Аккумуляторы виды и устройство: Аккумуляторные батареи. Виды и устройство. Применение

Содержание

Аккумуляторные батареи. Виды и устройство. Применение

АКБ или аккумуляторные батареи – это оборудование, которое состоит из нескольких аккумуляторов. Оно может накапливать, хранить и расходовать энергию. Благодаря обратимости химических процессов, происходящих внутри аккумулятора, такие устройства могут заряжаться и разряжаться многократно.

Сфера применения аккумуляторов весьма обширна. Они применяются в автомобилях и различной бытовой технике, например, в пультах ДУ и ноутбуках. Но также и в качестве резервных источников питания в медицинской сфере, производстве, космической отрасли, дата-центрах.

Виды и типы АКБ

Сегодня производят около 30 типов аккумуляторов. Такое большое количество обуславливается возможностью применять в качестве электродов и электролитов различные химические элементы. Именно от материала электрода и состава электролита зависят все характеристики аккумулятора.

Мы не будем приводить все типы, а лишь дадим небольшую таблицу с описанием наиболее распространенных:

Устройство

1 — Отрицательный электрод
2 — Разделительный слой
3 — Положительные электроды
4 — Отрицательный контакт
5 — Предохранительный клапан
6 — Положительные электроды
7 — Положительный контакт

Аккумуляторные батареи состоят из нескольких банок аккумуляторов, соединенных либо параллельно, либо последовательно. Последовательное соединение применяют в целях увеличения напряжения, а параллельное для увеличения силы тока.

Каждый из отдельно взятого аккумулятора в АКБ состоит из двух электродов и электролита, помещенных в корпус из специального материала.

Электрод с отрицательным зарядом – анод, с положительным зарядом – катод. Анод содержит восстановитель, катод – окислитель. Внутри корпуса аккумулятора стоит разделительная пластина, которая не позволяет электродам замыкаться.

Электролит – водный раствор, в который погружены оба электрода.

При разрядке аккумулятора восстановитель анода начинает окисляться и выделяются электроны. Электроны затем попадают в электролит и оттуда движутся к катоду, при этом создавая разрядный ток. Попадая в катод электроны восстанавливают его окислитель. Простыми словами можно описать процесс так: электроны идут от отрицательного электрода к положительному и создают разрядный ток.

При зарядке аккумулятора электроды меняются своим химическим составом и происходит обратная реакция. Электроны здесь двигаются от положительного анода к отрицательному катоду.

Особенности разных типов АКБ
Свинцово-кислотные аккумуляторы

Разработан Гастоном Планте в 19 веке. Эти аккумуляторные батареи сегодня наиболее актуальны благодаря дешевизне и универсальности. Сфера их применения обширна ввиду большого количества разновидностей этого типа. В качестве отрицательно заряженных электродов здесь используется оксид свинца. Положительные электроды выполняются из свинца. Электролит – серная кислота.

У свинцовых-кислотных батарей есть следующие разновидности:
  • LA – аккумуляторы с напряжением 6 или 12 Вольт. Традиционное устройство для осуществления запуска двигателей автомобилей. Требуют постоянного обслуживания и вентиляции.
  • VRLA – напряжением 2, 4, 6 или 12 Вольт. Клапанно-регулируемая свинцово-кислотная аккумуляторная батарея. Как видно из названия этот АКБ укомплектован разгрузочным клапаном. Его роль – минимизировать выделение газа и расход воды. Такие батареи можно устанавливать в жилых помещениях.
  • AGM VRLA – как и предыдущий тип оснащен клапаном, но имеет совсем другие свойства. В аккумуляторах, сделанных по технологии AGM роль сепаратора играет стекловолокно. Его микропоры пропитаны жидким электролитом. Такие АКБ не требуют обслуживания и устойчивы к вибрациям.
  • GEL VRLA – подвид свинцово-кислотных аккумуляторов с гелеобразным электролитом. Благодаря этому увеличен их ресурс заряда/разряда. Не требуют обслуживания.
  • OPzV – герметичные аккумуляторы используемые в области телекоммуникации и для аварийного освещения. Электролит, как и в предыдущем случае гелевый. В электродах содержится кальций, благодаря которому срок службы такого типа батарей – 20 лет.
  • OPzS – катод таких аккумуляторов имеет трубчатую структуру. Это существенно повышает циклический ресурс этого типа батарей. Служит также около 20 лет. Выпускается в виде АКБ с напряжением от 2 до 125 В.
 Литий-ионные аккумуляторы

Был впервые выпущен Sony в 1991 году и с тех пор активно применяется в бытовой технике, электронных устройствах. Практически все мобильные телефоны, ноутбуки, фотоаппараты и видеокамеры оснащены таким видом батарей. Роль катода здесь играет литий-ферро-фосфатная пластина. Отрицательный анод – каменноугольный кокс. Положительный ион лития переносит заряд в таких батареях. Он может проникать в кристаллическую решетку других материй и образовывать с ними химическую связь. Преимуществом этого типа является высокая энергоемкость, низкий саморазряд и отсутствие нужды в обслуживании.

Литий-ионные аккумуляторные батареи также, как и их свинцовые аналоги имеют большое количество подтипов. В данном случае подтипы отличаются между собой составом катода и анода. Напряжение литий-ионных аккумуляторов варьируется в пределах от 2,4 до 3,7 В.

Одним из самых известных подтипов является литий-полимерные аккумуляторные батареи.

Они появились сравнительно недавно и быстро завоевал популярность. Она обусловлена тем, что в литий-полимерных батареях используется твердый полимерный электролит. Это позволяет создавать батареи любой формы. При этом стоимость этих батарей всего лишь на 15% выше обычных литий-ионных.
Похожие темы:

Виды и типы аккумуляторных батарей — подробно!

Категория: Поддержка по аккумуляторным батареям
Опубликовано 25.06.2015 19:00
Автор: Abramova Olesya

Аккумуляторная батарея – это источник постоянного тока, который предназначен для накопления и хранения энергии. Подавляющее число типов аккумуляторных батарей основано на циклическом преобразовании химической энергии в электрическую, это позволяет многократно заряжать и разряжать батарею.

Еще в 1800 году Алессандро Вольта произвел поразительное открытие, когда опустил в банку, наполненную кислотой, две металлические пластины – медную и цинковую, после чего доказал, что по соединяющей их проволоке протекает электрический ток. Спустя более чем 200 лет, современные аккумуляторные батареи продолжают производить на основе открытия Вольта.

Рисунок 1. Вольтов столб из шести элементов.

Рисунок 2. Алессандро Джузеппе Антонио Анастасио Вольта

Со времени изобретения первого аккумулятора прошло не больше 140 лет и сейчас сложно представить современный мир без резервных источников питания на основе батарей. Аккумуляторы применяются всюду, начиная с самых безобидных бытовых устройств: пульты управления, переносные радиоприемники, фонари, ноутбуки, телефоны, и заканчивая системами безопасности финансовых учреждений, резервными источниками питания для центров хранения и передачи данных, космической отраслью, атомной энергетикой, связью и т. д.

Развивающийся мир нуждается в электрической энергии столь сильно, сколько человеку нужен кислород для жизни.

Поэтому конструкторы и инженеры ежедневно ведут работу по оптимизации имеющихся типов аккумуляторов и периодически разрабатывают новые виды и подвиды.

Основные виды аккумуляторов приведены в таблице №1.

Тип

Применение

Обозначение

Рабочая температура, ºC

Напряжение элемента, В

Удельная энергия, Вт∙ч/кг

Литий-ионный (Литий-полимерный, литий-марганцевый, литий-железно-сульфидный, литий-железно-фосфатный, литий-железо-иттрий-фосфатный, литий-титанатный, литий-хлорный, литий-серный)

Транспорт, телекоммуникации, системы солнечной энергии, автономное и резервное электроснабжение, Hi-Tech, мобильные источники питания, электроинструмент, электромобили и т.д.

Li-Ion (Li-Co, Li-pol, Li-Mn, LiFeP, LFP, Li-Ti, Li-Cl, Li-S)

-20 … +40

3,2-4,2

280

никель-солевой

Автомобильный транспорт, Ж\Д транспорт, Телекоммуникации, Энергетика, в том числе альтернативная, Системы накопления энергии

Na/NiCl

-50 … +70

2,58

140

никель-кадмиевый

Электрокары, речные и морские суда, авиация

Ni-Cd

–50 … +40

1,2-1,35

40 – 80

железо-никелевый

Резервное электропитание, тяговые для электротранспорта, цепи управления

Ni-Fe

–40 … +46

1,2

100

никель-водородный

Космос

Ni-h3

 

1,5

75

никель-металл-гидридный

электромобили, дефибрилляторы, ракетно-космическая техника, системы автономного энергоснабжения, радиоаппаратура, осветительная техника.

Ni-MH

–60 … +55

1,2-1,25

60 – 72

никель-цинковый

Фотоаппараты

Ni-Zn

–30 … +40

1,65

60

свинцово-кислотный

Системы резервного питания, бытовая техника, ИБП, альтернативные источники питания, транспорт, промышленность и т.д.

Pb

–40 … +40

2, 11-2,17

30 – 60

серебряно-цинковый

Военная сфера

Ag-Zn

–40 … +50

1,85

<150

серебряно-кадмиевый

Космос, связь, военные технологии

Ag-Cd

–30 … +50

1,6

45 – 90

цинк-бромный

 

Zn-Br

 

1,82

70 – 145

цинк-хлорный

 

Zn-Cl

–20 … +30

1,98-2,2

160 – 250

Таблица №1.

Классификация аккумуляторных батарей.

Исходя из приведенных данных в таблице №1, можно прийти к выводу, что существует достаточно много видов аккумуляторов, отличных по своим характеристикам, которые оптимизированы для применения в разнообразных условиях и с различной интенсивностью. Применяя для производства новые технологии и компоненты, ученым удается достигать нужных характеристик для конкретной области применения, к примеру, для космических спутников, космических станций и другого космического оборудования были разработаны никель-водородные аккумуляторы. Конечно, в таблице приведены далеко не все типы, а лишь основные, которые получили распространение.

Современные системы резервного и автономного электропитания для промышленного и бытового сегмента основаны на разновидностях свинцово-кислотных, никель-кадмиевых (реже применяются железо-никелевый тип) и литий-ионных аккумуляторах, поскольку эти химические источники питания безопасны и имеют приемлемые технические характеристики и стоимость.

Свинцово-кислотные аккумуляторные батареи

Этот тип является самым востребованным в современном мире по причине универсальных особенностей и невысокой стоимости. Благодаря наличию большого количества разновидностей, свинцово-кислотные аккумуляторы применяется в областях систем резервного питания, системах автономного электроснабжения, солнечных электростанций, ИБП, различных видах транспорта, связи, системах безопасности, различных видах портативных устройств, игрушках и т. д.

Принцип действия свинцово-кислотных батарей

Основа работы химических источников питания основана на взаимодействии металлов и жидкости – обратимой реакции, которая возникает при замыкании контактов положительных и отрицательных пластин. Свинцово-кислотные аккумуляторы, как понятно из названия, состоят из свинца и кислоты, где положительно заряженными пластинами является свинец, а отрицательно заряженными – оксид свинца. Если подключить к двум пластинам лампочку, цепь замкнется и возникнет электрический ток (движение электронов), а внутри элемента возникнет химическая реакция.

В частности, происходит коррозия пластин батареи, свинец покрывается сульфатом свинца. Таким образом, в процессе разряда аккумулятора на всех пластинах будет образовываться налет из сульфата свинца. Когда аккумулятор полностью разряжен, его пластины покрыты одинаковым металлом – сульфатом свинца и имеют практически одинаковый заряд относительно жидкости, соответственно, напряжение батареи будет очень низким.

Если к батарее подключить зарядное устройство к соответствующим клеммам и включить его, ток будет протекать в кислоте в обратном направлении. Ток будет вызывать химическую реакцию, молекулы кислоты – расщепляться и за счет этой реакции будет происходить удаление сульфата свинца с положительных и отрицательных пластилин батареи. В финальной стадии зарядного процесса пластины будут иметь первозданный вид: свинец и оксид свинца, что позволит им снова получить разный заряд, т. е. батарея будет полностью заряжена.

Однако на практике все выглядит немного иначе и пластины электродов очищаются не полностью, поэтому аккумуляторы имеют определенный ресурс, по достижении которого емкость снижается до 80-70% от изначальной.

Рисунок №3. Электрохимическая схема свинцово-кислотного аккумулятора (VRLA).

Типы свинцово-кислотных батарей

  • Lead–Acid, обслуживаемые – 6, 12В батареи. Классические стартерные аккумуляторы для двигателей внутреннего сгорания и не только. Нуждаются в регулярном обслуживании и вентиляции. Подвержены высокому саморазряду.

  • Valve Regulated Lead–Acid (VRLA), необслуживаемые – 2, 4, 6 и 12В батареи. Недорогие аккумуляторы в герметизированном корпусе, которые можно использовать в жилых помещениях, не требуют дополнительной вентиляции и обслуживания. Рекомендованы для использования в буферном режиме.

  • Absorbent Glass Mat Valve Regulated Lead–Acid (AGM VRLA), необслуживаемые – 4, 6 и 12В батареи. Современные аккумуляторы свинцово-кислотного типа с абсорбированным электролитом (не жидкий) и стекловолоконными разделительными сепараторами, которые значительно лучше сохраняют свинцовые пластины, не давая им разрушаться. Такое решение позволило значительно снизить время заряда AGM батарей, поскольку зарядный ток может достигать 20-25, реже 30% от номинальной емкости.

    Аккумуляторы AGM VRLA имеют множество модификаций с оптимизированными характеристиками для циклического и буферного режимов работы: Deep – для частых глубоких разрядов, фронт-терминальные – для удобного расположения в телекоммуникационных стойках, Standard – общего назначения, High Rate – обеспечивают лучшую разрядную характеристику до 30% и подходят для мощных источников бесперебойного питания, Modular – позволяют создавать мощные батарейные кабинеты и т. д.

    Рисунок №4. AGM VRLA аккумуляторы EverExceed.

  • GEL Valve Regulated Lead–Acid (GEL VRLA), необслуживаниемые – 2, 4, 6 и 12В батареи. Одна из последних модификаций свинцово-кислотного типа аккумуляторов. Технология основана на применение гелеобразного электролита, который обеспечивает максимальный контакт с отрицательными и положительными пластинами элементов и сохраняет однообразную консистенцию по всему объему. Данный тип аккумуляторов требует «правильного» зарядного устройства, которое обеспечит требуемый уровень тока и напряжения, лишь в этом случае можно получить все преимущества по сравнению с AGM VRLA типом.

    Химические источники питания GEL VRLA, как и AGM, имеют множество подвидов, которые наилучшим образом подходят для определенных режимов работы. Самыми распространенными являются серии Solar – используются для систем солнечной энергии, Marine – для морского и речного транспорта, Deep Cycle – для частых глубоких разрядов, фронт-терминальные – собраны в специальных корпусах для телекоммуникационных систем, GOLF – для гольф-каров, а также для поломоечных машин, Micro – небольшие аккумуляторы для частого использования в мобильных приложениях, Modular – специальное решение по созданию мощных аккумуляторных банков для накопления энергии и т. д.

    Рисунок №5. GEL VRLA аккумулятор EverExceed.

     

     

     

  • OPzV, необслуживаемые – 2В батареи. Специальные свинцово-кислотные элементы типа OPZV произведены с применением трубчатых пластин анода и сернокислотным гелеобразным электролитом. Анод и катод элементов содержат дополнительный металл – кальций, благодаря которому повышается стойкость электродов к коррозии и увеличивается срок службы. Отрицательные пластины – намазные, эта технология обеспечивает лучший контакт с электролитом.

    Аккумуляторы OPzV устойчивы к глубоким разрядам и обладают длительным сроком службы до 22 лет. Как правило, для изготовления подобных элементов питания применяются только лучшие материалы, чтобы обеспечить высокую эффективность работы в циклическом режиме.

    Применение OPzV аккумуляторов востребовано в телекоммуникационных установках, системах аварийного освещения, источниках бесперебойного питания, системах навигации, бытовых и промышленных системах накопления энергии и солнечной электрогенерации.


    Рисунок №6. Строение OPzV аккумулятора EverExceed.

  • OPzS, малообслуживаемые – 2, 6, 12В батареи. Стационарные заливные свинцово-кислотные аккумуляторы OPzS производятся с трубчатыми пластинами анода с добавлением сурьмы. Катод также содержит небольшое количество сурьмы и представляет собой намазной решетчатый тип. Анод и катод разделены микропористыми сепараторами, которые предотвращают короткое замыкание. Корпус аккумуляторов выполнен из специального ударопрочного, устойчивого к химическому воздействию и огню прозрачного пластика, а вентилируемые клапаны относятся к пожаробезопасному типу и обеспечивают защиту от возможного попадания пламени и искр.

    Прозрачные стенки позволяют удобно контролировать уровень электролита при помощи отметок минимального и максимального значения. Специальная структура клапанов дает возможность без их снятия доливать дистиллированную воду и промерять плотность электролита. В зависимости от нагрузки, долив воды осуществляется раз в один – два года.

    Аккумуляторные батареи типа OPzS обладают самыми высокими характеристиками среди всех других видов свинцово-кислотных батарей. Срок службы может достигать 20 – 25 лет и обеспечивать ресурс до 1800 циклов глубокого 80% разряда.

    Применение подобных батарей необходимо в системах с требованиями среднего и глубокого разряда, в т.ч. где наблюдаются пусковые токи средней величины.

    Рисунок №7. OPzS аккумулятор Victron Energy.

Характеристики свинцово-кислотных аккумуляторов

Анализируя приведенные в таблице №2 данные, можно прийти к выводу, что свинцово-кислотные аккумуляторы обладают широким выбором моделей, которые подходят для различных режимов работы и условий эксплуатации.

Тип

LA

VRLA

AGM VRLA

GEL VRLA

OPzV

OPzS

Емкость, Ампер/час

10 – 300

1 – 300

1 – 3000

1 – 3000

50 – 3500

50 – 3500

Напряжение, Вольт

6, 12

4, 6, 12

2, 4, 6, 12

2, 6, 12

2

2

Оптимальная глубина разряда, %

 

30

<40

<50

<60

<60

Допустимая глубина разряда, %

 

<75

<80

<90

<90

<100

Циклический ресурс, D. O.D.=50%

 

<250-300

<1000

<1400

<3200

<3300

Оптимальная температура, °С

0 … +45

+15 … +25

+10 … +25

+10 … +25

0 … +30

0 … +30

Диапазон рабочих температур, °С

–50 … +70

–35 … +60

–40 … +70

–40 … +70

–40 … +70

–40 … +70

Срок службы, лет при +20°С

<7

<7

5 – 15

8 – 15

15 – 20

17 – 25

Саморазряд, %

3 – 5

2 – 3

1 – 2

1 – 2

1 – 2

1 – 2

Макс. ток заряда, % от емкости

10 – 20

20 – 25

20 – 30

15 – 20

15 – 20

10 – 15

Минимальное время заряда, ч

8 – 12

6 – 10

6 – 10

8 – 12

10 – 14

10 – 15

Требования к обслуживанию

3 – 6 мес.

нет

нет

нет

нет

1 – 2 года

Средняя стоимость, $, 12В/100Ач.

70 – 150

200 – 250

250 – 380

350 – 500

1000 – 1400

1500 – 3500

Таблица №2. Сравнительные характеристики по видам свинцово-кислотных батарей.

Для анализа использовались усредненные данные более чем 10-ти производителей батарей, продукция которых представлена на рынке Украины в течение длительного времени и успешно применяется во многих областях (EverExceed, B.B. Battery, CSB, Leoch, Ventura, Challenger, C&D Techologies, Victron Energy, SunLight, Troian и другие).

Литий-ионные (литиевые) аккумуляторные батареи

История прохождения происхождения уходит в 1912 год, когда Гилберт Ньютон Льюис работал над вычислением активностей ионов сильных электролитов и проводил исследования электродных потенциалов целого ряда элементов, включая литий. С 1973 года работы были возобновлены и в результате появились первые элементы питания на основе лития, которые обеспечивали только один цикл разряда. Попытки создать литиевый аккумулятор затруднялись активностью свойств лития, которые при неправильных режимах разряда или заряда вызывали бурную реакцию с выделением высокой температуры и даже пламени. Компания Sony выпустила первые мобильные телефоны с подобными аккумуляторами, но была вынуждена отозвать продукцию обратно после нескольких неприятных инцидентов. Разработки не прекращались и в 1992 году появились первые «безопасные» аккумуляторы на основе ионов лития.

Аккумуляторы литий-ионного типа обладают высокой плотностью энергии и благодаря этому при компактном размере и легком весе обеспечивают в 2-4 раза большую емкость по сравнению со свинцово-кислотными аккумуляторами. Несомненно, большим достоинством литий-ионных батарей является высокая скорость полной 100% перезарядки в течение 1-2 часов.

Li-ion батареи получили широкое применение в современной электронной технике, автомобилестроении, системах накопления энергии, солнечной генерации электроэнергии. Крайне востребованы в высокотехнологичных устройствах мультимедиа и связи: телефонах, планшетных компьютерах, ноутбуках, радиостанциях и т. д. Современный мир сложно представить без источников питания литий-ионного типа.

Принцип действия литиевых (литий-ионных) батарей

Принцип работы заключается в использовании ионов лития, которые связаны молекулами дополнительных металлов. Обычно, в дополнение к литию применяются литийкобальтоксид и графит. При разряде литий-ионного аккумулятора происходит переход ионов от отрицательного электрода (катода) к положительному (аноду) и наоборот при заряде. Схема аккумулятора предполагает наличие разделительного сепаратора между двумя частями элемента, это необходимо для предотвращения самопроизвольного перемещения ионов лития. Когда цепь аккумулятора замкнута и происходит процесс заряда или разряда, ионы преодолевают разделительный сепаратор стремясь к противоположно заряженному электроду.

Рисунок №8. Электрохимическая схема литий-ионного аккумулятора.

Благодаря своей высокой эффективности, литий-ионные аккумуляторы получили бурное развитие и множество подвидов, например, литий-железо-фосфатные аккумуляторы (LiFePO4). Ниже приведена графическая схема работы этого подтипа.

Рисунок №9. Электрохимическая схема процесса разряда и разряда LiFePO4 батареи.

Типы литий-ионных аккумуляторов

Современные литий-ионные аккумуляторы имеют множество подтипов, основная разница которых заключается в составе катода (отрицательно заряженного электрода). Также может изменяться состав анода для полной замены графита или использования графита с добавлением других материалов.

Различные виды литий-ионных аккумуляторов обозначаются по их химическому разложению. Для рядового пользователя это может быть несколько сложно, поэтому каждый тип будет описан максимально подробно, включая его полное название, химическое определение, аббревиатуру и краткое обозначение. Для удобства описания будет использоваться сокращенное название.

  • Литий кобальт оксид (LiCoO2) – Обладает высокой удельной энергией, что делает литий-кобальтовый аккумулятор востребованным в компактных высокотехнологичных устройствах. Катод батареи состоит из оксида кобальта, тогда как анод – из графита. Катод имеет слоистую структуру и во время разряда ионы лития перемещаются от анода к катоду. Недостатком этого типа является относительно короткий срок службы, невысокая термическая стабильность и лимитированная мощность элемента.

    Литий-кобальтовые батареи не могут разряжаться и заряжаться током, превосходящим номинальную емкость, поэтому аккумулятор с емкостью 2,4Ач может работать с током 2,4А. Если для заряда будет применяться большая сила тока, то это вызовет перегрев. Оптимальный зарядный ток составляет 0,8C, в данном случае 1,92А. Каждый литий-кобальтовый аккумулятор комплектуется схемой защиты, которая ограничивает заряд и скорость разряда и лимитирует ток на уровне 1C.

    На графике (Рис. 10) отражены основные свойства литий-кобальтовых аккумуляторов с точки зрения удельной энергии или мощности, удельная мощность или способность обеспечивать высокий ток, безопасности или шансы воспламенения при высокой нагрузке, рабочая температура окружающей среды, срок службы и циклический ресурс, стоимость.

    Рисунок №10. Диаграмма основных свойств LiCoO2 аккумуляторов.

     

  • Литий Оксид Марганца (LiMn2O4, LMO) – первая информация об использовании лития с марганцевыми шпинелями была опубликована в научных докладах 1983 года. Компания Moli Energy в 1996 году выпустила первые партии аккумуляторов на основе литий-оксид-марганца в качестве материала катода. Такая архитектура формирует трехмерные структуры шпинели, что улучшает поток ионов к электроду, тем самым снижая внутреннее сопротивление и повышая возможные токи заряда. Также преимущество шпинели в термической стабильности и повышенной безопасности, однако циклический ресурс и срок службы ограничен.

    Низкое сопротивление обеспечивает возможность быстрого заряда и разряда литий-марганцевого аккумулятора с высоким током до 30А и кратковременно до 50А. Применяется для мощных электроинструментов, медицинского оборудования, а также гибридных и электрических транспортных средств.

    Потенциал литий-марганцевых аккумуляторов примерно на 30% ниже по сравнению с литий-кобальтовыми батареями, однако эта технология обладает примерно на 50% лучшими свойствами, чем аккумуляторы на основе никелевых химических компонентов. 

  • Литий Оксид Марганца (LiMn2O4, LMO) – первая информация об использовании лития с марганцевыми шпинелями была опубликована в научных докладах 1983 года. Компания Moli Energy в 1996 году выпустила первые партии аккумуляторов на основе литий-оксид-марганца в качестве материала катода. Такая архитектура формирует трехмерные структуры шпинели, что улучшает поток ионов к электроду, тем самым снижая внутреннее сопротивление и повышая возможные токи заряда. Также преимущество шпинели в термической стабильности и повышенной безопасности, однако циклический ресурс и срок службы ограничен.

    Низкое сопротивление обеспечивает возможность быстрого заряда и разряда литий-марганцевого аккумулятора с высоким током до 30А и кратковременно до 50А. Применяется для мощных электроинструментов, медицинского оборудования, а также гибридных и электрических транспортных средств.

    Потенциал литий-марганцевых аккумуляторов примерно на 30% ниже по сравнению с литий-кобальтовыми батареями, однако эта технология обладает примерно на 50% лучшими свойствами, чем аккумуляторы на основе никелевых химических компонентов.

    Гибкость конструкции позволяет инженерам оптимизировать свойства батареи и достичь длительного срока службы, высокой емкости (удельная энергия), возможности обеспечивать максимальный ток (удельная мощность). Например, с длительным сроком эксплуатации типоразмер элемента 18650 имеет емкость 1,1Ач, тогда как элементы, оптимизированные на повышенную емкость, – 1,5Ач, но при этом они имеют меньший срок службы.

    На графике (Рис. 12) отраженны не самые впечатляющие характеристики литий-марганцевых аккумуляторов, однако современные разработки позволили существенно повысить эксплуатационных характеристики и сделать этот тип конкурентным и широко применяемым.

    Рисунок №11. Диаграмма основных свойств LiMn2O4 аккумуляторов.

    Современные аккумуляторы литий-марганцевого типа могут производиться с добавлениями других элементов – литий-никель-марганец-кобальт оксид (NMC), подобная технология существенно продлевает срок службы и повышает показатели удельной энергии. Этот состав привносит лучшие свойства из каждой системы, так называемые LMO (NMC) применяются для большинства электромобилей, таких как Nissan, Chevrolet, BMW и т. д. 

  • Литий-Никель-Марганец-Кобальт оксид (LiNiMnCoO2 или NMC) – ведущие производители литий-ионных батарей сосредоточились на сочетании никеля-марганца-кобальта в качестве материалов катода (NMC). Похожий на литий-марганцевый тип, эти аккумуляторы могут быть адаптированы для достижения показателей высокой удельной энергии или высокой удельной мощности, однако, не одновременно. К примеру, элемент NMC типа 18650 в состоянии умеренной нагрузки имеет емкость 2,8Ач и может обеспечить максимальный ток 4-5А; NMC элемент, оптимизированный к параметрам повышенной мощности, имеет всего 2Втч, но может обеспечить непрерывный ток разряда до 20А. Особенность NMC заключается в сочетании никеля и марганца, в качестве примера можно привести поваренную соль, в которой основные ингредиенты натрий и хлорид, которые в отдельности являются токсичными веществами.

    Никель известен своей высокой удельной энергией, но низкой стабильностью. Марганец имеет преимущество формирования структуры шпинели и обеспечивает низкое внутреннее сопротивление, но при этом обладает низкой удельной энергией. Комбинируя эти два металла, можно получать оптимальные характеристика NMC аккумулятора для разных режимов эксплуатации.

    NMC аккумуляторы прекрасно подходят для электроинструмента, электровелосипедов и других силовых агрегатов. Сочетание материалов катода: треть никеля, марганца и кобальта обеспечивают уникальные свойства, а также снижают стоимость продукта в связи с уменьшением содержания кобальта. Другие подтипы, как NCM, CMN, CNM, MNC и MCN имеют отличное соотношение тройки металлов от 1/3-1/3-1/3. Обычно, точное соотношение держится производителем в секрете.

    Рисунок №12. Диаграмма основных свойств LiNiMnCoO2 аккумуляторов.

  • Литий-Железо-Фосфатные (LiFePO4) – в 1996 в университете штата Техас (и другими участниками) был применен фосфат в качестве катодного материала для литиевых аккумуляторов. Литий-фосфат предлагает хорошие электрохимические характеристики с низким сопротивлением. Это стало возможным с нано-фосфатом материала катода. Основными преимуществами являются высокий протекающий ток и длительный срок службы к тому же, хорошая термическая стабильность и повышенная безопасность.

    Литий-железо-фосфатные аккумуляторы терпимее к полному разряду и менее подвержены «старению», чем другие литий-ионные системы. Также LFP более устойчивы к перезаряду, но как и в других аккумуляторах литий-ионного типа, перезаряд может вызвать повреждение. LiFePO4 обеспечивает очень стабильное напряжение разряда – 3,2В, это же позволяет использовать всего 4 элемента для создания батареи стандарта 12В, что в свою очередь позволяет эффективно заменять свинцово-кислотные батареи. Литий-железо-фосфатные аккумуляторы не содержат кобальт, это существенно снижает стоимость продукта и делает его более экологически чистым. В процессе разряда обеспечивает высокий ток, а также может быть заряжен номинальным током всего за один час до полной емкости. Эксплуатация при низких температурах окружающей среды снижает производительность, а температура свыше 35ºС – несколько сокращается срок службы, но показатели намного лучше, чем у свинцово-кислотных, никель-кадмиевых или никель-металлогидридных аккумуляторов. Литий-фосфат имеет больший саморазряд, чем другие литий-ионные аккумуляторы, которые могут вызвать потребность балансировки батарейных кабинетов.

    Рисунок №13. Диаграмма основных свойств LiFePO4 аккумуляторов.

     

  • Литий-Никель-Кобальт-Оксид Алюминия (LiNiCoAlO2) – литий-никель-кобальто-оксид алюминиевые батареи (NCA) появились в 1999 году. Этот тип обеспечивает высокую удельную энергию и достаточную удельную мощность, а также длительный срок службы. Однако существуют риски воспламенения, в следствие чего был добавлен алюминий, который обеспечивает более высокую стабильность электрохимических процессов, протекающих в аккумуляторе при высоких токах разряда и заряда.

    Рисунок №14. Диаграмма основных свойств LiNiCoAlO2 аккумуляторов.

  • Литий-титанат (Li4Ti5O12) – аккумуляторы с анодами из литий-титаната были известны с 1980-х годов. Катод состоит из графита и имеет сходство с архитектурой типичной литий-металлической батареи. Литий-титанат имеет напряжение элемента 2,4В, может быть быстро заряжен и обеспечивает высокий разрядный ток 10C, который в 10 раз превышает номинальную емкость батареи.

    Литий-титанатные аккумуляторы отличаются повышенным циклическим ресурсом по сравнению с другими Li-ion видами батарей. Обладают высокой безопасностью, а также способны работать при низких температурах (до –30ºC) без ощутимого снижения рабочих характеристик.

    Недостаток заключается в достаточно высокой стоимости, а также в небольшом показателе удельной энергии, порядка 60-80Втч/кг, что вполне сопоставимо с никель-кадмиевыми аккумуляторами. Области применения: электрические силовые агрегаты и источники бесперебойного питания.

    Рисунок №15. Диаграмма основных свойств Li4Ti5O12 аккумуляторов.

  • Литий-полимерные аккумуляторы (Li-pol, Li-polymer, LiPo, LIP, Li-poly) – литий полимерные аккумуляторы отличаются от литий-ионных тем, что в них используется специальный полимерный электролит. Возникший ажиотаж к этому виду батарей с 2000-х годов длится до сегодняшнего времени. Основан он не безосновательно, т. к. при помощи специальных полимеров удалось создать батарею без жидкого или гелеобразного электролита, это дает возможность создавать батареи практически любой формы. Но основная проблема заключается в том, что твердый полимерный электролит обеспечивает плохую проводимость при комнатной температуре, а лучшие свойства демонтирует в разогретом состоянии до 60°С. Все попытки ученых обнаружить решение этой задачи оказали тщетны.

    В современных литий-полимерных батареях применяется небольшое количество гелевого электролита для лучшей проводимости при нормальной температуре. А принцип работы построен на одном из описанных выше типов. Самым распространенным является литий-кобальтовый тип с полимерным гелеобразным электролитом, который применяется в большинстве случаев.

    Основная разница между литий-ионными аккумуляторами и литий-полимерными заключается в том, что микропористый полимерный электролит заменяется традиционным разделительным сепаратором. Литий-полимер имеет немного больший показатель удельной энергии и дает возможность создавать тонкие элементы, но стоимость на 10-30% выше, чем литий-ионных. Существенная разница есть и в структуре корпуса. Если для литий-полимерных применяется тонкая фольга, которая дается возможность создавать настолько тонкие элементы питания, что они похожи на кредитные карты, то литий-ионные собираются в жестком металлическом корпусе для плотной фиксации электродов.

    Рисунок №17. Внешний вид Li-polymer аккумулятора для мобильного телефона.

Характеристики литий-ионных аккумуляторов

В таблице отсутствует максимальная емкость элементов, т. к. технология литий-ионных аккумуляторов не позволяет производить мощные отдельные элементы. Когда необходима высокая емкость или постоянный ток, батареи соединятся параллельно и последовательно при помощи перемычек. Состояние обязательно должна контролировать система батарейного мониторинга. Современные батарейные кабинеты для ИБП и солнечных электростанций на основе литиевых элементов могут достигать напряжения 500-700В постоянного тока с емкостью около 400А/ч, а также емкости 2000 – 3000Ач с напряжением 48 или 96В.

Параметр \ Тип

LiCoO2

LiMn2O4

LiNiMnCoO2

LiFePO4

LiNiCoAlO2

Li4Ti5O12

Напряжение элемента, Вольт;

3. 6

3.7

3.6-3.7

3.2

3.6

2.4

Оптимальная глубина разряда, %;

85-90

85-90

85-90

85-90

85-90

85-90

Допустимая глубина разряда, %;

100

100

100

100

100

100

Циклический ресурс, D.O.D.=80%;

700 — 1000

1000 — 2000

1000 — 2000

1000 — 2000

1000 — 2000

5000 — 8000

Оптимальная температура, °С;

+20. ..+30

+20…+30

+20…+30

+20…+30

+20…+30

+20…+30

Диапазон рабочих температур, °С;

–10 …+60

–10 …+45

–10 …+55

–10 …+60

–10 …+55

–10 …+45

Срок службы, лет при +20°С;

5 – 7

10

10

20 — 25

20 — 25

18 — 25

Саморазряд в мес., %

1 – 2

1 – 2

1 – 2

1 – 2

1 – 2

1 – 2

Макс. ток разряда

1C

10C/30C 5с

2C

25 — 30C

1C

10C/30С 5с

Макс. ток заряда

0,7-1C

0,7-1C

0,7-1C

1C

0,7C

1C

Минимальное время заряда, ч

2 — 3

2 — 2.5

2 — 3

2 — 3

2 — 3

2 — 3

Требования к обслуживанию

нет

нет

нет

нет

нет

нет

Уровень стоимости

высокий

средний

средний

низкий

средний

высокий

Никель-кадмиевые аккумуляторные батареи

Изобретателем является шведский ученый Вальдемар Юнгнер, который запатентовал технологию производства никель кадмиевого типа в 1899 году. D 1990 году возник патентный спор с Эдисоном, который Юнгнер проиграл в силу того, что не владел таким средствами, как его оппонент. Компания «Ackumulator Aktiebolaget Jungner», основанная Вальдемаром, оказалась на грани банкротства, однако, сменив название на «Svenska Ackumulator Aktiebolaget Jungner», предприятие все же продолжило свое развитие. В настоящее время предприятие, основанное разработчиком, носит название «SAFT AB» и производит одни из самых надежных никель-кадмиевых аккумуляторов в мире.

Никель-кадмиевые аккумуляторы относятся к очень долговечному и надежному типу. Существуют обслуживаемые и необслуживаемые модели с емкостью от 5 до 1500Ач. Обычно поставляются в виде сухо-заряженных банок без электролита с номинальным напряжением 1,2В. Несмотря на схожесть конструкции со свинцово-кислотными, никель- кадмиевые батареи имеют ряд существенных преимуществ в виде стабильной работы при температуре от –40°С, возможности выдерживать высокие пусковые токи, а также оптимизированы моделями для быстрого разряда. Ni-Cd батареи устойчивы к глубокому разряду, перезаряду и не требуют моментального заряда как свинцово-кислотный тип. Конструктивно производятся в ударопрочном пластике и хорошо переносят механические повреждения, не боятся вибрации и т.п.

Принцип действия никель-кадмиевых батарей

Щелочные аккумуляторы, электроды которых состоят из гидрата окиси никеля с добавлениями графита, окиси бария и порошкового кадмия. В качестве электролита, как правило, выступает раствор с 20%-ным содержанием калия и добавлением моногидрата лития. Пластины разделены изолирующими сепараторами во избежании замыкания, одна отрицательно заряженная пластина расположена между двумя положительно заряженными.

В процессе разряда никель-кадмиевой батареи происходит взаимодействие между анодом с гидратом окиси никеля и ионами электролита, образуя гидрат закиси никеля. В это же время катод из кадмия образует гидрат окиси кадмия, тем самым создавая разность потенциалов до 1,45В обеспечивая напряжение внутри аккумулятора и во внешней замкнутой цепи.

Процесс заряда никель-кадмиевых аккумуляторов сопровождается окислением активной массы анодов и переходом гидрата закиси никеля в гидрат окиси никеля. Одновременно катод восстанавливается с образованием кадмия.

Достоинством принципа действия никель-кадмиевой батареи является то, что все составляющие, которые образуются в процессе циклов разряда и заряда, почти не растворяются в электролите, а также не вступают в какие-либо побочные реакции.

Рисунок №16. Строение Ni-Cd аккумулятора.

Типы никель-кадмиевых аккумуляторов

В настоящее время батареи Ni-Cd используют чаще всего в промышленности, где требуется обеспечивать питанием разнообразные приложения. Некоторые производители предлагают несколько подвидов никель-кадмиевых аккумуляторов, которые обеспечивают наилучшую работу в определенных режимах:

  • время разряда 1,5 – 5 часов и более – обслуживаемые батареи;

  • время разряда 1,5 – 5 часов и более – необслуживаемые батареи;

  • время разряда 30 – 150 минут – обслуживаемые батареи;

  • время разряда 20 – 45 минут – обслуживаемые батареи;

  • время разряда 3 – 25 минут – обслуживаемые батареи.

Характеристики никель-кадмиевых аккумуляторов

Параметр \ Тип

Никель-кадмиевые / Ni-Cd

Емкость, Ампер/час;

1 – 1500

Напряжение элемента, Вольт;

1,2

Оптимальная глубина разряда, %;

60 — 80

Допустимая глубина разряда, %;

100

Циклический ресурс, D.O.D.=80%;

2300

Оптимальная температура, °С;

0 … +20

Диапазон рабочих температур, °С;

-50 … +70

Срок службы, лет при +20°С;

25

Саморазряд в мес. , %

4

Макс. ток разряда

10 C5

Макс. ток заряда

0.4 C5

Минимальное время заряда, ч

5

Требования к обслуживанию

Малообслуживаемые или необслуживанемые

Уровень стоимости

средняя (300 – 400$ 100Ач)

Высокие технические характеристики делают этот тип аккумуляторных батарей очень привлекательным для решения производственных задач, когда требуется высоконадежный источник резервного питания с длительным сроком службы.

Никелево-железные аккумуляторные батареи

Впервые были созданы Вальдемаром Юнгнером в 1899 году, когда он пытался найти более дешевый аналог кадмию в составе никель-кадмиевых батарей. После долгих испытаний Юнгнер отказался от применения железа, т. к. заряд осуществлялся слишком медленно. Несколькими годами позднее, Томас Эдисон создал никель-железный аккумулятор, который осуществлял питание электромобилей «Baker Electric» и «Detroit Electric».

Дешевизна производства позволили никель-железным аккумуляторам стать востребованными в электротранспорте в качестве тяговых батарей, также применяются для электрификации пассажирских вагонов, питания цепей управления. В последние годы о никель-железных аккумуляторах заговорили с новой силой, т. к. они не содержат токсичных элементов вроде свинца, кадмия, кобальта и т. д. В настоящее время некоторые производители продвигают их для систем возобновляемой энергетики.

Принцип действия никелево-железных батарей

Аккумуляция электроэнергии происходит при помощи никель оксида-гидроксида, применяемого в качестве положительных пластин, железа – в качестве отрицательных пластин и жидкого электролита в виде едкого калия. Никелевые стабильные трубки или «карманы» содержат активное вещество

Никелево-железный тип очень надежный, т.к. выдерживает глубокие разряды, частые перезаряды, а также может находится в недозаряженном состоянии, что очень пагубно для свинцово-кислотных батарей.

Характеристики никелево-железных аккумуляторов

Параметр \ Тип

Никель-кадмиевые / Ni-Cd

Емкость, Ампер/час;

10 – 1000

Напряжение элемента, Вольт;

1,2

Оптимальная глубина разряда, %;

50 — 80

Допустимая глубина разряда, %;

100

Циклический ресурс, D.O.D.=80%;

1800 — 2300

Оптимальная температура, °С;

+15 . .. +25

Диапазон рабочих температур, °С;

-40 … +60

Срок службы, лет при +20°С;

20

Саморазряд в мес., %

15

Макс. ток разряда

0.25C 5

Макс. ток заряда

0.25C 5

Минимальное время заряда, ч

12 – 16

Требования к обслуживанию

Малообслуживаемые

Уровень стоимости

средняя, низкая

Использованные материалы

Исследования компании Boston Consulting Group

Техническая документация ТМ Bosch, Panasonic, EverExceed, Victron Energy, Varta, Leclanché, Envia, Kokam, Samsung, Valence и других.

Виды и типы аккумуляторных батарей — подробно!

Категория: Поддержка по аккумуляторным батареям
Опубликовано 25.06.2015 19:00
Автор: Abramova Olesya

Аккумуляторная батарея – это источник постоянного тока, который предназначен для накопления и хранения энергии. Подавляющее число типов аккумуляторных батарей основано на циклическом преобразовании химической энергии в электрическую, это позволяет многократно заряжать и разряжать батарею.

Еще в 1800 году Алессандро Вольта произвел поразительное открытие, когда опустил в банку, наполненную кислотой, две металлические пластины – медную и цинковую, после чего доказал, что по соединяющей их проволоке протекает электрический ток. Спустя более чем 200 лет, современные аккумуляторные батареи продолжают производить на основе открытия Вольта.

Рисунок 1. Вольтов столб из шести элементов.

Рисунок 2. Алессандро Джузеппе Антонио Анастасио Вольта

Со времени изобретения первого аккумулятора прошло не больше 140 лет и сейчас сложно представить современный мир без резервных источников питания на основе батарей. Аккумуляторы применяются всюду, начиная с самых безобидных бытовых устройств: пульты управления, переносные радиоприемники, фонари, ноутбуки, телефоны, и заканчивая системами безопасности финансовых учреждений, резервными источниками питания для центров хранения и передачи данных, космической отраслью, атомной энергетикой, связью и т. д.

Развивающийся мир нуждается в электрической энергии столь сильно, сколько человеку нужен кислород для жизни. Поэтому конструкторы и инженеры ежедневно ведут работу по оптимизации имеющихся типов аккумуляторов и периодически разрабатывают новые виды и подвиды.

Основные виды аккумуляторов приведены в таблице №1.

Тип

Применение

Обозначение

Рабочая температура, ºC

Напряжение элемента, В

Удельная энергия, Вт∙ч/кг

Литий-ионный (Литий-полимерный, литий-марганцевый, литий-железно-сульфидный, литий-железно-фосфатный, литий-железо-иттрий-фосфатный, литий-титанатный, литий-хлорный, литий-серный)

Транспорт, телекоммуникации, системы солнечной энергии, автономное и резервное электроснабжение, Hi-Tech, мобильные источники питания, электроинструмент, электромобили и т.д.

Li-Ion (Li-Co, Li-pol, Li-Mn, LiFeP, LFP, Li-Ti, Li-Cl, Li-S)

-20 … +40

3,2-4,2

280

никель-солевой

Автомобильный транспорт, Ж\Д транспорт, Телекоммуникации, Энергетика, в том числе альтернативная, Системы накопления энергии

Na/NiCl

-50 … +70

2,58

140

никель-кадмиевый

Электрокары, речные и морские суда, авиация

Ni-Cd

–50 … +40

1,2-1,35

40 – 80

железо-никелевый

Резервное электропитание, тяговые для электротранспорта, цепи управления

Ni-Fe

–40 … +46

1,2

100

никель-водородный

Космос

Ni-h3

 

1,5

75

никель-металл-гидридный

электромобили, дефибрилляторы, ракетно-космическая техника, системы автономного энергоснабжения, радиоаппаратура, осветительная техника.

Ni-MH

–60 … +55

1,2-1,25

60 – 72

никель-цинковый

Фотоаппараты

Ni-Zn

–30 … +40

1,65

60

свинцово-кислотный

Системы резервного питания, бытовая техника, ИБП, альтернативные источники питания, транспорт, промышленность и т.д.

Pb

–40 … +40

2, 11-2,17

30 – 60

серебряно-цинковый

Военная сфера

Ag-Zn

–40 … +50

1,85

<150

серебряно-кадмиевый

Космос, связь, военные технологии

Ag-Cd

–30 … +50

1,6

45 – 90

цинк-бромный

 

Zn-Br

 

1,82

70 – 145

цинк-хлорный

 

Zn-Cl

–20 … +30

1,98-2,2

160 – 250

Таблица №1. Классификация аккумуляторных батарей.

Исходя из приведенных данных в таблице №1, можно прийти к выводу, что существует достаточно много видов аккумуляторов, отличных по своим характеристикам, которые оптимизированы для применения в разнообразных условиях и с различной интенсивностью. Применяя для производства новые технологии и компоненты, ученым удается достигать нужных характеристик для конкретной области применения, к примеру, для космических спутников, космических станций и другого космического оборудования были разработаны никель-водородные аккумуляторы. Конечно, в таблице приведены далеко не все типы, а лишь основные, которые получили распространение.

Современные системы резервного и автономного электропитания для промышленного и бытового сегмента основаны на разновидностях свинцово-кислотных, никель-кадмиевых (реже применяются железо-никелевый тип) и литий-ионных аккумуляторах, поскольку эти химические источники питания безопасны и имеют приемлемые технические характеристики и стоимость.

Свинцово-кислотные аккумуляторные батареи

Этот тип является самым востребованным в современном мире по причине универсальных особенностей и невысокой стоимости. Благодаря наличию большого количества разновидностей, свинцово-кислотные аккумуляторы применяется в областях систем резервного питания, системах автономного электроснабжения, солнечных электростанций, ИБП, различных видах транспорта, связи, системах безопасности, различных видах портативных устройств, игрушках и т. д.

Принцип действия свинцово-кислотных батарей

Основа работы химических источников питания основана на взаимодействии металлов и жидкости – обратимой реакции, которая возникает при замыкании контактов положительных и отрицательных пластин. Свинцово-кислотные аккумуляторы, как понятно из названия, состоят из свинца и кислоты, где положительно заряженными пластинами является свинец, а отрицательно заряженными – оксид свинца. Если подключить к двум пластинам лампочку, цепь замкнется и возникнет электрический ток (движение электронов), а внутри элемента возникнет химическая реакция. В частности, происходит коррозия пластин батареи, свинец покрывается сульфатом свинца. Таким образом, в процессе разряда аккумулятора на всех пластинах будет образовываться налет из сульфата свинца. Когда аккумулятор полностью разряжен, его пластины покрыты одинаковым металлом – сульфатом свинца и имеют практически одинаковый заряд относительно жидкости, соответственно, напряжение батареи будет очень низким.

Если к батарее подключить зарядное устройство к соответствующим клеммам и включить его, ток будет протекать в кислоте в обратном направлении. Ток будет вызывать химическую реакцию, молекулы кислоты – расщепляться и за счет этой реакции будет происходить удаление сульфата свинца с положительных и отрицательных пластилин батареи. В финальной стадии зарядного процесса пластины будут иметь первозданный вид: свинец и оксид свинца, что позволит им снова получить разный заряд, т. е. батарея будет полностью заряжена.

Однако на практике все выглядит немного иначе и пластины электродов очищаются не полностью, поэтому аккумуляторы имеют определенный ресурс, по достижении которого емкость снижается до 80-70% от изначальной.

Рисунок №3. Электрохимическая схема свинцово-кислотного аккумулятора (VRLA).

Типы свинцово-кислотных батарей

  • Lead–Acid, обслуживаемые – 6, 12В батареи. Классические стартерные аккумуляторы для двигателей внутреннего сгорания и не только. Нуждаются в регулярном обслуживании и вентиляции. Подвержены высокому саморазряду.

  • Valve Regulated Lead–Acid (VRLA), необслуживаемые – 2, 4, 6 и 12В батареи. Недорогие аккумуляторы в герметизированном корпусе, которые можно использовать в жилых помещениях, не требуют дополнительной вентиляции и обслуживания. Рекомендованы для использования в буферном режиме.

  • Absorbent Glass Mat Valve Regulated Lead–Acid (AGM VRLA), необслуживаемые – 4, 6 и 12В батареи. Современные аккумуляторы свинцово-кислотного типа с абсорбированным электролитом (не жидкий) и стекловолоконными разделительными сепараторами, которые значительно лучше сохраняют свинцовые пластины, не давая им разрушаться. Такое решение позволило значительно снизить время заряда AGM батарей, поскольку зарядный ток может достигать 20-25, реже 30% от номинальной емкости.

    Аккумуляторы AGM VRLA имеют множество модификаций с оптимизированными характеристиками для циклического и буферного режимов работы: Deep – для частых глубоких разрядов, фронт-терминальные – для удобного расположения в телекоммуникационных стойках, Standard – общего назначения, High Rate – обеспечивают лучшую разрядную характеристику до 30% и подходят для мощных источников бесперебойного питания, Modular – позволяют создавать мощные батарейные кабинеты и т. д.

    Рисунок №4. AGM VRLA аккумуляторы EverExceed.

  • GEL Valve Regulated Lead–Acid (GEL VRLA), необслуживаниемые – 2, 4, 6 и 12В батареи. Одна из последних модификаций свинцово-кислотного типа аккумуляторов. Технология основана на применение гелеобразного электролита, который обеспечивает максимальный контакт с отрицательными и положительными пластинами элементов и сохраняет однообразную консистенцию по всему объему. Данный тип аккумуляторов требует «правильного» зарядного устройства, которое обеспечит требуемый уровень тока и напряжения, лишь в этом случае можно получить все преимущества по сравнению с AGM VRLA типом.

    Химические источники питания GEL VRLA, как и AGM, имеют множество подвидов, которые наилучшим образом подходят для определенных режимов работы. Самыми распространенными являются серии Solar – используются для систем солнечной энергии, Marine – для морского и речного транспорта, Deep Cycle – для частых глубоких разрядов, фронт-терминальные – собраны в специальных корпусах для телекоммуникационных систем, GOLF – для гольф-каров, а также для поломоечных машин, Micro – небольшие аккумуляторы для частого использования в мобильных приложениях, Modular – специальное решение по созданию мощных аккумуляторных банков для накопления энергии и т. д.

    Рисунок №5. GEL VRLA аккумулятор EverExceed.

     

     

     

  • OPzV, необслуживаемые – 2В батареи. Специальные свинцово-кислотные элементы типа OPZV произведены с применением трубчатых пластин анода и сернокислотным гелеобразным электролитом. Анод и катод элементов содержат дополнительный металл – кальций, благодаря которому повышается стойкость электродов к коррозии и увеличивается срок службы. Отрицательные пластины – намазные, эта технология обеспечивает лучший контакт с электролитом.

    Аккумуляторы OPzV устойчивы к глубоким разрядам и обладают длительным сроком службы до 22 лет. Как правило, для изготовления подобных элементов питания применяются только лучшие материалы, чтобы обеспечить высокую эффективность работы в циклическом режиме.

    Применение OPzV аккумуляторов востребовано в телекоммуникационных установках, системах аварийного освещения, источниках бесперебойного питания, системах навигации, бытовых и промышленных системах накопления энергии и солнечной электрогенерации.


    Рисунок №6. Строение OPzV аккумулятора EverExceed.

  • OPzS, малообслуживаемые – 2, 6, 12В батареи. Стационарные заливные свинцово-кислотные аккумуляторы OPzS производятся с трубчатыми пластинами анода с добавлением сурьмы. Катод также содержит небольшое количество сурьмы и представляет собой намазной решетчатый тип. Анод и катод разделены микропористыми сепараторами, которые предотвращают короткое замыкание. Корпус аккумуляторов выполнен из специального ударопрочного, устойчивого к химическому воздействию и огню прозрачного пластика, а вентилируемые клапаны относятся к пожаробезопасному типу и обеспечивают защиту от возможного попадания пламени и искр.

    Прозрачные стенки позволяют удобно контролировать уровень электролита при помощи отметок минимального и максимального значения. Специальная структура клапанов дает возможность без их снятия доливать дистиллированную воду и промерять плотность электролита. В зависимости от нагрузки, долив воды осуществляется раз в один – два года.

    Аккумуляторные батареи типа OPzS обладают самыми высокими характеристиками среди всех других видов свинцово-кислотных батарей. Срок службы может достигать 20 – 25 лет и обеспечивать ресурс до 1800 циклов глубокого 80% разряда.

    Применение подобных батарей необходимо в системах с требованиями среднего и глубокого разряда, в т.ч. где наблюдаются пусковые токи средней величины.

    Рисунок №7. OPzS аккумулятор Victron Energy.

Характеристики свинцово-кислотных аккумуляторов

Анализируя приведенные в таблице №2 данные, можно прийти к выводу, что свинцово-кислотные аккумуляторы обладают широким выбором моделей, которые подходят для различных режимов работы и условий эксплуатации.

Тип

LA

VRLA

AGM VRLA

GEL VRLA

OPzV

OPzS

Емкость, Ампер/час

10 – 300

1 – 300

1 – 3000

1 – 3000

50 – 3500

50 – 3500

Напряжение, Вольт

6, 12

4, 6, 12

2, 4, 6, 12

2, 6, 12

2

2

Оптимальная глубина разряда, %

 

30

<40

<50

<60

<60

Допустимая глубина разряда, %

 

<75

<80

<90

<90

<100

Циклический ресурс, D. O.D.=50%

 

<250-300

<1000

<1400

<3200

<3300

Оптимальная температура, °С

0 … +45

+15 … +25

+10 … +25

+10 … +25

0 … +30

0 … +30

Диапазон рабочих температур, °С

–50 … +70

–35 … +60

–40 … +70

–40 … +70

–40 … +70

–40 … +70

Срок службы, лет при +20°С

<7

<7

5 – 15

8 – 15

15 – 20

17 – 25

Саморазряд, %

3 – 5

2 – 3

1 – 2

1 – 2

1 – 2

1 – 2

Макс. ток заряда, % от емкости

10 – 20

20 – 25

20 – 30

15 – 20

15 – 20

10 – 15

Минимальное время заряда, ч

8 – 12

6 – 10

6 – 10

8 – 12

10 – 14

10 – 15

Требования к обслуживанию

3 – 6 мес.

нет

нет

нет

нет

1 – 2 года

Средняя стоимость, $, 12В/100Ач.

70 – 150

200 – 250

250 – 380

350 – 500

1000 – 1400

1500 – 3500

Таблица №2. Сравнительные характеристики по видам свинцово-кислотных батарей.

Для анализа использовались усредненные данные более чем 10-ти производителей батарей, продукция которых представлена на рынке Украины в течение длительного времени и успешно применяется во многих областях (EverExceed, B.B. Battery, CSB, Leoch, Ventura, Challenger, C&D Techologies, Victron Energy, SunLight, Troian и другие).

Литий-ионные (литиевые) аккумуляторные батареи

История прохождения происхождения уходит в 1912 год, когда Гилберт Ньютон Льюис работал над вычислением активностей ионов сильных электролитов и проводил исследования электродных потенциалов целого ряда элементов, включая литий. С 1973 года работы были возобновлены и в результате появились первые элементы питания на основе лития, которые обеспечивали только один цикл разряда. Попытки создать литиевый аккумулятор затруднялись активностью свойств лития, которые при неправильных режимах разряда или заряда вызывали бурную реакцию с выделением высокой температуры и даже пламени. Компания Sony выпустила первые мобильные телефоны с подобными аккумуляторами, но была вынуждена отозвать продукцию обратно после нескольких неприятных инцидентов. Разработки не прекращались и в 1992 году появились первые «безопасные» аккумуляторы на основе ионов лития.

Аккумуляторы литий-ионного типа обладают высокой плотностью энергии и благодаря этому при компактном размере и легком весе обеспечивают в 2-4 раза большую емкость по сравнению со свинцово-кислотными аккумуляторами. Несомненно, большим достоинством литий-ионных батарей является высокая скорость полной 100% перезарядки в течение 1-2 часов.

Li-ion батареи получили широкое применение в современной электронной технике, автомобилестроении, системах накопления энергии, солнечной генерации электроэнергии. Крайне востребованы в высокотехнологичных устройствах мультимедиа и связи: телефонах, планшетных компьютерах, ноутбуках, радиостанциях и т. д. Современный мир сложно представить без источников питания литий-ионного типа.

Принцип действия литиевых (литий-ионных) батарей

Принцип работы заключается в использовании ионов лития, которые связаны молекулами дополнительных металлов. Обычно, в дополнение к литию применяются литийкобальтоксид и графит. При разряде литий-ионного аккумулятора происходит переход ионов от отрицательного электрода (катода) к положительному (аноду) и наоборот при заряде. Схема аккумулятора предполагает наличие разделительного сепаратора между двумя частями элемента, это необходимо для предотвращения самопроизвольного перемещения ионов лития. Когда цепь аккумулятора замкнута и происходит процесс заряда или разряда, ионы преодолевают разделительный сепаратор стремясь к противоположно заряженному электроду.

Рисунок №8. Электрохимическая схема литий-ионного аккумулятора.

Благодаря своей высокой эффективности, литий-ионные аккумуляторы получили бурное развитие и множество подвидов, например, литий-железо-фосфатные аккумуляторы (LiFePO4). Ниже приведена графическая схема работы этого подтипа.

Рисунок №9. Электрохимическая схема процесса разряда и разряда LiFePO4 батареи.

Типы литий-ионных аккумуляторов

Современные литий-ионные аккумуляторы имеют множество подтипов, основная разница которых заключается в составе катода (отрицательно заряженного электрода). Также может изменяться состав анода для полной замены графита или использования графита с добавлением других материалов.

Различные виды литий-ионных аккумуляторов обозначаются по их химическому разложению. Для рядового пользователя это может быть несколько сложно, поэтому каждый тип будет описан максимально подробно, включая его полное название, химическое определение, аббревиатуру и краткое обозначение. Для удобства описания будет использоваться сокращенное название.

  • Литий кобальт оксид (LiCoO2) – Обладает высокой удельной энергией, что делает литий-кобальтовый аккумулятор востребованным в компактных высокотехнологичных устройствах. Катод батареи состоит из оксида кобальта, тогда как анод – из графита. Катод имеет слоистую структуру и во время разряда ионы лития перемещаются от анода к катоду. Недостатком этого типа является относительно короткий срок службы, невысокая термическая стабильность и лимитированная мощность элемента.

    Литий-кобальтовые батареи не могут разряжаться и заряжаться током, превосходящим номинальную емкость, поэтому аккумулятор с емкостью 2,4Ач может работать с током 2,4А. Если для заряда будет применяться большая сила тока, то это вызовет перегрев. Оптимальный зарядный ток составляет 0,8C, в данном случае 1,92А. Каждый литий-кобальтовый аккумулятор комплектуется схемой защиты, которая ограничивает заряд и скорость разряда и лимитирует ток на уровне 1C.

    На графике (Рис. 10) отражены основные свойства литий-кобальтовых аккумуляторов с точки зрения удельной энергии или мощности, удельная мощность или способность обеспечивать высокий ток, безопасности или шансы воспламенения при высокой нагрузке, рабочая температура окружающей среды, срок службы и циклический ресурс, стоимость.

    Рисунок №10. Диаграмма основных свойств LiCoO2 аккумуляторов.

     

  • Литий Оксид Марганца (LiMn2O4, LMO) – первая информация об использовании лития с марганцевыми шпинелями была опубликована в научных докладах 1983 года. Компания Moli Energy в 1996 году выпустила первые партии аккумуляторов на основе литий-оксид-марганца в качестве материала катода. Такая архитектура формирует трехмерные структуры шпинели, что улучшает поток ионов к электроду, тем самым снижая внутреннее сопротивление и повышая возможные токи заряда. Также преимущество шпинели в термической стабильности и повышенной безопасности, однако циклический ресурс и срок службы ограничен.

    Низкое сопротивление обеспечивает возможность быстрого заряда и разряда литий-марганцевого аккумулятора с высоким током до 30А и кратковременно до 50А. Применяется для мощных электроинструментов, медицинского оборудования, а также гибридных и электрических транспортных средств.

    Потенциал литий-марганцевых аккумуляторов примерно на 30% ниже по сравнению с литий-кобальтовыми батареями, однако эта технология обладает примерно на 50% лучшими свойствами, чем аккумуляторы на основе никелевых химических компонентов. 

  • Литий Оксид Марганца (LiMn2O4, LMO) – первая информация об использовании лития с марганцевыми шпинелями была опубликована в научных докладах 1983 года. Компания Moli Energy в 1996 году выпустила первые партии аккумуляторов на основе литий-оксид-марганца в качестве материала катода. Такая архитектура формирует трехмерные структуры шпинели, что улучшает поток ионов к электроду, тем самым снижая внутреннее сопротивление и повышая возможные токи заряда. Также преимущество шпинели в термической стабильности и повышенной безопасности, однако циклический ресурс и срок службы ограничен.

    Низкое сопротивление обеспечивает возможность быстрого заряда и разряда литий-марганцевого аккумулятора с высоким током до 30А и кратковременно до 50А. Применяется для мощных электроинструментов, медицинского оборудования, а также гибридных и электрических транспортных средств.

    Потенциал литий-марганцевых аккумуляторов примерно на 30% ниже по сравнению с литий-кобальтовыми батареями, однако эта технология обладает примерно на 50% лучшими свойствами, чем аккумуляторы на основе никелевых химических компонентов.

    Гибкость конструкции позволяет инженерам оптимизировать свойства батареи и достичь длительного срока службы, высокой емкости (удельная энергия), возможности обеспечивать максимальный ток (удельная мощность). Например, с длительным сроком эксплуатации типоразмер элемента 18650 имеет емкость 1,1Ач, тогда как элементы, оптимизированные на повышенную емкость, – 1,5Ач, но при этом они имеют меньший срок службы.

    На графике (Рис. 12) отраженны не самые впечатляющие характеристики литий-марганцевых аккумуляторов, однако современные разработки позволили существенно повысить эксплуатационных характеристики и сделать этот тип конкурентным и широко применяемым.

    Рисунок №11. Диаграмма основных свойств LiMn2O4 аккумуляторов.

    Современные аккумуляторы литий-марганцевого типа могут производиться с добавлениями других элементов – литий-никель-марганец-кобальт оксид (NMC), подобная технология существенно продлевает срок службы и повышает показатели удельной энергии. Этот состав привносит лучшие свойства из каждой системы, так называемые LMO (NMC) применяются для большинства электромобилей, таких как Nissan, Chevrolet, BMW и т. д. 

  • Литий-Никель-Марганец-Кобальт оксид (LiNiMnCoO2 или NMC) – ведущие производители литий-ионных батарей сосредоточились на сочетании никеля-марганца-кобальта в качестве материалов катода (NMC). Похожий на литий-марганцевый тип, эти аккумуляторы могут быть адаптированы для достижения показателей высокой удельной энергии или высокой удельной мощности, однако, не одновременно. К примеру, элемент NMC типа 18650 в состоянии умеренной нагрузки имеет емкость 2,8Ач и может обеспечить максимальный ток 4-5А; NMC элемент, оптимизированный к параметрам повышенной мощности, имеет всего 2Втч, но может обеспечить непрерывный ток разряда до 20А. Особенность NMC заключается в сочетании никеля и марганца, в качестве примера можно привести поваренную соль, в которой основные ингредиенты натрий и хлорид, которые в отдельности являются токсичными веществами.

    Никель известен своей высокой удельной энергией, но низкой стабильностью. Марганец имеет преимущество формирования структуры шпинели и обеспечивает низкое внутреннее сопротивление, но при этом обладает низкой удельной энергией. Комбинируя эти два металла, можно получать оптимальные характеристика NMC аккумулятора для разных режимов эксплуатации.

    NMC аккумуляторы прекрасно подходят для электроинструмента, электровелосипедов и других силовых агрегатов. Сочетание материалов катода: треть никеля, марганца и кобальта обеспечивают уникальные свойства, а также снижают стоимость продукта в связи с уменьшением содержания кобальта. Другие подтипы, как NCM, CMN, CNM, MNC и MCN имеют отличное соотношение тройки металлов от 1/3-1/3-1/3. Обычно, точное соотношение держится производителем в секрете.

    Рисунок №12. Диаграмма основных свойств LiNiMnCoO2 аккумуляторов.

  • Литий-Железо-Фосфатные (LiFePO4) – в 1996 в университете штата Техас (и другими участниками) был применен фосфат в качестве катодного материала для литиевых аккумуляторов. Литий-фосфат предлагает хорошие электрохимические характеристики с низким сопротивлением. Это стало возможным с нано-фосфатом материала катода. Основными преимуществами являются высокий протекающий ток и длительный срок службы к тому же, хорошая термическая стабильность и повышенная безопасность.

    Литий-железо-фосфатные аккумуляторы терпимее к полному разряду и менее подвержены «старению», чем другие литий-ионные системы. Также LFP более устойчивы к перезаряду, но как и в других аккумуляторах литий-ионного типа, перезаряд может вызвать повреждение. LiFePO4 обеспечивает очень стабильное напряжение разряда – 3,2В, это же позволяет использовать всего 4 элемента для создания батареи стандарта 12В, что в свою очередь позволяет эффективно заменять свинцово-кислотные батареи. Литий-железо-фосфатные аккумуляторы не содержат кобальт, это существенно снижает стоимость продукта и делает его более экологически чистым. В процессе разряда обеспечивает высокий ток, а также может быть заряжен номинальным током всего за один час до полной емкости. Эксплуатация при низких температурах окружающей среды снижает производительность, а температура свыше 35ºС – несколько сокращается срок службы, но показатели намного лучше, чем у свинцово-кислотных, никель-кадмиевых или никель-металлогидридных аккумуляторов. Литий-фосфат имеет больший саморазряд, чем другие литий-ионные аккумуляторы, которые могут вызвать потребность балансировки батарейных кабинетов.

    Рисунок №13. Диаграмма основных свойств LiFePO4 аккумуляторов.

     

  • Литий-Никель-Кобальт-Оксид Алюминия (LiNiCoAlO2) – литий-никель-кобальто-оксид алюминиевые батареи (NCA) появились в 1999 году. Этот тип обеспечивает высокую удельную энергию и достаточную удельную мощность, а также длительный срок службы. Однако существуют риски воспламенения, в следствие чего был добавлен алюминий, который обеспечивает более высокую стабильность электрохимических процессов, протекающих в аккумуляторе при высоких токах разряда и заряда.

    Рисунок №14. Диаграмма основных свойств LiNiCoAlO2 аккумуляторов.

  • Литий-титанат (Li4Ti5O12) – аккумуляторы с анодами из литий-титаната были известны с 1980-х годов. Катод состоит из графита и имеет сходство с архитектурой типичной литий-металлической батареи. Литий-титанат имеет напряжение элемента 2,4В, может быть быстро заряжен и обеспечивает высокий разрядный ток 10C, который в 10 раз превышает номинальную емкость батареи.

    Литий-титанатные аккумуляторы отличаются повышенным циклическим ресурсом по сравнению с другими Li-ion видами батарей. Обладают высокой безопасностью, а также способны работать при низких температурах (до –30ºC) без ощутимого снижения рабочих характеристик.

    Недостаток заключается в достаточно высокой стоимости, а также в небольшом показателе удельной энергии, порядка 60-80Втч/кг, что вполне сопоставимо с никель-кадмиевыми аккумуляторами. Области применения: электрические силовые агрегаты и источники бесперебойного питания.

    Рисунок №15. Диаграмма основных свойств Li4Ti5O12 аккумуляторов.

  • Литий-полимерные аккумуляторы (Li-pol, Li-polymer, LiPo, LIP, Li-poly) – литий полимерные аккумуляторы отличаются от литий-ионных тем, что в них используется специальный полимерный электролит. Возникший ажиотаж к этому виду батарей с 2000-х годов длится до сегодняшнего времени. Основан он не безосновательно, т. к. при помощи специальных полимеров удалось создать батарею без жидкого или гелеобразного электролита, это дает возможность создавать батареи практически любой формы. Но основная проблема заключается в том, что твердый полимерный электролит обеспечивает плохую проводимость при комнатной температуре, а лучшие свойства демонтирует в разогретом состоянии до 60°С. Все попытки ученых обнаружить решение этой задачи оказали тщетны.

    В современных литий-полимерных батареях применяется небольшое количество гелевого электролита для лучшей проводимости при нормальной температуре. А принцип работы построен на одном из описанных выше типов. Самым распространенным является литий-кобальтовый тип с полимерным гелеобразным электролитом, который применяется в большинстве случаев.

    Основная разница между литий-ионными аккумуляторами и литий-полимерными заключается в том, что микропористый полимерный электролит заменяется традиционным разделительным сепаратором. Литий-полимер имеет немного больший показатель удельной энергии и дает возможность создавать тонкие элементы, но стоимость на 10-30% выше, чем литий-ионных. Существенная разница есть и в структуре корпуса. Если для литий-полимерных применяется тонкая фольга, которая дается возможность создавать настолько тонкие элементы питания, что они похожи на кредитные карты, то литий-ионные собираются в жестком металлическом корпусе для плотной фиксации электродов.

    Рисунок №17. Внешний вид Li-polymer аккумулятора для мобильного телефона.

Характеристики литий-ионных аккумуляторов

В таблице отсутствует максимальная емкость элементов, т. к. технология литий-ионных аккумуляторов не позволяет производить мощные отдельные элементы. Когда необходима высокая емкость или постоянный ток, батареи соединятся параллельно и последовательно при помощи перемычек. Состояние обязательно должна контролировать система батарейного мониторинга. Современные батарейные кабинеты для ИБП и солнечных электростанций на основе литиевых элементов могут достигать напряжения 500-700В постоянного тока с емкостью около 400А/ч, а также емкости 2000 – 3000Ач с напряжением 48 или 96В.

Параметр \ Тип

LiCoO2

LiMn2O4

LiNiMnCoO2

LiFePO4

LiNiCoAlO2

Li4Ti5O12

Напряжение элемента, Вольт;

3.6

3.7

3.6-3.7

3.2

3.6

2.4

Оптимальная глубина разряда, %;

85-90

85-90

85-90

85-90

85-90

85-90

Допустимая глубина разряда, %;

100

100

100

100

100

100

Циклический ресурс, D.O.D.=80%;

700 — 1000

1000 — 2000

1000 — 2000

1000 — 2000

1000 — 2000

5000 — 8000

Оптимальная температура, °С;

+20…+30

+20…+30

+20…+30

+20…+30

+20…+30

+20…+30

Диапазон рабочих температур, °С;

–10 …+60

–10 …+45

–10 …+55

–10 …+60

–10 …+55

–10 …+45

Срок службы, лет при +20°С;

5 – 7

10

10

20 — 25

20 — 25

18 — 25

Саморазряд в мес., %

1 – 2

1 – 2

1 – 2

1 – 2

1 – 2

1 – 2

Макс. ток разряда

1C

10C/30C 5с

2C

25 — 30C

1C

10C/30С 5с

Макс. ток заряда

0,7-1C

0,7-1C

0,7-1C

1C

0,7C

1C

Минимальное время заряда, ч

2 — 3

2 — 2.5

2 — 3

2 — 3

2 — 3

2 — 3

Требования к обслуживанию

нет

нет

нет

нет

нет

нет

Уровень стоимости

высокий

средний

средний

низкий

средний

высокий

Никель-кадмиевые аккумуляторные батареи

Изобретателем является шведский ученый Вальдемар Юнгнер, который запатентовал технологию производства никель кадмиевого типа в 1899 году. D 1990 году возник патентный спор с Эдисоном, который Юнгнер проиграл в силу того, что не владел таким средствами, как его оппонент. Компания «Ackumulator Aktiebolaget Jungner», основанная Вальдемаром, оказалась на грани банкротства, однако, сменив название на «Svenska Ackumulator Aktiebolaget Jungner», предприятие все же продолжило свое развитие. В настоящее время предприятие, основанное разработчиком, носит название «SAFT AB» и производит одни из самых надежных никель-кадмиевых аккумуляторов в мире.

Никель-кадмиевые аккумуляторы относятся к очень долговечному и надежному типу. Существуют обслуживаемые и необслуживаемые модели с емкостью от 5 до 1500Ач. Обычно поставляются в виде сухо-заряженных банок без электролита с номинальным напряжением 1,2В. Несмотря на схожесть конструкции со свинцово-кислотными, никель- кадмиевые батареи имеют ряд существенных преимуществ в виде стабильной работы при температуре от –40°С, возможности выдерживать высокие пусковые токи, а также оптимизированы моделями для быстрого разряда. Ni-Cd батареи устойчивы к глубокому разряду, перезаряду и не требуют моментального заряда как свинцово-кислотный тип. Конструктивно производятся в ударопрочном пластике и хорошо переносят механические повреждения, не боятся вибрации и т.п.

Принцип действия никель-кадмиевых батарей

Щелочные аккумуляторы, электроды которых состоят из гидрата окиси никеля с добавлениями графита, окиси бария и порошкового кадмия. В качестве электролита, как правило, выступает раствор с 20%-ным содержанием калия и добавлением моногидрата лития. Пластины разделены изолирующими сепараторами во избежании замыкания, одна отрицательно заряженная пластина расположена между двумя положительно заряженными.

В процессе разряда никель-кадмиевой батареи происходит взаимодействие между анодом с гидратом окиси никеля и ионами электролита, образуя гидрат закиси никеля. В это же время катод из кадмия образует гидрат окиси кадмия, тем самым создавая разность потенциалов до 1,45В обеспечивая напряжение внутри аккумулятора и во внешней замкнутой цепи.

Процесс заряда никель-кадмиевых аккумуляторов сопровождается окислением активной массы анодов и переходом гидрата закиси никеля в гидрат окиси никеля. Одновременно катод восстанавливается с образованием кадмия.

Достоинством принципа действия никель-кадмиевой батареи является то, что все составляющие, которые образуются в процессе циклов разряда и заряда, почти не растворяются в электролите, а также не вступают в какие-либо побочные реакции.

Рисунок №16. Строение Ni-Cd аккумулятора.

Типы никель-кадмиевых аккумуляторов

В настоящее время батареи Ni-Cd используют чаще всего в промышленности, где требуется обеспечивать питанием разнообразные приложения. Некоторые производители предлагают несколько подвидов никель-кадмиевых аккумуляторов, которые обеспечивают наилучшую работу в определенных режимах:

  • время разряда 1,5 – 5 часов и более – обслуживаемые батареи;

  • время разряда 1,5 – 5 часов и более – необслуживаемые батареи;

  • время разряда 30 – 150 минут – обслуживаемые батареи;

  • время разряда 20 – 45 минут – обслуживаемые батареи;

  • время разряда 3 – 25 минут – обслуживаемые батареи.

Характеристики никель-кадмиевых аккумуляторов

Параметр \ Тип

Никель-кадмиевые / Ni-Cd

Емкость, Ампер/час;

1 – 1500

Напряжение элемента, Вольт;

1,2

Оптимальная глубина разряда, %;

60 — 80

Допустимая глубина разряда, %;

100

Циклический ресурс, D.O.D.=80%;

2300

Оптимальная температура, °С;

0 … +20

Диапазон рабочих температур, °С;

-50 … +70

Срок службы, лет при +20°С;

25

Саморазряд в мес., %

4

Макс. ток разряда

10 C5

Макс. ток заряда

0.4 C5

Минимальное время заряда, ч

5

Требования к обслуживанию

Малообслуживаемые или необслуживанемые

Уровень стоимости

средняя (300 – 400$ 100Ач)

Высокие технические характеристики делают этот тип аккумуляторных батарей очень привлекательным для решения производственных задач, когда требуется высоконадежный источник резервного питания с длительным сроком службы.

Никелево-железные аккумуляторные батареи

Впервые были созданы Вальдемаром Юнгнером в 1899 году, когда он пытался найти более дешевый аналог кадмию в составе никель-кадмиевых батарей. После долгих испытаний Юнгнер отказался от применения железа, т. к. заряд осуществлялся слишком медленно. Несколькими годами позднее, Томас Эдисон создал никель-железный аккумулятор, который осуществлял питание электромобилей «Baker Electric» и «Detroit Electric».

Дешевизна производства позволили никель-железным аккумуляторам стать востребованными в электротранспорте в качестве тяговых батарей, также применяются для электрификации пассажирских вагонов, питания цепей управления. В последние годы о никель-железных аккумуляторах заговорили с новой силой, т. к. они не содержат токсичных элементов вроде свинца, кадмия, кобальта и т. д. В настоящее время некоторые производители продвигают их для систем возобновляемой энергетики.

Принцип действия никелево-железных батарей

Аккумуляция электроэнергии происходит при помощи никель оксида-гидроксида, применяемого в качестве положительных пластин, железа – в качестве отрицательных пластин и жидкого электролита в виде едкого калия. Никелевые стабильные трубки или «карманы» содержат активное вещество

Никелево-железный тип очень надежный, т.к. выдерживает глубокие разряды, частые перезаряды, а также может находится в недозаряженном состоянии, что очень пагубно для свинцово-кислотных батарей.

Характеристики никелево-железных аккумуляторов

Параметр \ Тип

Никель-кадмиевые / Ni-Cd

Емкость, Ампер/час;

10 – 1000

Напряжение элемента, Вольт;

1,2

Оптимальная глубина разряда, %;

50 — 80

Допустимая глубина разряда, %;

100

Циклический ресурс, D.O.D.=80%;

1800 — 2300

Оптимальная температура, °С;

+15 … +25

Диапазон рабочих температур, °С;

-40 … +60

Срок службы, лет при +20°С;

20

Саморазряд в мес., %

15

Макс. ток разряда

0.25C 5

Макс. ток заряда

0.25C 5

Минимальное время заряда, ч

12 – 16

Требования к обслуживанию

Малообслуживаемые

Уровень стоимости

средняя, низкая

Использованные материалы

Исследования компании Boston Consulting Group

Техническая документация ТМ Bosch, Panasonic, EverExceed, Victron Energy, Varta, Leclanché, Envia, Kokam, Samsung, Valence и других.

Виды и типы аккумуляторных батарей — подробно!

Категория: Поддержка по аккумуляторным батареям
Опубликовано 25.06.2015 19:00
Автор: Abramova Olesya

Аккумуляторная батарея – это источник постоянного тока, который предназначен для накопления и хранения энергии. Подавляющее число типов аккумуляторных батарей основано на циклическом преобразовании химической энергии в электрическую, это позволяет многократно заряжать и разряжать батарею.

Еще в 1800 году Алессандро Вольта произвел поразительное открытие, когда опустил в банку, наполненную кислотой, две металлические пластины – медную и цинковую, после чего доказал, что по соединяющей их проволоке протекает электрический ток. Спустя более чем 200 лет, современные аккумуляторные батареи продолжают производить на основе открытия Вольта.

Рисунок 1. Вольтов столб из шести элементов.

Рисунок 2. Алессандро Джузеппе Антонио Анастасио Вольта

Со времени изобретения первого аккумулятора прошло не больше 140 лет и сейчас сложно представить современный мир без резервных источников питания на основе батарей. Аккумуляторы применяются всюду, начиная с самых безобидных бытовых устройств: пульты управления, переносные радиоприемники, фонари, ноутбуки, телефоны, и заканчивая системами безопасности финансовых учреждений, резервными источниками питания для центров хранения и передачи данных, космической отраслью, атомной энергетикой, связью и т. д.

Развивающийся мир нуждается в электрической энергии столь сильно, сколько человеку нужен кислород для жизни. Поэтому конструкторы и инженеры ежедневно ведут работу по оптимизации имеющихся типов аккумуляторов и периодически разрабатывают новые виды и подвиды.

Основные виды аккумуляторов приведены в таблице №1.

Тип

Применение

Обозначение

Рабочая температура, ºC

Напряжение элемента, В

Удельная энергия, Вт∙ч/кг

Литий-ионный (Литий-полимерный, литий-марганцевый, литий-железно-сульфидный, литий-железно-фосфатный, литий-железо-иттрий-фосфатный, литий-титанатный, литий-хлорный, литий-серный)

Транспорт, телекоммуникации, системы солнечной энергии, автономное и резервное электроснабжение, Hi-Tech, мобильные источники питания, электроинструмент, электромобили и т.д.

Li-Ion (Li-Co, Li-pol, Li-Mn, LiFeP, LFP, Li-Ti, Li-Cl, Li-S)

-20 … +40

3,2-4,2

280

никель-солевой

Автомобильный транспорт, Ж\Д транспорт, Телекоммуникации, Энергетика, в том числе альтернативная, Системы накопления энергии

Na/NiCl

-50 … +70

2,58

140

никель-кадмиевый

Электрокары, речные и морские суда, авиация

Ni-Cd

–50 … +40

1,2-1,35

40 – 80

железо-никелевый

Резервное электропитание, тяговые для электротранспорта, цепи управления

Ni-Fe

–40 … +46

1,2

100

никель-водородный

Космос

Ni-h3

 

1,5

75

никель-металл-гидридный

электромобили, дефибрилляторы, ракетно-космическая техника, системы автономного энергоснабжения, радиоаппаратура, осветительная техника.

Ni-MH

–60 … +55

1,2-1,25

60 – 72

никель-цинковый

Фотоаппараты

Ni-Zn

–30 … +40

1,65

60

свинцово-кислотный

Системы резервного питания, бытовая техника, ИБП, альтернативные источники питания, транспорт, промышленность и т.д.

Pb

–40 … +40

2, 11-2,17

30 – 60

серебряно-цинковый

Военная сфера

Ag-Zn

–40 … +50

1,85

<150

серебряно-кадмиевый

Космос, связь, военные технологии

Ag-Cd

–30 … +50

1,6

45 – 90

цинк-бромный

 

Zn-Br

 

1,82

70 – 145

цинк-хлорный

 

Zn-Cl

–20 … +30

1,98-2,2

160 – 250

Таблица №1. Классификация аккумуляторных батарей.

Исходя из приведенных данных в таблице №1, можно прийти к выводу, что существует достаточно много видов аккумуляторов, отличных по своим характеристикам, которые оптимизированы для применения в разнообразных условиях и с различной интенсивностью. Применяя для производства новые технологии и компоненты, ученым удается достигать нужных характеристик для конкретной области применения, к примеру, для космических спутников, космических станций и другого космического оборудования были разработаны никель-водородные аккумуляторы. Конечно, в таблице приведены далеко не все типы, а лишь основные, которые получили распространение.

Современные системы резервного и автономного электропитания для промышленного и бытового сегмента основаны на разновидностях свинцово-кислотных, никель-кадмиевых (реже применяются железо-никелевый тип) и литий-ионных аккумуляторах, поскольку эти химические источники питания безопасны и имеют приемлемые технические характеристики и стоимость.

Свинцово-кислотные аккумуляторные батареи

Этот тип является самым востребованным в современном мире по причине универсальных особенностей и невысокой стоимости. Благодаря наличию большого количества разновидностей, свинцово-кислотные аккумуляторы применяется в областях систем резервного питания, системах автономного электроснабжения, солнечных электростанций, ИБП, различных видах транспорта, связи, системах безопасности, различных видах портативных устройств, игрушках и т. д.

Принцип действия свинцово-кислотных батарей

Основа работы химических источников питания основана на взаимодействии металлов и жидкости – обратимой реакции, которая возникает при замыкании контактов положительных и отрицательных пластин. Свинцово-кислотные аккумуляторы, как понятно из названия, состоят из свинца и кислоты, где положительно заряженными пластинами является свинец, а отрицательно заряженными – оксид свинца. Если подключить к двум пластинам лампочку, цепь замкнется и возникнет электрический ток (движение электронов), а внутри элемента возникнет химическая реакция. В частности, происходит коррозия пластин батареи, свинец покрывается сульфатом свинца. Таким образом, в процессе разряда аккумулятора на всех пластинах будет образовываться налет из сульфата свинца. Когда аккумулятор полностью разряжен, его пластины покрыты одинаковым металлом – сульфатом свинца и имеют практически одинаковый заряд относительно жидкости, соответственно, напряжение батареи будет очень низким.

Если к батарее подключить зарядное устройство к соответствующим клеммам и включить его, ток будет протекать в кислоте в обратном направлении. Ток будет вызывать химическую реакцию, молекулы кислоты – расщепляться и за счет этой реакции будет происходить удаление сульфата свинца с положительных и отрицательных пластилин батареи. В финальной стадии зарядного процесса пластины будут иметь первозданный вид: свинец и оксид свинца, что позволит им снова получить разный заряд, т. е. батарея будет полностью заряжена.

Однако на практике все выглядит немного иначе и пластины электродов очищаются не полностью, поэтому аккумуляторы имеют определенный ресурс, по достижении которого емкость снижается до 80-70% от изначальной.

Рисунок №3. Электрохимическая схема свинцово-кислотного аккумулятора (VRLA).

Типы свинцово-кислотных батарей

  • Lead–Acid, обслуживаемые – 6, 12В батареи. Классические стартерные аккумуляторы для двигателей внутреннего сгорания и не только. Нуждаются в регулярном обслуживании и вентиляции. Подвержены высокому саморазряду.

  • Valve Regulated Lead–Acid (VRLA), необслуживаемые – 2, 4, 6 и 12В батареи. Недорогие аккумуляторы в герметизированном корпусе, которые можно использовать в жилых помещениях, не требуют дополнительной вентиляции и обслуживания. Рекомендованы для использования в буферном режиме.

  • Absorbent Glass Mat Valve Regulated Lead–Acid (AGM VRLA), необслуживаемые – 4, 6 и 12В батареи. Современные аккумуляторы свинцово-кислотного типа с абсорбированным электролитом (не жидкий) и стекловолоконными разделительными сепараторами, которые значительно лучше сохраняют свинцовые пластины, не давая им разрушаться. Такое решение позволило значительно снизить время заряда AGM батарей, поскольку зарядный ток может достигать 20-25, реже 30% от номинальной емкости.

    Аккумуляторы AGM VRLA имеют множество модификаций с оптимизированными характеристиками для циклического и буферного режимов работы: Deep – для частых глубоких разрядов, фронт-терминальные – для удобного расположения в телекоммуникационных стойках, Standard – общего назначения, High Rate – обеспечивают лучшую разрядную характеристику до 30% и подходят для мощных источников бесперебойного питания, Modular – позволяют создавать мощные батарейные кабинеты и т. д.

    Рисунок №4. AGM VRLA аккумуляторы EverExceed.

  • GEL Valve Regulated Lead–Acid (GEL VRLA), необслуживаниемые – 2, 4, 6 и 12В батареи. Одна из последних модификаций свинцово-кислотного типа аккумуляторов. Технология основана на применение гелеобразного электролита, который обеспечивает максимальный контакт с отрицательными и положительными пластинами элементов и сохраняет однообразную консистенцию по всему объему. Данный тип аккумуляторов требует «правильного» зарядного устройства, которое обеспечит требуемый уровень тока и напряжения, лишь в этом случае можно получить все преимущества по сравнению с AGM VRLA типом.

    Химические источники питания GEL VRLA, как и AGM, имеют множество подвидов, которые наилучшим образом подходят для определенных режимов работы. Самыми распространенными являются серии Solar – используются для систем солнечной энергии, Marine – для морского и речного транспорта, Deep Cycle – для частых глубоких разрядов, фронт-терминальные – собраны в специальных корпусах для телекоммуникационных систем, GOLF – для гольф-каров, а также для поломоечных машин, Micro – небольшие аккумуляторы для частого использования в мобильных приложениях, Modular – специальное решение по созданию мощных аккумуляторных банков для накопления энергии и т. д.

    Рисунок №5. GEL VRLA аккумулятор EverExceed.

     

     

     

  • OPzV, необслуживаемые – 2В батареи. Специальные свинцово-кислотные элементы типа OPZV произведены с применением трубчатых пластин анода и сернокислотным гелеобразным электролитом. Анод и катод элементов содержат дополнительный металл – кальций, благодаря которому повышается стойкость электродов к коррозии и увеличивается срок службы. Отрицательные пластины – намазные, эта технология обеспечивает лучший контакт с электролитом.

    Аккумуляторы OPzV устойчивы к глубоким разрядам и обладают длительным сроком службы до 22 лет. Как правило, для изготовления подобных элементов питания применяются только лучшие материалы, чтобы обеспечить высокую эффективность работы в циклическом режиме.

    Применение OPzV аккумуляторов востребовано в телекоммуникационных установках, системах аварийного освещения, источниках бесперебойного питания, системах навигации, бытовых и промышленных системах накопления энергии и солнечной электрогенерации.


    Рисунок №6. Строение OPzV аккумулятора EverExceed.

  • OPzS, малообслуживаемые – 2, 6, 12В батареи. Стационарные заливные свинцово-кислотные аккумуляторы OPzS производятся с трубчатыми пластинами анода с добавлением сурьмы. Катод также содержит небольшое количество сурьмы и представляет собой намазной решетчатый тип. Анод и катод разделены микропористыми сепараторами, которые предотвращают короткое замыкание. Корпус аккумуляторов выполнен из специального ударопрочного, устойчивого к химическому воздействию и огню прозрачного пластика, а вентилируемые клапаны относятся к пожаробезопасному типу и обеспечивают защиту от возможного попадания пламени и искр.

    Прозрачные стенки позволяют удобно контролировать уровень электролита при помощи отметок минимального и максимального значения. Специальная структура клапанов дает возможность без их снятия доливать дистиллированную воду и промерять плотность электролита. В зависимости от нагрузки, долив воды осуществляется раз в один – два года.

    Аккумуляторные батареи типа OPzS обладают самыми высокими характеристиками среди всех других видов свинцово-кислотных батарей. Срок службы может достигать 20 – 25 лет и обеспечивать ресурс до 1800 циклов глубокого 80% разряда.

    Применение подобных батарей необходимо в системах с требованиями среднего и глубокого разряда, в т.ч. где наблюдаются пусковые токи средней величины.

    Рисунок №7. OPzS аккумулятор Victron Energy.

Характеристики свинцово-кислотных аккумуляторов

Анализируя приведенные в таблице №2 данные, можно прийти к выводу, что свинцово-кислотные аккумуляторы обладают широким выбором моделей, которые подходят для различных режимов работы и условий эксплуатации.

Тип

LA

VRLA

AGM VRLA

GEL VRLA

OPzV

OPzS

Емкость, Ампер/час

10 – 300

1 – 300

1 – 3000

1 – 3000

50 – 3500

50 – 3500

Напряжение, Вольт

6, 12

4, 6, 12

2, 4, 6, 12

2, 6, 12

2

2

Оптимальная глубина разряда, %

 

30

<40

<50

<60

<60

Допустимая глубина разряда, %

 

<75

<80

<90

<90

<100

Циклический ресурс, D.O.D.=50%

 

<250-300

<1000

<1400

<3200

<3300

Оптимальная температура, °С

0 … +45

+15 … +25

+10 … +25

+10 … +25

0 … +30

0 … +30

Диапазон рабочих температур, °С

–50 … +70

–35 … +60

–40 … +70

–40 … +70

–40 … +70

–40 … +70

Срок службы, лет при +20°С

<7

<7

5 – 15

8 – 15

15 – 20

17 – 25

Саморазряд, %

3 – 5

2 – 3

1 – 2

1 – 2

1 – 2

1 – 2

Макс. ток заряда, % от емкости

10 – 20

20 – 25

20 – 30

15 – 20

15 – 20

10 – 15

Минимальное время заряда, ч

8 – 12

6 – 10

6 – 10

8 – 12

10 – 14

10 – 15

Требования к обслуживанию

3 – 6 мес.

нет

нет

нет

нет

1 – 2 года

Средняя стоимость, $, 12В/100Ач.

70 – 150

200 – 250

250 – 380

350 – 500

1000 – 1400

1500 – 3500

Таблица №2. Сравнительные характеристики по видам свинцово-кислотных батарей.

Для анализа использовались усредненные данные более чем 10-ти производителей батарей, продукция которых представлена на рынке Украины в течение длительного времени и успешно применяется во многих областях (EverExceed, B.B. Battery, CSB, Leoch, Ventura, Challenger, C&D Techologies, Victron Energy, SunLight, Troian и другие).

Литий-ионные (литиевые) аккумуляторные батареи

История прохождения происхождения уходит в 1912 год, когда Гилберт Ньютон Льюис работал над вычислением активностей ионов сильных электролитов и проводил исследования электродных потенциалов целого ряда элементов, включая литий. С 1973 года работы были возобновлены и в результате появились первые элементы питания на основе лития, которые обеспечивали только один цикл разряда. Попытки создать литиевый аккумулятор затруднялись активностью свойств лития, которые при неправильных режимах разряда или заряда вызывали бурную реакцию с выделением высокой температуры и даже пламени. Компания Sony выпустила первые мобильные телефоны с подобными аккумуляторами, но была вынуждена отозвать продукцию обратно после нескольких неприятных инцидентов. Разработки не прекращались и в 1992 году появились первые «безопасные» аккумуляторы на основе ионов лития.

Аккумуляторы литий-ионного типа обладают высокой плотностью энергии и благодаря этому при компактном размере и легком весе обеспечивают в 2-4 раза большую емкость по сравнению со свинцово-кислотными аккумуляторами. Несомненно, большим достоинством литий-ионных батарей является высокая скорость полной 100% перезарядки в течение 1-2 часов.

Li-ion батареи получили широкое применение в современной электронной технике, автомобилестроении, системах накопления энергии, солнечной генерации электроэнергии. Крайне востребованы в высокотехнологичных устройствах мультимедиа и связи: телефонах, планшетных компьютерах, ноутбуках, радиостанциях и т. д. Современный мир сложно представить без источников питания литий-ионного типа.

Принцип действия литиевых (литий-ионных) батарей

Принцип работы заключается в использовании ионов лития, которые связаны молекулами дополнительных металлов. Обычно, в дополнение к литию применяются литийкобальтоксид и графит. При разряде литий-ионного аккумулятора происходит переход ионов от отрицательного электрода (катода) к положительному (аноду) и наоборот при заряде. Схема аккумулятора предполагает наличие разделительного сепаратора между двумя частями элемента, это необходимо для предотвращения самопроизвольного перемещения ионов лития. Когда цепь аккумулятора замкнута и происходит процесс заряда или разряда, ионы преодолевают разделительный сепаратор стремясь к противоположно заряженному электроду.

Рисунок №8. Электрохимическая схема литий-ионного аккумулятора.

Благодаря своей высокой эффективности, литий-ионные аккумуляторы получили бурное развитие и множество подвидов, например, литий-железо-фосфатные аккумуляторы (LiFePO4). Ниже приведена графическая схема работы этого подтипа.

Рисунок №9. Электрохимическая схема процесса разряда и разряда LiFePO4 батареи.

Типы литий-ионных аккумуляторов

Современные литий-ионные аккумуляторы имеют множество подтипов, основная разница которых заключается в составе катода (отрицательно заряженного электрода). Также может изменяться состав анода для полной замены графита или использования графита с добавлением других материалов.

Различные виды литий-ионных аккумуляторов обозначаются по их химическому разложению. Для рядового пользователя это может быть несколько сложно, поэтому каждый тип будет описан максимально подробно, включая его полное название, химическое определение, аббревиатуру и краткое обозначение. Для удобства описания будет использоваться сокращенное название.

  • Литий кобальт оксид (LiCoO2) – Обладает высокой удельной энергией, что делает литий-кобальтовый аккумулятор востребованным в компактных высокотехнологичных устройствах. Катод батареи состоит из оксида кобальта, тогда как анод – из графита. Катод имеет слоистую структуру и во время разряда ионы лития перемещаются от анода к катоду. Недостатком этого типа является относительно короткий срок службы, невысокая термическая стабильность и лимитированная мощность элемента.

    Литий-кобальтовые батареи не могут разряжаться и заряжаться током, превосходящим номинальную емкость, поэтому аккумулятор с емкостью 2,4Ач может работать с током 2,4А. Если для заряда будет применяться большая сила тока, то это вызовет перегрев. Оптимальный зарядный ток составляет 0,8C, в данном случае 1,92А. Каждый литий-кобальтовый аккумулятор комплектуется схемой защиты, которая ограничивает заряд и скорость разряда и лимитирует ток на уровне 1C.

    На графике (Рис. 10) отражены основные свойства литий-кобальтовых аккумуляторов с точки зрения удельной энергии или мощности, удельная мощность или способность обеспечивать высокий ток, безопасности или шансы воспламенения при высокой нагрузке, рабочая температура окружающей среды, срок службы и циклический ресурс, стоимость.

    Рисунок №10. Диаграмма основных свойств LiCoO2 аккумуляторов.

     

  • Литий Оксид Марганца (LiMn2O4, LMO) – первая информация об использовании лития с марганцевыми шпинелями была опубликована в научных докладах 1983 года. Компания Moli Energy в 1996 году выпустила первые партии аккумуляторов на основе литий-оксид-марганца в качестве материала катода. Такая архитектура формирует трехмерные структуры шпинели, что улучшает поток ионов к электроду, тем самым снижая внутреннее сопротивление и повышая возможные токи заряда. Также преимущество шпинели в термической стабильности и повышенной безопасности, однако циклический ресурс и срок службы ограничен.

    Низкое сопротивление обеспечивает возможность быстрого заряда и разряда литий-марганцевого аккумулятора с высоким током до 30А и кратковременно до 50А. Применяется для мощных электроинструментов, медицинского оборудования, а также гибридных и электрических транспортных средств.

    Потенциал литий-марганцевых аккумуляторов примерно на 30% ниже по сравнению с литий-кобальтовыми батареями, однако эта технология обладает примерно на 50% лучшими свойствами, чем аккумуляторы на основе никелевых химических компонентов. 

  • Литий Оксид Марганца (LiMn2O4, LMO) – первая информация об использовании лития с марганцевыми шпинелями была опубликована в научных докладах 1983 года. Компания Moli Energy в 1996 году выпустила первые партии аккумуляторов на основе литий-оксид-марганца в качестве материала катода. Такая архитектура формирует трехмерные структуры шпинели, что улучшает поток ионов к электроду, тем самым снижая внутреннее сопротивление и повышая возможные токи заряда. Также преимущество шпинели в термической стабильности и повышенной безопасности, однако циклический ресурс и срок службы ограничен.

    Низкое сопротивление обеспечивает возможность быстрого заряда и разряда литий-марганцевого аккумулятора с высоким током до 30А и кратковременно до 50А. Применяется для мощных электроинструментов, медицинского оборудования, а также гибридных и электрических транспортных средств.

    Потенциал литий-марганцевых аккумуляторов примерно на 30% ниже по сравнению с литий-кобальтовыми батареями, однако эта технология обладает примерно на 50% лучшими свойствами, чем аккумуляторы на основе никелевых химических компонентов.

    Гибкость конструкции позволяет инженерам оптимизировать свойства батареи и достичь длительного срока службы, высокой емкости (удельная энергия), возможности обеспечивать максимальный ток (удельная мощность). Например, с длительным сроком эксплуатации типоразмер элемента 18650 имеет емкость 1,1Ач, тогда как элементы, оптимизированные на повышенную емкость, – 1,5Ач, но при этом они имеют меньший срок службы.

    На графике (Рис. 12) отраженны не самые впечатляющие характеристики литий-марганцевых аккумуляторов, однако современные разработки позволили существенно повысить эксплуатационных характеристики и сделать этот тип конкурентным и широко применяемым.

    Рисунок №11. Диаграмма основных свойств LiMn2O4 аккумуляторов.

    Современные аккумуляторы литий-марганцевого типа могут производиться с добавлениями других элементов – литий-никель-марганец-кобальт оксид (NMC), подобная технология существенно продлевает срок службы и повышает показатели удельной энергии. Этот состав привносит лучшие свойства из каждой системы, так называемые LMO (NMC) применяются для большинства электромобилей, таких как Nissan, Chevrolet, BMW и т. д. 

  • Литий-Никель-Марганец-Кобальт оксид (LiNiMnCoO2 или NMC) – ведущие производители литий-ионных батарей сосредоточились на сочетании никеля-марганца-кобальта в качестве материалов катода (NMC). Похожий на литий-марганцевый тип, эти аккумуляторы могут быть адаптированы для достижения показателей высокой удельной энергии или высокой удельной мощности, однако, не одновременно. К примеру, элемент NMC типа 18650 в состоянии умеренной нагрузки имеет емкость 2,8Ач и может обеспечить максимальный ток 4-5А; NMC элемент, оптимизированный к параметрам повышенной мощности, имеет всего 2Втч, но может обеспечить непрерывный ток разряда до 20А. Особенность NMC заключается в сочетании никеля и марганца, в качестве примера можно привести поваренную соль, в которой основные ингредиенты натрий и хлорид, которые в отдельности являются токсичными веществами.

    Никель известен своей высокой удельной энергией, но низкой стабильностью. Марганец имеет преимущество формирования структуры шпинели и обеспечивает низкое внутреннее сопротивление, но при этом обладает низкой удельной энергией. Комбинируя эти два металла, можно получать оптимальные характеристика NMC аккумулятора для разных режимов эксплуатации.

    NMC аккумуляторы прекрасно подходят для электроинструмента, электровелосипедов и других силовых агрегатов. Сочетание материалов катода: треть никеля, марганца и кобальта обеспечивают уникальные свойства, а также снижают стоимость продукта в связи с уменьшением содержания кобальта. Другие подтипы, как NCM, CMN, CNM, MNC и MCN имеют отличное соотношение тройки металлов от 1/3-1/3-1/3. Обычно, точное соотношение держится производителем в секрете.

    Рисунок №12. Диаграмма основных свойств LiNiMnCoO2 аккумуляторов.

  • Литий-Железо-Фосфатные (LiFePO4) – в 1996 в университете штата Техас (и другими участниками) был применен фосфат в качестве катодного материала для литиевых аккумуляторов. Литий-фосфат предлагает хорошие электрохимические характеристики с низким сопротивлением. Это стало возможным с нано-фосфатом материала катода. Основными преимуществами являются высокий протекающий ток и длительный срок службы к тому же, хорошая термическая стабильность и повышенная безопасность.

    Литий-железо-фосфатные аккумуляторы терпимее к полному разряду и менее подвержены «старению», чем другие литий-ионные системы. Также LFP более устойчивы к перезаряду, но как и в других аккумуляторах литий-ионного типа, перезаряд может вызвать повреждение. LiFePO4 обеспечивает очень стабильное напряжение разряда – 3,2В, это же позволяет использовать всего 4 элемента для создания батареи стандарта 12В, что в свою очередь позволяет эффективно заменять свинцово-кислотные батареи. Литий-железо-фосфатные аккумуляторы не содержат кобальт, это существенно снижает стоимость продукта и делает его более экологически чистым. В процессе разряда обеспечивает высокий ток, а также может быть заряжен номинальным током всего за один час до полной емкости. Эксплуатация при низких температурах окружающей среды снижает производительность, а температура свыше 35ºС – несколько сокращается срок службы, но показатели намного лучше, чем у свинцово-кислотных, никель-кадмиевых или никель-металлогидридных аккумуляторов. Литий-фосфат имеет больший саморазряд, чем другие литий-ионные аккумуляторы, которые могут вызвать потребность балансировки батарейных кабинетов.

    Рисунок №13. Диаграмма основных свойств LiFePO4 аккумуляторов.

     

  • Литий-Никель-Кобальт-Оксид Алюминия (LiNiCoAlO2) – литий-никель-кобальто-оксид алюминиевые батареи (NCA) появились в 1999 году. Этот тип обеспечивает высокую удельную энергию и достаточную удельную мощность, а также длительный срок службы. Однако существуют риски воспламенения, в следствие чего был добавлен алюминий, который обеспечивает более высокую стабильность электрохимических процессов, протекающих в аккумуляторе при высоких токах разряда и заряда.

    Рисунок №14. Диаграмма основных свойств LiNiCoAlO2 аккумуляторов.

  • Литий-титанат (Li4Ti5O12) – аккумуляторы с анодами из литий-титаната были известны с 1980-х годов. Катод состоит из графита и имеет сходство с архитектурой типичной литий-металлической батареи. Литий-титанат имеет напряжение элемента 2,4В, может быть быстро заряжен и обеспечивает высокий разрядный ток 10C, который в 10 раз превышает номинальную емкость батареи.

    Литий-титанатные аккумуляторы отличаются повышенным циклическим ресурсом по сравнению с другими Li-ion видами батарей. Обладают высокой безопасностью, а также способны работать при низких температурах (до –30ºC) без ощутимого снижения рабочих характеристик.

    Недостаток заключается в достаточно высокой стоимости, а также в небольшом показателе удельной энергии, порядка 60-80Втч/кг, что вполне сопоставимо с никель-кадмиевыми аккумуляторами. Области применения: электрические силовые агрегаты и источники бесперебойного питания.

    Рисунок №15. Диаграмма основных свойств Li4Ti5O12 аккумуляторов.

  • Литий-полимерные аккумуляторы (Li-pol, Li-polymer, LiPo, LIP, Li-poly) – литий полимерные аккумуляторы отличаются от литий-ионных тем, что в них используется специальный полимерный электролит. Возникший ажиотаж к этому виду батарей с 2000-х годов длится до сегодняшнего времени. Основан он не безосновательно, т. к. при помощи специальных полимеров удалось создать батарею без жидкого или гелеобразного электролита, это дает возможность создавать батареи практически любой формы. Но основная проблема заключается в том, что твердый полимерный электролит обеспечивает плохую проводимость при комнатной температуре, а лучшие свойства демонтирует в разогретом состоянии до 60°С. Все попытки ученых обнаружить решение этой задачи оказали тщетны.

    В современных литий-полимерных батареях применяется небольшое количество гелевого электролита для лучшей проводимости при нормальной температуре. А принцип работы построен на одном из описанных выше типов. Самым распространенным является литий-кобальтовый тип с полимерным гелеобразным электролитом, который применяется в большинстве случаев.

    Основная разница между литий-ионными аккумуляторами и литий-полимерными заключается в том, что микропористый полимерный электролит заменяется традиционным разделительным сепаратором. Литий-полимер имеет немного больший показатель удельной энергии и дает возможность создавать тонкие элементы, но стоимость на 10-30% выше, чем литий-ионных. Существенная разница есть и в структуре корпуса. Если для литий-полимерных применяется тонкая фольга, которая дается возможность создавать настолько тонкие элементы питания, что они похожи на кредитные карты, то литий-ионные собираются в жестком металлическом корпусе для плотной фиксации электродов.

    Рисунок №17. Внешний вид Li-polymer аккумулятора для мобильного телефона.

Характеристики литий-ионных аккумуляторов

В таблице отсутствует максимальная емкость элементов, т. к. технология литий-ионных аккумуляторов не позволяет производить мощные отдельные элементы. Когда необходима высокая емкость или постоянный ток, батареи соединятся параллельно и последовательно при помощи перемычек. Состояние обязательно должна контролировать система батарейного мониторинга. Современные батарейные кабинеты для ИБП и солнечных электростанций на основе литиевых элементов могут достигать напряжения 500-700В постоянного тока с емкостью около 400А/ч, а также емкости 2000 – 3000Ач с напряжением 48 или 96В.

Параметр \ Тип

LiCoO2

LiMn2O4

LiNiMnCoO2

LiFePO4

LiNiCoAlO2

Li4Ti5O12

Напряжение элемента, Вольт;

3.6

3.7

3.6-3.7

3.2

3.6

2.4

Оптимальная глубина разряда, %;

85-90

85-90

85-90

85-90

85-90

85-90

Допустимая глубина разряда, %;

100

100

100

100

100

100

Циклический ресурс, D.O.D.=80%;

700 — 1000

1000 — 2000

1000 — 2000

1000 — 2000

1000 — 2000

5000 — 8000

Оптимальная температура, °С;

+20…+30

+20…+30

+20…+30

+20…+30

+20…+30

+20…+30

Диапазон рабочих температур, °С;

–10 …+60

–10 …+45

–10 …+55

–10 …+60

–10 …+55

–10 …+45

Срок службы, лет при +20°С;

5 – 7

10

10

20 — 25

20 — 25

18 — 25

Саморазряд в мес., %

1 – 2

1 – 2

1 – 2

1 – 2

1 – 2

1 – 2

Макс. ток разряда

1C

10C/30C 5с

2C

25 — 30C

1C

10C/30С 5с

Макс. ток заряда

0,7-1C

0,7-1C

0,7-1C

1C

0,7C

1C

Минимальное время заряда, ч

2 — 3

2 — 2.5

2 — 3

2 — 3

2 — 3

2 — 3

Требования к обслуживанию

нет

нет

нет

нет

нет

нет

Уровень стоимости

высокий

средний

средний

низкий

средний

высокий

Никель-кадмиевые аккумуляторные батареи

Изобретателем является шведский ученый Вальдемар Юнгнер, который запатентовал технологию производства никель кадмиевого типа в 1899 году. D 1990 году возник патентный спор с Эдисоном, который Юнгнер проиграл в силу того, что не владел таким средствами, как его оппонент. Компания «Ackumulator Aktiebolaget Jungner», основанная Вальдемаром, оказалась на грани банкротства, однако, сменив название на «Svenska Ackumulator Aktiebolaget Jungner», предприятие все же продолжило свое развитие. В настоящее время предприятие, основанное разработчиком, носит название «SAFT AB» и производит одни из самых надежных никель-кадмиевых аккумуляторов в мире.

Никель-кадмиевые аккумуляторы относятся к очень долговечному и надежному типу. Существуют обслуживаемые и необслуживаемые модели с емкостью от 5 до 1500Ач. Обычно поставляются в виде сухо-заряженных банок без электролита с номинальным напряжением 1,2В. Несмотря на схожесть конструкции со свинцово-кислотными, никель- кадмиевые батареи имеют ряд существенных преимуществ в виде стабильной работы при температуре от –40°С, возможности выдерживать высокие пусковые токи, а также оптимизированы моделями для быстрого разряда. Ni-Cd батареи устойчивы к глубокому разряду, перезаряду и не требуют моментального заряда как свинцово-кислотный тип. Конструктивно производятся в ударопрочном пластике и хорошо переносят механические повреждения, не боятся вибрации и т.п.

Принцип действия никель-кадмиевых батарей

Щелочные аккумуляторы, электроды которых состоят из гидрата окиси никеля с добавлениями графита, окиси бария и порошкового кадмия. В качестве электролита, как правило, выступает раствор с 20%-ным содержанием калия и добавлением моногидрата лития. Пластины разделены изолирующими сепараторами во избежании замыкания, одна отрицательно заряженная пластина расположена между двумя положительно заряженными.

В процессе разряда никель-кадмиевой батареи происходит взаимодействие между анодом с гидратом окиси никеля и ионами электролита, образуя гидрат закиси никеля. В это же время катод из кадмия образует гидрат окиси кадмия, тем самым создавая разность потенциалов до 1,45В обеспечивая напряжение внутри аккумулятора и во внешней замкнутой цепи.

Процесс заряда никель-кадмиевых аккумуляторов сопровождается окислением активной массы анодов и переходом гидрата закиси никеля в гидрат окиси никеля. Одновременно катод восстанавливается с образованием кадмия.

Достоинством принципа действия никель-кадмиевой батареи является то, что все составляющие, которые образуются в процессе циклов разряда и заряда, почти не растворяются в электролите, а также не вступают в какие-либо побочные реакции.

Рисунок №16. Строение Ni-Cd аккумулятора.

Типы никель-кадмиевых аккумуляторов

В настоящее время батареи Ni-Cd используют чаще всего в промышленности, где требуется обеспечивать питанием разнообразные приложения. Некоторые производители предлагают несколько подвидов никель-кадмиевых аккумуляторов, которые обеспечивают наилучшую работу в определенных режимах:

  • время разряда 1,5 – 5 часов и более – обслуживаемые батареи;

  • время разряда 1,5 – 5 часов и более – необслуживаемые батареи;

  • время разряда 30 – 150 минут – обслуживаемые батареи;

  • время разряда 20 – 45 минут – обслуживаемые батареи;

  • время разряда 3 – 25 минут – обслуживаемые батареи.

Характеристики никель-кадмиевых аккумуляторов

Параметр \ Тип

Никель-кадмиевые / Ni-Cd

Емкость, Ампер/час;

1 – 1500

Напряжение элемента, Вольт;

1,2

Оптимальная глубина разряда, %;

60 — 80

Допустимая глубина разряда, %;

100

Циклический ресурс, D.O.D.=80%;

2300

Оптимальная температура, °С;

0 … +20

Диапазон рабочих температур, °С;

-50 … +70

Срок службы, лет при +20°С;

25

Саморазряд в мес., %

4

Макс. ток разряда

10 C5

Макс. ток заряда

0.4 C5

Минимальное время заряда, ч

5

Требования к обслуживанию

Малообслуживаемые или необслуживанемые

Уровень стоимости

средняя (300 – 400$ 100Ач)

Высокие технические характеристики делают этот тип аккумуляторных батарей очень привлекательным для решения производственных задач, когда требуется высоконадежный источник резервного питания с длительным сроком службы.

Никелево-железные аккумуляторные батареи

Впервые были созданы Вальдемаром Юнгнером в 1899 году, когда он пытался найти более дешевый аналог кадмию в составе никель-кадмиевых батарей. После долгих испытаний Юнгнер отказался от применения железа, т. к. заряд осуществлялся слишком медленно. Несколькими годами позднее, Томас Эдисон создал никель-железный аккумулятор, который осуществлял питание электромобилей «Baker Electric» и «Detroit Electric».

Дешевизна производства позволили никель-железным аккумуляторам стать востребованными в электротранспорте в качестве тяговых батарей, также применяются для электрификации пассажирских вагонов, питания цепей управления. В последние годы о никель-железных аккумуляторах заговорили с новой силой, т. к. они не содержат токсичных элементов вроде свинца, кадмия, кобальта и т. д. В настоящее время некоторые производители продвигают их для систем возобновляемой энергетики.

Принцип действия никелево-железных батарей

Аккумуляция электроэнергии происходит при помощи никель оксида-гидроксида, применяемого в качестве положительных пластин, железа – в качестве отрицательных пластин и жидкого электролита в виде едкого калия. Никелевые стабильные трубки или «карманы» содержат активное вещество

Никелево-железный тип очень надежный, т.к. выдерживает глубокие разряды, частые перезаряды, а также может находится в недозаряженном состоянии, что очень пагубно для свинцово-кислотных батарей.

Характеристики никелево-железных аккумуляторов

Параметр \ Тип

Никель-кадмиевые / Ni-Cd

Емкость, Ампер/час;

10 – 1000

Напряжение элемента, Вольт;

1,2

Оптимальная глубина разряда, %;

50 — 80

Допустимая глубина разряда, %;

100

Циклический ресурс, D.O.D.=80%;

1800 — 2300

Оптимальная температура, °С;

+15 … +25

Диапазон рабочих температур, °С;

-40 … +60

Срок службы, лет при +20°С;

20

Саморазряд в мес., %

15

Макс. ток разряда

0.25C 5

Макс. ток заряда

0.25C 5

Минимальное время заряда, ч

12 – 16

Требования к обслуживанию

Малообслуживаемые

Уровень стоимости

средняя, низкая

Использованные материалы

Исследования компании Boston Consulting Group

Техническая документация ТМ Bosch, Panasonic, EverExceed, Victron Energy, Varta, Leclanché, Envia, Kokam, Samsung, Valence и других.

устройство, разновидности, назначение, принцип работы

Аккумулятор представляет собой устройство, которое накапливает энергию в химической форме при подключении к источнику постоянного тока, а затем отдает ее, преобразуя в электричество. Его используют многократно за счет способности к восстановлению и обратимости химических реакций. Разряжается – снова заряжают. Применяются аккумуляторы в качестве автономных и резервных источников питания для электротехнического оборудования и различных устройств.

Устройство аккумулятора

В автомобилях обычно применяют свинцово-кислотные аккумуляторы. Рассмотрим их устройство.

Все элементы располагаются в корпусе, который изготавливают из полипропилена. Корпус состоит из емкости, разделенной на шесть ячеек, и крышки, оснащенной дренажной системой для стравливания давления и отвода газа. На крышку выводится два полюса (клеммы) – положительный и отрицательный.

Содержимое каждой ячейки представляет собой пакет из 16 свинцовых пластин, полярность которых чередуется. Восемь положительных пластин, объединенных бареткой, являются плюсовым электродом (катодом), восемь отрицательных – минусовым (анодом). Каждый электрод выводится к соответствующей клемме аккумулятора.

Пакеты пластин в ячейках погружены в электролит – раствор серной кислоты и воды плотностью 1,28 г/см3.

Между пластинами электродов, для предотвращения замыкания, вставлены сепараторы – пористые пластины, которые не препятствуют циркуляции электролита и не взаимодействуют с ним.

Отдельная пластина электрода – это решетка из металлического свинца, в которую впрессован (намазан) реагент. Активная масса катода – диоксид свинца (PbO2), анода – губчатый свинец.

Принцип действия аккумуляторов

Принцип действия аккумулятора основан на образовании разности потенциалов между двумя электродами, погруженными электролит. При подключении нагрузки (электротехнических устройств) к клеммам аккумулятора в реакцию вступают электролит и активные элементы электродов. Происходит процесс перемещения электронов, который, по сути, и является электротоком.

При разряде аккумулятора (подключении нагрузки) губчатый свинец анода выделяет положительные двухвалентные ионы свинца в электролит. Избыточные электроны перемещаются по внешней замкнутой электрической цепи к катоду, где происходит восстановление четырехвалентных ионов свинца до двухвалентных.

При их соединении с отрицательными ионами серного остатка электролита, образуется сульфат свинца на обоих электродах.

Ионы кислорода от диоксида свинца катода и ионы водорода из электролита соединяются, образуя молекулы воды. Поэтому плотность электролита понижается.

При заряде происходят обратные реакции. Под воздействием внешнего напряжения ионы двухвалентного свинца положительного электрода отдают по два электрона и окисляются в четырехвалентные. Эти электроны движутся к аноду и нейтрализуют ионы двухвалентного свинца, восстанавливая губчатый свинец. На катоде, путем промежуточных реакций, снова образуется двуокись свинца.

Химические реакции в одной ячейке вырабатывают напряжение 2 В, поэтому на клеммах аккумулятора из 6 ячеек и получается 12 В.

Из видео Вы сможете более подробно узнать, как работает аккумулятор:

Читайте также, как правильно выбрать аккумулятор по емкости, особенности литий-ионных и никиль-кадмиевых аккмуляторов

Основные виды аккумуляторных батарей — Pulsar


Обзор технологий «консервированного электричества»

Аккумуляторные батареи (АКБ) активно потребляются большинством отраслей промышленности и просто человеческой деятельности. Без АКБ немыслимы сегодня энергетика, телекоммуникации и транспорт. Огромный пласт использования АКБ составляет работа вычислительной техники, систем передачи данных с участием источников бесперебойного питания (а это промышленные предприятия, офисы, банки, государственные и научные учреждения, ЦОД, и вообще практически любой производственный участок, где присутствует компьютер). Масштабно эксплуатируются сегодня АБ в частном жилом секторе. Мы уже не говорим о мини-аккумуляторах, питающих бесчисленное семейство всяческих мобильных устройств. Одним словом – без батарей никуда.

На базе устойчивого спроса и само производство аккумуляторных батарей давно уже стало самостоятельной отраслью. Тысячи предприятий в мире ежедневно выдают «на-гора» миллионы единиц «консервированного электричества». И среди этого разнообразия уже не так-то просто порой сделать правильный выбор. Конструкций АКБ сегодня множество, и в каждой имеются свои тонкости и премудрости.

Основные виды аккумуляторных батарей

Прежде чем говорить о видах аккумуляторных батарей, стоит договориться о понятиях. По сути, «аккумулятор» и «аккумуляторная батарея» – одно и то же. Если подходить строже, то аккумулятором называют единичный элемент того или иного напряжения (пара электродов с электролитом), а батареей – несколько таких элементов, соединенных между собой. На практике обычно мы имеем дело с батареями, хотя называем их аккумуляторами.

Как мы сказали ранее, мир аккумуляторов – это бескрайнее море, однако среди них различают три основных вида – свинцово-кислотные, никель-кадмиевые (вариант – никель-железные металл-гидридные) и литиевые. Названия отражают различия активных материалов в конструкции. Свинцово-кислотные – со свинцовыми пластинами и кислотным электролитом, у никель-кадмиевых – одна пластина содержит никель, а другая – кадмий (иногда железо), электролитом здесь выступает щелочь. В литиевых батареях применяется твердый электролит, а в виде электродов – литий (отрицательный потенциал) и другие материалы (нередко полимерного происхождения).

Электрохимические процессы, которые происходят в батарее, в зависимости от материалов обеспечивают характеристики АКБ и их свойства для электропитания. Важный электрический параметр – это напряжение элемента, которое может меняться в пределах от 1 до 3,6 В. Ещё один ключевой параметр – ёмкость (запас энергии, который может питать нагрузку с определенной силой тока в течение определенного времени, измеряется в ампер-часах – Ач). Ещё один важный параметр, который мы будем часто упоминать, – количество циклов заряда-разряда, что напрямую связано со сроком службы АКБ. Безусловно, имеют значения и другие параметры: диапазон рабочих температур, глубина разряда, значения токов заряда и разряда.

Самые распространенные аккумуляторы на сегодняшний день – это свинцово-кислотные (СК). Они характеризуются относительной простотой и доступностью. При изготовлении СК используются относительно недорогие материалы: свинец в качестве электродов и раствор серной кислоты. Стандартный элемент имеет напряжение 2 В, а диапазон емкостей АКБ варьируется в диапазоне от долей Ач до тысяч Ач. Такие АКБ широко применяются в качестве стартерных в автомобиле. Промышленные модели обычно отличаются по исполнению и характеристикам.

Никель-кадмиевые (НК) аккумуляторы относятся к группе щелочных. Здесь одна пластина содержит гидроокись кадмия, другая – гидроокись никеля. Активный материал в виде порошка запрессован в пластины, представляющие собой решетчатую или перфорированную структуру Перфорация обеспечивает обмен зарядами через электролит. Впрочем, бывают и другие варианты конструкции, например, с так называемыми «спеченными электродами».

Аккумуляторы НК отличаются высокой надежностью. Одно из главных их достоинств – низкая чувствительность к перепадам температур, в чем они превосходят свинцово-кислотные. Поэтому для работы в особых климатических условиях, низких и высоких температурах выбираются именно НК. Они неприхотливы, не боятся глубокого разряда, перезаряда, они не могут внезапно выйти из строя, что иногда случается с аккумуляторами СК. Как следствие, и срок службы хорошо сделанных НК заметно превосходит стандартный срок службы для СК в полтора-два раза – 15-25 лет против 5-10-ти. Соответственно НК и стоят подороже.

Непосредственно к группе НК примыкает и их подвид – никель-железные АКБ, но их роднит разве что слово «никель», сама технология и близкая устойчивость к температурам. А в остальном это совсем другой класс устройств, с более низкими характеристиками. И по надежности уступают НК, низкий КПД, большие потери, сложны в обслуживании. Еще недавно считалось, что это уже устаревшая конструкция и используется главным образом на постсоветском пространстве по причине относительной дешевизны и устоявшейся традиции. Однако, по последним сведениям, интерес к никель-железным АКБ возродился, и причем даже не в нашей стране, а как раз за рубежом. Причина – простота утилизации, экологичность. К слову, и сама технология модернизировалась.

Еще одна разновидность АКБ – это литиевые батареи, прежде известные всем главным образом по батарейкам в мобильных телефонах или в ноутбуках. Ранее в серьезных мощных системах литий-ионные аккумуляторы не применялись по причине дороговизны. Однако в последние несколько лет все решительно изменилось. Во-первых, литиевые батареи почти уровнялись по стоимости с традиционными АКБ (с НК практически сравнялись, и лишь вдвое дороже СК). А во-вторых, как выяснилось, литий-ионные (точнее, литий-железо-фосфатные) аккумуляторы превосходят все остальные по всем статьям. Какой параметр ни возьми, будь то температурный диапазон, ресурс службы, устойчивость к глубоким разрядам – везде они лучшие. Добавим сюда еще лучший показатель удельной запасаемой энергии, т.е. максимальный запас энергии в минимальном объеме – и станет ясно, что за этими АКБ будущее. Сегодня они в основном используются в электромобилях, но уже постепенно завоевывают место и в других сферах. Особенно интересно направление альтернативной энергетики.

О параметрах подробнее

Какого бы типа не были АКБ, их качество и возможности описываются одними и теми же параметрами. Главные из них – это напряжение и емкость. Суть емкости заключается в том, сколько тока в течение определенного времени (при заданном напряжении) способна отдать батарея до своего минимума разряда. Поэтому измеряется емкость в ампер-часах. Емкость АКБ обычно привязывают ко времени, поэтому на изделии можно встретить пометки: С5, С10 или С20. Наибольшую абсолютную емкость АКБ имеют при длительном разряде в стационарном режиме. Емкость при отдаче за короткое время меньше.

Значение емкости во многом зависит от температуры эксплуатации. Номинальная емкость нормируется для комнатной температуры, при повышении температуры емкость возрастает, при понижении – падает, причем очень быстро, экспоненциально (замедление химических процессов). Скажем, на нулевой температурной отметке в зависимости от тока емкость может упасть на 50-70% для разных типов АКБ. Самые чувствительные в этом плане свинцово-кислотные АКБ: рабочий температурный диапазон для них – от -30 до +40°С, а самые устойчивые никель-кадмиевые и литиевые – от -40-50 до + 50-60°С. Превышение этих норм, особенно в сторону тепла, приводит к резкому сокращению сроков службы.

Емкость зависит от продолжительности заряда, и у каждой АКБ такое время задано. Обычно они заряжаются несколько часов, например, свинцово-кислотные в зависимости способа заряда могут заряжаться от 8 до 48 часов. Никель-кадмиевые можно зарядить до 90% за несколько часов, а литиевым для полного заряда достаточно будет и часа (а для некоторых типов литиевых батарей – и 20 минут).

Еще один важный параметр – срок службы. Обычно за норму принимается расчетный срок службы в АКБ в режиме буферного подзаряда (когда аккумулятор постоянно подключен к источнику постоянного тока). Т.е. они периодически находятся в этом режиме и иногда, от случая к случаю разряжаются. У свинцово-кислотных, например, такой срок составляет 3-5 лет, но может быть и 10-15, у наиболее продвинутых – 8-20 лет, есть и другие, которые служат ещё больше. Все зависит от исполнения АКБ, от технологи и, от состава активных материалов, от качества материала, добавок. Чистота материала – это очень важный фактор, поскольку переработанный свинец рафинировать до бесконечности невозможно, меняется структура материала, и срок службы резко снижается. К сожалению, в Украине такая продукция может иногда встречаться.

Наиболее долговечные АКБ свинцово-кислотного типа – это АКБ из сплошного свинца. Так называемые элементы Планте, или как их сейчас называют GroE, могут служить и 20, и 30 лет.

Обслуживаемые и герметизированные

АКБ бывают обслуживаемые, малообслуживаемые и необслуживаемыe. Обслуживание – это постоянный контроль уровня электролита и время от времени долив в аккумулятор дистиллированной воды. Отметим, что при разряде АКБ вода не просто испаряется, а происходит диссоциация, ее разложение на водород и кислород. Улетучивание происходит обычно через специальный фильтр пробки, которая защищает от испарения аэрозолей, паров, и от проникновения искры внутрь.

Литиевые – по определению необслуживаемые. НК, как правило, обслуживаемые. СК тоже могут быть обслуживаемыми, и такие батареи называются обслуживаемыми АКБ вентилируемого типа. Вентилируемые батареи обычно устанавливаются в отдельных аккумуляторных помещениях с серьезной вентиляцией. Их нужно обслуживать, периодически доливать воду в электролит измерять плотность, испытывать. И такие батареи ещё в недавнее время составляли большинство.

Вместе с тем те же типы АКБ могут быть и необслуживаемыми. НК, например, обслуживаемые по определению, но имеются разновидности НК, которые в определенных режимах могут и не обслуживаться. То есть не требуют долива в течение длительного срока, порой десятилетий.

Как мы уже отметили раньше, в процессе разряда на разных пластинах выделяется водород и кислород, и если их превращать обратно в воду, не позволяя испариться, то АКБ в обслуживании не нуждается. Такой метод называется рекомбинацией, и чаше всего используется в СК аккумуляторах (т.н. батареи рекомбинационного типа).

Чтобы кислород и водород не улетучивались, а обязательно встречались и объединялись в молекулы воды, им создаются специальные условия. Для этого электролит делают затушенного типа, добавляя в раствор серной кислоты силиконовые добавки. Таким образом, электролит в виде хорошей сметаны или геля (желе) находится между пластинами, не заполняет другие объемы и представляет собой этакий бутерброд. При диффузии эти частички газов затрачивают больше время, чтобы вылететь наружу, увязают в геле, и вероятность встречи повышается и рождается молекула воды. Так происходит рекомбинация, а такие АКБ называются гелевыми. Отметим, что АКБ этого типа могут работать в любом положении: на боку, даже вверх ногами – из них ничего не вытекает.

Но самым удачным представителем в семействе герметичных батарей считаются так называемые AGM батареи. Здесь пространство между пластинами заполняется пористым губчатым веществом, обычно это стеклокапиллярный материал, салфетка из стекловолокна, которая напитывается электролитом (только электролит здесь более жидкий). За счет длинного пути, который кислороду и водороду нужно проделать по лабиринтам этой губки, рекомбинация получается ещё эффектней, чем в геле. Вот почему эти АКБ и называются AGM – Absorbent Glass Mat, или абсорбция в стекловолоконном материале.

Эти АКБ имеют высший коэффициент рекомбинации, потери воды очень незначительны, при нормальных условиях зарядки коэффициент рекомбинации превышает даже 99% при нормальных условиях заряда и разряда. Казалось бы, служить ему и служить, но на самом деле газы понемногу стравливаются. Для этого есть клапан, который представляет собой мембрану, рассчитанную на определенное избыточное давление, что-то типа ниппеля, только наоборот.

Собственно, постепенное очень медленное выбрасывание газов и ведет к конечной точке службы. Обслуживание невозможно, доливать воду некуда, так уж оно устроено.

Каждый из этих АКБ имеет свою сферу применения. АКБ с жидким электролитом обычной плотности в силу лучшей в этой среде подвижности носителя заряда имеют лучшие динамические характеристики, то есть скорость заряда-разряда.

Гелевые желательно применять в системах, которое имеют стационарный продолжительный разряд, и точно так же неспешно могут заряжаться, потому что заряд большим током ведет к их разрушению.

Гелевые АКБ имеют довольно сильный плюс – больший циклический ресурс. Если говорить о глубоком разряде, то гелевые глубокого заряда и разряда могут обеспечить вдвое, а то и втрое циклов больше. Гелевые могут иметь 500-600 циклов, a AGM – 250-300 (есть исключения), причем устройства примерно одного уровня по качеству. Из-за своего потенциала цикличности гелевые АКБ и стоят дороже.

Впрочем, на сегодня уже есть AGM аккумуляторы, способные обеспечить 600 и более циклов глубокого разряда (например, АКБ ТМ EverExceed). Обслуживаемые АКБ могут иметь ресурс ещё выше.

Скромная привлекательность литиевых батарей

Технология литиевых батарей получила такое развитие, что грозит оставить за спиной более традиционные АКБ, прежде всего свинцово-кислотные в связи с массой преимуществ и снизившейся ценой. Если пять лет назад литиевые батареи были раз в шесть дороже аналогичных свинцово-кислотных, то сейчас можно говорить только о двукратном превышении цены.

Литиевые батареи применяются уже не только в электромобилях, но и телекоммуникации, источниках бесперебойного питания, системах резервного питания и в альтернативной энергетике, где требуется большой циклический ресурс батарей.

Все больше поставщиков добавляют в свой ассортимент литиевые батареи. Когда только в два раза дороже и целый веер преимуществ, потребитель уже благосклонно смотрит на этот товар.

Чем же хороши литиевые батареи конкретно? Срок службы литиевых батарей на сегодня на отметке 15 лет. У свинцово-кислотных ожидаемый срок службы, у батарей средней емкости, 30-300 Ач, – 10-12 лет. Но в реальных условиях, с поправкой на условия эксплуатации, с учетом человеческого фактора, этот срок службы обычно 7-8 лет. У литий-ионных – 15.

Циклический ресурс у свинцово-кислотных, самых хороших, наиболее распространенных, обычно в пределах нескольких сотен циклов глубокого разряда, максимум 600-700. У литиевых батарей – 4000 циклов.

Конструкция литий-ионных батарей

Литиевые батареи абсолютно другого типа, нежели СК. Во-первых, они управляемы на программном уровне, они не могут работать без блока управления BMS. По сути, это компьютер, который отслеживает все параметры, следит за зарядкой, прекращает разряд, фиксирует параметры сопротивления – и все это транслирует на монитор. Обычные батареи – это вообще черный ящик, там трудно даже определить, по какой причине батарея вышла из строя, почему потеряла емкость. Здесь же мы все видим, можем посмотреть историю, сколько циклов разряда прошла батарея.

Форма литий-ионной аккумуляторной батареи на автомобиле KIA Motors

Литиевые батареи собираются из маленьких элементов, похожих на пальчиковые батарейки или патроны. Благодаря такому модульному исполнению батареи могут принимать самые необычные формы разных размеров, заполняя пустоты. А могут сохранять и традиционную форму, свойственную привычным АКБ. В электромобиле конструкция неправильной формы вдоль днища набита этими кассетами. Для телекоммуникаций – стоечное исполнение 19¨.

Литий-ионные аккумуляторы легче и компактней. Что еще? Быстрая зарядка, большие токи разряда, высокая плотность энергии (Втч/кг), работа в широком t-диапазоне… Для полного перечня достоинств нет места.

Литиевая батарея EverExceed в телекоммуникационной стойке

Назначение аккумуляторов

Будучи источником автономного и резервного питания аккумуляторные батареи широко используются в различным сферах жизни, и, конечно, в промышленности. В различных от­раслях АКБ призваны выполнять раз­ные задачи. И для каждой отрасли есть наиболее подходящий тип батарей.

В энергетике аккумуляторные ба­тареи применяются очень широко. В огромном хозяйстве электростан­ций, подстанций, систем различной автоматики, механики слежения обя­зательно присутствуют батареи. Во многих производственных процессах АКБ несут миссию безопасности и резервного питания. Подача мас­ла насосами на подшипники в генера­торе – беспрерывный процесс, кото­рый не должен прерываться. И здесь нужна АКБ для резервирования пита­ния. Причем подойдет батарея любо­го типа, потому что каких-то больших толчковых токов здесь не требуется.

А вот при аварийных включениях требуются большие пусковые, толчковые токи, кратковременные, которые длятся доли секунды, включение – и ток заканчивается. Здесь пригодят­ся свинцово-кислотные аккумуляторы типа GrоЕ.

Стоит добавить, что в наши дни в энергетике все чаше при­меняют стационарные необслу­живаемые аккумуляторы герме­тизированного типа АGМ, хоть дорогу эти современные реше­ния в консервативной энергетической среде пробивали с тру­дом. Приходилось слышать от поставщиков досаду на привер­женность к старым наливным системам именно в энергетике.

В телекоммуникациях (мо­бильные операторы, системы фиксированной связи) используются, как правило, стационарные СК акку­муляторы, потому что в телекоммуникациях используется продолжитель­ный стационарный разряд и не нужны динамические режимы. Важный пара­метр здесь – срок службы. На участ­ках, где возможен глубокий разряд, устанавливаются СК с трубчатыми пластинами типа OPzS или OPzV, об­ладающие, кстати, солидным ресурсом циклического разряда – 1500 циклов.

В системах, где нагрузка небольшая, где нужна емкость десятками или не­большими сотнями ампер-часов, используются герметизированные аккумуляторы типа АGМ, реже гелевые. В телекоммуникациях в шкафах с оборудованием редко кто применяет какие-то другие аккумуляторы, кроме герме­тизированных, критериями их подбора могут быть разве что емкость и напряжение. По габаритным размерам они унифицированы и удобно устраиваются в шкафах электропитания, в источ­никах бесперебойного питания, рядом с чувствительной электроникой.

На транспорте также роль АКБ труд­но переоценить. На железной дороге батареи служат для резервирования функций включения-отключения, в локомотивах, электропоездах и теплово­зах, а также для автономного питания в вагонах. На ходу вагон питается от генератора, и он же заряжает эти ак­кумуляторы, а на стоянке эти АКБ дают освещение, вентиляцию, кондиционирование в вагоны. На железной до­роге применяются как свинцово-кислотные, так и никель-кадмиевые, и никель-железные, причем последние, щелочные, чаше.

На городском электротранспорте обычно в работе никель-кадмиевые, там сильные вибрации, низкие-высо­кие сезонные температуры, там СК не выдержит. АКБ на электротранспорте могут выполнять несколько функций, например, в метро – резервирование открывания дверей и работы автома­тики, в трамвае – электромагнитный тормоз, такой башмак, который притя­гивается под напряжением к рельсам и тормозит.

Тормозной башмак трамвая АКБ

На промышленных предприятиях примеров применения АКБ не пере­честь. На каждом крупном заводе есть свои подстанции, ИБП, система ава­рийного питания. Поэтому примене­ние – смотри выше.

Близки к электротранспорту, напри­мер, шахты. Там редко бывает контакт­ная сеть (опасно по газу, по пыли), поэтому уголь вывозится электровозами с вагонетками, которые приводят в движение тяговые АКБ.

Традиционно в шахтах применяются никель-железные АКБ и никель-кадмиевые, но уже несколько лет в шахтах в подвижном электротранспорте рабо­тают и свинцово-кислотные. Тоже тяговые, которые имеют хорошие пока­затели и дешевле (никель-кадмиевые по надежности и безопасности выше, но они дороже вдвое-втрое).

То ли к промышленности, то ли к транспорту можно отнести погру­зочно-разгрузочный парк. Это тоже очень большая сфера: склады, мага­зины, логистические центры, заводы, здесь в основном используются кислотно-свинцовые тягового назначения с трубчатыми пластинами (а сегодня уже и литиевые). К тяговым аккумуля­торам повышенные требования по механической устойчивости. Также они должны быть устойчивы к циклическому режиму дня: день разряжаются, но­чью заряжаются; и если это хороший тяговый аккумулятор на 1500 циклов, и мы имеем в виду 250 рабочих дней, то хватит его на 6 лет.

АКБ для автопогрузчика

Частный сектор. Здесь системы безо­пасности, сигнализации, это любой киоск, магазинчик и частная сигнализация в домах. Здесь применяют АКБ АGМ-типа, небольшой емкости, 5-20 Ач.

Когда люди хотят за­резервировать себе какие-то системы, на­пример, газовые котлы с собственной систе­мой прокачки и элек­троприводом – здесь нужны АКБ АGМ типа большой емкости, можно гелевые, если денег больше.

Объекты малого бизнеса. Обычно это ИБП. Но те, что применяются в банках, офисах, обычно рассчитаны на непродолжительное время работы, на 5-10 мин, редко на час. Как прави­ло, такие ИБП могут работать только от батареи ограниченной емкости.

Для жилья такие источники беспе­ребойного питания неприемлемы, они зашивают самые важные функции на короткое время. Для жилья нужно ду­мать о большом времени резервиро­вания. Здесь требуется очень мощное зарядное устройство, способное под­держивать АКБ очень большой емкости, обеспечивая многочасовую авто­номность, может, суточную.

Завершая этот небольшой обзор, следует сказать, что мир аккумуля­торов безбрежен, и существует мно­жество вариаций, как внутри самих технологий, так и у отдельных произ­водителей. Знакомство с фирменны­ми тонкостями мы продолжим в следу­ющем материале.

Подготовил Евгений ПОЛИЩУК

Выражаем большую благодарность за проведённое интервью и предосатвленные материалы журналу «Украина-Электро» (http://ua-electro.com)


Устройство и сравнение аккумуляторных батарей

Современную жизнь невозможно представить без электронных устройств. Для их работы требуются автономные источники питания. Аккумулятор – прибор способный под действием электрического тока накапливать энергию, а затем и отдавать ее в виде того же электрического тока. Рассмотрим различные виды аккумуляторов, их строение, особенности, сильные и слабые стороны.

Свинцово-кислотные – Pb.

Один из самых старых и широко распространенных видов аккумуляторных батарей. Был изобретен аж в 1859 году. Обычно представляют собой именно батарею из трех-шести секций соединенных последовательно. Каждая секция содержит положительный и отрицательный электроды в виде решеток из сплава свинца с добавлением сурьмы и различных примесей. Решетки погружены в электролит – серную кислоту разбавленную дистиллированной водой. В аккумуляторах для бытовых источников бесперебойного питания электролит сгущен раствором силикатов натрия до состояния пасты. На фото батарея для ИБП.

Одна секция в полностью заряженном состоянии выдает 2.11-2.17 вольт, что в сумме, при трех-шести секциях обеспечивает напряжение 6-12 В.

Применяются в автомобилях, источниках бесперебойного питания, аварийном электроснабжении. Можно встретить в ручных галогеновых прожекторах, в некоторых фонарях с раздельным расположением лампы и аккумуляторного блока.

Достоинства. Способны отдавать большой ток, широкий диапазон рабочих температур, относительно малая потеря емкости при отрицательных температурах, не имеют «эффекта памяти», долгий срок службы в благоприятных условиях и при правильном обслуживании.

Недостатки. Большой вес и размеры, подвержены саморазряду при хранении, при глубоком разряде теряют емкость или вообще выходят из строя, некоторые модели требуют обслуживания.

Никель-кадмиевые — NiCd.

Никель-кадмиевые аккумуляторы были изобретены всего на 40 лет позже свинцово-кислотных, но распространения не получили из-за высокой стоимости компонентов для их производства. Первые промышленные изделия появились лишь в середине 20 века.

Широко распространены в виде источников питания для портативной электроники, ручного инструмента. Имеют очень низкое внутреннее сопротивление, за счет чего могут быстро заряжаться и отдавать большие токи. Лучше всего подходят для устройств с непродолжительным высоким потреблением тока. Рабочее напряжение одного элемента – около 1.37 В. Ниже показаны некогда распространенные модели аккумуляторов для портативной электроники.

Это единственный вид аккумуляторов, который рекомендуется хранить в полностью разряженном состоянии. Несколько «тренировочных» циклов – глубокий разряд и полный заряд приводят батарею в работоспособное состояние после длительного хранения.

В области портативной электроники последнее время уступают свои позиции никель-металлгидридным аккумуляторам.

Достоинства. Способность отдавать большие токи и быстро заряжаться, работать при низких температурах, удобство при хранении, долгий срок службы (для промышленных моделей может исчисляться десятилетиями).

Недостатки. Присутствует «эффект памяти», относительно малая емкость, высокий саморазряд при хранении (около 10% в месяц).

Никель-металлгидридные — NiMH.

Были разработаны в 80х годах двадцатого века в качестве замены никель-кадмиевых аккумуляторов и успешно их заменяют во многих областях применения. При равных габаритах имеют примерно на треть большую емкость, но меньший срок службы и больший в 1.5-2 раза саморазряд. При разряде держат стабильное напряжение и резко снижают его при полном истощении элемента. Почти лишены «эффекта памяти», напряжение одного элемента около 1.2 В. Оптимальный режим работы – разряд током не более 0.5 С (где С – номинальная емкость элемента. То есть, при емкости аккумулятора 2000 мАч максимально допустимый ток нагрузки не должен превышать 1 А).Хранить никель-металлгидридные аккумуляторы следует полностью заряженными, при низкой, но не ниже 0 градусов, температуре.

Основное применение – замена батарейкам формата АА или ААА. По внешнему виду и размерам полностью соответствуют никель-кадмиевым.

Достоинства. Отсутствие эффекта памяти, высокая емкость сразу после заряда, стабильное выходное напряжение.

Недостатки. Высокий саморазряд при хранении, значительная (до 30%) потеря емкости при низких температурах, малый срок службы (300-500 циклов заряд-разряд).

LSD (LowSelfDischarge) или аккумуляторы с низким саморазрядом появились гораздо позже и имеют ряд преимуществ в сравнении с обычными NiMH. Если традиционный аккумулятор за первый месяц хранения может потерять до 20% заряда, то для LSD гарантируется остаток более 75% заряда после трех лет хранения. Способность отдавать гораздо большие токи, до 2С. Более устойчивы к низкой температуре. Увеличенный в 2-3 раза срок службы. И всего пару недостатков – меньшая емкость и более высокая цена. Рекомендуются как для устройств с высоким потреблением тока: фотовспышки, мощные фонари, так и для длительного использования в малопотребляющих устройствах: пульты дистанционного управления, часы.

Достоинства. Низкий саморазряд, отсутствие эффекта памяти, сохранение емкости при низких температурах, способность отдавать большой ток, долгий срок службы (1000-1500 циклов).

Недостатки. Сравнительно малая емкость и высокая цена.

Литий-ионные.

Литий-кобальтовые — LiNiCo.

Традиционные литий-ионные аккумуляторы. Широко применяются для питания цифровых фотокамер, видеокамер, в батареях для ноутбуков, радиоуправляемых моделей, фонарей, на транспорте. В качестве катода в настоящее время используется графит, анод – оксид лития с кобальтом. Диапазон рабочих напряжений – от 2.5 до 4.2 В. Как и все литиевые аккумуляторы, имеют очень малый вес. Способны отдавать ток до 2С, но рекомендуемый длительный ток разряда не должен превышать 1С. Хранить рекомендуется при температуре около 5 градусов Цельсия заряженными до 40%. Подвержены старению с потерей емкости даже когда не используются. Средний срок хранения и использования составляет 5 лет.

При низких отрицательных температурах (ниже -20) могут невосстановимо терять емкость. Представляют опасность возгорания или взрыва при перезаряде или перегреве, поэтому всегда снабжаются устройствами защиты. Глубокий разряд приводит к полной неработоспособности аккумулятора. На фото показана серия литий ионных аккумуляторов AW размерами от 15266 (RCR2) до 18650.

Набор цифр написанный на литий-ионных аккумуляторах не что иное как обозначение геометрических размеров модели в миллиметрах. Расшифровывается следующим образом:

Возьмем 18650.

Первые две цифры – диаметр. 18 миллиметров.

Оставшиеся три – длина элемента с точностью до одной десятой доли мм. 650 – 65,0 мм.

Это правило применимо и для других моделей литиевых элементов.

Достоинства. Малый вес, высокая емкость, большой срок службы (500-1000 циклов), отсутствие «эффекта памяти», низкий саморазряд.

Недостатки. Чувствительны к перезаряду/переразряду, подвержены старению, опасны при перегреве, теряют емкость при низких температурах.

Литий-марганцевые — IMR.

В аноде аккумуляторов IMR используется марганец, а ионы лития расположены более плотно друг к другу. За счет этих особенностей, IMR более безопасны, устойчивы к быстрому заряду большими токами и способны отдавать токи до 5С. Используются в устройствах потребляющих большой ток: мощные фонари, радиоуправляемые модели. Выходное напряжение соответствует литий-кобальтовым моделям – от 2.5 до 4.2 В.

За счет низкого внутреннего сопротивления меньше нагреваются при использовании, более безопасны. Обычно не оснащаются встроенной защитной электроникой и лучше защищенных собратьев подходят для сборки батарей. При перезаряде элемент «потечет» или он просто испортится, без дополнительных пиротехнических эффектов. Обязательно наличие защитной электроники в зарядном устройстве.

Емкость IMR несколько ниже обычных литий-кобальтовых аккумуляторов, но, в тех условиях для которых они предназначены, LiNiCo значительно быстрее потеряют емкость либо вообще не смогут работать, отключившись из-за перегрузки. Срок службы и прочие характеристики схожи с литий-кобальтовыми элементами. IMR аккумуляторы AW отличаются от других моделей даже внешне.

Достоинства. Способность переносить большие токи заряда/разряда, безопасность, большой срок службы (более 500 циклов), удобны для сборки батарей из нескольких элементов.

Недостатки. Относительно низкая емкость, еще большая чувствительность к низким температурам (охлаждать ниже -10 не рекомендуется).

Литий-железофосфатные–LiFePO4.

Еще более молодые аккумуляторы, начали массово производиться лишь после 2003 года. По своим свойствам очень похожи на IMR, имеют схожие области применения. Отличие в сниженной емкости, способности работать под еще большими нагрузками (до 10С), более низкой стоимости комплектующих. Так же улучшены безопасность и срок службы. Химия этих элементов устроена таким образом что даже при критических нагрузках не происходит образования кислорода, следовательно, не растет давление внутри элемента. Срок службы может превышать 3000 циклов.

Литий-железофосфатные аккумуляторы настолько безопасны, что могут переносить даже такое обращение как на фото ниже. Аккумулятор питает светодиод, будучи полностью погруженным в емкость с водой.

Рабочее напряжение – от 2.0 до 3.3 В. Переразряд ниже 2 В губителен, небольшой перезаряд не вредит аккумулятору. Почти не чувствительны к отрицательным температурам.

Достоинства. Устойчивость к низким температурам, безопасность, долгий срок службы, неприхотливость, способность переносить большие токи заряда/разряда.

Недостатки. Малая емкость.

Литий-полимерные – LiPo.

Литий-полимерные аккумуляторы уже почти полностью вытеснили литий-ионные из сотовых телефонов, нашли широкое применение в радиоуправляемых моделях. В качестве электролита используется полимерный материал. Обычно литий-ионные аккумуляторы имеют цилиндрическую форму, литий-полимерные же дают инженерам большую свободу выбора. Минимальная толщина достигает 1 мм. Можно изготавливать миниатюрные модели различной формы. Обычно бытовые аккумуляторы предназначены для устройств с низким энергопотреблением, но существуют промышленные модели и модели для моделистов способные отдавать ток до 45С. Остальные характеристики сходны с обычными литий-кобальтовыми моделями. Срок службы 300-500 циклов, чувствительность к низким температурам, стареют, взрывоопасны при перегрузках, часто имеют встроенную электронику защиты.

Ниже показан аккумулятор сотового телефона без корпуса.

Достоинства. Существуют различных форм и размеров, в том числе гибкие модели. Некоторые модификации способны отдавать очень большой ток. Малый вес, большая плотность запасенной энергии, отсутствие «эффекта памяти», низкий саморазряд.

Недостатки. Потеря емкости при низких температурах, взрывоопасность при перезаряде/превышении допустимой нагрузки, подвержены старению.

 

 

источник: http://www.lumentorg.ru/review/compare-batteries/

 

      Различные типы батарей и их применение

      Батарея — это совокупность одной или нескольких ячеек, которые подвергаются химическим реакциям, создавая поток электронов в цепи. В области аккумуляторных технологий ведется много исследований и улучшений, и в результате прорывные технологии испытываются и используются в настоящее время во всем мире. Батареи вошли в игру из-за необходимости хранить генерируемую электрическую энергию. Поскольку генерировалось достаточное количество энергии, важно было сохранить энергию, чтобы ее можно было использовать при отключении генерации или при необходимости питания автономных устройств, которые не могут быть подключены к источнику питания от сети.Здесь следует отметить, что в батареях может храниться только постоянный ток, а переменный ток не может храниться.

      Батарейные элементы обычно состоят из трех основных компонентов;

      1. Анод (отрицательный электрод)
      2. Катод (положительный электрод)
      3. Электролиты

      Анод — это отрицательный электрод, который производит электроны во внешнюю цепь, к которой подключена батарея. Когда батареи подключены, на аноде инициируется накопление электронов, которое вызывает разность потенциалов между двумя электродами.Затем электроны естественным образом пытаются перераспределиться, этому препятствует электролит, поэтому, когда электрическая цепь подключена, она обеспечивает свободный путь для движения электронов от анода к катоду, тем самым запитывая цепь, к которой он подключен. Изменяя компоновку и материал, используемый для изготовления анода, катода и электролита, мы можем достичь многих различных типов химического состава батарей, что позволяет нам разрабатывать различные типы аккумуляторных элементов. В этой статье мы расскажем о различных типах батарей и их использовании , так что давайте начнем.

      Типы аккумуляторов

      Батареи обычно можно разделить на разные категории и типы, в зависимости от химического состава, размера, форм-фактора и вариантов использования, но под всеми из них можно выделить два основных типа батарей;

      1. Первичные батареи
      2. Вторичные батареи

      Давайте глубже рассмотрим основные различия между первичной ячейкой и вторичной ячейкой.

      1.Первичные батареи

      Первичные батареи — это батареи, которые нельзя перезарядить. после разряда. Первичные батареи состоят из электрохимических элементов, электрохимическая реакция которых необратима.

      Первичные батареи существуют в различных формах , от батарейки типа «таблетка» до батареек типа AA . Они обычно используются в автономных приложениях, где зарядка нецелесообразна или невозможна. Хороший пример — устройства военного класса и оборудование с батарейным питанием.Использовать аккумуляторные батареи будет непрактично, так как перезарядка батареи будет последним, о чем будут думать солдаты. Первичные батареи всегда имеют высокую удельную энергию, а системы, в которых они используются, всегда рассчитаны на потребление небольшого количества энергии, чтобы батарея прослужила как можно дольше.

      Некоторые другие примеров устройств, использующих первичные батареи, включают ; Стрелки, трекеры животных, наручные часы, пульты дистанционного управления и детские игрушки, и это лишь некоторые из них.

      Самым популярным типом первичных батарей являются щелочные батареи . Они обладают высокой удельной энергией, экологически безопасны, экономичны и не дают утечек даже при полной разрядке. Их можно хранить в течение нескольких лет, они имеют хорошие показатели безопасности и могут перевозиться в самолетах без соблюдения транспортных и других правил ООН. Единственным недостатком щелочных батарей является низкий ток нагрузки, что ограничивает их использование устройствами с низкими требованиями к току, такими как пульты дистанционного управления, фонарики и портативные развлекательные устройства.

      2. Аккумуляторы вторичные

      Вторичные батареи — это батареи с электрохимическими элементами, химические реакции которых можно обратить вспять, подав на батарею определенное напряжение в обратном направлении. Также называемые перезаряжаемыми батареями , вторичные элементы, в отличие от первичных, могут перезаряжаться после того, как энергия на батарее была израсходована.

      Они обычно используются в приложениях с большим потреблением энергии и других сценариях, где будет либо слишком дорого, либо нецелесообразно использовать однозарядные батареи.Вторичные батареи малой емкости используются для питания портативных электронных устройств, таких как мобильные телефоны , и других гаджетов и приборов, в то время как сверхмощные батареи используются для питания различных электромобилей и других приложений с высоким потреблением энергии, таких как выравнивание нагрузки при производстве электроэнергии. Они также используются в качестве автономных источников питания вместе с инверторами для подачи электроэнергии . Хотя первоначальная стоимость приобретения аккумуляторных батарей всегда намного выше, чем у первичных батарей, в долгосрочной перспективе они являются наиболее рентабельными.

      Вторичные батареи можно разделить на несколько других типов в зависимости от их химического состава . Это очень важно, потому что химический состав определяет некоторые атрибуты батареи, включая ее удельную энергию, срок службы, срок годности и цену, чтобы упомянуть некоторые из них.

      Ниже приведены различных типов аккумуляторных батарей , которые обычно используются.

      1. Литий-ионный (Li-ion)
      2. Никель-кадмий (Ni-Cd)
      3. Никель-металлогидрид (Ni-MH)
      4. Свинцово-кислотный

      1. Никель-кадмиевые батареи

      Никель-кадмиевый аккумулятор (никель-кадмиевый аккумулятор или никель-кадмиевый аккумулятор) — это тип аккумуляторной батареи, в которой в качестве электродов используются гидроксид никеля и металлический кадмий. Никель-кадмиевые батареи превосходно поддерживают напряжение и заряд, когда они не используются. Однако батареи NI-Cd легко становятся жертвой страшного эффекта «памяти», когда частично заряженная батарея перезаряжается, что снижает ее будущую емкость.

      По сравнению с другими типами перезаряжаемых элементов, никель-кадмиевые батареи обеспечивают хороший срок службы и производительность при низких температурах с хорошей емкостью, но их наиболее значительным преимуществом будет их способность обеспечивать полную номинальную емкость при высоких скоростях разряда. Они доступны в различных размерах, включая размеры, используемые для щелочных батарей, от AAA до D. Ni-Cd элементы используются по отдельности или собираются в пакеты из двух или более элементов. Маленькие пакеты используются в портативных устройствах, электронике и игрушках, в то время как более крупные находят применение в пусковых батареях самолетов, электромобилях и резервных источниках питания.

      Некоторые свойства никель-кадмиевых батарей перечислены ниже.

      • Удельная энергия: 40-60 Вт-ч / кг
      • Плотность энергии: 50-150 Вт-ч / л
      • Удельная мощность: 150 Вт / кг
      • Эффективность заряда / разряда: 70-90%
      • Саморазряд: 10% / мес.
      • Долговечность / срок службы: 2000 циклов

      2. Никель-металлогидридные батареи

      Металлогидрид никеля (Ni-MH) — это еще один химический состав, используемый для аккумуляторных батарей.Химическая реакция на положительном электроде батарей аналогична реакции никель-кадмиевого элемента (NiCd), при этом оба типа батарей используют один и тот же гидроксид оксида никеля (NiOOH). Однако отрицательные электроды в никель-металлогидриде используют сплав, поглощающий водород, вместо кадмия, который используется в никель-кадмиевых батареях

      .

      .

      Батареи

      NiMH находят применение в устройствах с высоким энергопотреблением из-за их большой емкости и плотности энергии.Никель-металл-гидридная батарея может иметь емкость в два-три раза больше, чем никель-кадмиевая батарея того же размера, а ее плотность энергии может приближаться к литий-ионной батарее. В отличие от химии NiCd, батареи на основе химии NiMH не восприимчивы к эффекту «памяти» , который испытывают никель-кадмиевые батареи.

      Ниже приведены некоторые свойства батарей, основанные на химии никель-металлгидрида;

      • Удельная энергия: 60-120 ч / кг
      • Плотность энергии: 140-300 Втч / л
      • Удельная мощность: 250-1000 Вт / кг
      • Эффективность заряда / разряда: 66% — 92%
      • Скорость саморазряда: 1.3-2,9% / мес при 20 o C
      • Цикл Долговечность / срок службы: 180-2000

      3. Литий-ионные батареи Литий-ионные батареи

      — один из самых популярных типов аккумуляторных батарей. Есть много различных типов литиевых батарей , но среди всех литий-ионных батарей используются наиболее часто. Вы можете найти эти литиевые батареи в различных формах, популярных среди электромобилей и других портативных устройств.Если вам интересно узнать больше об аккумуляторах, используемых в электромобилях, вы можете прочитать эту статью о батареях для электромобилей. Они встречаются в различных портативных устройствах, включая мобильные телефоны, интеллектуальные устройства и некоторые другие аккумуляторные устройства, используемые дома. Благодаря легкости они также находят применение в аэрокосмической и военной промышленности.

      Литий-ионные батареи — это тип перезаряжаемых батарей, в которых ионы лития от отрицательного электрода мигрируют к положительному электроду во время разряда и возвращаются обратно к отрицательному электроду, когда батарея заряжается.Литий-ионные батареи используют интеркалированное соединение лития в качестве материала одного электрода, по сравнению с металлическим литием, используемым в неперезаряжаемых литиевых батареях.

      Литий-ионные батареи

      , как правило, обладают высокой плотностью энергии, небольшим эффектом памяти или отсутствием эффекта памяти и низким саморазрядом по сравнению с другими типами батарей. Их химический состав, производительность и стоимость варьируются в зависимости от сценария использования, например, литий-ионные батареи, используемые в портативных электронных устройствах, обычно основаны на оксиде лития-кобальта (LiCoO 2 ), который обеспечивает высокую плотность энергии и низкие риски безопасности при повреждении, в то время как Li Батареи с ионами на основе фосфата лития и железа, которые предлагают более низкую плотность энергии, более безопасны из-за меньшей вероятности возникновения неблагоприятных событий, широко используются для питания электрических инструментов и медицинского оборудования.Литий-ионные аккумуляторы предлагают лучшее соотношение производительности и веса, а литий-серные аккумуляторы — самое высокое.

      Некоторые характеристики литий-ионных батарей перечислены ниже;

      • Удельная энергия: 100: 265 Вт-ч / кг
      • Плотность энергии: 250: 693 Вт-ч / л
      • Удельная мощность: 250: 340 Вт / кг
      • Процент заряда / разряда: 80-90%
      • Цикл Долговечность: 400: 1200 циклов
      • Номинальное напряжение ячейки: NMC 3,6 / 3,85 В

      4.Свинцово-кислотные батареи Свинцово-кислотные батареи

      — это недорогая и надежная силовая рабочая лошадка, используемая в тяжелых условиях. Обычно они очень большие и из-за своего веса всегда используются в непереносных устройствах, таких как накопители энергии на солнечных батареях, зажигание и освещение транспортных средств, резервное питание и выравнивание нагрузки при производстве / распределении электроэнергии. Свинцово-кислотные аккумуляторы являются самым старым типом аккумуляторных батарей, которые по-прежнему актуальны и важны в современном мире. Свинцово-кислотные батареи имеют очень низкое отношение энергии к объему и энергии к весу, но они имеют относительно большое отношение мощности к весу и, как следствие, могут обеспечивать при необходимости огромные импульсные токи.Эти характеристики наряду с низкой стоимостью делают эти батареи привлекательными для использования в нескольких сильноточных приложениях, таких как питание стартерных двигателей автомобилей и хранение в резервных источниках питания. Вы также можете ознакомиться со статьей о работе свинцово-кислотных аккумуляторов, если хотите узнать больше о различных типах свинцово-кислотных аккумуляторов, их конструкции и областях применения.

      У каждой из этих батарей есть своя область, которая лучше всего подходит, и изображение ниже помогает выбрать между ними.

      Выбор подходящего аккумулятора для вашего приложения

      Одной из основных проблем, препятствующих технологическим революциям, таким как IoT, является мощность, время автономной работы влияет на успешное развертывание устройств, требующих длительного времени автономной работы, и даже несмотря на то, что для увеличения срока службы аккумулятора принимаются несколько методов управления питанием, совместимый аккумулятор все равно должен быть выбран для достижения желаемого результата.

      Ниже приведены некоторые факторы, которые следует учитывать при выборе правильного типа батареи для вашего проекта.

      1. Плотность энергии: Плотность энергии — это общее количество энергии, которое может храниться на единицу массы или объема. Это определяет, как долго ваше устройство остается включенным, прежде чем ему потребуется подзарядка.

      2. Плотность мощности: Максимальная скорость разряда энергии на единицу массы или объема. Низкое энергопотребление: ноутбук, i-pod. Высокая мощность: электроинструменты.

      3. Безопасность : Важно учитывать температуру, при которой устройство, которое вы собираете, будет работать.При высоких температурах некоторые компоненты батареи выходят из строя и могут подвергаться экзотермическим реакциям. Как правило, высокие температуры снижают производительность большинства батарей.

      4. Срок службы: Стабильность удельной энергии и удельной мощности батареи при повторяющихся циклах (зарядка и разрядка) необходима для длительного срока службы батареи, необходимого для большинства приложений.

      5. Стоимость: Стоимость — важная часть любых инженерных решений, которые вы будете принимать.Важно, чтобы стоимость выбранного вами аккумулятора была соизмерима с его производительностью и не приводила к чрезмерному увеличению общей стоимости проекта.

      Какие типы аккумуляторов подходят для ваших IoT-устройств? | Saft аккумуляторы

      Выбор подходящего аккумулятора для вашего смарт-устройства — непростая задача и зависит от многих параметров.

      Батарея не только должна быть легкой и малогабаритной, чтобы поместиться в миниатюрную конструкцию, но и оставаться безопасной в течение длительного срока службы (благодаря хорошему удержанию заряда).Еще одним важным моментом для аккумулятора является способность работать в широком диапазоне температур (как для внутреннего, так и для наружного использования), обеспечивая при этом стабильное выходное напряжение на протяжении всего срока службы устройства.

      Прежде чем углубляться в параметры, которые следует учитывать, давайте вернемся к основам: какие батареи доступны нам и каковы их особенности?

      Какие батареи доступны предпринимателям в области Интернета вещей и каковы их особенности?

      Есть два типа батарей: одноразовые первичные и перезаряжаемые вторичные.

      Оба генерируют электричество посредством электрохимических реакций между двумя полюсами, положительным (+) и отрицательным (-), а также благодаря электролиту (раствору). Используя различные материалы для полюсов и различный состав электролита, мы можем изготавливать огромное количество батарей с разными свойствами и напряжениями. Например, щелочные батареи широко распространены в магазинах и используются в потребительских товарах, литиевые батареи, воздушно-цинковые батареи, батареи из оксида серебра или смесь этих химических элементов являются примерами батарей, доступных на рынке.

      Объекты, подключенные к беспроводной сети, требуют легких и компактных батарей с очень высокой плотностью энергии и высоким напряжением. По этой причине лучше всего подходят литиевые батареи.

      Действительно, литиевые батареи обладают высокой производительностью и надежностью, имеют высокое напряжение благодаря использованию лития в качестве анода и выделяют количество энергии на единицу объема, которое может быть в десять раз больше, чем у цинкоксидных батарей. Его электролит не содержит воды, что позволяет использовать его при низких температурах, а некоторые продукты со специальными электролитами могут выдерживать высокие и даже очень высокие температуры.

      Литиевые батареи

      бывают разных форм и размеров.

      Литиевые батареи Saft для Интернета вещей

      Результат более чем столетних исследований и инноваций в области накопления энергии, наша линейка миниатюрных литиевых батарей была специально разработана для приложений с подключенными объектами (IoT).

      Мы предлагаем 3 основных линейки аккумуляторов для устройств IoT:

      Цилиндрические первичные литиевые ячейки типа

      LS, LSH и LSP — 3.6 В

      Линейки цилиндрических первичных литиевых элементов LS и LSH Saft основаны на литий-тионилхлоридном (Li-SOCl 2 ) химическом составе , который демонстрирует наивысшее номинальное напряжение среди химического состава первичных батарей (3,6 В).

      Аккумуляторы

      LS и LSH также имеют наивысшую плотность энергии и могут восстанавливать ее до 20 лет. Они очень прочные и выдерживают очень высокие температуры и сильные вибрации.

      Доступны два типа литий-тионилхлоридных элементов: катушечная и спиральная .

      Бобинная конструкция серии LS делает эти ячейки особенно подходящими для применений, требующих очень низких постоянных или умеренных импульсных токов, таких как измерительные устройства или датчики парковки .

      Их способность противостоять широким колебаниям давления, температуры (от -60 ° C до + 150 ° C) и жестким механическим условиям делают ячейки LS идеальными для использования в удаленных местах и ​​экстремальных условиях, таких как трекеры . В сочетании с поддержкой импульсов, такой как конденсатор, суперконденсатор, EDLC (электрохимический двухслойный конденсатор) или гибридный конденсатор, они могут даже выдерживать более высокие импульсы и сочетать в себе «лучшее из обоих миров». Saft в настоящее время проводит аттестацию нескольких внешних компонентов, чтобы разрешить приложения с более высокими импульсами в диапазоне LSP.

      Линия LSH имеет спиральную конструкцию. Ячейки предназначены для приложений, требующих очень высоких импульсов. Некоторые конкретные диапазоны могут работать при очень высоких температурах, например, в нефтегазовой отрасли.

      Цилиндрические первичные литиевые элементы LM / M — 3 В

      Цилиндрические первичные литиевые элементы Saft LM / M основаны на химии лития-диоксида марганца (Li-MnO2) — 3V.

      Ячейки

      LM / M имеют спиральную внутреннюю конструкцию, как ячейки LSH, но демонстрируют более низкое номинальное напряжение 3,0 В по сравнению с 3,6 В. Если электронная конструкция приложения допускает напряжение отсечки ниже 2,5 В, этот диапазон, вероятно, равен единице. из наиболее экономичных вариантов с хорошим компромиссом между энергией и мощностью. Серия LM / M оснащена спиральными электродами с большой площадью поверхности для максимальной импульсной способности по току и составом электролита для оптимальной работы при температуре от — 40 ° C до + 85 ° C.

      Их хорошая импульсная способность делает их подходящими для интеллектуальных приборов учета, требующих высоких импульсов, а также для датчиков парковки и приложений для интеллектуального сельского хозяйства.

      Среднепризматические аккумуляторные элементы MP и цилиндрические малые VL — 3,6 В — 3,75 В

      Перезаряжаемые элементы Saft среднего призматического типа MP и цилиндрического малого VL основаны на нашей уникальной литий-ионной технологии. Эти батареи можно заряжать и использовать снова и снова после разряда, что делает их очень удобными для устройств, которые часто используются.Батареи Saft MP и VL могут похвастаться очень длительным сроком службы в суровых условиях, поскольку их можно заряжать и разряжать в широком диапазоне температур. Наши литий-ионные батареи оснащены особыми функциями безопасности — схемой электронной защиты, встроенным автоматическим выключателем на случай отказа зарядного устройства, отключающим сепаратором и предохранительным клапаном — что делает их более дорогими, чем у большинства других батарей, но высокой количество циклов (до 2 800 раз с потерей всего 30% мощности) и низкие эксплуатационные расходы снижают стоимость цикла по сравнению со многими другими химическими процессами.Кроме того, индикаторы состояния заряда (SOC) и состояния здоровья (SOH) могут быть выбраны в качестве параметров для мониторинга вашего приложения. Литий-ионные технологии Saft обеспечивают уникальные характеристики в нерегулируемых наружных условиях или в экстремальных условиях, как горячих, так и холодных. Поэтому они идеально подходят для требовательных приложений в промышленных и критических средах.

      Ниже приведена таблица диапазонов наших батарей и приложений, для которых они могут использоваться:

      Итак… Короче говоря! Какая батарея подходит для моего IoT-приложения?

      Как вы уже поняли, на этот вопрос нет простого ответа.

      Вот параметры, которые необходимо учитывать при перечислении всех вариантов для вашего варианта использования:

      • Номинальное напряжение и напряжение отключения вашей электроники : существуют разные технологии и химические составы, имеющие разное выходное напряжение. Вы должны выбрать тот, который будет гарантировать, что ваше устройство будет работать выше предельного напряжения на протяжении всего срока службы.
      • Температура окружающей среды : Вам следует подумать о том, где будет развернуто ваше IoT-устройство, чтобы обеспечить оптимальное и непрерывное электроснабжение вашего объекта.
      • Профиль потребления, максимальный импульсный ток и частота : Li-SOCl 2 бобинная технология более подходит для использования при ограниченных значениях импульса и для длительного срока службы, тогда как Li-SOCl 2 спираль , Li-SOCl 2 бобина + устройство поддержки импульсов и Li-MnO 2 особенно подходят для приложений с высокими импульсами.

      Все еще не знаете, как двигаться дальше со своим выбором? Почему бы вам не отправить профиль потребления вашего варианта использования нашим разработчикам приложений для получения персональной рекомендации?

      Различные типы аккумуляторов в устройствах Интернета вещей

      Введение

      Мы уже знаем, что такое аккумулятор.Мы сталкиваемся с этим почти каждый день, и это стало неотъемлемой частью нашей жизни. Например, смартфон, которым вы пользуетесь. Он работает от компактной литий-ионной батареи. Но просто иметь батарею недостаточно. Нам нужен хороший аккумулятор, который сможет проработать наш прибор в течение разумного периода времени. Вы будете разочарованы, если вам придется заряжать аккумулятор смартфона через каждые несколько часов использования. Таким образом, вы будете искать аккумулятор, который требует минимального времени для зарядки и выдает мощность, скажем, в течение как минимум одного дня после одного полного цикла зарядки.Та же теория применима к устройствам IOT, которые работают от батарей. Устройство IOT — это не что иное, как простое устройство, подключенное к Интернету с целью обмена информацией. У каждого устройства IOT разные требования к питанию. Простой сенсорный узел сможет работать от батареи AA или даже от плоского элемента с выходным напряжением 3 В и потребует очень меньшего тока. Но устройству IOT, которое должно запускать двигатель, потребуется нечто большее. Для этого потребуется аккумулятор, который может выдавать ток до 2 Ампер, например герметичный свинцово-кислотный аккумулятор с выходным напряжением 12 В.

      Типы аккумуляторов

      Большинство используемых нами батарей в целом называют химическими батареями. Функция химической батареи проста, преобразовывать химическую энергию в электрическую и наоборот. Типы батарей зависят от множества критериев. Например, для некоторых приложений требуются короткие всплески питания, в то время как для некоторых требуется постоянное питание. Некоторым для работы требуется высокий ток, в то время как некоторые будут работать нормально с низкими значениями тока. С точки зрения применения, батареи различаются, и их следует выбирать с умом, особенно в той области, где срок службы батареи имеет первостепенное значение.Есть много вариантов на выбор, некоторые из которых приведены ниже:

      • Литиевые: Литиевые батареи бывают разных видов. Самые известные из них, используемые в приложениях IoT, имеют формат кнопки или монеты
      • Кнопочные (BR) литиевые элементы изготовлены из литиевого сплава и геля монофторида углерода. Этот тип элементов имеет напряжение 3 В и падает до 2,2 В. в разряженном состоянии. Он имеет низкую скорость саморазряда и идеально подходит для устройств, которые предназначены для более продолжительной работы и имеют низкое энергопотребление.Обычно они используются в RTC и резервном копировании памяти. Общие модели включают BR2032 (190 мАч), BR1225 (48 мАч) и т. Д.



      Изображение взято из источника

      • Литиевые элементы типа монет (CR) имеют более высокую скорость разряда по сравнению с элементами кнопочного типа. Они используются в устройствах, которые не предназначены для длительной работы, но требуют более высоких импульсных токов. В элементах типа CR в качестве катода используется диоксид марганца, который снижает внутреннее сопротивление батареи.Они используются там, где требуется импульсный ток, например, в пультах дистанционного управления, небольших беспроводных устройствах, вспышках. Общие модели включают CR2032 (225 мАч), CR2025 (165 мАч) и т. Д.

      Изображение взято из источника

      • Цинк-воздух: эти элементы имеют отличную плотность энергии, но также высокую скорость саморазряда. По этой причине их можно использовать всего несколько месяцев и не рекомендуется.

      Изображение взято из источника

      • Щелочные: Это самые популярные батареи, которые мы наблюдаем в течение долгого времени.Он в основном используется в приложениях с низким рабочим циклом. Номинальное напряжение ячейки составляет 1,5 В и падает до 0,9 В.

      Изображение взято из источника

      • Цинк-углерод: Эти батареи, как правило, имеют низкую скорость саморазряда, аналогичную щелочным, и могут использоваться до десяти лет. Но плотность энергии намного меньше, что приводит к снижению производительности. Эти батареи используются только тогда, когда рассматривается низкая стоимость.

      Изображение взято из источника

      • Оксид серебра: Они основаны на том же химическом составе, что и щелочные, и сделаны, как следует из названия, из катода оксида серебра. Скорость саморазряда очень меньше. Он способен обеспечивать высокие уровни мощности, не влияя на общую емкость. Плотность энергии этих ячеек также очень высока по сравнению с щелочными. Единственный недостаток состоит в том, что эти элементы очень дороги из-за материала, из которого они изготовлены.

      Изображение взято из источника

      • Тионилхлорид лития: Эти элементы сравнительно новые и имеют много плюсов. Номинальное напряжение составляет 3,6 В, а после разрядки достигает 2,2 В. Скорость саморазряда, как заявляет производитель, крайне низкая.

      Изображение взято из источника

      • Никель-кадмий (NiCd): Эта батарея имеет два электрода, которые сделаны из гидроксида оксида никеля и металлического кадмия.Это аккумуляторная батарея с номинальным напряжением элемента 1,2 В и циклической долговечностью 2000 циклов. Обладая относительно низким внутренним сопротивлением, они могут обеспечивать высокие импульсные токи, что делает их идеальным выбором для игрушек с дистанционным управлением, электрических моделей и вспышек для фотоаппаратов. Эти батареи страдают от того, что называется эффектом памяти, то есть, если они разряжаются и перезаряжаются до одного и того же уровня заряда несколько раз, они вызывают падение напряжения на определенном уровне. Из-за этого батареи разряжаются раньше, чем обычно.Удельная энергия колеблется от 40 до 60 Втч / кг. Удельная мощность 150 Вт / кг. Жизненный цикл — 2000 циклов.

      Изображение взято из источника

      • Никель-металлогидридный (NIMH): Это аккумуляторная батарея. В этой батарее положительный электрод использует гидроксид никеля (NiOOH), а отрицательный электрод — сплав, поглощающий водород. Аккумулятор NiMH имеет гораздо большую емкость по сравнению с аналогичным аккумулятором NiCd (до 2–3 раз).Эта батарея имеет номинальное напряжение 1,2 В и срок службы от 180 до 2000 циклов. Напряжение зарядки находится в диапазоне 1,4–1,6 В на элемент. Разряженный элемент выдает около 1,25 В / элемент во время разряда и достигает 1 В / элемент. Опускание ниже этого уровня приведет к необратимому повреждению аккумулятора. Эта батарея обычно доступна в формате AA. Эта батарея находит свое применение в электромобилях. Удельная энергия колеблется от 60 до 120 Втч / кг. Удельная мощность колеблется от 250 до 1000 Вт / кг.Жизненный цикл составляет от 180 до 2000 циклов.

      Изображение взято из источника

      • Свинцово-кислотный: Это аккумуляторная батарея. Он имеет низкое отношение энергии к весу и низкое отношение энергии к объему. Эта батарея способна обеспечивать высокие импульсные токи. Он имеет номинальное напряжение ячейки 2,1 В и срок службы менее 350 циклов. Скорость саморазряда этой батареи составляет от 3% до 20% за один месяц.Благодаря невысокой стоимости он находит применение во многих сферах. Чаще всего применяется в зажигании автомобилей. Удельная энергия от 33 до 42 Втч / кг. Удельная мощность 180 Вт / кг.

      Изображение взято из источника

      • Литий-ионный: Литий-ионный аккумулятор содержит отрицательный и положительный электроды, между которыми протекают ионы лития. Во время разряда они перемещаются от отрицательного электрода к положительному, а во время зарядки — от положительного электрода к отрицательному.У них есть интеркалированное соединение лития, которое служит электролитом. Эти соединения состоят из солей лития в органическом растворителе, таком как этиленкарбонат. Удельная энергия колеблется от 100 до 265 Втч / кг. Удельная мощность колеблется от 250 до 340 Вт / кг. Жизненный цикл составляет от 400 до 1200 циклов.

      Изображение взято из источника

      • Литий-ионно-полимерные: Литий-ионные полимерные батареи — наиболее распространенный тип батарей, с которыми мы сталкиваемся в повседневной жизни.Их также называют LiPo, LIP и т. Д. Это перезаряжаемые батареи, в которых используется полутвердый или гелеобразный полимерный электролит с высокой проводимостью. Эти батареи используются в тех случаях, когда вес и размер имеют решающее значение. Эти батареи имеют плотность энергии 0,90–2,63 МДж / л. Напряжение LiPO зависит от химического состава батареи. Чтобы узнать разряженное напряжение и зарядное напряжение, обратитесь к техническому описанию продукта. Проблема с этими батареями заключается в том, что они подвержены перезаряду, чрезмерной разрядке, перегреву, короткому замыканию и т. Д., Что приводит к их вздутию, утечке или возгоранию.

      Изображение взято из источника

      • Литий-кобальт: Это тип литий-ионной батареи, в которой кобальт является основным активным материалом. Имеет высокую удельную энергию (150–200 Втч / кг). Он состоит из катода из оксида кобальта и графитового угольного анода. Во время разряда ионы лития перемещаются от анода к катоду, имеющему слоистую структуру. Недостатком этого типа батарей является то, что они имеют сравнительно меньший срок службы и меньшую термическую стабильность.Также ограничена удельная мощность. Номинальное напряжение 3,6 В. Срок службы составляет от 500 до 1000 циклов. Стоимость этой батареи выше, так как стоимость кобальта высока.

      Изображение взято из источника

      • Литий-марганцевый: Эта батарея имеет высокую термическую стабильность и низкое внутреннее сопротивление элементов, что обеспечивает быструю зарядку и сильноточную разрядку. Общая производительность этой батареи умеренная, так как емкость ниже, чем у кобальтового варианта.Номинальное напряжение от 3,7 до 3,8 В. Удельная энергоемкость находится в пределах от 100 до 150 Втч / кг. Жизненный цикл варьируется от 300 до 700 циклов. Этот аккумулятор безопаснее, чем версия Cobalt. Эта батарея смешивается с другими активными металлами для улучшения определенных характеристик, таких как удельная энергия (емкость батареи), удельная мощность (нагрузочная способность и долговечность.

      Изображение взято из источника

      • Фосфат лития: Эта батарея имеет низкое номинальное напряжение 3.2В / ячейка. Кроме того, удельная энергия меньше, чем у кобальтового варианта. Низкая температура снижает производительность. У этой батареи более высокая скорость саморазряда. Удельная энергия колеблется от 90 до 120 Втч / кг. Жизненный цикл составляет от 1000 до 2000 циклов. У этой батареи очень плоская кривая разряда напряжения. Имеет небольшую вместимость. С точки зрения безопасности это одна из самых безопасных литий-ионных батарей.

      Изображение взято из источника

      • Титанат лития: В этой батарее графитовый анод заменен на титанат лития.Номинальное напряжение ячейки титаната лития составляет 2,4 В и имеет способность разряжать большой ток, сохраняя при этом емкость (которая также является высокой). Этот аккумулятор также можно быстро заряжать. Он может хорошо работать при более низких температурах, в отличие от других литий-ионных батарей. Удельная энергия составляет от 50 до 80 Втч / кг. Жизненный цикл находится в пределах от 3000 до 7000. Недостатком такого типа аккумулятора является его дороговизна. Но это также одна из самых безопасных литий-ионных батарей.

      Изображение взято из источника

      Сравнительная таблица

      Тип батареи

      Анод (-) Катод (+) Номинальное напряжение (В) Прибл.Плотность энергии (МДж / кг)

      Характеристики

      Щелочной

      Цинк Диоксид марганца 1,5 0,5

      + Высокая пропускная способность по току
      + Сильноточная утечка
      + Низкая разрядка (3% / год)
      — Дороже по сравнению с цинк-углеродом

      Цинк-углерод

      Цинк Диоксид марганца 1.5 0,13 + Экономичные, недорогие батареи
      — Низкий ток утечки
      — Рабочий диапазон низких температур (от -5 до 55 C)
      — Высокий саморазряд (30% / год)
      — Возможность утечки

      Литий (BR)

      Литий Монофторид углерода 3 1,3

      + Более высокий температурный диапазон по сравнению с серией CR
      + высокий внутренний импеданс
      + Стабильная кривая разряда по напряжению и току
      + Низкий саморазряд (.5% / год)
      –малый импульсный ток

      Литий (CR)

      Литий Диоксид марганца 3 1

      + Хорошая способность выдерживать импульсный ток
      + Стабильное напряжение во время разряда
      + Низкий саморазряд (1% / год)
      + Низкая стоимость за счет широкого использования
      — Конический профиль разряда

      Литий-тионилхлорид

      Литий Серно-кислородный хлор 3.6 1,04

      + Широкая рабочая температура (от -55 до 85 C)
      + Очень низкий саморазряд (0,08% / месяц)
      + Высокая емкость тока
      — Скорость разряда при низком токе
      — Опасный электролит и катод

      Цинк-воздух

      Цинк Кислород 1,4 1,69

      Высокая плотность энергии, короткое время автономной работы (недели или месяцы)

      Никель кадмий

      Кадмий Гидроксид никеля 1.2 50–150 Вт · ч / л

      Быстрая и простая зарядка, большее количество циклов заряда-разряда, относительно низкая плотность энергии, страдает эффектом памяти.
      — Высокий саморазряд (15% / месяц)

      Никель-металлогидрид

      Металлический сплав, аккумулирующий водород Гидроксид никеля 1,2 140–300 Вт · ч / л

      Большая емкость памяти, меньшая проблема с эффектом памяти, экологичность, ограниченный ток разряда
      — Высокий саморазряд (30% / месяц)

      Свинцово-кислотный

      Пористый свинец Диоксид свинца 2.1 60–110 Втч / л

      Наименее дорогой, надежный, низкие эксплуатационные расходы, высокая скорость разряда, низкая плотность энергии, не экологически чистый
      — Средний саморазряд (5% / месяц)

      Литий-ионный

      Графит Оксид металла 3,6
      250–693 Вт · ч / л

      Высокая плотность энергии, относительно низкий саморазряд, низкие эксплуатационные расходы, требуется схема защиты по напряжению и току, эффект старения
      — Средний саморазряд (3% / месяц)

      Литий-ионный полимерный

      Графит Оксид металла 3.6 100–265 Вт · ч / кг

      Гибкий форм-фактор, легкий вес, более низкая удельная энергия, меньший срок службы

      Литий-кобальтовый

      Графит Литий оксид кобальта 3,6 150–200 Втч / кг

      Дорогой, высокая удельная энергия, ограниченная удельная мощность

      Литий-марганцевый

      Графит Оксид лития-марганца 3.7 100–150 Втч / кг

      Меньшая мощность, большая мощность, используется в медицинских устройствах и электрических трансмиссиях

      Фосфат лития

      Графит Литий-фосфат железа 3,3 90–120Втч / кг

      Хорошая способность к разряду напряжения, меньшая емкость, относительно высокий саморазряд, используется в приложениях, требующих высокого тока нагрузки

      титанат лития

      Графит Титанат лития 2.4 50–80Втч / кг

      Хороший температурный диапазон, более длительный срок службы по сравнению с другими батареями, более высокая скорость зарядки, низкая удельная энергия, дорогой


      Изображение взято из источника

      Базовая идея стоимости батарей IoT

      Тип батареи

      Стоимость $ / Ватт час

      Свинцово-кислотный

      $ 0.17

      Щелочной

      0,19 долл. США

      Цинк Углерод

      $ 0,31

      NiMH

      $ 0,99

      NiCad

      $ 1,50

      Литий-ионный

      $ 0,47

      Факторы, которые следует учитывать перед выбором

      Перед тем, как решить, какую батарею использовать, необходимо принять во внимание следующие факторы:

      • Номинальное напряжение, при котором устройство может работать.
      • Общая продолжительность работы устройства.
      • Количество раз, когда батарея разряжалась и перезаряжалась.
      • Время, необходимое для зарядки.
      • Напряжение отключения АКБ.
      • Физические размеры устройства, в которое должен быть встроен аккумулятор.
      • Экологические и электромагнитные характеристики, которые прямо или косвенно влияют на срок службы батареи.
      • Общая стоимость

      > Номинальное напряжение — это наименьшее напряжение, при котором ваше устройство будет работать.Выбранная вами батарея должна иметь минимальное номинальное напряжение, которое либо равно номинальному напряжению устройства, либо меньше этого.

      > Продолжительность работы устройства дает представление о емкости аккумулятора. Емкость аккумулятора измеряется в Ач (Ампер-час) или Втч (Ватт-час). Еще одна распространенная единица — мАч. Миллиампер-час — это 1000-я ампер-час (Ач).

      > Чтобы определить срок службы аккумулятора, необходимо принимать во внимание количество раз, которое можно перезарядить, сохранение заряда и реакцию на непрерывный заряд.

      > Напряжение отключения важно в приложениях, где вы хотите реализовать функцию, которая позволяет узнать окончание заряда батареи. Зная напряжение отключения, вы можете легко реализовать схему, которая отключает батарею, когда она достигает этого значения.

      > Физические характеристики аккумулятора тоже важны. Например, для носимого устройства IoT потребуется действительно маленькая и тонкая батарея, но в более крупных масштабах, таких как автоматизация умного дома, рассмотрение размера батареи будет неактуальным.

      > Следует учитывать экологические соображения: способность батареи отводить влагу, коррозию, перегрев, вздутие живота, выдерживать удары и повреждения. Например, если устройство IOT должно быть установлено в полевых условиях, используемая батарея должна иметь хорошую систему гидроизоляции.

      > Последний фактор — стоимость. Если общая стоимость устройства IOT должна быть низкой, тогда стоимость батареи играет заметную роль.

      Связанные

      Prasenjeet Saurav / Об авторе

      Инженер-конструктор электроники | Имеет опыт разработки коммерческих маломощных и экономичных устройств с поддержкой IOT + RF |

      Другие сообщения Prasenjeet Saurav

      Аккумуляторы

      1.) Основы

      Базовая конструкция: Батарея состоит из двух или более ячеек. Каждая ячейка состоит из двух различные материалы с электролитом между ними. Ранние инженеры обнаружили, что при использовании правильных материалов отрицательно заряженные ионы притягиваются к катоду (-), в то время как положительно заряженные ионы притягиваются к аноду (+) (другому электроду). Есть много типов батарей, см. наш раздел истории, чтобы узнать больше о том, как несколько примечательных примеров работай.
      12-минутное видео-описание основ химии аккумуляторов>
      Видео о том, как построить алюминиево-угольную батарею в домашних условиях>

      Катод — электроны «выходят» из батареи из этого электрода и попадают в электрическое устройство, находящееся под напряжением, маркируется черным цветом или (-). Это отрицательный терминал, потому что атомы с лишними электронами (- заряженные ионы) притягиваются к этому терминалу.
      Анод — электроны «попадают» в батарею от этого электрода, который отмечен красный или (+).
      Примечание: термины «анод» и «катод» также могут использоваться в устройстве, они помогают указал как подключить устройство. В устройстве (например, светодиоде) электроны «входят» в устройство через катод и выход через анод (это в обратном направлении от батареи).
      Безопасность!
      * Подключение аккумулятора к устройству задним ходом может разрушить электрическое устройство, особенно полупроводниковые приборы.
      * Замыкание аккумулятора путем подключения клеммы (-) к клемме (+) может привести к химическому возгоранию или взрыву.
      * Попадание кислоты из аккумулятора на пальцы и одежду может вызвать ожог кожи и проедать дыры в одежде. и если их прикоснуться к глазам, это может привести к слепоте. Не открывайте батареи, кроме как в контролируемых окружающей среде, и с должной осторожностью.


      Два способа классификации батарей:
      Первичные батареи — этот тип батареи готов к электрическому заряду, как только как он построен
      Вторичные батареи — аккумулятор этого типа необходимо заряжать после его изготовления.

      Инженер с опытом работы в области электрохимии или нанотехнологий может работать над улучшением батареи и преодоление установленных препятствий на пути к совершенствованию.Улучшение даже одного угла таких характеристик, как плотность энергии, низкотемпературные характеристики, накопление энергии продолжительность, скорость перезарядки, форма, движение к использованию менее токсичного или менее дорогого материала может привести к значительным изменениям в нашем мире. Например гибридный и полностью электрический автомобиль существует уже столетие, но именно лучшие аккумуляторы позволили массовое использование электромобилей в 1990-е годы.

      1.а) Типы аккумуляторов

      Есть много способов сделать батарею, некоторым моделям более 200 лет, а другим (например, тех, кто использует углеродные нанотрубки), сейчас очень быстро развиваются!

      Первичный Батареи:

      (не заряжаются)

      Хлорид цинка
      Углерод цинка
      Щелочь
      Гидроксид оксидоника
      Оксид лития-меди
      Дисульфид лития-железа
      Литий-железный сульфид
      Литий-марганцевый диоксид
      Литий-медный оксифосфат
      Литий-оксид-оксид серебра + ванадий хромат
      Литий-монооксид
      Li-I2
      Li-CuO
      Li-CuS

      Li-MnO2 (Li-Mn, «CR»)
      Тионилхлорид
      Li-SOCl2, BrCl, Li-BCX
      Сульфурилхлорид
      Li-SO2
      Li-PbCuS
      Li-Bi2Pb2O5
      Li-V2O5
      Li-Bi2O3
      Li-CoO2
      Li-CoO2 Оксид ртути
      Цинк-воздух
      Оксид серебра
      Плутониевые батареи и
      другие ядерные батареи

      Среднее Батареи:

      (заряжаемые)

      NiCd или NiCad Никель-кадмиевый 1899
      Свинцово-кислотный 1859
      NiMH
      NiZn
      Щелочной (некоторые перезаряжаемые)
      Литий-ионный Литий-ионный
      Литий-ионный полимерный
      Литий-титановый оксид
      Литий-железо-фосфатные батареи
      Литий-железо-магниевый фосфат
      Никель-железные батареи (NiFe)
      NIh3
      Никель-цинковые
      LiFePO4
      Сера Li
      Титанат лития
      Тонкая пленка ZnBr
      V окислительно-восстановительный 10
      NaS
      Расплав солей
      Серебро цинк (Ag-цинк)

      2.) История АКБ


      Вверху: иллюстрация вольта-батареи, питающей экспериментальную дуговую лампу, первый вариант электрическое освещение

      2.a) 1800: Voltaic Pile — первая батарея, непосредственно вызвавшая электрическую революцию

      Алессандро Вольта из Комо, Италия, создал первую современную батарею около 1800 года.Он имел получил образование в области химии и физики и преподавал в государственной школе, а затем Королевская школа в Комо. Он использовал цинко-медный (или серебряный) электрод с электролитом. серной кислоты или смеси рассола (соль и вода). Цинк реагировал с отрицательно заряженный сульфат. Положительно заряженные ионы водорода захватывают электроны. из меди, образуя водородный газ. Цинковый диск стал отрицательным. электрод и положительный медный / серебряный диск.Первая батарея Вольты появилась в результате 9 лет обучения, начиная с «электричества животных» или изучения электричества. ток внутри тела. Как и все великие новаторы, он продвигал работы своих предшественников, в данном случае это было Луиджи Гальвани и его работа над «животным электричеством». >

      Вверху: см. Модель батареи Вольта в Смитсоновском институте

      Батарея Вольта быстро привлекла внимание всего мира.Исследователи из России в США начали экспериментировать с версиями его батареи для проведения экспериментов. Гальваника, разделение элементов для научных исследований, электрического освещения и электромагнетизма все исследования быстро продвигались благодаря стопке Вольта. Это было названо «стопкой», потому что дополнительные блоки цинка / меди могут быть установлены на устройство для увеличения мощности. Даже сегодня в латинских языках слово «пила» означает «батарея».

      Недостатки батареи Volta заключались в том, что пропитанный рассолом тканевый материал должен был оставаться влажным, а также электролит просочился вниз и вызвал короткое замыкание.Химическое накопление на меди вызвал изолирующий слой, который остановил батарею примерно через час. В течение следующего три другие десятилетия, такие как Уильям Стерджен и Джозеф Генри, улучшили конструкцию батарей.
      Вверху: Гальваническая батарея Джозефа Генри (сделанная из цинковых и медных пластин) была разработана производить различной интенсивности в зависимости от по необходимости с помощью набора подвижных соединителей и стаканчиков с ртутью. Сегодня устройство, которое мы будем использовать для обеспечения изменения уровней мощности для эксперимента, будет вариак (автотрансформатор), подключенный к электросети.Генри нужны были переменные уровни мощности проводить свои эксперименты по электромагнетизму.
      Подробнее о Батарея Генри на снимке из Принстона>

      2.b) Ячейка Грене 1857-1900-х годов «Бутылочная батарея»

      Элемент Grenet Cell стал важным этапом в истории аккумуляторных батарей и использовался более 60 лет.Этот мокрая ячейка оказалась мощной и надежной. Он был наполнен кислотой и его можно было использовать повторно. К 1880-м годам единицы могли прослужить несколько месяцев. или годы без повторного наполнения, хотя для некоторых применений требуется повторное наполнение каждые несколько недель. Томас Эдисон использовал клетки Гренета для своих экспериментов, Медицинские работники также использовали камеру для всего, от электроинструментов в больницах экспериментам над пациентами. Ячейки были разных размеров, колбы также можно было размещать последовательно для получения большей мощности.

      Конец ячейки Грене пришел из-за ее слабостей, в том числе раздражения со стороны заправка, вес, и то, что она могла пролиться. Доска с резиновым уплотнением (гидростат) со временем сузится, что приведет к утечке через верх. Как и многие батареи в то время он был сделан из стекла, и хотя он был построен из толстого стекла, он все еще мог разбиться.

      Ячейка Грене была усовершенствована доктором.Бирн (Бруклин) в 1878 году. Современные сухие камеры сегодня. также используют цинк-угольную ячейку, однако в качестве электролита используют влажный картон. вместо жидких кислот Grenet Cell.

      Свинцово-кислотный аккумулятор


      1859 г., — Гастон Плант из Франции изобретает наиболее часто используемый большой аккумулятор сегодня: свинцово-кислотный аккумулятор. Подробнее о Свинцово-кислотный аккумулятор>

      Современные свинцово-кислотные аккумуляторы (например, в вашем автомобиле) обладают высокой плотностью энергии. около 30 ватт-часов на килограмм.


      2.c) Сухая камера

      В 1886 году были разработаны сухие элементы, и это стало огромным улучшением для некоторых приложений аккумулятор. В сухом элементе использовался пастообразный электролит, что позволяло использовать аккумулятор в любой ориентации. и улучшена площадь переносных аккумуляторов. Карл Гасснер и разработали сухую ячейку, используя гипс с примесью других химикатов. Первую выставленную на продажу модель произвел 1.5 вольт. Позже гипс заменили на свернутый картон. Колумбия произвела первую массу выпускаемые модели.

      Внизу слева: классические сухие элементы на 1,5 В Columbia, выставленные в Техническом центре Эдисона.
      Внизу справа: 3 классических сухих элемента, которые использовались в раннем радио.

      Информацию о литиевых, щелочных и других современных формах сухих аккумуляторных батарей см. Ниже.

      2.d) Томас Эдисон и батареи

      Томас Эдисон сосредоточился на создании лучшей батареи для использования в электромобилях. Существующие батареи, такие как Grenet Cell, были сделаны из стекла и не соответствовали требованиям. Эдисон оставил свой след в мире аккумуляторов множеством улучшений. Ячейка Эдисона-Лаланда было значительным улучшением в батареях, у него повышенной прочности и срок хранения около года.Эдисон долгое время интерес к батареям всех размеров для питания своих изобретений, таких как электрическая ручка. Последним значительным усовершенствованием Эдисона аккумуляторов стала разработка практичного железо-никелевого сплава. аккумулятор (NiFe). Ранний Эдисон NiFe батареи использовали толстый стеклянный корпус для удержания гидроксида калия электролит. Некоторые модели этих аккумуляторов могут сохранять заряд в течение многих лет. Железнодорожная отрасль по-прежнему использует старые никель-фетоновые батареи для резервного копирования переключателей. и другое оборудование из-за его долговременной надежности.


      Вверху: оригинальные батареи Эдисона, используемые в электромобиле Detroit Electric 1914 года выпуска, принадлежавшем Steinmetz


      Щелочная кислота AA является наиболее обычная в мире одноразовая батарея

      3.) Современные батареи:

      Сегодня в мире преобладают батареи на основе цинка, свинца и лития.Они безопаснее и меньше, чем батареи того же типа, которые были в первые дни. Меркурий и другие химические вещества были уменьшены в состав, и улучшения плотности энергии за эти годы сделали для использования меньше материала на ватт.

      Щелочная батарея:

      Щелочные батареи сегодня являются наиболее распространенными одноразовыми батареями (произведено 10 миллиардов единиц. по всему миру каждый год).Они используют цинк и диоксид марганца. Щелочная батарея заменила угольно-цинковую батарею 1800-х годов из-за к более высокой плотности энергии.
      Проблемы со щелочами включают утечку гидроксида калия (видны белые перистые кристаллы когда батарея стареет). Щелочная батарея изготовлена ​​из дешевых материалов, поэтому ее переработка нерентабельна, так как в результате он выбрасывается в основные отходы, что приводит к увеличение количества токсичных отходов на свалках.

      3.a) Литий-ионные батареи (LIB)

      Литиевые батареи

      в настоящее время являются наиболее популярными аккумуляторами для мобильных приложений. (автомобили, портативные устройства) из-за небольшого веса и большой плотности энергии (количество энергии, которое вы можете хранить на килограмм веса). Литиевые батареи бывают разных форм:


      Литий-фосфат железа (LFeP) — 120+ ватт-часов на килограмм

      Примечание: номинальные значения плотности энергии для любой из этих батарей может измениться по мере того, как улучшенные версии батареи развитый.

      Слева: здесь показана плоская призматическая батарея на 20 ампер-часов, но они могут быть выполнен в спиральной конфигурации (цилиндр).

      Смотрите наше видео о пионере инженерной мысли Энди Берк рассказывает о тестировании батарей LFeP>


      Литий-кобальтооксидный аккумулятор (LiCoO2) — 100+ ватт-часов на килограмм, используется в мобильных устройствах телефоны и другие устройства меньшего размера.Этот тип батареи используется в ноутбуках для высокая плотность энергии, проблемы включают в себя тепловой разгон, который может вызвать возгорание.

      Слева: литиевая батарея со спиральной намоткой, это от камеры Sony.


      Титанат лития (LTO) — они безопаснее, чем другие формы литиевых батарей (менее шанс теплового разгона).У них есть срок службы 10-20 000 циклов и 70-80 ватт-часов на килограмм (в 3 раза больше стандартной свинцово-кислотная батарея).

      Слева: экспериментальный модуль 16 В из титаната лития в Калифорнийском университете в Дэвисе

      Другое: Разрабатываются новые формы литиевых батарей, однако общий типы включают оксид лития, никеля, кобальта, алюминия, оксид лития, никеля, марганца, кобальта и литий-серные батареи.


      Смотрите наше видео здесь с Тестирование литиевых батарей в лаборатории доктора Энди Берка: три типа лития Батареи:

      Нанотехнологии улучшат литий-ионные батареи: Углеродные нанотрубки можно использовать в качестве катода и это позволяет осуществлять реакцию накопления лития на поверхности трубки, что намного быстрее. чем обычные реакции интеркаляции лития.Подробнее здесь>

      4.) Границы инноваций в аккумуляторных батареях

      Tesla Motors, General Electric и другие стремятся развиваться лучше и дешевле. батареи. Новые разработки аккумуляторов, такие как натрий-ионные, натрий-никель-хлоридные. (часть бренда аккумуляторов GE Durathon) обещают заменить крупномасштабные свинцово-кислотные батареи, используемые в энергосистемах и локомотивах.

      Эксперты поставили цели, чтобы аккумуляторы действительно успешно применялись в электромобилях. что батареи должны прослужить более 15 лет глубоких разрядов и быть в состоянии заряжается так быстро, как бензин может заполнить топливный бак. Это непростые цели, но над ними работают сейчас же. Используя нанотрубки в литиевой батарее, можно перезарядить батарею. намного быстрее, однако обеспечить более длительный жизненный цикл будет сложнее.Подробнее здесь>

      5.) Аккумуляторы до электрического возраста:

      Стоит упомянуть, что батареи могли существовать до появления современных электрических возраст. Поскольку они не связаны с основной временной шкалой электрической истории, мы перечислили их. здесь.

      Первая батарея 248 г. до н. Э .: Багдадская батарея была построена в Парфии или Сасанидах. период ~ 248 г. до н.э. — 226 г. н.э.Батарея состояла из угольного стержня в центре глиняная ваза. Стержень был окружен неизвестным электролитом (вероятно, это апельсиновый / лимонный сок), потом медь, потом асфальт. Каждая батарея имела вес около 2 килограммов и производилась 0,4-0,5 вольт при разомкнутых контактах. Эти батареи были очень слабыми. «Багдадская батарея» был найден в 1936 году, и многие авторитетные источники считают его подлинным.

      Египтяне: Некоторые утверждают, что у древних египтян были батареи, похожие на Багдадскую батарею.

      Ковчег Завета: предполагалось, что Ковчег Завета (коробка с золотой подкладкой) возможно, использовали ранние батарейки, чтобы зарядить золотую внешность. Тогда коробка сможет дать иллюзия магических сил, шокируя тех, кто к ней прикоснулся. Это всего лишь теория, но будет интересное использование электричества для создания чувства трепета и страха.

      6.) ETC Видео с батареями:

      Tesla Model S — аккумуляторы, кузов и подвеска>

      Лаборатория аккумуляторов для гибридных автомобилей с Энди Бёрком>

      История аккумуляторного бизнеса GE доктором.Оливер Винн (бывший менеджер)>

      Электромобиль Baker использовал свинцово-кислотные батареи Эдисона в 1901>

      Первый компьютеризированный гибридный автомобиль HTV1 (свинцово-кислотные батареи) 1978-1982>


      Связанные темы:
      Статья MW

      Источники:
      Век телеграфа и телефона.Автор Д. Макникол. 1915
      Университет Санта-Клары
      Университет Рутгерса: документы Томаса Эдисона
      Нью-Йоркский медицинский журнал, январь-июнь 1889 года
      Progressive Dynamics Inc.
      Energizer
      Википедия
      IEEE Spectrum
      General Electric
      Трактат о нервных и психических заболеваниях Лэндона Картера Серый. 1893 г. Corrosion-doctors.org
      Д-р Эндрю Берк. Калифорнийский университет в Дэвисе. 2010 г.
      Фото / видео:
      Edison Tech Center
      Whelan Communications

      Информацию об использовании изображений и видео Edison Tech Center см. В нашем лицензионном соглашении.

      Какие бывают разные Какие бывают типы батарей ?? Первичный, перезаряжаемый, литий-ионный

      В этом руководстве мы узнаем об одном из важных компонентов электрических и электронных систем: батарее. Мы увидим основную информацию о батареях, рассмотрим различные типы батарей, а также расскажем, какой тип батареи подходит для вашего приложения.

      Введение

      Независимо от того, являетесь ли вы инженером-электриком или нет, вы могли встретить хотя бы пару разных типов батарей в своей жизни.Некоторые из распространенных мест, где вы используете батареи, — это настенные часы, сигнализация или детекторы дыма, в которых используются небольшие одноразовые батареи, или автомобили, грузовики или мотоциклы, в которых используются относительно большие перезаряжаемые батареи.

      Батареи стали очень важным источником энергии за последнее десятилетие или около того. Даже до этого они были неотъемлемой частью нашей жизни, питая несколько портативных устройств, таких как транзисторные радиоприемники, Walkman, портативные игры, камеры и т. Д.

      Но с развитием современных смартфонов, планшетов, ноутбуков, солнечной энергии и электромобилей, исследования мощных аккумуляторов, которые могут работать дольше и обеспечивать необходимую энергию, достигли своего пика.

      Фактически, Нобелевская премия по химии 2019 года была присуждена трем ученым Джону Б. Гуденафу, М. Стэнли Уиттингему и Акире Йошино за разработку литий-ионных батарей.

      Что такое аккумулятор?

      Батарея — это химическое устройство, которое накапливает электрическую энергию в виде химикатов и посредством электрохимической реакции преобразует накопленную химическую энергию в электрическую энергию постоянного тока. Алессандро Вольта, итальянский физик, изобрел первую батарею в 1800 году.

      Электрохимическая реакция в батарее включает перенос электронов от одного материала к другому (называемому электродами) посредством электрического тока.

      Элемент и батарея

      Несмотря на то, что термин «батарея» часто используется, основная электрохимическая единица, отвечающая за фактическое хранение энергии, называется ячейкой. Ячейка, как только что упоминалось, является основной электрохимической единицей, которая является источником электрической энергии, производимой путем преобразования химической энергии.

      В своей базовой форме элемент обычно содержит три основных компонента: два электрода и электролит, а также состоит из выводов, разделителя и контейнера.Говоря об электродах, существует два типа электродов, называемых анодом и катодом.

      Анод — это отрицательный электрод (также называемый топливным электродом или восстанавливающим электродом). Он теряет электроны во внешнем контуре и в электрохимической реакции окисляется.

      Катод

      , с другой стороны, является положительным электродом (также называемым окислительным электродом). Он принимает электроны из вечного контура и в электрохимической реакции восстанавливается.Следовательно, преобразование энергии в батарее происходит за счет электрохимической окислительно-восстановительной реакции.

      Третий важный компонент ячейки — электролит. Электролит действует как среда для передачи заряда в виде ионов между двумя электродами. Следовательно, электролит иногда называют ионным проводником. Здесь следует отметить важный момент, что электролит не является электропроводным, а имеет только ионную проводимость.

      Батарея часто состоит из одной или нескольких «ячеек», которые электрически соединены последовательно или параллельно для обеспечения необходимых уровней напряжения и тока.

      Различные типы батарей

      В основном все электрохимические элементы и батареи делятся на два типа:

      • Первичный (неперезаряжаемый)
      • Вторичный (перезаряжаемый)

      Несмотря на то, что в пределах этих двух типов батарей существует несколько других классификаций, эти два являются основными типами. Проще говоря, первичные батареи являются неперезаряжаемыми батареями, то есть их нельзя заряжать электрически, в то время как вторичные батареи являются перезаряжаемыми батареями i.е., их можно заряжать электрически.

      Первичные батареи

      Первичная батарея является одним из простых и удобных источников питания для нескольких портативных электронных и электрических устройств, таких как фонари, фотоаппараты, часы, игрушки, радио и т. Д. Поскольку их нельзя перезаряжать электрически, они «используют его, а когда разряжены, отказаться от этого »типа.

      Обычно первичные батареи недороги, легки, малы и очень удобны в использовании, не требуют технического обслуживания или требуют меньшего количества обслуживания.Большинство первичных батарей, которые используются в быту, являются одноэлементными и обычно имеют цилиндрическую конфигурацию (хотя их очень легко производить в различных формах и размерах).

      Общие типы первичных батарей

      До 1970-х годов преобладающими типами первичных батарей были цинковые анодные батареи. В 1940-х годах, во время Второй мировой войны и после войны, цинк-углеродные батареи имели среднюю емкость 50 Втч / кг.

      Наиболее значительное развитие аккумуляторных технологий произошло в период 1970–1990 годов.Именно в это время были разработаны знаменитые цинковые / щелочно-двуокись марганца батареи, которые постепенно вытеснили старые цинково-угольные батареи в качестве основных первичных батарей.

      Батареи

      с оксидом ртути и цинком с оксидом ртути и кадмий с оксидом ртути также использовались в течение этого периода, но из-за экологических проблем, связанных с использованием ртути, эти типы батарей постепенно выводились из употребления.

      Именно в этот период началась разработка батарей с литием в качестве активного анодного материала, которые считаются крупным достижением из-за высокой удельной энергии и более длительного срока хранения литиевых батарей по сравнению с традиционными цинковыми батареями.

      Литиевые батареи

      производятся в виде кнопок и таблеток для определенного диапазона приложений (например, часы, резервное копирование памяти и т. Д.), Также доступны более крупные батареи цилиндрического типа.

      В следующей таблице показаны различные типы первичных батарей, а также их характеристики и области применения.

      Тип батареи

      Характеристики

      Приложения

      Цинк — Углерод

      Обычная, низкая стоимость, разнообразие типоразмеров

      Радио, игрушки, инструменты

      Магний (Mg / MnO 2 )

      Большая емкость, длительный срок хранения

      Радиостанции для военных и самолетов

      Ртуть (Zn / HgO)

      Очень большая емкость, длительный срок хранения

      Медицина (слуховые аппараты, кардиостимуляторы), фотография

      Щелочной (Zn / Щелочной / MnO 2 )

      Очень популярный, умеренная цена, высокая производительность

      Самые популярные первичные батареи

      Серебро / цинк (Zn / Ag 2 O)

      Максимальная производительность, дорогостоящая, плоская разгрузка

      Слуховые аппараты, фотографии, пейджеры

      Литий / растворимый катод

      Высокая плотность энергии, хорошая производительность, широкий диапазон температур

      Широкий спектр применений с емкостью от 1 до 10 000 Ач

      Литий / твердый катод

      Высокая плотность энергии, низкотемпературные характеристики, длительный срок хранения

      Замена для кнопочных и цилиндрических элементов

      Литий / твердый электролит

      Низкое энергопотребление, чрезвычайно долгий срок хранения

      Схемы памяти, медицинская электроника

      Вторичные батареи

      Вторичная батарея также называется перезаряжаемой батареей, поскольку после разрядки они могут заряжаться электрически.Химический статус электрохимических ячеек можно «перезарядить» до их исходного состояния, пропуская ток через ячейки в направлении, противоположном их разряду.

      В основном аккумуляторные батареи можно использовать двумя способами:

      В первой категории приложений вторичные батареи используются в основном в качестве накопителей энергии, где они электрически подключены к основному источнику энергии и также заряжаются от него, а также при необходимости подают энергию. Примерами таких приложений являются гибридные электромобили (HEV), источники бесперебойного питания (UPS) и т. Д.

      Вторая категория применений вторичных батарей — это те применения, где батарея используется и разряжается как первичная батарея. Как только он полностью разряжен (или почти полностью разряжен), вместо того, чтобы выбросить его, аккумулятор перезаряжается с помощью соответствующего зарядного механизма. Примеры таких приложений — вся современная портативная электроника, такая как мобильные телефоны, ноутбуки, электромобили и т. Д.

      Плотность энергии вторичных батарей относительно ниже, чем у первичных батарей, но они имеют другие хорошие характеристики, такие как высокая удельная мощность, плоские кривые разряда, высокая скорость разряда, низкотемпературные характеристики.

      Общие типы вторичных батарей

      Две из самых старых батарей на самом деле являются вторичными батареями, называемыми свинцово-кислотными батареями, которые были разработаны в конце 1850-х годов, и никель-кадмиевыми батареями, которые были разработаны в начале 1900-х годов. До недавнего времени было всего два типа аккумуляторных батарей.

      Первые и наиболее часто используемые аккумуляторные батареи называются свинцово-кислотными батареями. В их основе лежит электрохимическая пара свинец — диоксид свинца (Pb — PbO 2 ).Электролит, используемый в этих типах батарей, представляет собой очень распространенную серную кислоту.

      Второй тип аккумуляторных батарей называется никель-кадмиевыми батареями. В их основе лежит оксигидроксид никеля (оксид никеля) в качестве положительного электрода и отрицательный электрод на основе металлического кадмия. Подойдя к электролиту, используется щелочной раствор гидроксида калия.

      В последние десятилетия появились два новых типа аккумуляторных батарей. Это никель-металлогидридная батарея и литий-ионная батарея.Из этих двух литий-ионный аккумулятор изменил правила игры и стал коммерчески лучше благодаря своим высоким показателям удельной энергии и плотности энергии (150 Втч / кг и 400 Втч / л).

      Существуют и другие типы вторичных батарей, но четыре основных типа:

      • Свинцово-кислотные батареи
      • Никель-кадмиевые батареи
      • Никель-металлогидридные батареи
      • Литий-ионные батареи

      Давайте теперь кратко рассмотрим эти типы батарей по отдельности.

      Свинцово-кислотные батареи

      Свинцово-кислотные батареи — безусловно, самые популярные и наиболее часто используемые аккумуляторные батареи. Они были успешным продуктом более века. Свинцово-кислотные батареи доступны в нескольких различных конфигурациях, от небольших герметичных элементов емкостью 1 Ач до больших элементов емкостью 12 000 Ач.

      Одно из основных применений свинцово-кислотных аккумуляторов — автомобильная промышленность, поскольку они в основном используются в качестве аккумуляторов SLI (пуск, освещение и зажигание).

      Свинцово-кислотные аккумуляторные батареи могут применяться и в других сферах: накопление энергии, аварийное электроснабжение, электромобили (даже гибридные), системы связи, системы аварийного освещения и т. Д.

      Широкий спектр применения свинцово-кислотных аккумуляторов обусловлен широким диапазоном напряжений, различными формами и размерами, низкой стоимостью и относительно простым обслуживанием. По сравнению с другими технологиями вторичных аккумуляторов свинцово-кислотные аккумуляторы являются наименее дорогим вариантом для любого применения и обеспечивают очень хорошую производительность.

      Электрический КПД свинцово-кислотных аккумуляторов составляет от 75 до 80%. Такая оценка эффективности их пригодности для хранения энергии (источников бесперебойного питания — UPS) и электромобилей.

      Никель-кадмиевые батареи

      Никель-кадмиевые батареи или просто никель-кадмиевые батареи являются одними из самых старых типов батарей, доступных сегодня наряду со свинцово-кислотными батареями. У них очень долгий срок службы, они очень надежны и прочны.

      Одним из основных преимуществ никель-кадмиевых аккумуляторов является то, что они могут подвергаться высокой скорости разряда и работать в широком диапазоне температур.Кроме того, срок годности никель-кадмиевых аккумуляторов очень велик. Стоимость этих батарей выше, чем у свинцово-кислотных батарей на базовый ватт-час, но меньше, чем у других типов щелочных батарей.

      Как упоминалось ранее, в Ni-Cd батареях используется оксигидроксид никеля (NiOOH) в качестве катода и металлический кадмий (Cd) в качестве анода. Обычные аккумуляторные батареи потребительского класса имеют рабочее напряжение 1,2 В. В промышленных приложениях никель-кадмиевые батареи уступают только свинцово-кислотным батареям благодаря своим низким температурным характеристикам, стабильному разрядному напряжению, длительному сроку службы, низкому уровню обслуживания и превосходной надежности.

      К сожалению, у никель-кадмиевых аккумуляторов есть одна важная характеристика, называемая «эффектом памяти», которая является их единственным недостатком. Когда Ni-Cd элементы частично разряжаются, а затем перезаряжаются, они постепенно теряют свою емкость, то есть цикл за циклом. «Кондиционирование» — это процесс восстановления утраченной емкости батарей.

      В этом процессе элементы полностью разряжаются до нуля вольт, а затем полностью заряжаются.

      Никель-металлогидридные батареи

      Это относительно новый тип батарей, являющийся расширенной версией никель-водородных электродных батарей, которые использовались исключительно в аэрокосмических приложениях (спутники).Положительный электрод представляет собой оксигидроксид никеля (NiOOH), а отрицательный электрод ячейки — металлический сплав, в котором водород накапливается обратимо.

      Во время зарядки металлический сплав поглощает водород с образованием гидрида металла, а во время разряда гидрид металла теряет водород.

      Одно из главных преимуществ никель-металлогидридных батарей перед никель-кадмиевыми батареями — это более высокая удельная энергия и плотность энергии. Герметичные никель-металлогидридные батареи доступны в продаже в виде небольших цилиндрических элементов и используются в портативной электронике.

      Литий-ионные батареи

      Появление литий-ионных батарей за последние пару десятилетий было феноменальным. Более 50% потребительского рынка перешло на использование литий-ионных аккумуляторов. В частности, ноутбуки, мобильные телефоны, фотоаппараты и т. Д. Являются крупнейшими приложениями литий-ионных аккумуляторов.

      Литий-ионные батареи

      обладают значительно высокой плотностью энергии, высокой удельной энергией и более длительным сроком службы. Другими основными преимуществами литий-ионных аккумуляторов являются низкая скорость саморазряда и широкий диапазон рабочих температур.

      Приложения для аккумуляторов

      В последние несколько десятилетий использование небольших герметичных батарей в потребительских приложениях росло по экспоненте. Первичные или аккумуляторные батареи малого форм-фактора используются в огромном количестве устройств. Некоторые из них упомянуты ниже.

      • Портативные электронные устройства: Часы, фотоаппараты, мобильные телефоны, ноутбуки, видеокамеры, калькуляторы, испытательное оборудование (мультиметры).
      • Развлечения: Радио, MP3-плееры, CD-плееры, все инфракрасные пульты дистанционного управления, игрушки, игры, клавиатуры.
      • Для дома: Часы, сигнализация, детекторы дыма, фонари, ИБП, аварийное освещение, зубные щетки, триммеры для волос и бритвы, мониторы артериального давления, слуховые аппараты, кардиостимуляторы, переносные электроинструменты (дрели, отвертка).

      Как выбрать аккумулятор?

      Выбор аккумулятора для вашего приложения можно свести к двум характеристикам: производительность и стоимость. Но если копнуть немного глубже, то следующие факторы являются определяющими при выборе подходящей батареи для вашего приложения.

      • Первичная или вторичная
      • Энергия или мощность
      • Срок годности
      • Энергоэффективность и скорость перезарядки
      • Срок службы батареи
      • Температура батареи

      Объяснение различных типов батарей

      Есть ли у вас дома устройство с батарейным питанием? Наверное, несколько. Однако не поддавайтесь соблазну вставить любую батарею, с которой вы столкнетесь в первую очередь. Всегда лучше узнать, какая батарея лучше всего подходит для вашего устройства. Мало того, что ваше устройство будет работать лучше, вы также потратите меньше денег на неправильные батареи.Ниже мы обсудим, какие батареи типа вам нужны в вашей ситуации.

      Обычные батареи для базовых и высокопроизводительных устройств

      Начиная с угольно-цинкового сплава. Эта старая, но все же надежная технология идеально работает в таких устройствах, как пульты от телевизора, настенные часы и другие устройства с низким энергопотреблением. Углерод цинка дешев и делает свое дело. Однако не используйте их в устройствах с большим сливом: это значительно увеличит риск утечки.

      Щелочные батареи — это, безусловно, самые распространенные бытовые батареи.Эти типы аккумуляторов представляют собой достойные, мощные аккумуляторы, которые хорошо работают в любых ситуациях, в зависимости от типа:

      • Alkaline Power: аккумулятор с лучшим соотношением цены и качества для повседневного использования в устройствах с низким энергопотреблением.
      • Everyday Power: идеальный аккумулятор для базовых, распространенных устройств, таких как весы, часы и пульты дистанционного управления. Ячейки большего размера больше подходят для игрушек, радиоприемников и раций.
      • Pro Power: надежное и надежное питание для приборов со средним и высоким энергопотреблением.
      • EVOLTA NEO: большая мощность влечет за собой большую ответственность.В этой батарее сочетание серебра, титана и улучшенных технологий обеспечивает невероятную длительную работу устройств с низким, средним и высоким энергопотреблением.

      Особые типы батарей для специальных устройств

      Литиевые батарейки типа «таблетка» бывают разных размеров. Они идеально работают в устройствах, которым требуется длительный и стабильный поток энергии, но при необходимости они могут дать импульс высокой энергии. Поэтому этот тип батареи идеально подходит, например, для детекторов дыма. Кроме того, вы можете использовать их в лазерных указках, ключах от машины, пульсометрах и других медицинских устройствах.

      Серебряные оксидные батареи обычно более дорогой вариант, но по уважительной причине. Они компактны, долговечны и мощны, что делает их идеальными для небольших высокопроизводительных устройств, таких как кварцевые часы, цифровые термометры и другое прецизионное электронное оборудование.

      Воздушно-цинковые батареи обеспечивают постоянный уровень заряда. Обладая высокой плотностью энергии, они содержат в два раза больше энергии, чем литий-ионный аккумулятор. Они очень легкие и недорогие: идеально подходят для слуховых аппаратов.

      Идеальный аккумулятор для любой ситуации

      Для оптимальной производительности лучше всего выбрать аккумулятор, который подходит вашему устройству и вашей ситуации. Каждый из типов аккумуляторов имеет свою особую мощность. Выбор правильного варианта сэкономит вам деньги в долгосрочной перспективе и вы сможете полностью использовать потенциал своего прибора.

      Батареи как источники электроэнергии

      Батареи как источники электроэнергии

      Содержание

      Батареи как источники электроэнергии

      Это Раздел посвящен батареям — этим маленьким источникам энергии в портативных электрических устройствах.

      • Ежегодно производится более 15 миллиардов аккумуляторов для домашнего использования и продается по всему миру.
      • Многие из них являются щелочными или угольно-цинковыми батареями, которые выбрасываются после одноразовое использование, при значительных затратах как с экономической, так и с экономической точки зрения. среда.
      • Постоянное развитие как аккумуляторных батарей, так и зарядных устройств, означает что одноразовые батареи можно в значительной степени заменить экологически чистыми дружественный перезаряжаемый никель-металлогидридный (NiMH) или литий-ионный (Li-ion) батареи, которые служат намного дольше в устройствах с высоким разрядом — каждый раз, когда они заряжен — и может использоваться много сотен раз…сэкономить много Деньги.

      Типы аккумуляторов

      Существует множество различных типов бытовых батарей, используемых для различных целей.

      Три основных типа:

      • Мокрые элементы: свинцово-кислотные батареи для транспортных средств; также используется в промышленности.
      • Сухие неперезаряжаемые элементы: это наиболее распространенные типы домашних хозяйств. аккумулятор.
      • Перезаряжаемый сухой элемент аккумуляторы, используемые в электроинструментах, беспроводных устройствах, мобильных телефонах и т. д.

      Одноразовые бытовые батареи общего назначения включают:

      • Углеродистый цинк, используемый в приборах с низким уровнем дренажа, таких как фонарики, часы, бритвы и радио.
      • Хлорид цинка, используемый в аналогичных целях.
      • Щелочной марганец, используемый в личных стереосистемах, магнитофонах. Меньше склонны к протеканию, чем два вышеупомянутых типа, и имеют более длительный срок службы.
      • Основные кнопочные ячейки:
      • Оксид ртути, используемый в батареях для слуховых аппаратов, кардиостимуляторов, фотографических оборудование.
      • Цинк-воздух — альтернатива кнопочным элементам с оксидом ртути — используется для слуха вспомогательные средства и радиопейджеры.
      • Оксид серебра, используемый для изготовления электронных часов и калькуляторов.
      • Литий, используемый для изготовления часов и фотоаппаратуры.

      Сухие аккумуляторные батареи для домашнего использования включают:

      • Никель-кадмиевые (NiCd) батареи — одна из самых ранних технологий, но одна из самых быстрорастущих отраслей на рынке аккумуляторов.
      • Никель-металлогидридные (NiMH) батареи — менее вредны для окружающей среды альтернатива NiCd и имеет более длительный срок службы.
      • Литий-ионные (Li-Ion) аккумуляторы — большая емкость хранения энергии, чем NiCd и NiMH аккумуляторы.

      Используется для беспроводных электроинструментов, персональных стереосистем, портативных телефонов, портативных компьютеров. компьютеры, бритвы, моторизованные игрушки и др. со сроком службы 4-5 лет. Использование аккумуляторных батарей сокращает количество батареи, требующие утилизации, но 80% из них содержат никель-кадмий, известный канцероген для человека, поэтому его необходимо безопасно утилизировать.

      Проблемы окружающей среды

      В среднем домохозяйство использует 21 батарею в год. Великобритания производит от 20 до 30 000 тонн отходов аккумуляторных батарей общего назначения каждый год, но меньше перерабатывается более 1000 тонн.

      В 2001 году мы купили 680 миллионов аккумуляторов в Великобритании. Большинство из них (89%) были батареи общего назначения. Это составило почти 19000 тонн отработанные батареи общего назначения, требующие утилизации в Великобритании.

      В настоящее время только очень небольшой процент потребительских одноразовых батарей перерабатываются (менее 2%), и большая часть отработанных батарей утилизируется на свалке места. Скорость утилизации бытовых аккумуляторных батарей оценивается в быть 5%.

      Хотя точный химический состав варьируется от типа к типу (см. Ниже), большинство аккумуляторы содержат тяжелые металлы, которые являются основной причиной загрязнения окружающей среды. беспокойство. При неправильной утилизации эти тяжелые металлы могут просочиться в заземление при коррозии корпуса аккумулятора.Это может способствовать развитию почвы и загрязнение воды и опасность для дикой природы. Кадмий, например, может быть токсичным для водные беспозвоночные и могут накапливаться в рыбе, что наносит ущерб экосистемам и делает их непригодными для употребления в пищу. Некоторые батареи, например, кнопочные батареи также содержат ртуть, которая имеет аналогичные опасные свойства. Ртуть больше не используется в производстве одноразовых аккумуляторов. батареи, за исключением кнопочных элементов, где они являются функциональным компонентомВ основные европейские поставщики аккумуляторов предлагают одноразовые безртутные аккумуляторы с 1994 года.

      Утилизация аккумуляторов

      Все большее число домовладельцев признают остаточную стоимость потраченных батарейки и отделите их от бытовых отходов для вторичной переработки. Ряд местных властей теперь собирают отходы бытовых аккумуляторов на обочине дороги. коллекции. Перезаряжаемые батареи также можно утилизировать после того, как они достигли конца своего срока полезного использования.

      Батареи содержат ряд металлов, которые можно повторно использовать в качестве вторичного сырья. материал. Существуют хорошо зарекомендовавшие себя методы утилизации большинства аккумуляторов. содержащие свинец, никель-кадмий, гидрид никеля и ртуть. Для некоторых, таких как новые никель-гидридные и литиевые системы, переработка все еще находится на ранней стадии этапы.

      Первый в Великобритании завод по переработке бытовых аккумуляторов недавно открылся в Вест Бромвич. Предполагается, что он сможет перерабатывать до 1800 тонн в год; ожидается, что открытие этого завода будет стимулировать значительный рост объемов утилизации бытовых аккумуляторов в Великобритании.

      Чем мы можем помочь?

      • По возможности используйте сеть, а не батареи.
      • Выключайте приборы с батарейным питанием, когда они не используются
      • Используйте аккумуляторные батареи и батарею зарядное устройство. Это экономит энергию, потому что энергия, необходимая для производства батареи, уменьшается. в среднем в 50 раз больше, чем выделяемая энергия.
      • Однако аккумуляторная батарейки не подходят для дымовых извещателей, так как они могут внезапно разрядиться, предотвращение срабатывания сигнализации при низком уровне заряда батареи.
      • Выбираю бытовую технику которые могут использовать энергию, полученную от солнца через солнечные панели или от обмотки механизм, например радиоприемники, зарядные устройства для мобильных телефонов

      Справка о стоимости энергии от аккумуляторов

      Если мы посмотрим на выбор, который у нас есть для домашнего хозяйства аккумуляторов, и попытаться сравнить их стоимость, мы должны посмотреть на стоимость киловатт-часа. питание от сети переменного тока оплачивается в тех же единицах, а стоимость 1 кВтч — количество энергии, необходимое для работы типичного электрического камина с одной перемычкой в ​​течение одного часа) — на данный момент около 10 пенсов.Одноразовые батарейки — гораздо более дорогой способ использования энергии. В зависимости от на тип, емкость и стоимость батареи одноразовые расходные материалы имеют ценник от 300 до более 10 000 за киловатт-час. Напротив, стоимость использование аккумуляторных батарей составляет порядка 1 на киловатт-час!

      Аре аккумуляторные батареи рентабельны?

      На основании приведенного выше аргумента, в чистом выражении стоимости энергии, да . Но это зависит от приложения.За портативный CD-плеер, ДА! Однозначно того стоит! Для калькулятора, где время автономной работы может быть значительным, меньше очевидный. Способ решить — выяснить, сколько комплектов аккумуляторов (плюс необходимое зарядное устройство) будет стоимость, по сравнению со стоимостью одноразовых батареек. Разделите результаты и вы иметь число, обозначающее, сколько комплектов сухих батарей вы можете приобрести за такие же затраты!

      В некоторых случаях производители оборудования не рекомендуют использовать аккумуляторные батареи. Хотя есть несколько обстоятельств, когда использование аккумуляторных батарей может повлиять на нормальная работа, важно знать, что аккумуляторные батареи могут разрядиться. довольно внезапно — то есть их напряжение на клеммах может упасть до точки, в которой оборудование перестает работать без предупреждения; и они разрядятся вполне заметно, даже если ток не подается. Одноразовые батарейки можно получены со сроком годности год и более; при установке они постепенно снижение производительности, при продолжительном периоде, пока напряжение на клеммах постепенно падает.Они идут плоско, как бегун на длинные дистанции усталость, а аккумуляторные батареи разряжаются, как едет машина закончилось топливо. Аккумуляторы никогда не должны использоваться в аварийном оборудовании — например дымовая сигнализация, аварийное освещение и т. д., так как терминал быстро падает напряжение может остаться незамеченным, и устройство может перестать работать, когда это необходимо.

      Как работают аккумуляторы

      Батарея состоит из одного или нескольких отдельных элементов .Однако срок Батарея широко используется как для батарей, так и для одиночных элементов. Все батареи преобразуют накопленную химическую энергию в электрическую. Это достигается заставляя электроны течь всякий раз, когда есть внешний проводящий путь между электродами ячейки. Электроны текут в результате электрохимической реакции между двумя электродами ячейки, разделенными электролитом. Ячейка становится разряжается, когда активные материалы внутри ячейки истощаются и химические реакции замедляются.Напряжение, создаваемое ячейкой, зависит от материала электродов, их площади поверхности и материала между электродами (электролита). Ток прекращается при удалении соединения между электродами. Перезаряжаемые элементы работают по тому же принципу, за исключением того, что происходит химическая реакция. разряд может быть обратным , если аккумулятор заряжен . Этот вызывает прохождение тока через батарею в обратном направлении, путем подачи внешнего напряжения между клеммами.При подключении к соответствующему зарядному устройству элементы преобразуют электрическую энергию обратно в потенциальную химическую энергию. Процесс повторяется каждый раз, когда аккумулятор разряжается и перезаряжается.

      В разных элементах используются разные электродные материалы и разное выходное напряжение (1,2, 1,5, 2 и 3,6 В для типов, обсуждаемых здесь). Более высокие напряжения возможны при последовательном соединении ячеек.

      Емкость ячеек определяется материалами, используемыми в их конструкции и выражается в ампер-часах (Ач) или миллиампер-часах (мАч).Приблизительное время, в течение которого батареи хватит на одну зарядку, можно узнать, разделив емкость батареи. (часто печатается на самой батарее) по среднему потреблению тока устройством.

      Таким образом, можно ожидать, что батарея емкостью 600 мАч будет питать приемник, потребляющий 60 мА в течение 10 часов.

      Батареи можно представить как состоящие из одной или нескольких идеальных ячеек с резистором в серия — внутреннее сопротивление. Вы не найдете настоящего резистора, если вскроете аккумуляторную батарею, но эффект тот же.У некоторых типов батарей значения внутреннего сопротивления выше, чем у других. Высокое внутреннее сопротивление не имеет значения, если используются устройства, потребляющие довольно низкие токи (например, часы или небольшой приемник). Однако, если вы используете что-то вроде мощного фонарика или аудиоусилителя, По закону Ома батарея с высоким внутренним сопротивлением может не передавать требуемый для нее ток.

      Никель-кадмиевый (NiCad)

      Никель-кадмиевые элементы являются наиболее часто используемыми аккумуляторными батареями в потребительских приложениях. Они используют никель и кадмий в качестве электродов и водный гидроксид калия в качестве электролит. Они имеют такие же размеры, что и неперезаряжаемые элементы, и часто могут напрямую заменить неперезаряжаемые щелочные или цинк-углеродные элементы. NiCad имеют несколько более низкое выходное напряжение, чем неперезаряжаемые элементы (1,2 против 1,5 вольт). В большинстве случаев эта разница не важна. Никель-кадмиевые аккумуляторные батареи имеют напряжение 2,4, 3,6, 4,8, 6, 7,2, 9, 10,8 вольт и т. Д. Это соответствует 2, 3, 4, 5, 6, 7, 8 и 9 элементам соответственно.Никель-кадмиевые батареи лучше всего работают при температуре от 16 до 26 градусов Цельсия. Их емкость снижается при более высоких температурах. При температуре ниже 0 градусов образуется водород, и при использовании элементов существует опасность взрыва. Никель-кадмиевые батареи имеют низкое внутреннее сопротивление. Это делает их подходящими для оборудования, потребляющего большие токи (например, переносных передающих устройств). Тем не мение, низкое внутреннее сопротивление означает, что при коротком замыкании элементов будут протекать чрезвычайно высокие токи (до 30 ампер для ячейки размера C!). Следует избегать короткого замыкания, так как оно может вызвать перегрев и повреждение элементов.

      Нормальная скорость зарядки составляет 10% емкости аккумулятора в течение 14 часов. Например, если аккумулятор имеет емкость 600 мАч, его правильный ток зарядки составляет 60 мА. Поскольку процесс зарядки не является эффективным на 100%, зарядное устройство необходимо оставить работающим примерно на 14 часов вместо 10 часов. Возможны более высокие зарядные токи, но время зарядки должно быть пропорционально сокращено.Никель-кадмиевые аккумуляторы можно оставлять на зарядном устройстве непрерывного действия на неопределенный срок, если зарядный ток снижен до 2% от номинальной емкости батареи в ампер-часах. Избегайте нагрева во время зарядки, чтобы продлить срок службы батареи. Никель-кадмиевые батареи требуют зарядного устройства постоянного тока; то есть тот, при котором ток, подаваемый на батарею, является фиксированным в течение всего периода зарядки. Такое зарядное устройство может быть чем-то таким же простым, как нерегулируемый источник питания постоянного тока с последовательным резистором для ограничения зарядного тока в элементах. Если известно напряжение зарядного устройства и желаемый ток зарядки аккумулятора, можно использовать закон Ома для расчета правильного номинала последовательного резистора.Поскольку никель-кадмиевые аккумуляторы имеют низкое внутреннее сопротивление, правильная зарядка может происходить с несколькими последовательными элементами. Для обеспечения наилучшего срока службы никель-кадмиевые батареи не должны разряжаться ниже 1,0 В на элемент. При зарядке NiCads должен показывать 1,45 В на элемент. Если во время зарядки напряжение элемента выше (например, 1,6 или 1,7 В), элемент неисправен и его следует выбросить.

      Часто обсуждается так называемый «эффект памяти», проявляемый никель-кадмиевыми ячейками. Это относится к заявленной тенденции элементов не выдавать свое номинальное напряжение при помещении в зарядное устройство до полной разрядки.Имеющиеся данные свидетельствуют о том, что истинный «эффект памяти» встречается редко, и эти наблюдения фактически из-за непрерывной перезарядки, которая может вызвать перезарядку электролита. кристаллизоваться внутри клетки. К счастью, этот эффект можно преодолеть, подвергнув аккумулятор одному или нескольким циклам глубокой зарядки / разрядки. Другой часто встречающийся термин — это обращение ячейки . Это может произойти, когда батарея элементов разряжается ниже безопасного уровня 1,0 вольт на элемент. Во время этого разряда различия между отдельными ячейками могут привести к тому, что одна ячейка истощится раньше остальных.Когда это происходит, ток, генерируемый оставшимися активными ячейками, «заряжает» самую слабую ячейку, но с обратной полярностью. Это может привести к выбросу газа и необратимому повреждению аккумуляторной батареи.

      В никель-кадмиевых батареях иногда возникает внутреннее короткое замыкание из-за накопления кристаллов внутри ячейке, и это обычно означает конец ее полезного срока службы. Срок службы от 200 до 800 зарядов и разряды типичны для никель-кадмиевых аккумуляторов.

      Металлогидрид никеля (NiMH)

      Подобно никель-кадмиевым ячейкам, никель-металлогидридные элементы обеспечивают 1.25 вольт на ячейку. Кадмий в NiCad заменен на гидриды металлов, которые представляют меньшую опасность для окружающей среды. Аккумулятор производители заявляют, что NiMH-элементы не страдают «эффектом памяти» и их можно заряжать до 1000 раз. Элементы NiMH не так подходят, как NiCad, для экстремальных токовых нагрузок, но предлагают большую емкость при том же размере элемента. Типичный никель-кадмиевый аккумулятор AA, (часто используется в велосипедных лампах, магнитофонах или проигрывателях компакт-дисков) может иметь емкость 750 мАч, но никель-металлгидридный аккумулятор может обеспечить 1100 мАч — на 45 процентов больше.Это делает никель-металлгидридные элементы хорошим выбором для приложений, где желателен долгий срок службы, но текущие требования невысоки. Зарядное устройство, необходимое для никель-металлгидридных аккумуляторов, аналогично зарядному устройству для никель-кадмиевых аккумуляторов; Это должен обеспечивать постоянный ток, но обычно время зарядки необходимо увеличивать ввиду большей емкости ячеек.

      Главный враг аккумуляторных батарей — тепло. Если элементы нагреваются во время зарядки, зарядный ток необходимо уменьшить, чтобы предотвратить повреждение.

      Литий-ионный (Li-Ion)

      Литий-ионные элементы — это новейшие из обсуждаемых здесь типов батарей, появившиеся на рынке.Они предлагают более высокое напряжение ячеек (3,6 В) и большую емкость для данного объема. Это делает их особенно подходящими для портативного оборудования, где важно длительное время работы, например для мобильных телефонов. Например, размер типичного литий-ионного аккумулятора составляет 55x45x20 мм, но он обеспечивает напряжение 7,2 В при емкости 1100 мАч. Литий-ионные аккумуляторы по-прежнему довольно дороги, но использование в домашних условиях за счет их включения в фотоаппараты, видеокамеры, карманные компьютеры компьютеры и мобильные телефоны.Требуется специальное зарядное устройство; один предназначен для NiCad или NiMH использовать нельзя.

      Некоторые ссылки

      Добро пожаловать в Battery University

      Батареи как компоненты — из: Образовательные энциклопедия

      http://www.energizer.com/learning/howbatterieswork.asp

      Руководство по применению резервного аккумулятора

      http://www.wasteonline.org.uk/resources/InformationSheets/Batteries.htm

      http: // www.cycom.co.uk/howto/electricity_consuming_measurement.html

      Практический пример некоторых вопросов устойчивости / окружающей среды, связанных с выбором одноразовых или перезаряжаемых батарей для питания Walkman можно найти здесь (PDF). Она организована как проблема с предложенным решением, и вы может обсудить это с вашим руководителем.

      Зарядка аккумулятора


      Дэвид Холберн Октябрь 2005 г.

      .

      Добавить комментарий

      Ваш адрес email не будет опубликован. Обязательные поля помечены *