигателем и системой торможения.

Системы непосредственного впрыска Особое место среди систем впрыска бензиновых двигателей получили системы непосредственного впрыска. Их принцип действия основан на том, что топливо посредством инжектора распыляется прямо в цилиндр двигателя.

  • Это важно для достижения топливной экономичности.
  • Плунжерный насос. Подаёт топливо в рампу, соединённую с форсунками.
  • Регулятор давления топлива. Поддерживает стабильное рабочее давление в топливной рампе. Топливная рампа. Здесь непосредственно происходит процесс распределения топлива по форсункам.
  • Предохранительный клапан на рампе. Защищает рампу от предельных давлений.
  • Датчик высокого давления. Замеряет давление в рампе, подаёт сигнал блоку управлением двигателя на коррекцию давления.

Согласование взаимодействия узлов осуществляется посредством электронной системы управления двигателем. От блока электронного управления поступают команды на исполнительные механизмы.

Интересная деталь!
Если среди дизельных систем впрыска такие топливные системы были популярны давно, то среди бензиновых распространение получили не сразу. Причина элементарно проста: бензин в отличие от дизельного топлива является плохой смазкой, что вызывало быстрый износ» топливного насоса.

Но с развитием технологий уплотнений разработчики снова смогли заняться бензиновыми системами с прямым впрыском топлива. Система непосредственного впрыска может обеспечивать несколько видов смесеобразования: послойное, однородное (гомогенное), и стехиометрическое. Послойное смесеообразование актуально при малых и средних оборотах, стехиометрическое и гомогенное – при сверхвысоких оборотах, а также при средних и высоких нагрузках.

Самые популярные решения – с послойным смесеобразованием. Их хорошо знают по названию FSI и TFSI (у Volkswagen и у Ауди). Буква “T” в названии свидетельствуют о наличии турбокомпрессора, то есть двигатель, как именуется в просторечии — “турбирован”.

В цилиндр таких бензиновых систем впрыска поступает небольшое количество топлива. Тщательная организация потока воздуха в цилиндре (его траектория движения, подобная «кувырку) и удачно подобранное время впрыска топлива в цилиндр создают все условия, чтобы это небольшое количество топлива было подано к электродам свечи зажигания, и произошло воспламенение этой порции горючей смеси.

Почему на эту бензиновую систему впрыска не переходят повсеместно. К сожалению, актуальна такая проблема, как «турбоямы» при резком нажатии на педаль газа.

Этот недостаток полностью устранен при наличии наддувочного агрегата с электроприводом. Такие системы недёшевы. Но оперативно выйти на режим максимальной мощности, избежать «турбоям» при резком нажатии педали на газ с ними – не проблема. Прямой впрыск SC-E актуален, например, для ряда спортивных автомобилей.

Очень высокий интерес – и к битопливным (бинарным) система с газотурбинным наддувом. При работе на бензине можно достичь очень хорошего крутящего момента.

Параметры применяемого топлива прописываются в постоянной памяти. Если нужно заменить бензин на альтернативное топливо, изменяется программа смесеобразования. Это очень удобно.

Работа двигателя с инжекторной системой впрыска

А теперь можно рассмотреть и принцип работы системы питания инжекторного двигателя. При включении зажигания происходит переход в рабочий режим всех механизмов и устройств. Первым делом насос нагнетает бензин в рампу до минимального давления, которого хватит для запуска.

А дальше все ждут, когда провернётся коленвал, и с его датчика пойдёт сигнал на блок управления о положении поршней в цилиндрах. Одновременно с этим датчик фаз выдаёт сигнал о том, какой такт совершается. После анализа данных блок управления даёт команду на форсунки (в зависимости от того, в каком цилиндре происходит впуск).

При вращении коленвала постоянно снимаются данные с датчиков и, исходя из них, происходит открывание нужных электромагнитных форсунок на определённый промежуток времени. Смесь воспламеняется, отработанные газы выходят через выпускной коллектор. По тому, какое содержание кислорода в них, можно судить о качестве сгорания топлива.

Если содержание кислорода большое, то смесь сгорает не до конца. Блок управления производит корректировку угла опережения зажигания, чтобы добиться наилучших показаний.

Но вот во время прогрева некоторые датчики не влияют на работу системы управления. Это датчики расхода воздуха, детонации и абсолютного давления. При достижении рабочей температуры включаются они в работу. Причина — во время прогрева невозможно соблюсти все условия, в частности, соотношение бензина и воздуха. Уровень СО в выхлопных газах тоже будет зашкаливать, поэтому контроль всех этих параметров не следует производить.

Распределённый впрыск топливной смеси

В таких системах количество форсунок равно числу цилиндров. Все форсунки находятся на впускном коллекторе, топливовоздушная смесь подаётся при помощи общей для всех топливной рампы. В ней происходит смешивание бензина и воздуха. Режимы работы форсунок:

  1. Фазированный впрыск — самые современные системы работают именно с его использованием. Количество форсунок и цилиндров одинаковое, открытие и закрытие электроклапанов происходит в зависимости от того, какой такт проходит двигатель. Наилучшим режимом работы мотора считается такой, при котором открытие форсунки происходит непосредственно перед началом такта впуска. И двигатель работает устойчиво, и достигается высокая экономия бензина. Преимущества такой топливной системы очевидны.
  2. Одновременный впрыск топливовоздушной смеси — открытие форсунок не зависит от такта. Они все открываются одновременно, несмотря на то, что находятся на впускных коллекторах «своих» цилиндров. Это несколько модернизированный моновпрыск, несмотря на то, что форсунок несколько, управление ими происходит так, будто установлена всего одна. В общем, такие конструкции надёжны и работа их стабильна, но по характеристикам уступают более современным конструкциям.
  3. Попарно-параллельный впрыск топливной смеси немного отличается от предыдущего. Главное отличие — открываются не все форсунки разом, а парами. Одна пара открывается перед впуском, вторая — перед выпуском. Именно так обычно работает впрыск. Из употребления такие системы вышли давно, но, например, если выходит из строя датчик фаз, современные инжекторы переходят в аварийный режим (попарно-параллельный впрыск происходит вместо фазированного, так как без параметров этого датчика работа невозможна).
  4. Системы непосредственного впрыска топлива имеют высокую стоимость, но и надёжность у них завидная. Экономичность и мощность двигателя на высоком уровне, регулировка подачи топливовоздушной смеси максимально точная. Мотор может быстро изменить режим работы. Электромагнитные форсунки устанавливаются в ГБЦ, смесь распыляется непосредственно в камеру сгорания цилиндра (отсюда и название системы).

В конструкции отсутствует впускной коллектор и клапан. Реализация конструкции довольно сложная, так как в ГБЦ на каждый цилиндр есть отверстия под свечи, клапаны (2 или 4, в зависимости от типа мотора). Элементарно не хватает места для установки форсунки.

Изначально такие системы впрыска устанавливались на габаритные и мощные двигатели, на бюджетных их не встретить. И ремонт таких систем выливается в круглую сумму.

На сегодняшний день инжекторный (или, говоря по-научному, впрысковый) двигатель практически полностью заменил устаревшие карбюраторные двигатели. Инжекторный двигатель существенно улучшает эксплуатационные и мощностные показатели автомобиля (динамика разгона, экологические характеристики, расход топлива).

Инжекторные системы подачи топлива имеют перед карбюраторными следующие основные преимущества:

  • Точное дозирование топлива и, следовательно, более экономный его расход;
  • Снижение токсичности выхлопных газов. Достигается за счет оптимальности топливно-воздушной смеси и применения датчиков параметров выхлопных газов;
  • Увеличение мощности двигателя примерно на 7-10% за счет улучшения наполнения цилиндров, оптимальной установки угла опережения зажигания, соответствующего рабочему режиму двигателя;
  • Улучшение динамических свойств автомобиля. Система впрыска незамедлительно реагирует на любые изменения нагрузки, корректируя параметры топливно-воздушной смеси;
  • Легкость пуска независимо от погодных условий.

Виды инжекторных систем

Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электрические элементы, способствовавшие лучшей работе мотора.

Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.

Всего существует 3 типа инжекторных систем, различающихся по типу подачи топлива:

  1. Центральная;
  2. Распределенная;
  3. Непосредственная.

Центральная (моновпрыск) инжекторная система

Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

Распределенная (мультивпрыск) инжекторная система

Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У этого инжектора топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

Система непосредственного впрыска

Система непосредственного впрыска – разновидность распределенной и на данный момент самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она очень сложная по конструкции и очень требовательна к качеству бензина.

Виды электронных форсунок

Существует классификация электронных форсунок, основывающихся на способе впрыска топлива. Выделяют такие три разновидности:

    Электромагнитная. Зачастую характерна для бензиновых ДВС (и с прямым впрыском тоже). Конструкцию нельзя назвать очень сложной, а основными составляющими её частями выступают клапан с иголкой (электромагнитный), сопло. Контроль за работой указанной форсунки выполняется с помощью ЭБУ, обеспечивающего на обмотке клапана напряжение в наиболее подходящий для этого момент. Электрогидравлическая. По большей части используют на дизельных движках. Являет собой электромагнитный клапан, дополненный камерой управления, а также сливным и впускным дросселями. Рабочий принцип этой разновидности форсунок основывается на участии давления самой топливной смеси в любой момент работы. За деятельностью электрогидравлической форсунки следит ЭБУ, именно он отправляет рабочие сигналы электромагнитному клапану. Пьезоэлектрическая. Считается наиболее удачным устройством среди всех представленных, но может работать только на дизельных агрегатах с системой впрыска Common Rail. Основное преимущество этого типа — быстрота реакции, что гарантирует многократную подачу топлива за один полный цикл. В основе работы пьезоэлемента — гидравлический принцип действия (как и в предыдущем варианте), предусматривающий срабатывание поршня толкателя за счёт увеличения длины пъезоэлемента под воздействием электрического сигнала ЭБУ. Количество подаваемого за один раз топлива определяется продолжительностью такого воздействия и давлением топливной смеси в топливной рампе.

Принцип работы инжектора

Принцип работы инжектора на автомобилях можно условно поделить на 2 части — механическую составляющую и электронную.

  • топливный бак;
  • электрический бензонасос;
  • фильтр очистки бензина;
  • топливопроводы высокого давления;
  • топливная рампа;
  • форсунки;
  • дроссельный узел;
  • воздушный фильтр.

Конечно, это не полный список составных частей. В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого двигателя с инжектором распределенного впрыска.

Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.

Далее в систему установлен топливный фильтр, обеспечивающий очистку бензина от сторонних примесей. Поскольку бензин находится под давлением, то передвигается он по топливопроводу высокого давления.

Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенную со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.

Современная форсунка – электромагнитная, в ее основе лежит соленоид. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.

С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.

Для своей работы ЭБУ использует показания датчиков:

  • Лямбда-зонд, устанавливается в выпускной системе авто, определяет остатки несгоревшего воздуха в выхлопных газах;
  • Датчик массового расхода воздуха (ДМРВ), расположен в корпусе воздушного фильтрующего элемента, определяет количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами;
  • Датчик положения дроссельной заслонки (ДПДЗ), установлен в дроссельном узле, подает сигнал о положении педали акселератора;
  • Датчик температуры силовой установки, располагается возле термостата, регулирует состав смеси в зависимости от температуры мотора;
  • Датчик положения коленчатого вала (ДПКВ), установлен возле шкива коленчатого вала;
  • Датчик детонации, расположен на блоке цилиндров;
  • Датчик скорости, установлен на коробке передач;
  • Датчик фаз,предназначен для определения углового положения распредвала, установлен в головке блока.

Элекробензонасос заполняет всю систему топливом. Контролер получает показания от всех датчиков, сравнивает их с данными, занесенными в блок памяти. При несовпадении показаний, он корректирует работу системы питания двигателя так, чтобы добиться максимального совпадения получаемых данных с занесенными в блок памяти.

На основе данных от датчиков, контролером высчитывается время открытия форсунок, чтобы обеспечить оптимальное количество подаваемого бензина для создания топливовоздушной смеси в необходимой пропорции.

При поломке какого-то из датчиков, контролер переходит в аварийный режим. То есть, он берет усредненное значение показаний неисправного датчика и использует их для работы. При этом возможно изменение функционирование мотора – увеличивается расход, падает мощность, появляются перебои в работы. Но это не касается ДПКВ, при его поломке, двигатель функционировать не может.

Преимущества инжектора и его недостатки

Если бы в этой системе не было преимуществ, инжекторы не получили бы столь широкое распространение. Надежность инжектора многие могут оспорить, ведь автомобилисты нередко сталкиваются с проблемами и неизлечимыми болезнями системы. Тем не менее, в технологии намного больше плюсов, которые привлекают покупателей и дарят определенные выгоды в поездке.

+ Преимущества — Недостатки
реальное понижение расхода топлива — инжектор может экономить, благодаря интеллектуальному управлению подачей топлива; чистка форсунок — если вы заливаете не слишком качественный бензин или не меняете вовремя фильтры топлива, форсунки будут забиваться и перестанут распылять бензин;
полное сгорание бензина — при правильных настройках инжектор обеспечивает полное сгорание топлива и определенную интенсивность поездки; прошивка «мозгов» в нужных режимах — на старых машинах иногда получается достичь невероятных результатов от перепрошивки, ведь технологии движутся вперед;
более выразительная динамика двигателя — водителю не приходится долгое время ожидать реакции при нажатии педали газа; замена бортового компьютера на более функциональный вариант ЭБУ для вашей модели автомобиля с подходящими настройками;
возможность смены прошивки — с помощью простой процедуры чип-тюнинга можно полностью изменить параметры авто; регулярная смена фильтров, как воздушного, так и топливного, с целью обеспечения нормальной работы инжектора;
технологичность и современность — машина с инжектором зачастую выбрасывает в атмосферу значительно меньше вредных веществ; использование качественного топлива в соответствии с предписанными производителем нормами и подходящим октановым числом;
устойчивая работа в любых условиях — для хорошей работы инжектора не требуется ручное управление заслонкой воздуха, двигатель хорошо заводится в мороз. регулярный сервис, своевременное обращение внимания на определенные недостатки работы автомобиля.

Несмотря на то, что инжектор дороже в обслуживании и более прихотлив к качеству бензина, его надежность и возможность широкой настройки параметров опережает на сотни шагов вперед карбюратор. В конце концов, за определенный пробег два типа мотора могут выйти одинаково в цене, только карбюратору нужно будет чаще уделять внимание, а инжектор сделать один раз и надолго.

И напоследок представляем вашему вниманию видео для более полного понимания принципа работы инжектора.

Источник http://autoleek.ru/sistemy-dvigatelja/sistema-vpryska/inzhektornaya-sistema.html

Источник https://vmyatynnet.ru/obuchenie/inzhektornaya-sistema-pitaniya.html

Источник https://wikers.ru/articles/ustrojstvo-inzhektora.html

Источник

Как работает инжекторная система подачи топлива. » Хабстаб


Subaru Justy 1990 года выпуска, был последним автомобилем, выпущенным в США, в котором использовался карбюратор,  в следующей модели уже применялась инжекторная система подачи топлива. Однако инжекторная система подачи топлива известна с 50-х годов прошлого столетия, а управляемая электроникой, начиная примерно с 1980 года. На данный момент все автомобили, продаваемые в США, оснащены  инжекторной системой подачи топлива.
Почему не прижился карбюратор?
Карбюратор — устройство, которое подаёт топливо в двигатель. Например, в газонокосилках и бензопилах, до сих пор используется карбюратор. Автомобиль эволюционировал и карбюратор становился всё больше и сложнее.
Ему необходимо было выполнять пять различных функций:
  • Главная функция — обеспечить малое потребление топлива во время езды в “спокойном режиме”;
  • Функция холостого хода — обеспечить контролируемую подачу топлива для поддержания холостого хода;
  • Функция ускорительного насоса — обеспечить дополнительный впрыск топлива, когда нажата педаль газа;
  • Функция обогащения питания — обеспечить дополнительное топливо, когда автомобиль едет в гору или буксирует прицеп;
  • Функция подсоса — обеспечить дополнительное топливо, когда двигатель холодный;

В целях уменьшения количества вредных выбросов, были введены каталитические нейтрализаторы. Кислородный датчик определяет количество кислорода в выхлопе, а блок управления двигателем использует эту информацию, для того чтобы регулировать соотношение воздух-топливо в режиме реального времени.
Это называется замкнутый цикл управления. Этого невозможно было добиться с карбюратором. До появления инжекторной системы впрыска топлива был короткий период электрически управляемых карбюраторов, но эти карбюраторы были ещё более сложными чем чисто механические. Сначала карбюратор заменили на моноинжектор, он представлял собой дроссельную заслонку,  совмещённую с форсункой. Следующим этапом после моноинжекторов стала система распределенного впрыска топлива. В отличие от моноинжектора в системе распределенного впрыска количество форсунок равно количеству цилиндров.
 
Что происходит когда мы жмём на газ?
Педаль газа в автомобиле подключена к дроссельной заслонке. Дроссельная заслонка — это клапан, который регулирует количество воздуха, поступающего в двигатель. Когда мы нажимаем на педаль газа, дроссельная заслонка открывается, позволяя большему количеству воздуха попадать в двигатель. Блок управления двигателем, который управляет всеми электронными компонентами двигателя,  “видит”,  что дроссельная заслонка открылась и увеличивает расход топлива, в ожидании того,  что в двигатель поступит больше воздуха.
Важно,  что бы расход топлива увеличивался как только откроется дроссельная заслонка, иначе при нажатии на педаль газа будет некоторое запаздывание.
Датчики также регистрируют массу воздуха, поступающего в двигатель, и количество кислорода в выхлопе. Опираясь на эту информацию,  блок управления двигателем регулирует подачу топлива.

Форсунка.
Форсунка — это не что иное, как электромагнитный клапан, к которому подводится топливо и способный открываться множество раз в секунду. Когда на форсунку подаётся напряжение, электромагнитный клапан открывается и топливо под давлением распыляется через крошечные сопла. Сопла необходимы для того чтобы топливо превратить в мелкий туман, в таком состоянии оно лучше горит. Количество топлива, подаваемого в двигатель, определяется временем, когда топливная форсунка открыта. Это время зависит от ширины импульса, который подаёт электронный блок управления двигателем (ЭБУ). Форсунки установлены во впускном коллекторе и распыляют топливо прямо на клапана. Топливо подводится к форсункам через трубку,  которая называется топливной рампой.
 
Датчики двигателя.
В целях обеспечения необходимого количества топлива на всех режимах работы двигателя, ЭБУ должен контролировать большое количество входных параметров, с различных датчиков.
Вот только некоторые из них:

  • Датчик массового расхода воздуха — сообщает ЭБУ массу воздуха, поступающего в двигатель;
  • Датчики кислорода — определяют количество кислорода в выхлопных газах, на основе этих данных ЭБУ корректирует качество смеси;
  • Датчик положения дроссельной заслонки — контролирует положение дроссельной заслонки, которая определяет какое количество воздуха попадёт в двигатель, это позволяет ЭБУ быстрее реагировать, уменьшая или увеличивая расход топлива. Дело в том, что массовый расходомер воздуха (который по сути определяет массу воздуха поступающего в двигатель) инерционен, то есть при изменении потока воздуха он реагирует с некоторым опозданием.
    Информация с дроссельной заслонки приходит раньше чем с массового расходомера воздуха, что позволяет нам не чувствовать его инерционности;
  • Датчик температуры охлаждающей жидкости — предоставляет данные ЭБУ о температуре охлаждающей жидкости;
  • Датчик абсолютного давления — контролирует давление воздуха во впускном коллекторе.
    По известному количеству воздуха, поступающего в двигатель, можно посчитать какая энергия образуется в двигателе. Чем больше воздуха поступает в двигатель, тем меньше разряжение во впускном коллекторе;
  • Вольтметр — контролирует напряжение сети, ЭБУ может поднять обороты холостого хода если напряжение сети упало, что указывает на высокую электрическую нагрузку;

Распределенный впрыск или как его ещё называют многоточечный, бывает четырёх видов:
  • Одновременный впрыск — все форсунки открываются одновременно;
  • Попарно-параллельный впрыск — форсунки открываются парами, только в одном цилиндре в это время впускной такт и топливо попадёт в цилиндр, а в другом выпускной. Но так как за попадание топлива в цилиндр отвечают клапана, это не мешает работе двигателя.
    В современных моторах попарно-параллельный впрыск используется в аварийном режиме, когда неисправен датчик распредвала,  также называемый датчиком фаз;
  • Фазированный впрыск — каждая форсунка открывается непосредственно перед впускным тактом;
  • Прямой впрыск — тот же фазированный впрыск, только топливо впрыскивается прямо в камеру сгорания;

Микросхемы, управляющие работой двигателя.
Алгоритмы с помощью которых ЭБУ контролирует работу двигателя очень сложны.
Программное обеспечение должно позволить автомобилю удовлетворить все требования по токсичности выбросов. ЭБУ использует формулы и большое количество таблиц, чтобы определить длительность импульса,  подаваемого на форсунки.
Давайте рассмотрим как это примерно происходит. Есть уравнение с помощью которого можно вычислить длительность импульса, для управления форсункой. В это формула входит множество переменных, некоторые из них берутся из таблиц. Мы пойдём по упрощённой схеме расчёта, будем считать что уравнение,  которое описывает длительность импульса, состоит из двух коэффициентов и базовой длительности импульса, в реальной системе коэффициентов более сотни.
Выглядит формула следующим образом:
Длительность импульса = (базовая длительность импульса) х (коэффициент А) х (коэффициент B)

Для того чтобы вычислить длительность импульса, ЭБУ сначала смотрит базовую длительность импульса в справочной таблице. Базовая длительность импульса зависит от частоты вращения двигателя (RPM) и нагрузки (которая может быть вычислена из абсолютного давления в коллекторе). Предположим обороты двигателя 2000 оборотов в минуту и нагрузка равна 4. Находим значение на пересечении 2000 и 4, оно составляет 8 миллисекунд.


Далее, рассмотрим параметры А и B,  которые приходят с датчиков. Давайте предположим, что параметр А это температура охлаждающей жидкости, а параметр В это показания датчика кислорода. Если температура охлаждающей жидкости равна 100 и уровень кислорода равен 3, из справочных таблиц находим что коэффициент А равен 0,8 а коэффициент В равен 1.

Теперь по известным данным рассчитаем длительность импульса:
Длительность импульса = 8 х 0,8 х 1,0 = 6,4 мс
Из этого примера,  видно, как ЭБУ регулирует длительность импульса.
Системы реального контроля может иметь более 100 параметров, каждому параметру соответствует собственная таблица. И в зависимости от оборотов двигателя, ЭБУ, приходится производить расчёты более ста раз в минуту.
 
Производительность чипов.
Теперь когда мы понимаем как работает ЭБУ, можем поговорить о том как увеличить мощность двигателя. В ЭБУ есть чип в котором располагаются все справочные таблицы. Этот чип можно заменить на аналогичный, с другими таблицами. Эти таблицы будут содержать в себе значения, которые будут увеличивать подачу топлива на определённых этапах езды.
Например, можно увеличить количество топлива поступающего в двигатель как на полном газу, так и на любых оборотах. Поскольку производители таких прошивок для чипов, не озабочены количеством вредных выбросов, они используют более агрессивные настройки подачи топлива, при написании прошивки.

Типы инжекторного двигателя

Инжекторный двигатель — это следующая (после карбюраторного) эволюционная ступень развития двигателя внутреннего сгорания. Такой двигатель имеет ряд значительных преимуществ, благодаря чему практически вытеснил карбюраторный.

Основное отличие инжекторного двигателя заключается в системе подачи топлива прямо в впускной коллектор или цилиндр двигателя при помощи форсунки (инжектора).

По количеству форсунок, месту их размещения, а так же принципу действия инжекторная система впрыска топлива делится на следующие типы.

Центральная подача топлива или моновпрыск. Данный тип использует одну форсунку, расположенной на впускном коллекторе, которая осуществляет подачу топлива сразу во все цилиндры мотора.

Распределенная подача топлива, здесь за каждый цилиндр отвечает своя форсунка. В свою очередь такая система имеет следующие типы:

  1. прямой – подача топлива происходит непосредственно в камеру сгорания
  2. одновременный – все форсунки синхронно подают топливо во все цилиндры
  3. фазированный – впрыск топлива из форсунок происходит перед тактом впуска
  4. попарно параллельный – одна половина инжекторов открывается на начале цикла (впуске), другая на его завершении (выпуске).

Несмотря на то, что инжекторная система имеет больший КПД, более экологически чиста и ее использование ведет к экономии топлива, эксплуатация таких двигателей имеет ряд недостатков. Поскольку работа инжекторного двигателя управляется при помощи микропроцессора и большого количества специализированных датчиков, самостоятельно провести ремонт и диагностику крайне сложно. Для этого необходимо особое оборудование и квалифицированные навыки. Другим минусом является высокая требовательность инжекторного двигателя к составу и качеству топлива. При использовании некачественного топлива с примесью твердых частиц и различных смол инжектор быстро засоряется и приходит в негодность. Поэтому, для долгой корректной работы двигателя стоит чаще менять топливные фильтры и периодически очищать форсунки, не стоит забывать и о бензобаке в котором может появиться ржавчина.

Система впрыска – обзор

Экспериментальные устройства и процедура

Система впрыска, использованная в этом исследовании, представляла собой топливную инжекторную систему аккумуляторного типа с электронным управлением (Azetsu et al., 2003; Matsui et al., 1979). С помощью форсунки с одним отверстием диаметром 0,2 мм, приводимой в действие пьезоэлектрическим приводом через удлиненный нажимной штифт, мы могли контролировать подъем иглы и формирование скорости впрыска топлива. Принципиальная схема инжектора и детали показаны на рис.23.1.

Рисунок 23.1. Схематическая диаграмма инжекторных систем (Мацуи и др., 1979).

Эксперименты проводились в сосуде постоянного объема объемом 2,2 л с кварцевым смотровым окном диаметром 80 мм сбоку, пропеллером для смешения газов снизу и инжектором вверху, как показано на рис. 23.2. Окружающие условия внутри сосуда создавались при высокой температуре и давлении путем воспламенения водорода в смеси, обогащенной кислородом и воздухом. Концентрация кислорода после сжигания водорода составляла примерно 21% по объему (Azetsu et al., 2003; Мацуи и др., 1979).

Рисунок 23.2. Экспериментальные аппараты.

В этом эксперименте была выбрана прямоугольная форма скорости нагнетания, как показано на рис. 23.3. Масса впрыскиваемого топлива для всех экспериментов была установлена ​​примерно на уровне 15 мг. Давление нагнетания составляло 100 МПа. Топливо впрыскивалось в сосуд при окружающих условиях 3,0 МПа, температуре около 900°C, как показано на рис. 23.4. Расчетные составы окружающего газа O 2 20,9%, N 2 70.8% и H 2 O 8,3%.

Рисунок 23.3. Формирование скорости впрыска топлива при давлении впрыска 100 МПа (Romhol and Wattanavichien, 2006).

Рисунок 23.4. Изменение давления газа внутри сосуда во времени (Romphol and Wattanavichien, 2006).

После сжигания водорода топливо впрыскивалось в сосуд и затем сжигалось. Фотографии пламени горения распыленного топлива были сделаны камерой ICCD. Светоизлучение пламени измеряли с помощью двух фотодатчиков; фотоумножитель с полосовым фильтром в центре на длине волны 310.3 нм (FWHM: 16,3 нм), используемые для измерения интенсивности излучения ОН-радикалов, и два фотодиода (используемые для измерения силы светового излучения) в верхней и средней части окна наблюдения. Начало распыления определялось комбинацией использования гелий-неонового лазера с фотодатчиком. Используя данные фотодиода, были оценены задержка воспламенения и период горения.

Двухцветный метод применялся для оценки двумерного (2D) контура распределения температуры и KL-фактора (KL-коэффициент, используемый для обозначения сажи) в пламени горения.Эта двухцветная пирометрическая система была настроена путем размещения линзы Vari с двумя разными полосовыми фильтрами с центральной длиной волны 488 нм (FWHM: 11,3 нм) и с центральной длиной волны 634 нм (FWHM: 8,5 нм) для разделения изображений. два перед объективом камеры ICCD. Данные интенсивности обоих фильтров использовались для расчета истинной температуры и KL-фактора.

Данные, полученные от гелий-неонового лазера и ОН-радикала, были использованы для расчета задержки воспламенения. Было обнаружено, что 10% CPO дает более короткую задержку воспламенения по сравнению с дизельным топливом, как показано на рис.23.5.

Рисунок 23.5. Задержка воспламенения при сгорании топлива (Romhol and Wattanavichien, 2006).

Данные 10% пиковых интенсивностей, полученных от двух фотодиодов, были выбраны как начало и конец горения. Результат показал, что наблюдаемый период сгорания дизельного топлива с 10 % CPO при давлении впрыска 100 МПа был немного короче, чем у дизельного топлива, как показано на рис. 23.6.

Рисунок 23.6. Период горения топливной струи при окружающем давлении 3 МПа (Romhol and Wattanavichien, 2006).

Количество впрыскиваемого топлива стало немного меньше, а период впрыска стал немного короче при использовании дизельного топлива с 10% CPO из-за более высокой вязкости дизельного топлива с 10% CPO.

Время экспозиции камеры ICCD было установлено на 10 мкс (микросекунд). Данные интенсивности пламени горения струи были получены двухцветным методом (Wattanavichien, 2004). Некоторые результаты расчетов истинной температуры показаны на рис. 23.7.

Рисунок 23.7. Распределение температуры пламени горения распыления.

Расчетные данные, полученные по фактической температуре пламени горения струи, были использованы для расчета коэффициента KL, коэффициента для указания количества сажи в пламени, результаты расчетов показаны на рис. 23.8.

Рисунок 23.8. Распределение фактора KL.

Суммарный коэффициент KL представляет собой сумму коэффициентов KL по площади пламени горения распыления. Этот коэффициент можно использовать для оценки общего количества сажи при сгорании.

Было найдено, как показано на рис. 23.9 видно, что разница в общем коэффициенте KL между дизельным топливом и 10% CPO была очень небольшой.

Рисунок 23.9. Суммарный коэффициент KL пальмового дизеля 60% и дизельного топлива при давлении впрыска 100 и 60 МПа.

Средний коэффициент KL, который можно было использовать для оценки концентрации сажи при сжигании струи, был рассчитан путем деления суммы коэффициента KL на площадь пламени горения струи на всех участках пламени. Результаты показали, что разница в среднем коэффициенте KL между дизельным топливом и 10% CPO также была очень небольшой.

Гистограмма температуры и коэффициент KL были рассчитаны путем оценки значения из подсчитанного количества пикселей пламени горения струи и преобразования их в площадь пламени (мм 2 ). Интервал температуры и KL-фактора были выбраны при 50К и 0,005 а.е. соответственно. Результаты показаны на рис. 23.10.

Рисунок 23.10. Гистограмма температуры пламени и коэффициента KL пальмового дизельного топлива 60% и дизельного топлива при давлении впрыска 100 и 60 МПа.

Из гистограммы температуры было установлено, что горение форсунки 10% CPO начиналось при более низкой температуре, чем дизельное топливо.Температура горения аэрозоля увеличилась почти до температуры дизельного топлива в середине периода горения. Затем к концу горения она стала ниже. Однако различия были очень малы.

Гистограмма коэффициента KL тайской пальмы с 10% CPO не имела существенной разницы по сравнению с дизельным топливом. Отсюда можно сделать вывод, что разница в выбросах сажи будет очень небольшой.

Главная — Система впрыска топлива FiTech

ПЕРЕД ИСПОЛЬЗОВАНИЕМ ЭТОГО ВЕБ-САЙТА ВНИМАТЕЛЬНО ПРОЧИТАЙТЕ СЛЕДУЮЩИЕ УСЛОВИЯ ИСПОЛЬЗОВАНИЯ.Все пользователи этого сайта соглашаются с тем, что доступ к этому сайту и его использование регулируются следующими положениями и условиями и другим применимым законодательством. Если вы не согласны с этими условиями, пожалуйста, не используйте этот сайт.

Авторское право

Все содержимое этого сайта, включая, помимо прочего, текст, графику или код, защищено авторским правом как коллективная работа в соответствии с законами США и другими законами об авторском праве и является собственностью FiTech Fuel Injection. Коллективная работа включает работы, лицензированные FiTech Fuel Injection.Copyright 2019, FiTech Fuel Injection. ВСЕ ПРАВА ЗАЩИЩЕНЫ. Разрешается копировать в электронном виде и распечатывать части этого сайта в печатном виде с единственной целью размещения заказа в FiTech Fuel Injection или приобретения продуктов FiTech Fuel Injection. Вы можете отображать и, с учетом любых прямо указанных ограничений или ограничений, касающихся конкретных материалов, загружать или распечатывать части материалов из различных областей сайта исключительно для собственного некоммерческого использования или для размещения заказа в FiTech Fuel Injection. или приобрести продукты FiTech Fuel Injection.Любое другое использование, включая, помимо прочего, воспроизведение, распространение, отображение или передачу содержимого этого сайта, строго запрещено, за исключением случаев, когда это разрешено FiTech Fuel Injection. Вы также соглашаетесь не изменять и не удалять какие-либо уведомления о правах собственности из материалов, загруженных с сайта.

Товарные знаки

Все товарные знаки, знаки обслуживания и торговые наименования FiTech Fuel Injection, используемые на сайте, являются товарными знаками или зарегистрированными товарными знаками FiTech Fuel Injection

Отказ от ответственности

Этот сайт, а также материалы и продукты на этом сайте предоставляются «как есть» и без каких-либо гарантий, явных или подразумеваемых.В максимальной степени, допустимой в соответствии с применимым законодательством, FiTech Fuel Injection отказывается от всех гарантий, явных или подразумеваемых, включая, помимо прочего, подразумеваемые гарантии товарного состояния и пригодности для конкретной цели и ненарушения прав. FiTech Fuel Injection не заявляет и не гарантирует, что функции, содержащиеся на сайте, будут бесперебойными или безошибочными, что дефекты будут исправлены или что этот сайт или сервер, на котором он доступен, не содержат вирусов или других вредоносных компонентов. .FiTech Fuel Injection не дает никаких гарантий или заявлений относительно использования материалов на этом сайте с точки зрения их правильности, точности, адекватности, полезности, своевременности, надежности или иным образом. В некоторых штатах не допускаются ограничения или исключения гарантий, поэтому приведенные выше ограничения могут на вас не распространяться.

Ограничение ответственности

FiTech Fuel Injection не несет ответственности за любые фактические или косвенные убытки, возникшие в результате использования или невозможности использования материалов на этом сайте или производительности продуктов, даже если FiTech Fuel Injection был уведомлен о возможности таких убытков.Применимое законодательство может не допускать ограничения исключения ответственности или случайных или косвенных убытков, поэтому вышеуказанное ограничение или исключение может не применяться к вам.

Опечатки

В случае, если продукт FiTech Fuel Injection ошибочно указан по неверной цене, FiTech Fuel Injection оставляет за собой право отказать или отменить любые заказы, размещенные на продукт, указанный по неправильной цене. FiTech Fuel Injection оставляет за собой право отклонить или отменить любые такие заказы, независимо от того, подтвержден ли заказ и снята ли сумма с вашей кредитной карты.Если с вашей кредитной карты уже были сняты средства за покупку и ваш заказ был отменен, FiTech Fuel Injection выдаст кредит на счет вашей кредитной карты в размере неправильной цены.

Срок; Прекращение действия

Настоящие положения и условия применяются к вам после вашего доступа к сайту и/или завершения процесса регистрации или совершения покупок. Настоящие условия или любая их часть могут быть прекращены FiTech Fuel Injection без предварительного уведомления в любое время и по любой причине.Положения, касающиеся авторских прав, товарных знаков, отказа от ответственности, ограничения ответственности, возмещения убытков и прочего, остаются в силе после прекращения действия.

Уведомление

FiTech Fuel Injection может направить вам уведомление по электронной почте, через общее уведомление на сайте или другим надежным способом на адрес, который вы предоставили FiTech Fuel Injection.

Разное

Использование вами этого сайта во всех отношениях регулируется законами штата Калифорния, США.S.A., без учета положений о выборе права, а не в соответствии с Конвенцией ООН 1980 г. о договорах международной купли-продажи товаров. Вы соглашаетесь с тем, что юрисдикция и место проведения любого судебного разбирательства, прямо или косвенно возникающего в связи с этим сайтом или в связи с ним (включая, помимо прочего, покупку продуктов FiTech Fuel Injection), принадлежат судам штата или федеральным судам, расположенным в округе Лос-Анджелес, Калифорния. Любые основания для иска или претензии, которые вы можете иметь в отношении сайта (включая, помимо прочего, покупку продуктов FiTech Fuel Injection), должны быть возбуждены в течение одного (1) года после возникновения претензии или основания для иска.Неспособность FiTech Fuel Injection настаивать на строгом выполнении какого-либо положения настоящих условий и положений или обеспечивать их строгое выполнение не должно рассматриваться как отказ от какого-либо положения или права. Ни курс поведения между сторонами, ни торговая практика не могут изменить какие-либо из этих условий. FiTech Fuel Injection может передать свои права и обязанности по настоящему Соглашению любой стороне в любое время без предварительного уведомления.

Использование сайта

Оскорбления на сайте в любой форме и в любой форме, в том числе по электронной почте, в чате или с использованием непристойных или оскорбительных выражений, строго запрещены.Запрещено выдавать себя за других, включая FiTech Fuel Injection или другого лицензированного сотрудника, принимающего или представителя, а также других участников или посетителей на сайте. Вы не можете загружать, распространять или иным образом публиковать через сайт любой контент, который является клеветническим, клеветническим, непристойным, угрожающим, нарушающим конфиденциальность или права на гласность, оскорбительным, незаконным или иным образом нежелательным, который может представлять собой или поощрять уголовное преступление, нарушать права любой стороны или которые могут иным образом повлечь за собой ответственность или нарушение какого-либо закона.Вы не имеете права загружать коммерческий контент на сайт или использовать сайт, чтобы предлагать другим присоединиться или стать членами любой другой коммерческой онлайн-службы или другой организации.

Заявление об отказе от участия

FiTech Fuel Injection не просматривает и не может просматривать все сообщения и материалы, размещенные или созданные пользователями, получающими доступ к сайту, и никоим образом не несет ответственности за содержание этих сообщений и материалов. Вы признаете, что, предоставляя вам возможность просматривать и распространять пользовательский контент на сайте, FiTech Fuel Injection просто действует как пассивный канал для такого распространения и не берет на себя никаких обязательств или ответственности, связанных с любым контентом или действиями на сайте. сайт.Тем не менее, FiTech Fuel Injection оставляет за собой право блокировать или удалять сообщения или материалы, которые она сочтет (а) оскорбительными, клеветническими или непристойными, (б) мошенническими, вводящими в заблуждение или вводящими в заблуждение, (в) нарушающими авторские права, товарные знаки. или; другие права на интеллектуальную собственность другого лица или (d) оскорбительные или иным образом неприемлемые для FiTech Fuel Injection по своему усмотрению.

Возмещение убытков

Вы соглашаетесь возмещать убытки, защищать и ограждать компанию FiTech Fuel Injection, ее должностных лиц, директоров, сотрудников, агентов, лицензиаров и поставщиков (совместно именуемые «Поставщики услуг») от всех убытков, расходов, убытков и издержек. , включая разумные гонорары адвокатов, в результате любого нарушения этих условий или любой деятельности, связанной с вашей учетной записью (включая небрежное или противоправное поведение) вами или любым другим лицом, получающим доступ к сайту с использованием вашей учетной записи в Интернете.

Ссылки третьих сторон

Пытаясь повысить ценность для наших посетителей, FiTech Fuel Injection может ссылаться на сайты, управляемые третьими лицами. Однако, даже если третье лицо связано с FiTech Fuel Injection, FiTech Fuel Injection не имеет контроля над этими связанными сайтами, каждый из которых имеет отдельные методы конфиденциальности и сбора данных, независимые от FiTech Fuel Injection. Эти связанные сайты предназначены только для вашего удобства, поэтому вы получаете доступ к ним на свой страх и риск.Тем не менее, FiTech Fuel Injection стремится защитить целостность своего веб-сайта и ссылок, размещенных на нем, и поэтому запрашивает любые отзывы не только о своем собственном сайте, но и о сайтах, на которые он ссылается (в том числе, если конкретная ссылка не работает). .

Продувка системы впрыска бензина

Injection System Purge for Petrol — очень концентрированный и эффективный очиститель для всей бензиновой топливной системы. Тщательно очищает форсунки, впускные клапаны и порты, а также камеру сгорания без необходимости разборки.Для использования с совместимым устройством для очистки топлива (форсунок).

Преимущества

  • Очищает форсунки, клапаны, стержни клапанов, поршень, поршневые кольца и камеру сгорания без необходимости разборки.
  • Восстанавливает форму распыла впрыска и время впрыска.
  • Освобождает и предотвращает заедание выпускных клапанов.
  • Устраняет неровный холостой ход, колебания двигателя и улучшает запуск.
  • Снижает расход бензина.
  • Восстанавливает мощность и производительность и оптимизирует работу двигателя.
  • Снижает выброс вредных выхлопных газов.

Применение

Все бензиновые (этилированные или неэтилированные) двигатели с системами прямого или непрямого впрыска. Не вредит каталитическим нейтрализаторам.

Направление

  • Только для профессионального использования.
  • Продукт готов к использованию и не требует смешивания с бензином.
  • Используйте максимум одну бутылку (1 л) для полной и оптимизированной очистки.
  • Использовать только с профессиональным оборудованием, подходящим для прямой подачи топлива в двигатель.
  • Следуйте инструкциям поставщика оборудования по применению и подключению к двигателю автомобиля.
  • При применении этого продукта убедитесь, что двигатель прогрет до нормальной рабочей температуры.
  • НЕ ДОБАВЛЯТЬ В ТОПЛИВНЫЙ БАК.
  • Для достижения наилучших результатов проедьте на автомобиле в течение 10–20 минут при повышенных оборотах сразу после обработки.

Дозировка

Рекомендуемая обработка каждые 25 000 км или при возникновении таких проблем, как плохая работа или запуск двигателя, неровный холостой ход или чрезмерный выброс выхлопных газов.Для полной обработки и омоложения двигателя мы рекомендуем выполнить очистку воздухозаборника с помощью TecLub Intake & Combustion Chamber Cleaner с последующей промывкой масляной системы двигателя с помощью TecLub Engine Flush. После этого слейте моторное масло и залейте свежее рекомендуемое моторное масло и замените масляный фильтр двигателя новым.

Продувка системы впрыска бензина (Великобритания) (197,35 КБ)

%MCEPASTEBIN%

Практически безболезненно The J-Tip — безыгольная система инъекций

Детская боязнь игл или трипанофобия ¹ обычно связана с медицинскими процедурами, такими как внутривенное введение.Вы когда-нибудь были в медицинском учреждении и наблюдали, как несколько занятых медицинских работников прижимают конечности ребенка во время обычной процедуры иглы? Лицо ребенка раскраснелось, как свекла, он брыкается, кричит и зовет кого-нибудь остановиться. Этот опыт может быть чрезвычайно травмирующим и может создать яркие воспоминания, что приведет к фобии игл на всю жизнь. Симптомы боязни игл включают: головокружение, обмороки, тревогу, бессонницу, приступы паники, высокое кровяное давление, учащенное сердцебиение и чувство физического или эмоционального насилия.№

Обезболивание для внутривенного введения

В последние годы медицинское сообщество проявило искренний интерес к важности купирования боли у своих пациентов, связанной с внутривенным введением. Многие учреждения, такие как Детская больница Никлауса ², ранее известная как Детская больница Майами, внедряют инициативы по обезболиванию, чтобы улучшить опыт пациентов на подростковом уровне путем обезболивания для внутривенного введения. J-Tip Needle-Free Injection — это устройство, в котором используется технология безыгольной струйной инъекции для введения лекарств в подкожную ткань, вызывающую онемение при внутривенном введении и других игольчатых процедурах.С помощью этого устройства вы можете обеспечить практически безболезненный опыт. После активации безыгольного инъектора J-Tip для проявления анестезирующего эффекта требуется всего 1-2 минуты, который должен длиться до 15-20 минут. Больницы по всей стране добились больших успехов в использовании безыгольного инъектора J-Tip по всему учреждению, поскольку он значительно сокращает время ожидания!

Струйный впрыск

Технология безыгольной струйной инъекции работает в J-Tip за счет использования сжатого газа CO2 для подачи забуференного или MPF лидокаина в подкожную ткань без использования иглы.Безыгольный инъектор J-Tip представляет собой одноразовый стерильный струйный инъектор, который в основном используется перед рутинными процедурами с иглой, такими как внутривенное введение и взятие крови. Этот безыгольный наконечник J-Tip можно использовать в различных отделениях больницы и в любом возрасте. Боязнь игл в детстве — это не та тема, которой стоит пренебрегать, и существует множество способов помочь пациентам, нуждающимся в процедурах с иглами.

Ассоциация Piper Flyer — Знакомство с системой впрыска топлива Lycoming

Непосредственный впрыск топлива в цилиндры обеспечивает лучшее распределение топлива и легкий холодный запуск без угрозы обледенения карбюратора.В этой статье будут показаны части типичной системы впрыска топлива Lycoming и наиболее распространенные проблемные места, которые необходимо проверить, если ваш двигатель начинает работать с перебоями.

Двигатели с впрыском топлива уже много лет используются в автомобилях и приобретают все большую популярность в авиации общего назначения.

Системы впрыска топлива имеют ряд преимуществ перед карбюраторными системами. При впрыске топлива каждый цилиндр получает почти одинаковое количество топлива. Это помогает каждому цилиндру выдавать равную мощность.Это, в свою очередь, делает работу двигателя более плавной и эффективной.

Напротив, карбюраторные системы склонны иметь цилиндры, которые работают немного на обогащенной или обедненной смеси по сравнению с остальными из-за разной длины впускных труб.

Двигатели с впрыском топлива намного легче запустить, когда двигатель холодный, потому что каждый цилиндр заполняется одинаковым количеством топлива.

Системы впрыска топлива также свободны от угрозы обледенения карбюратора.

Системы впрыска топлива имеют несколько недостатков по сравнению с карбюраторными системами.Двигатели с впрыском топлива могут плохо запускаться в горячем состоянии. После остановки в жаркие летние месяцы они обычно требуют «затопленного» запуска с полностью обедненной смесью и полного открытия дроссельной заслонки при прокручивании коленчатого вала двигателя. Этот процесс может разочаровать людей, незнакомых с особенностями двигателей с впрыском топлива.

Система впрыска топлива также очень нетерпима даже к малейшим частицам грязи или мусора в трубопроводах или форсунках.

Карбюраторные системы обычно легко запускаются при горячем двигателе.Кроме того, они по своей конструкции немного лучше переносят примеси, чем системы впрыска топлива.

Владельцы самолетов, которые летают за двигателями с впрыском топлива, вероятно, будут наслаждаться надежной и эффективной работой в течение многих лет. Мудрые владельцы все равно должны хотеть знать, что находится под капотом, чтобы быстро и легко устранять проблемы с их системой впрыска.

 

 

 

Основные детали системы впрыска топлива

Основными частями типичной системы впрыска топлива являются топливный насос с приводом от двигателя, блок управления подачей топлива/воздуха (топливный сервопривод), распределитель топлива (делитель потока) с соответствующими топливопроводами и сами топливные форсунки.Большинство самолетов также имеют электрический подкачивающий топливный насос, который обеспечивает давление топлива для запуска и в качестве аварийного резерва.

Топливный насос с приводом от двигателя предназначен для обеспечения постоянного давления топлива на входе топливного сервопривода.

  

 

Топливный сервопривод

Топливный сервопривод представляет собой узел дозирования топлива и воздуха системы впрыска топлива.

Подача воздуха во впускные патрубки цилиндров двигателя регулируется через корпус дроссельной заслонки и дроссельную заслонку в сервоприводе.Движения дроссельной заслонки пилота напрямую контролируют количество воздуха, поступающего в двигатель. Этот дроссельный клапан похож на дроссельный клапан в карбюраторе. Корпус дроссельной заслонки выполнен с трубкой Вентури внутри; опять же, как в карбюраторе.

Однако трубка Вентури в топливном сервоприводе предназначена только для настройки давления воздуха во внутренней камере в секции управления подачей топлива сервопривода, а не для обеспечения всасывания сопла для выпуска топлива, как это происходит в карбюраторе.

Поток топлива контролируется шаровым клапаном топливного сервопривода, расположенным в части регулятора топлива сервопривода.Шаровой кран регулируется серией диафрагм и пружин. Диафрагмы используются для того, чтобы противодействующие давления входящего (ударного) воздуха по сравнению с воздухом Вентури и измеряемого по сравнению с неизмеряемым давлением топлива постоянно регулировали количество топлива, подаваемого к форсункам.

Как показано на фото H (справа), в переднем корпусе автоматического управления смесью (AMC) топливного сервопривода имеется отверстие для ударного давления воздуха. Форма корпуса создает трубку Вентури для корпуса дроссельной заслонки.

Ударное давление воздуха направляется через ударные трубки от отверстия в передней части корпуса дроссельной заслонки (перед трубкой Вентури) в закрытую камеру на одной стороне диафрагмы. Воздух из секции Вентури низкого давления корпуса дроссельной заслонки направляется в камеру на противоположной стороне диафрагмы.

По мере того, как поток воздуха через корпус дроссельной заслонки увеличивается или уменьшается с помощью управления дроссельной заслонкой пилота, давление воздуха в самой трубке Вентури увеличивается или уменьшается обратно пропорционально. По мере увеличения потока воздуха давление Вентури падает.По мере уменьшения воздушного потока давление Вентури возрастает. Разница давлений между ударным воздухом (который остается постоянным, за исключением атмосферных изменений) и воздухом Вентури заставляет диафрагму между двумя камерами слегка перемещаться всякий раз, когда происходит изменение давления воздуха с одной или другой стороны. Эта разница в давлении между ударным давлением воздуха и давлением Вентури в топливном сервоприводе известна как «сила дозирования воздуха».

Топливный сервоклапан в топливном регуляторе прикреплен к диафрагме таким образом, что он перемещается в более открытое или закрытое положение, когда диафрагма перемещается в ответ на силу дозирования воздуха.Обратите внимание, что давление воздуха в трубке Вентури является основным фактором, определяющим степень открытия сервоклапана в любой момент времени.

 

 

Поток топлива

Топливо поступает от топливного насоса с приводом от двигателя через дозирующий жиклер в топливном сервоприводе. Открытие дозирующей струи управляется ручным регулятором смеси пилота. Это топливо считается «отмеренным» по давлению топлива. Он подается в камеру регулятора подачи топлива внутри топливного сервопривода. Отдельная линия неизмеряемого давления топлива отсоединяется до того, как топливо достигает дозирующего жиклера, и направляется в другую камеру в топливном регуляторе.Эта нерегулируемая камера давления топлива отделена от камеры измерения давления топлива диафрагмой.

Поскольку изменение давления в трубке Вентури вызывает движение сервоклапана, оно также вызывает движение между дозируемой и нерегулируемой топливными камерами. потому что сервоклапан работает совместно с обеими диафрагмами.

Уменьшение давления Вентури (увеличение открытия дроссельной заслонки и дроссельной заслонки) вызывает небольшое перемещение сервоклапана в сторону более открытого положения до тех пор, пока измеренное давление топлива не увеличится до такой степени, что сервоклапан перестанет открываться и останется в своем положении. новая, более открытая позиция.Повышенное давление Вентури (уменьшение открытия дроссельной заслонки и дроссельной заслонки) приводит к перемещению сервоклапана в более закрытое положение до тех пор, пока уменьшенное измеренное давление топлива не заставит клапан перестать двигаться и он останется в немного более закрытом положении.

Этот процесс определяет количество топлива, подаваемого к форсункам при всех настройках дроссельной заслонки.

 

Автоматический контроль смеси

AMC помогает поддерживать постоянное соотношение топливно-воздушной смеси, регулируя перепад давления между ударным давлением воздуха и давлением воздуха Вентури.Он обеспечивает переменное отверстие между давлением ударного воздуха и давлением воздуха Вентури, тем самым изменяя ту же «силу дозирования воздуха», о которой говорилось выше. AMC не заменяет ручной контроль смеси пилотом; он работает в связке с ним.

 

Делитель потока

Из секции топливного регулятора топливного сервопривода топливо направляется к делителю потока. Делитель потока, который некоторые механики называют «пауком» из-за его формы, установлен сверху двигателя.Он обеспечивает центральную точку распределения топлива по каждой топливной магистрали и форсунке. Делитель потока имеет подпружиненную диафрагму, которая открывается под давлением топлива от топливного сервопривода и закрывается, когда поток топлива прекращается. Эта установка обеспечивает принудительное отключение всех цилиндров одновременно при останове. (См. фото 01 и 02, стр. 28.)

 

Топливопроводы и форсунки

Топливопроводы, соединяющие делитель потока с форсунками, представляют собой жесткие трубопроводы из нержавеющей стали.

Последним звеном в потоке топлива к каждому цилиндру является сама топливная форсунка. Топливные форсунки изготовлены из латуни и очень просты по своей конструкции. Форсунка представляет собой полую маленькую трубку с калиброванным отверстием на выходе и парой ограничителей, уменьшающих внутренний диаметр трубки. Каждая форсунка откалибрована для обеспечения максимального расхода топлива, необходимого при полностью открытой дроссельной заслонке на нагнетательном конце. На противоположном конце форсунок имеется гнездо для топливопровода.В самих форсунках нет внутренних движущихся частей.

Некоторые форсунки состоят из двух частей и имеют съемную центральную часть. Эти детали должны храниться вместе как комплект каждый раз, когда форсунки снимаются.

Форсунка также предназначена для смешивания топлива с воздухом для распыления топлива и превращения его в горючее. Двигатели без наддува имеют сетку для выпуска воздуха снаружи сопла, в то время как самолеты с турбонаддувом имеют герметичное соединение, которое отводит воздушную камеру сопла к «давлению на верхней палубе» турбонаддува (давление на выходе компрессора турбонагнетателя).(См. фото 03 и 04 на стр. 28.)

Как в конфигурациях с обычным наддувом, так и в конфигурациях с турбонаддувом давление во впускном коллекторе немного ниже, чем давление в воздухозаборной камере форсунки, поэтому воздух постоянно всасывается через воздухозаборник в коллектор. (См. фото 05, стр. 28.)

 

Техническое обслуживание и устранение неисправностей системы впрыска топлива

Большую часть времени системы впрыска топлива работают безотказно. Когда проблема возникает в системе впрыска топлива, она часто носит непостоянный характер, и иногда ее бывает трудно определить поначалу.

Проблемы с работой двигателей обычно довольно просто диагностировать. Обычно виноват дефект в системе зажигания, такой как загрязненная свеча зажигания или неправильная синхронизация магнето, но иногда виновником является неисправность в топливной системе. Если система зажигания была исключена, пришло время проверить, как двигатель получает топливо.

Большинство механиков начинают с сопел и работают в обратном направлении, пока не будет найден источник проблемы.

 

Засорение топливных форсунок

Когда проблема возникает в системе впрыска топлива, она обычно вызвана небольшими частицами грязи или мусора, которые частично засоряют линию или форсунку.Если одна или несколько форсунок засоряются, давление топлива увеличивается, поскольку сервопривод продолжает подавать одно и то же количество топлива.

Расходомер топлива в кабине показывает расход топлива в галлонах в час; но это число получено из показаний давления топлива на делителе потока. При засорении одной или нескольких форсунок на манометре можно увидеть увеличение расхода топлива, даже если настройки дроссельной заслонки остаются неизменными. Более высокое давление в делителе, вызванное забитой форсункой, проявляется в виде более высоких расходов на расходомере топлива.Индикация увеличенного расхода топлива вместе с неравномерно работающим двигателем указывает на то, что одна или несколько форсунок могут быть частично или полностью забиты.

Причина шероховатости проста; цилиндр с забитой форсункой получает достаточно топлива только для периодической работы.

Это можно проверить, если на самолете есть датчики EGT на каждом цилиндре. На цилиндре(ах) с частично забитыми форсунками выхлопные газы будут более горячими, чем на других цилиндрах; свидетельство того, что цилиндр работает слишком бедно.

 Простой способ проверить наличие ограничений (испытание расхода) каждой форсунки и линии — снять все форсунки с цилиндров. Топливопроводы следует разжимать по мере необходимости, чтобы обеспечить достаточную слабину, чтобы они не погнулись и не повредились в процессе. После снятия форсунок снова подключите каждую из них к соответствующей линии подачи топлива.

Поместите каждую насадку в небольшую прозрачную чашку или банку с маркировкой для соответствующего цилиндра. Попросите кого-нибудь в кабине включить главный выключатель и подкачивающий топливный насос с обогащенной смесью.Медленно продвигайте дроссельную заслонку от холостого хода до полного и обратно, пока кто-то еще наблюдает за выходом форсунок. У каждого должен быть примерно одинаковый поток.

Затем снимите банки, не пролив топливо. Сравните уровень топлива в стаканчиках. Частично забитая линия или форсунка должны иметь стакан с более низким уровнем топлива, чем остальные. (См. фото 06, 07 и 08 на стр. 30.)

Инструкция по обслуживанию Lycoming 1275C содержит инструкции по очистке сопла. Сопло необходимо очистить ацетоном или МЭК и продуть сжатым воздухом.В выпускном отверстии нельзя использовать кирки или острые инструменты, иначе оно будет деформировано.

Если какое-либо сопло или линия постоянно засоряются и быстро забиваются даже после очистки, возможно, лучше заменить и линию, и сопло. Даже если линия или сопло были очищены, микроскопические частицы или мусор часто остаются и смещаются при последующем использовании, снова забивая сопло.

Будьте осторожны при снятии и установке топливных форсунок.Форсунка ввинчивается во впускной коллектор каждого цилиндра. Пленум расположен за пределами камеры сгорания цилиндра, во впускном коллекторе перед впускным клапаном.

Конец сопла, который ввинчивается в цилиндр, имеет трубную трубную резьбу с мелким конусом. Впускной коллектор алюминиевый, и приемная резьба в нем тоже алюминиевая. Очень легко случайно перепутать резьбу или перетянуть сопло. В этом случае алюминиевая резьба в цилиндре легко повреждается.(См. фото 09, стр. 30.)

Как правило, форсунки должны быть затянуты вручную, а затем затянуты с максимальным усилием от 40 до 60 дюйм-фунтов. Если резьба действительно сильно повреждена в головке блока цилиндров, это может быть дорогостоящим ремонтом; возможно придется снимать цилиндр. Кроме того, чрезмерное затягивание накидной гайки на входящем топливопроводе может легко повредить относительно мягкую латунную резьбу на форсунке или повредить впускное отверстие форсунки.

Грязная сетка для выпуска воздуха из сопла

Грязная сетка для выпуска воздуха на форсунке вызывает более высокий, чем обычно, расход топлива из форсунки.Всасывание коллектора, которое всегда постоянно на выпускном конце форсунки, не имеет воздухозаборника, чтобы немного уменьшить его. Топливный сервопривод выбрасывает такое же количество топлива, но когда одна форсунка протягивает больше своей доли, остальные форсунки работают слишком бедно.

Это может привести к неравномерному холостому ходу, более низкому, чем обычно, показателю расхода топлива и более высокому, чем обычно, увеличению числа оборотов при прекращении подачи смеси. Для справки, нормальный рост оборотов при отключении обычно составляет от 25 до 50 об/мин. (См. фото 10 на стр. 32.)

 

Топливопроводы и хомуты

Топливопроводы склонны к растрескиванию при слишком сильной вибрации, поэтому их обычно зажимают в нескольких точках по всей длине, чтобы свести к минимуму тряску или изгибание.

Хомуты сильно нагреваются, а резиновая прокладка в них со временем высыхает и дает усадку, из-за чего топливопроводы немного трясутся внутри ослабленных хомутов. У Lycoming есть AD, который требует повторных проверок хомутов и топливопроводов на герметичность и безопасность, а также замену неисправных хомутов.(См. фото 11, стр. 32.)

Линии снабжены накидными гайками с резьбой, которая легко срывается, если гайка перетянута. Они должны быть затянуты от руки плюс приблизительно от 1/6 до 1/12 оборота (от половины до одной плоскости) больше при использовании гаечного ключа для затягивания. Новые сменные топливные магистрали представляют собой прямые узлы, которые необходимо изогнуть и придать форму, соответствующую заменяемой старой магистрали.

Центральное уплотнение топливного сервопривода

Негерметичное центральное уплотнение главного топливного сервопривода приводит к тому, что вся система работает слишком богато; настолько, что двигатель тяжело заглушить регулятором смеси.

Чтобы проверить, не прогорело ли центральное уплотнение, из-за которого топливо попадает в воздушные камеры сервопривода, отсоедините топливный шланг между топливным сервоприводом и делителем потока. Легче всего добраться до делителя потока. Плотно установите заглушку в линию, чтобы герметизировать ее. Удалите достаточное количество впускного воздуховода, чтобы можно было наблюдать ударные трубы, и включите подкачивающий насос с полностью обогащенной смесью и максимальными настройками дроссельной заслонки. Если топливо выходит из ударных трубок, центральное уплотнение негерметично, и сервопривод необходимо отправить на ремонт.Голубые пятна топлива вокруг ударных трубок также указывают на негерметичность центрального уплотнения.

Экран входа топлива

Если на сервоприводе и вокруг него наблюдаются синие пятна, причина в негерметичном уплотнении и нет необходимости идти дальше (и тянуть сетку топливозаборника), т.к. для ремонта придется снимать весь сервопривод.

Однако, если топливный сервопривод работает хаотично, но очевидных утечек не наблюдается, следующим местом для проверки является сетчатый фильтр на входе топлива. Забитый экран приведет к тому, что система будет работать слишком бедно.

Этот экран также следует периодически снимать и очищать в рамках текущего обслуживания. Экран следует очистить растворителем, например ацетоном, и продуть сжатым воздухом. (См. фото 12 и 13 на стр. 34.)

Если экран снимается для устранения неполадок в работе сервопривода подачи топлива, перед очисткой его следует постучать открытой стороной вниз по чистому полотенце, чтобы можно было проверить наличие загрязнений.

Дренажный клапан нижнего коллектора впускной системы

Наконец, если предыдущие действия не помогли определить источник проблемы, стоит проверить нижний слив коллектора системы впуска.Дренаж изготовлен из латуни и имеет односторонний обратный клапан, позволяющий сливать лишнее топливо и масло из впускного коллектора, не допуская попадания воздуха во впускной коллектор. Неисправность обратного клапана может привести к нестабильной работе двигателя.

Пилоты и владельцы, эксплуатирующие инжекторный двигатель, возможно, уже знакомы с преимуществами этого типа системы, но все же должны уметь различать ее части, их функции и то, как они сочетаются друг с другом. Эта статья должна дать вам хорошее представление о многих частях системы впрыска топлива Lycoming.

Знайте свой FAR/AIM и проконсультируйтесь со своим механиком перед началом любой работы. Всегда получайте инструкции от A&P, прежде чем приступать к профилактическому обслуживанию.

Жаклин Шип выросла в авиационной школе; ее отец был летным инструктором. Она начала заниматься соло в 16 лет и получила сертификат CFII и ATP. Шипе также посетил Технологический институт Кентукки и получил лицензию на планер и силовую установку. Она работала механиком в авиакомпаниях и на различных самолетах авиации общего назначения.Она также зарегистрировала более 5000 часов летного обучения. Отправить вопрос или комментарий на .

РЕСУРСЫ >>>>>

Инструкция по обслуживанию Lycoming № 1275C

lycoming.com/content/service-instruction-no-1275c

Сократительная инъекционная система стимулирует метаморфоз трубчатых червей путем перемещения белкового эффектора

Основные комментарии:

1) Рецензенты считают, что назначение локализации Mif1 в частице MAC требует дополнительной проверки.Биохимические методы, такие как SDS-PAGE или Вестерн-блоттинг, можно использовать для анализа белкового состава в очищенных частицах WT и ΔJF50_12615, нормализованных к одной и той же концентрации белка. Кроме того, с помощью BTH не наблюдается взаимодействия между Mif1 и трубчатым компонентом. Это нельзя считать окончательным, особенно потому, что gp19-подобная структура в собранной системе MAC представляет собой гексамер, в котором Mif1 может быть установлен аналогично взаимодействию Tse2-Hcp1 в T6SS (Silverman et al., 2013). Рецензенты предлагают рассмотреть аналогичные подходы для проверки соответствия Mif1 внутри пробирки MAC.

Чтобы ответить на комментарий рецензентов, мы создали штаммы с Mif1 (JF50-12615), помеченные в трех местах эпитопами FLAG в нативном хромосомном локусе Mif1, и провели вестерн-дот-блоттинг очищенных MAC из каждого штамма с использованием антитела против FLAG. Мы специально обнаружили FLAG-меченые белки Mif1 в каждом штамме, где Mif1 был помечен FLAG. Результаты теперь представлены на рисунке 3B и во втором абзаце подраздела «Плотность в просвете трубки MAC представляет собой грузовой белок».Это подтверждает наши эксперименты по визуализации и масс-спектрометрии и предполагает, что Mif1 действительно обнаружен в структуре MAC.

Два разных наблюдения могут объяснить отсутствие взаимодействий между Mif1 и трубчатым компонентом. (1) Мы наблюдали область низкой плотности между плотностью груза и плотностью трубы (показана черными стрелками на рисунке 2B). (2) Когда выведенные трубки визуализировались с помощью криотомографии, трубки всегда были пустыми, как показано на теперь добавленном Рисунке 2 — дополнении к рисунку 2.В совокупности эти данные свидетельствуют о том, что взаимодействие между грузом и трубкой слабое или отсутствует, что может способствовать быстрому высвобождению груза в мишень при сокращении (см. подраздел «Плотность в просвете трубки MAC представляет собой грузовой белок», сначала абзац и Обсуждение, абзац третий).

Как и предполагалось, мы очистили гетерологически экспрессированный пробирочный белок и проанализировали его с помощью электронной микроскопии с отрицательным окрашиванием. Однако в испытанных условиях кольцевых структур не наблюдалось, что помешало нам провести последующие эксперименты по Сильверману и др.(2013).

2) Стандартным тестом для подтверждения функции белка является анализ комплементарности. Хотя функциональная комплементация для мутантов JF50_12605 и JF50_12615 показана на рис. 1B, обозреватели задаются вопросом, были ли пробирки также обнаружены полными после комплементации JF50_12615?

Мы визуализировали MAC штаммов ΔJF50_12605::JF50_12605 и Δ mif1::mif1 и обнаружили, что внутренние трубки обоих комплементарных штаммов показали заполненный фенотип.Эти результаты теперь включены в текст (подраздел «Два бактериальных гена отвечают за плотность внутри просвета внутренней трубки МАК и участвуют в индукции метаморфоза», последний абзац) и на рис. 1 — дополнение к рисунку 4.

3) Могут ли авторы предположить возможную функцию или обсудить функциональные единицы JF50_12615 на основании его аминокислотной последовательности или его расположения в геноме? Любые консервативные/гипервариабельные регионы? Содержат ли Photorhabdus или Serratia ортологи? Авторы предполагают, что Mif1 может образовывать поры.Существуют ли какие-либо гидрофобные домены, которые могут быть идентифицированы в поддержку этой гипотезы? JF50_12615 занимает центральный канал трубки и, таким образом, может быть связан с белками рулетки. Имеют ли мутант WT и ΔJF50_12615 сходное или разное распределение длин частиц?

Мы тщательно искали домены, которые могли бы дать ключ к разгадке механизма индукции метаморфоза Mif1 (JF50_12615). К сожалению, мы не идентифицировали какие-либо функциональные или трансмембранные домены в Mif1.Другие бактерии, такие как Photorhabdus или Serratia , не содержат ортологов Mif1. Это согласуется с тем фактом, что сократительные инъекционные системы этих организмов, как известно, не вызывают метаморфоза. Mif1-геномный контекст также не указывает на механизм функционирования. Мы модифицировали Обсуждение, чтобы сделать наши выводы более четкими (Обсуждение, второй абзац).

Mif1 не проявляет сходства последовательностей с белками рулетки. Дикого типа и ∆ mif1 MAC также не показали различий в распределении длины (см. также рисунок 1 — дополнение к рисунку 2 и 3)

4) Авторы показывают, что у мутанта, лишенного JF50_12605, нарушена индукция метаморфоза, но вместо этого и в отличие от мутанта Mif1, когда внеклеточные MAC получают из мутанта JF50_12605, не наблюдается никаких значительных дефектов.Нет четкого объяснения, почему это может быть. Также нет никаких предположений о роли JF50_12605. Может ли этот белок как-то участвовать в загрузке Mif1 в MAC, своего рода шапероноподобном элементе? Есть ли гомология или другие особенности, которые выделяются при изучении последовательности JF50_12605? Рецензенты считают, что это заслуживает более подробного обсуждения, особенно потому, что взаимодействие между Mif1 и JF50_12605 было обнаружено с использованием BTH. С этой точки зрения следует использовать другие методы для проверки этого взаимодействия, например, совместную очистку и вытягивание.Это тем более верно, поскольку доля пустых MAC оказалась одинаковой для мутантов Mif1 и JF50_12605.

Мы согласны с тем, что роль JF50_12605 заслуживает большего внимания. Что касается индукции метаморфоза штаммами ∆JF50_12605, несоответствие между бактериальными биопленками и очищенными МАК, вероятно, связано с более высокими концентрациями МАК, воздействующими на личинок, при использовании экстрактов МАК. При масс-спектрометрическом анализе MAC ∆JF50_12605 наблюдалось низкое содержание Mif1 (рис. 3A), что позволяет предположить, что Mif1 может в редких случаях ассоциироваться с MAC, независимыми от JF50_12605.Мы изменили текст (подраздел «Плотность в просвете трубки MAC представляет собой грузовой белок», Обсуждение, третий абзац), чтобы объяснить это.

Чтобы проверить взаимодействие между Mif1 и JF50_12605, мы выполнили предложенное взаимное преобразование JF50_12605-S-tag с Mif1-6xHis-tag. Мы обнаружили JF50_12605 с помощью вестерн-блоттинга после вытягивания вниз (теперь рисунок 3C, подраздел «Плотность в просвете трубки MAC представляет собой грузовой белок», последний абзац), подтверждая наши бактериальные двухгибридные анализы (рисунок 3C-F).

5) Авторы спорят о том, могла ли в пустых MAC отсутствовать внутренняя трубка, гомологичная трубке бактериофага, сделанной из gp19 (JF50_12680). Будут ли образовываться MAC в отсутствие трубки? Если да, то как выглядят MAC без трубки?

В предыдущей статье мы показали, что мутант, лишенный белка tube, не собирает MACs (Shikuma et al., 2014). В предыдущей версии представленной рукописи мы состыковали модель гомологии трубчатого белка gp19 с плотностью ЭМ, чтобы однозначно показать, что плотность груза в просвете трубки отличается от самой трубки.Мы понимаем, что то, как это обсуждалось, могло сбивать с толку, и пересмотрели текст и рисунок (подраздел «Плотность в просвете трубки MAC представляет собой грузовой белок», первый абзац, рисунок 2).

6) Авторы сообщают, что они идентифицировали второй эффектор MAC, нуклеазу, которую они назвали Pne1 (препринт на bioRxiv). Предполагают ли авторы, что Pne1 не находится в просвете MAC? Это сбивает с толку, и связь между Pne1 и Mif1 следует выяснять либо экспериментально, т.е.е. путем усреднения субтомограмм Pne1-дефицитных МАК или в Обсуждении.

Мы согласны с тем, что локализация второго эффектора, Pne1, требует дополнительного обсуждения. Мы включили криотомограмму мутанта ∆ pne1 (JF50_12610) на рис. 1 — приложение к рис. 3 и показали, что трубка имеет заполненный фенотип. Заполненный фенотип предполагает, что Pne1 не находится во внутренней трубке, а вместо этого может быть загружен в другом месте (например, в шипе) в комплексе MAC.Мы изменили маркировку рисунка 1 — приложение к рисунку 3, чтобы указать, что JF50_12610 называется Pne1, и добавили текст для обсуждения этого момента (Обсуждение, четвертый абзац). Недавно была опубликована статья Pne1 (Rocchi et al., 2019).

7) Чтобы облегчить интерпретацию эксперимента по электропорации, было бы здорово узнать, сколько белка на самом деле оказывается в червях (если таковые имеются)? Можно ли сравнить это количество с общим содержанием белка в червях?

Чтобы определить, способствует ли электропорация связыванию белков с личинками трубчатых червей, мы провели электропорацию личинок в присутствии белка GFP, тщательно промыли личинок и провели вестерн-блоттинг.Мы обнаружили, что личинки, подвергшиеся электропорации, имели более высокую концентрацию связанного GFP по сравнению с личинками без электропорации. Эти результаты теперь включены в рукопись (подраздел «Очищенный и электропорированный белок Mif1 индуцирует метаморфоз трубчатых червей» и как рисунок 4 — дополнение к рисунку 2).

8) Качество данных электронной криотомографии и усреднения субтомограмм не соответствует принятым в настоящее время стандартам в данной области. Структуры, представленные на рисунке 2, имеют признаки переобучения, о чем свидетельствует текстура за пределами плотности белка на панели А.Из описания в разделе «Материалы и методы» неясно, как производилось выравнивание субтомограмм, об этом следует кратко изложить в разделе «Материалы и методы» дополнительно к ссылке на Weiss et al. (2017). Каждая реконструкция среднего значения субтомограммы должна иметь соответствующее разрешение, оцениваемое по сходству между двумя статистически независимо сгенерированными картами (т.н. обработка «золотого стандарта»). Кривые подобия должны быть представлены на дополнительном рисунке.Размер пикселя, с которым записываются данные, на рисунках не нужен. Рисунок 1 — дополнения к рисунку 2 и 3 выиграли бы от снижения шума на соответствующих томограммах, например, за счет нелинейной анизотропной диффузии.

Средние субтомограммы были пересчитаны с использованием тех же исходных данных и исходных координат частиц. Вместо PEET использовался Dynamo, и наборы данных были разделены в соответствии с «золотым стандартом» перед расчетом кривых FSC (теперь показано на рисунке 2 — дополнение к рисунку 1).Материалы и методы были обновлены для подробного описания процедуры усреднения.

Среднее значение субтомограммы ∆JF50_12585 было удалено, так как оно не добавляло дополнительную информацию этому исследованию.

Размер

пикселей был удален из всех легенд фигур.

Рисунок 1 — дополнение к рисунку 2 было отфильтровано с помощью фильтра деконволюции.

Рисунок 1 — дополнение к рисунку 3 было адаптировано для отображения графиков плотности, которые четко указывают на заполненные и пустые фенотипы.

https://дои.org/10.7554/eLife.46845.024

Система быстрого впрыска газа | Дженерал Атомикс

Газовый инжектор

Система быстрого впрыска газа General Atomics предназначена для впрыскивания коротких (миллисекундных и более) импульсов нереакционноспособных газов в вакуумную систему. Уровень потока измеряется небольшим датчиком давления, а поток регулируется обратной связью, чтобы фактический расход соответствовал потребности.

Первоначально разработанные для устройств для термоядерных исследований, пьезоэлектрические клапаны и датчики давления могут использоваться в сильных магнитных полях.Они изготовлены из полностью немагнитных материалов и используются в магнитных полях до 2,4 Тл.

 

  • пьезоэлектрический клапан впрыска газа
  • расход до 500 Торр-л/с
  • время открытия: 2 мс после подачи напряжения
  • расход измеряется датчиком давления, установленным на клапане
  • клапан и датчик давления нечувствительны к магнитным полям постоянного тока
  • давление газа до 6.5 атм (абс.)
  • вход газа: фланец miniconflat
  • Монтаж
  • : плоский фланец 2 3/4 дюйма
  • доступны альтернативные вакуумные фланцы

 

  • управляет до 4 газовыми форсунками через отдельные вставные модули
  • локальное ручное управление или внешнее программирование напряжения для каждого модуля управления
  • контроль напряжения в диапазоне 0-10 В
  • Аналоговый выход 0–10 В от датчика давления (расхода) на каждом клапане
  • регулируемая форма волны напряжения для соответствия характеристикам различных пьезоэлектрических клапанов
  • длина кабеля до 30 метров к клапанам

 

  • Дублет IIA, Дублет III, DIII-D и GA
  • ISX-A, ISX-B в ORNL
  • TEXTOR на IPP Юлих
  • ASDEX-Upgrade, Wendelstein 7AS, MPI Garching, Германия
  • ZT-40 в ЛАНЛ
  • KSTAR в NFRI, Южная Корея
  • Wendelstein 7X, MPI, Грайфсвальд, Германия

Цены зависят от конфигурации системы, требований к интерфейсу и стоимости доставки.

Добавить комментарий

Ваш адрес email не будет опубликован.