Принцип работы грм
Газораспределительный механизм (ГРМ) обеспечивает своевременный впуск в цилиндры свежего заряда горючей смеси и выпуск отработавших газов. Он включает в себя элементы привода, распределительную шестерню, распределительный вал, детали привода клапанов, клапана с пружинами и направляющие втулки.
- Способы привода клапанов
Распределительный вал служит для открытия клапанов в определенной последовательности в соответствии с порядком работы двигателя. Распредвалы отливают из специального чугуна или отковывают из стали. Трущиеся поверхности распределительных валов для уменьшения износа подвергнуты закалке при помощи нагрева токами высокой частоты.
Распредвал может располагаться в картере двигателя либо в головке блока цилиндров. Привод клапанов осуществляется расположенными на распределительном валу кулачками. Количество кулачков зависит от числа клапанов. В разных конструкциях двигателей может быть от двух до пяти клапанов на цилиндр (3 клапана – два впускных, один выпускной; 4 клапана – два впускных, два выпускных; 5 клапанов – три впускных, два выпускных).
Форма кулачков определяет моменты открытия и закрытия клапанов, а также высоту их подъема. Привод распределительного вала от коленчатого вала может осуществляться одним из трех способов: ременной передачей, цепной передачей, а при нижнем расположении распредвала — зубчатыми шестернями. Цепной привод отличается надежностью, но его устройство сложнее и цена выше.
Ременной привод существенно проще, но ресурс зубчатого ремня ограничен, а в случае его разрыва могут наступить тяжелые последствия. При обрыве ремня распредвал останавливается, а коленвал продолжает вращаться.
Чем это грозит? В простых двухклапанных моторах, где, как правило, поршень конструктивно не достает до головки открытого клапана, ремонт ограничивается заменой ремня. В современных многоклапанных двигателях при обрыве ремня поршни ударяются о клапана, «зависшие» в открытом состоянии. В результате сгибаются стержни клапанов, а также могут разрушиться направляющие втулки клапанов. В редких случаях разрушается поршень.
Еще тяжелее при обрыве ремня приходится дизелям. Так как камера сгорания у них находится в поршнях, то в ВМТ у клапанов остается очень мало места. Поэтому при зависании открытого клапана разрушаются толкатели, распредвал и его подшипники, велика вероятность деформирования шатунов. А если обрыв ремня произойдет на высоких оборотах, возможно даже повреждение блока цилиндров.
Рабочий цикл четырехтактного двигателя происходит за два оборота коленвала. За это время должны последовательно открыться впускные и выпускные клапаны каждого цилиндра. Поэтому распредвал должен вращаться в два раза медленнее коленвала, а, следовательно, шестерня распредвала всегда в два раза больше шестерни коленвала. Клапаны в цилиндрах должны открываться и закрываться в зависимости от направления движения и положения поршней в цилиндре. При такте впуска, когда поршень движется от в.м.т. к н.м.т., впускной клапан должен быть открыт, а при тактах сжатия, рабочего хода и выпуска – закрыт. Чтобы обеспечить такую зависимость, для правильной установки на шестернях ГРМ делают метки.
Привод клапанов может осуществляться разными способами.
При нижнем расположении распредвала, в картере двигателя, усилие от кулачков передается через толкатели, штанги и коромысла.
При верхнем расположении возможны три варианта: привод коромыслами, привод рычагами и привод толкателями.
Коромысла (другие названия – роликовый рычаг или рокер) изготавливают из стали.
Коромысло устанавливают на полую ось, закрепленную в стойках на головке цилиндров.
Одной стороной коромысла упираются в кулачки распредвала, а другой воздействуют на торцевую часть стержня клапана.
В отверстие коромысла для уменьшения трения запрессовывают бронзовую втулку.
От продольного перемещения коромысло удерживается при помощи цилиндрической пружины.
Во время работы двигателя в связи с нагревом клапанов их стержни удлиняются, что может привести к неплотной посадке клапана в седло.
Поэтому между стержнем клапана и носком коромысла должен быть определенный тепловой зазор.
Во втором варианте распредвал располагается над клапанами, и приводит их в действие посредством рычагов.
Кулачки распределительного вала действуют на рычаги, которые, поворачиваясь на сферической головке регулировочного болта, другим концом нажимают на стержень клапана и открывают его.
Регулировочный болт ввернут во втулку головки цилиндров и стопорится контргайкой.
Существуют ГРМ, в которых между рычагом и клапаном устанавливается гидрокомпенсатор.
Такие механизмы не требуют регулировки зазора.
И, наконец, при третьем варианте привода распределительный вал при вращении воздействует непосредственно на толкатель клапана.
Существует три варианта исполнения толкателей – механические (жесткие), гидротолкатели (гидрокомпенсаторы) и роликовые толкатели.
Первый тип в современных моторах практически не используется, в связи с большой шумностью работы и необходимостью частой регулировки зазора клапанов.
Второй тип наиболее широко применяется, так как не требует настройки и регулировки теплового зазора, а работа отличается мягкостью и гораздо меньшим шумом.
Гидрокомпенсатор состоит из цилиндра, поршня с пружиной, обратного клапана и каналов для подвода масла.
Работа гидрокомпенсатора основана на свойстве несжимаемости моторного масла, которое постоянно заполняет его внутреннюю полость и перемещает поршень при появлении зазора в приводе клапана.
Роликовые толкатели чаще всего применяются в спортивных и форсированных двигателях, так как позволяют улучшить динамические характеристики автомобиля за счет снижения трения.
В месте контакта с кулачком распредвала у них находится ролик. Поэтому кулачок не трется, а катится по толкателю. Вследствие этого роликовые толкатели выдерживают более высокие нагрузки и обороты, а также позволяют обеспечить более высокий подъем клапанов.
Недостатки – большая стоимость и вес, а, значит, и большие нагрузки на детали ГРМ
Понравилась статья? Расскажите друзьям:
Оцените статью, для нас это очень важно:
Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.
Назначение, устройство, работа ГРМ. Двигатель внутреннего сгорания: газораспределительный механизм
Газораспределительный механизм автомобиля – один из самых сложных механизмов в конструкции двигателя. Управление впускными и выпускными клапанами ДВС полностью лежит на ГРМ. Механизм контролирует процесс наполнения цилиндров топливно-воздушной смесью посредством своевременного открытия впускного клапана на такте впуска. Также ГРМ контролирует удаление уже отработанных газов из внутренней камеры сгорания – для этого открывается выпускной клапан на такте выпуска.
Устройство газораспределительного механизма
Детали газораспределительного механизма выполняют разные функции:
- Распределительный вал открывает и закрывает клапаны.
- Механизм привода приводит распределительный вал в движение с определенной скоростью.
- Клапаны закрывают и открывают впускные и выпускные каналы.
Главными частями ГРМ являются распределительный вал и клапаны. Кулачковый, или распределительный, вал представляет собой элемент, на котором располагаются кулачки. Он приводится в движение и вращается на подшипниках. В момент такта впуска или выпуска кулачки, расположенные на вале, при вращении надавливают на толкатели клапанов.
Располагается механизм ГРМ на головке блока цилиндров. В ГБЦ имеются распределительный вал и подшипники от него, коромысла, клапаны и толкатели клапанов. Верхняя часть головки закрыта клапанной крышкой, установка которой осуществляется с использованием специальной уплотнительной прокладки.
Функционирование газораспределительного механизма
Работа ГРМ полностью синхронна с зажиганием и топливным впрыском. Проще говоря, в момент нажатия педали газа открывается дроссельная заслонка, впускающая поток воздуха во впускной коллектор. В результате образуется топливно-воздушная смесь. После этого начинает работать газораспределительный механизм. ГРМ увеличивает пропускную способность и выпускает отработанные газы из камеры сгорания. Для корректного выполнения данной функции необходимо, чтобы частота, с которой открывается впускной и выпускной клапан ГРМ, была высокой.
Клапаны приводятся в действие распределительным валом двигателя. Когда повышается частота вращения коленвала, начинает быстрее вращаться и распредвал, что и повышает частоту открытия и закрытия клапанов. В результате возрастают обороты двигателя и отдача от него.
Объединение коленчатого и распределительного валов дает возможность ДВС сжигать именно то количество воздушно-топливной смеси, которое необходимо для функционирования двигателя в том или ином режиме.
Особенности привода ГРМ, цепь и ремень
Шкив привода распределительного вала находится за пределами ГБЦ. Для того чтобы не происходили утечки масла, на шейке вала расположен сальник. Цепь ГРМ приводит весь механизм газораспределения в действие и надевается с одной стороны на ведомую звездочку или шкив, а с другой передает усилие от коленчатого вала.
От ременного привода клапанов зависит корректное и неизменное расположение коленчатого и распределительного валов относительно друг друга. Даже небольшие отклонения в положении могут стать причиной того, что ГРМ, двигатель выйдут из строя.
Наиболее надежной считается цепная передача, использующая ролик ГРМ, однако существуют некоторые проблемы с обеспечением необходимого уровня натяжения ремня. Главной проблемой, с которой сталкиваются водители и которая характерна для цепи механизма, становится ее обрыв, нередко являющийся причиной загиба клапанов.
К числу дополнительных элементов механизма можно отнести ролик ГРМ, используемый для натяжения ремня. К минусам цепного привода газораспределительного механизма, помимо риска обрыва, относят еще и высокий уровень шума во время работы и необходимость его смены каждые 50-60 тысяч километров пробега.
Клапанный механизм
Конструкция клапанного механизма включает в себя седла клапанов, направляющие втулки, механизм вращения клапана и другие элементы. Усилие от распределительного вала передается на шток либо на промежуточное звено – коромысло клапана, или рокер.
Нередко можно встретить модели ГРМ, требующие постоянной регулировки. Такие конструкции имеют специальные шайбы и болты, вращением которых выставляются необходимые зазоры. Иногда зазоры поддерживаются в автоматическом режиме: регулировка их положения производится гидрокомпенсаторами.
Управление этапами газораспределения
Современные модели двигателей претерпели значительные изменения, получив новые управляющие системы, в основе которых лежат микропроцессоры – так называемые ЭБУ. В сфере моторостроения основной задачей стало не только увеличение мощности, но и экономичность выпускаемых силовых агрегатов.
Повысить эксплуатационные показатели двигателей, снизив при этом расход топлива, удалось только с использованием систем контроля ГРМ. Двигатель с такими системами не только потребляет меньше топлива, но и не теряет в мощности, благодаря чему их стали использовать повсеместно при производстве автомобилей.
Принцип работы таких систем заключается в том, что они контролируют скорость вращения распределительного вала ГРМ. По сути, клапаны открываются немного раньше за счет того, что распредвал проворачивается в направлении вращения. Собственно, в современных двигателях распределительный вал больше не вращается относительно коленчатого вала с неизменной скоростью.
Основной задачей остается максимально эффективное наполнение цилиндров двигателя в зависимости от выбранного режима его работы. Такие системы отслеживают состояние двигателя и корректируют подачу топливной смеси: к примеру, при холостом ходе ее объемы сводятся практически к минимуму, поскольку топливо в больших количествах не требуется.
Приводы ГРМ
В зависимости от конструктивных особенностей двигателя автомобиля и газораспределительного механизма в частности количество приводов и их тип могут меняться.
- Цепной привод. Нескольким ранее данный привод был самым распространенным, однако и сейчас используется в ГРМ дизеля. При такой конструкции распределительный вал располагается в головке блока цилиндров, а в движение приводится посредством цепи, ведущей от шестерни.
Минус такого привода – сложный процесс замены ремня, поскольку находится он внутри двигателя с целью обеспечения постоянной смазки.
- Шестеренчатый привод. Устанавливался на двигатели тракторов и некоторых автомобилей. Очень надежный, но при этом крайне сложен в обслуживании. Распределительный вал такого механизма находится ниже блока цилиндров, благодаря чему шестерня распредвала цепляется за шестерню коленчатого вала. Если привод ГРМ такого типа приходил в негодность, двигатель меняли практически полностью.
- Ременной привод. Самый популярный тип, устанавливается на бензиновые силовые агрегаты в легковых автомобилях.
Плюсы и минусы ременного привода
Ременной привод получил свою популярность за счет своих преимуществ по сравнению с аналогичными видами приводов.
- Несмотря на то что производство таких конструкций сложнее, чем цепных, стоит она значительно дешевле.
- Не требует постоянной смазки, благодаря чему привод был вынесен на внешнюю сторону силового агрегата.
Замена и диагностика ГРМ в результате этого значительно облегчились.
- Поскольку в ременном приводе металлические части не взаимодействуют друг с другом, как в цепном, то уровень шума в процессе его работы снизился в разы.
Несмотря на большое количество плюсов, есть у ременного привода и свои минусы. Срок эксплуатации ремня в несколько раз ниже, чем цепи, что становится причиной частой его замены. В случае обрыва ремня с большой вероятностью придется делать ремонт всего двигателя.
Последствия обрыва или ослабления ремня ГРМ
В случае если цепь ГРМ рвется, повышается уровень шума во время работы двигателя. В целом такая неприятность не становится причиной чего-то невыполнимого в плане ремонта, в отличие от ремня газораспределительного механизма. При ослаблении ремня и его перескакивании через один зуб шестерни происходит небольшое нарушение нормального функционирования всех систем и механизмов. В результате это может спровоцировать снижение мощности двигателя, увеличения вибрации при работе, затрудненный запуск. В случае если ремень перескочил сразу через несколько зубов или вовсе порвался, последствия могут быть самыми непредсказуемыми.
Самый безобидный вариант – это столкновение поршня и клапана. Силы удара будет достаточно для изгиба клапана. Иногда ее хватает для изгиба шатуна или полного разрушения поршня.
Одной из самых серьезных поломок автомобиля является обрыв ремня ГРМ. Двигатель в таком случае придется либо подвергать капитальному ремонту, либо полностью менять.
Обслуживание ремня ГРМ
Уровень натяжения ремня и его общее состояние – один из самых часто проверяемых при техническом обслуживании автомобиля факторов. Периодичность проверки зависит от конкретной марки и модели машины. Процедура контроля натяжения ремня ГРМ: двигатель осматривается, снимается защитный чехол с ремня, после чего последний проверяется на скручивание. Во время этой манипуляции он не должен проворачиваться более чем на 90градусов. В противном случае ремень натягивается при помощи специального оборудования.
Как часто проводится замена ремня ГРМ
Полная замена ремня производится каждые 50-70 тысяч километров пробега автомобиля. Ее могут проводить и чаще в случае повреждения или появления следов расслоения и трещин.
В зависимости от типа ГРМ меняется и сложность процедуры замены ремня. На сегодняшний день в автомобилях используются два типа механизма газораспределения – с двумя (DOHC) или одним (SOHC) распределительными валами.
Замена газораспределительного механизма
Для того чтобы провести замену ремня ГРМ типа SOHC, достаточно иметь под рукой новую деталь и набор отверток и ключей.
Сперва снимается защитный чехол с ремня. Крепится он либо на защелки, либо на болты. После снятия чехла открывается доступ к ремню.
Прежде чем ослаблять ремень, выставляются метки ГРМ на шестерне распредвала и коленвале. На коленчатом вале метки размещаются на маховике. Вал проворачивают до тех пор, пока метки ГРМ на корпусе и на маховике не совпадут друг с другом. Если все метки совпали друг с другом, приступают к ослаблению и снятию ремня.
Для того чтобы снять ремень с шестерни коленчатного вала, необходимо демонтировать шкив привода ГРМ. С этой целью автомобиль поднимается домкратом и с него снимается правое колесо что дает доступ к болту шкива. На некоторых из них находятся специальные отверстия, через которые можно зафиксировать коленвал. Если их нет, то вал фиксируют на одном месте, устанавливая в венец маховика отвертку и упирая ее в корпус. После этого снимается шкив.
Доступ к ремню ГРМ полностью открывается, и можно приступать к его снятию и замене. Новый одевается на шестерни коленвала, затем цепляется за водяной насос и одевается на шестерни распредвала. За натяжной ролик ремень заводят в самую последнюю очередь. После можно возвращать все элементы на место в обратном порядке. Останется только натянуть ремень при помощи натяжителя.
Прежде чем запускать двигатель, желательно провернуть несколько раз коленчатый вал. Делают это для проверки совпадения меток и после проворачивания вала. Только после этого запускается двигатель.
Особенности процедуры замены ремня ГРМ
На автомобиле с системой DOHC ремень ГРМ заменяется немного по-другому. Сам принцип смены детали аналогичен вышеописанному, однако доступ к ней у таких машин сложнее, поскольку имеются закрепленные на болтах защитные чехлы.
В процессе совмещения меток стоит помнить о том, что распределительных валов в механизме два, соответственно, метки на обоих должны полностью совпасть.
У таких автомобилей, помимо направляющего ролика, имеется и опорный ролик. Однако, несмотря на наличие второго ролика, ремень заводится за направляющий ролик с натяжителем в самую последнюю очередь.
После того как новый ремень будет установлен, проверяется соответствие меток.
Одновременно с заменой ремня меняются и ролики, поскольку их срок эксплуатации совпадает. Также желательно проверить состояние подшипников жидкостного насоса, чтобы после проведения процедуры установки новых деталей ГРМ выход из строя помпы не стал неприятной неожиданностью.
Устройство, Принцип Работы и Назначении, Основные Неисправности, Способы Диагностики и Ремонта
Основой любых силовых агрегатов и главной составляющей двигателей внутреннего сгорания является сложный газораспределительный механизм (ГРМ). Назначение газораспределительного механизма состоит в управлении впускными и выпускными клапанами двигателя. На такте впуска он открывает впускной клапан, смесь, состоящая из воздуха и топлива или воздуха (для дизельных двигателей), попадает в камеру сгорания. На такте выпуска — открытием выпускного клапана из камеры сгорания ГРМ удаляет отработанные газы.
Устройство газораспределительного механизма
Газораспределительный механизм состоит из следующих элементов:
- Распределительный вал — изготовляется из чугуна или стали — в задачу которого входит открывание/закрывание клапанов газораспределительного механизма при работе цилиндров. Он монтируется в картере, который перекрывает крышка газораспределительного механизма, или в головке блока цилиндра.
При вращении вала на цилиндрических шейках происходит воздействие на клапан. На него воздействуют кулачки, расположенные на распределительном валу. На каждый клапан воздействует свой кулачек.
- Толкатели, изготовленные также из чугуна или стали. В их задачу входит передача усилия от кулачков на клапаны.
- Клапаны впускные и выпускные. В их задачу входит подача топливно-воздушное смеси в камеру сгорания и удаления отработочных газов. Клапан представляет из себя стержень с плоской головкой. Основным отличием впускных и выпускных клапанов является диаметр головки. Впускной состоит из стали с хромированным покрытием, а выпускной — из жаропрочной стали. Клапанный стержень изготавливается в виде цилиндра с канавкой, необходимой для фиксирования пружины. Клапана двигаются только по направлению ко втулкам. Чтоб масло не попадало в камеру сгорания цилиндра, производят установку уплотнительного колпачка. Его изготавливают из маслостойкой резины. На каждый клапан крепятся внутренняя и наружная пружина, для крепления используют шайбы, тарелки.
- Штанги. Они необходимы для передачи усилия от толкателей к коромыслу.
- Привод газораспределительного механизма. Он передает вращение коленвала на распредвал и тем самым приводит его в движения, причем движется он со скоростью в 2 раза меньше, чем скорость коленвала. На 2 вращения коленвала распредвал делает 1 вращение — это и называется рабочим циклом, при котором происходит 1 открытие клапанов.
Схема устройства ГРМ
Таково устройство ГРМ и общая схема газораспределительного механизма. Теперь следует разобраться, каков принцип работы газораспределительного механизма.
Коромысла клапанов и ось коромысла
Коромысло служит для передачи усилия от штанги (кулачка при верхнем распределительном вале) к стержню клапана. В дизельных двигателях встречается, так называемое, форсуночное коромысло, которое служит не только для преобразования движения штанги толкателя в движение стержня клапана, но и для сжатия насос-форсунки. Кроме того, коромысло предназначено для уменьшения хода толкателя при сохранении необходимой высоты подъема клапана или хода сжатия насос-форсунки.
Коромысло представляет собой неравноплечий рычаг (рис. 4, д, е, ж), качающийся вокруг неподвижной оси (ось коромысел). Для уменьшения высоты подъема толкателей и штанг и уменьшения инерционных нагрузок на эти детали, плечи коромысла выполняются неодинаковыми. Передаточное число коромысла (соотношение между плечом стержня клапана и плечом штанги) составляет примерно 1,5:1. В этом случае высота подъема клапана в полтора раза превышает высоту подъема штанги толкателя клапана. При таком передаточном числе клапанное коромысло получается достаточно компактным, что позволяет сократить габариты двигателя. Это также приводит к снижению скорости относительного скольжения вершины кулачка по торцу толкателя клапана.
Для регулировки теплового зазора в газораспределительном механизме в один конец коромысла, обычно обращенный к штанге, ввертывается регулировочный винт 3 с контргайкой. В зависимости от типа наконечника штанги головка винта может быть сферической или с внутренней сферической поверхностью. Сферическая часть головки винта закаливается, цементируется и шлифуется. В теле винта высверливаются осевой и радиальный каналы для подвода смазочного материала к трущимся поверхностям штанги и винта от оси коромысла и наоборот, от штанги к втулке оси коромысла. Иногда в длинном плече коромысла выполняют канал для подвода масла к торцу стержня клапан. Носок коромысла, опирающийся на стержень клапана, тоже подвергается термической обработке.
Работа газораспределительного механизма
Работа системы газораспределения поделена на четыре фазы:
- Впрыск топлива в камеру сгорания цилиндра.
- Сжатие.
- Рабочий ход.
- Удаления газов из камеры сгорания цилиндра.
Рассмотрим подробнее принцип действия газораспределительного механизма.
- Подача топлива в камеру сгорания цилиндра происходит за счет движения коленвала, который передает свое усилие на поршень и он начинает движения из так называемой ВМТ (это точка, выше которой поршень не поднимается) в НМТ (это точка, соответственно, ниже которой поршень не опускается).
При этом движении поршня одновременно открывается впускной клапан и топливно-воздушная смесь заполняет камеру сгорания цилиндра. Впрыснув положенное количество топливно-воздушной смеси клапан закрывается. При этом коленвал поворачивается на 180 градусов от своего начального положения.
- Сжатие. Дойдя до НМТ поршень продолжает свое движение. Меняя свое направление в ВМТ, в этот момент в цилиндре и происходит сжатие топливно-воздушной смеси. При подходе поршня к высшей точке фаза сжатия заканчивается. Коленчатый вал продолжает свое движения и поворачивается на 360 градусов. И на этом фаза сжатия закончена.
- Рабочий ход. Воздушно-топливная смесь воспламеняется свечей зажигания, когда поршень находится в высшей точке цилиндра. При этом достигается максимальный момент сжатия. Затем поршень начинает двигаться к нижней точке цилиндра, так как на поршень оказывают огромное давление газы, образовавшиеся при горении воздушно-топливной смеси. Это движение и есть рабочий ход. При опускании поршня до НМТ фаза рабочего хода считается завершенной.
- Удаления газов из камеры сгорания цилиндра. Поршень движется к высшей точке цилиндра, все это происходит при усилии, которое оказывает коленчатый вал газораспределительного механизма двигателя. При этом открывается выпускной клапан и поршень начинает избавлять камеру сгорания цилиндра от газов, которые образовались после сгорания топливно-воздушной смеси в камере сгорания цилиндра. После достижения высшей точки и освобождения ее от газов. Поршень начинает свое движение в низ. Когда поршень доходит да НМТ, то рабочая фаза удаления газов из камеры сгорания цилиндра считается законченной, а коленчатый вал совершает оборот на 720 градусов от своего начального положения.
Для точной работы клапанов газораспределительной системы происходит синхронизация с работой коленчатого вала двигателя.
Автомобили с цепным приводом ГРМ
Список современных автомобилей некоторых марок с цепной передачей газораспределительного механизма:
- Мазда 6.
- Шкода Рапид.
- Тойота Авенсис.
- Ниссан. Например, двигатель SR20det имеет цепь, но, если цепь вовремя не заменить, то клапана погнутся о поршни или клапан сломается, перевернется в цилиндре и пробьет поршень.
- Хонда.
- Мерседес-Бенц.
- Ауди.
- БМВ.
- Волга, Москвич, классические модели Ваз.
0
Автор публикации
не в сети 2 месяца
Неисправности ГРМ
Основные неисправности газораспределительного механизма:
- Уменьшение компрессии и хлопки в трубопроводах. Как правило, происходит после появления нагара, раковин на поверхности клапана, их прогорания, причиной чего является не плотное прилегания впускных и выпускных клапанов к седлам. Также оказывают влияние такие факторы, как деформации ГБЦ, поломка или износ пружин, заедание клапанного стержня во втулке, полное отсутствие промежутка между коромыслом и клапанами.
- Уменьшение мощности, троение мотора, а также металлические стуки. Появляются эти признаки, потому что впускные и выпускные клапана не полностью открываются, и часть воздушно-топливной смеси не попадает в камеру сгорания цилиндра.
Следствием этого является большой тепловой зазор или поломка гидрокомпенсатора, что и становится причиной неполадки и не штатной работы клапанов.
- Механический износ деталей, таких как: направляющих втулок коленвала, шестерни распредвала, а также смещение распредвала. Механический износ деталей, как правило, происходи при достаточном сроке работы мотора и работы двигателя в критических пределах.
- Так же происходит выход из строя двигателя по причине износа зубчатого ремня, который имеет свой гарантийный срок службы, цепи, которая при длительном сроке работы и постоянном на нее воздействии становится менее работоспособной, успокоителя цепи и натяжителя зубчатого ремня.
В данных случаях не редко заменяют газораспределительный механизм, однако возможен и ремонт поврежденной детали газораспределительного механизма.
Через сколько км нужно менять ремень ГРМ
Причиной остановки работоспособности двигателя может стать обрыв ремня. Поэтому, желательно заблаговременно узнать, на каких двигателях гнет клапана. Положено менять ремень через каждые 60-70 тысяч км. Но, к сожалению, многие водители не успевают заменить ремень газораспределительного механизма. На машинах с 16-ти клапанными двигателями обрыв ремня не нанесет вреда клапанам, а на 8-ми клапанных происходит деформация клапана, который называется «погнуло клапана». Но на 8-ми клапанных двигателях тоже может не сгибать клапана, если двигатель расточен, на поршнях выточены специальные углубления, рассчитанные специально под размер не поднятого клапана.
Диагностика ГРМ
Газораспределительный механизм имеет 2 свойственные неполадки — неплотное примыкание клапанов к гнездам и невозможность полностью открыть клапаны.
Неплотное примыкание клапанов к гнездам обнаруживается по таким показателям: хлопки, возникающие иногда во впускной либо выпускной трубе, уменьшение мощности мотора. Факторами неплотного закрытия клапанов могут быть:
- возникновение нагара на поверхности клапанов и гнезд;
- формирование раковин на рабочих фасках и искривление головки клапана;
- неисправность пружин клапанов.
Неполное открытие клапанов сопровождается стуком в троящем моторе и уменьшением его мощности. Данная поломка возникает в следствии значительного промежутка меж стержнем клапана и носком коромысла. К характерным поломкам для ГРМ нужно причислить кроме того изнашивание шестерен распредвала, толкателей, направляющих клапана, смещение распредвала и изнашивание втулок и осей коромысел.
Практика демонстрирует, что на газораспределительный механизм приходится примерно четвертая часть всех отказов мотора, а уже на предотвращение этих отказов и восстановление ГРМ уходит 50% трудоёмкости обслуживания и ремонтных работ. Для диагностирования поломок применяют следующие параметры:
- определяют фазы газораспределительного механизма автомобиля;
- измеряют тепловой зазор между клапаном и коромыслом;
- измеряют промежуток между клапаном и седлом.
Измерение фаз газораспределения
Подобное диагностирование ГРМ двигателя выполняется на заглушенном моторе с помощью особого набора устройств, среди которых имеются указатель, моментоскоп, малка-угломер и прочие дополнительные приборы. Для того, чтобы фиксировать период раскрытия впускного клапана на 1-ом цилиндре, необходимо покачивать вокруг своей оси коромысло, а далее направить коленвал мотора до момента появления зазора меж клапаном и коромыслом. Малка-угломер для замера разыскиваемого зазора ставится прямо на шкив коленвала.
Измерение теплового промежутка между клапаном и коромыслом
Тепловой зазор измеряют при помощи набора щупов либо иного особого устройства. Это набор из металлических пластинок длиной в 100мм, толщина которых обязана быть не больше 0,5мм. Коленвал мотора поворачивают вплоть до верхней предельной точки, в период такта сжатия подобранного для контроля цилиндра. Непосредственно благодаря щупам разной толщины, поочередно вставляемым в сформировавшееся отверстие, и измеряется зазор.
Данный метод не может дать результата при диагностировании ГРМ, когда неравномерен износ торца штока и бойка коромысла, а трудоемкость этого метода весьма значительная. Увеличить точность замеров позволяет особое устройство, которое состоит из корпуса и индикатора по типу часов.
Подпружиненная подвижная рама содержит персональное соединение с ножкой этого индикатора. Раму фиксируют между коромыслом и клапанной пружиной. Когда открывается клапан, в период поворота коленвала, на индикаторе ставят 0. Распознает тепловой зазор последующее показание прибора, снимаемое в период поворота коленвала.
Определение промежутка между клапаном и седлом
Его можно оценить по объему воздуха, который будет выходить через уплотнитель перекрытых клапанов. Эта процедура прекрасно объединяется с чисткой форсунок. Когда они уже сняты, убирают валики коромысел и прикрывают все клапаны. Затем в камеру сгорания под большим давлением происходит подача сжатого воздуха. Поочередно на любом из контролируемых клапанов ставят устройство, которое позволяет измерить расход воздуха. Если потеря воздуха превысит разрешенную, выполняется ремонт газораспределительного механизма.
Толкатели
Усилия от кулачков распределительного вала передается непосредственно клапанам или штангам через толкатели, которые воспринимают боковые нагрузки от кулачков и разгружают детали ГРМ. При работе толкатели клапанов следуют по контуру или профилю кулачков распределительного вала, тем самым обеспечивая преобразование вращения кулачка в возвратно-поступательное движение клапанного механизма. Боковая поверхность толкателя изнашивается из-за трения в направляющих, а торцевые поверхности – под действием контактных напряжений, создаваемых кулачком распределительного вала и наконечником штанги либо пяткой стержня клапана.
Для обеспечения подвижного контакта со штангой в толкателях выполняется сферическое гнездо радиусом r1 на 0,2…0,3 мм больше радиуса головки штанги r2 (рис. 1, г).
В зависимости от схемы привода применяют толкатели различных конструкций. Наибольшее распространение получили грибковые толкатели с плоской или сферической опорной поверхностью; цилиндрические толкатели со сферической или роликовой опорной поверхностью; рычажные выпуклые или роликовые толкатели.
Для обеспечения равномерного изнашивания опорной поверхности толкателя обеспечивают его вращение вокруг своей оси путем смещения продольной оси толкателя относительно оси симметрии кулачка (рис. 1, б). С этой же целью опорная поверхность толкателя выполняется сферической, а опорная поверхность кулачка – концентрической с углом наклона образующей к оси вала 7’…15′.
Толкатели старых конструкций, в большинстве своем, имеют плоскую или выпуклую контактную поверхность, по которой скользит кулачок. Однако, в ряде конструкций толкателей используется ролик, перекатывающийся по поверхности кулачка (рис. 1, д). Роликовые толкатели используют в двигателях главным образом для снижения потерь на трение в клапанном механизме (эффект от снижения потерь достигает 8%). Снижение затрат на трение увеличивает экономичность двигателей и оправдывает повышение стоимости производства толкателей такой конструкции.
Роликовый цилиндрический толкатель обеспечивает меньшее изнашивание кулачка распределительного вала, чем грибковый или цилиндрический толкатель со сферической опорной поверхностью. Однако изнашивание боковых поверхностей роликового толкателя больше, так как такой толкатель не может вращаться вокруг своей оси, и боковые нагрузки всегда воспринимаются одними и теми же сопрягаемыми поверхностями.
Для предотвращения от поворачивания вокруг оси роликовые толкатели должны быть закреплены с помощью специальных держателей, удерживающих ролики в одной плоскости с кулачками распределительного вала. При поломке держателя роликовый толкатель получает свободу вращения вокруг своей оси, при этом разрушается как сам толкатель, так и распределительный вал.
Рычажные толкатели (рис. 1, ж), установленные на одной общей оси, не имеют направляющих, и, следовательно, трение скольжения в них отсутствует.
Общим недостатком роликовых толкателей является сложность конструкции и большая масса подвижных деталей, которая у рычажно-выпуклого толкателя несколько меньше.
Цилиндрические толкатели устанавливаются в направляющих, которые выполняются обычно в блок-картере.
Наличие зазоров в механизме газораспределения приводит к ударам движущихся деталей и ускорению их изнашивания. Для устранения этого недостатка могут применяться так называемые гидравлические толкатели (гидрокомпенсаторы) (рис. 1, з), работающие без зазора. Принцип действия конструкции, показанной на рисунке, заключается в следующем: штанга привода клапана упирается в головку 2 плунжера 3, расположенного внутри корпуса толкателя. Плунжер постоянно прижат пружиной 5 к штанге, а его внутренняя полость сообщается с масляной магистралью, и при открытом пластинчатом клапане 4 давление в ней равно давлению в масляной магистрали, которое создается насосом смазочной системы двигателя.
В начале подъема толкателя давление под плунжером резко увеличивается, что вызывает закрытие клапана 4, и усилие передается на штангу. Такие толкатели требуют для работы только чистое масло с высоким индексом вязкости.
Для изготовления толкателей используются специальные чугуны и стали. В чугунных толкателях опорная поверхность отбеливается, в стальных ее закаливают токами высокой частоты, наплавляют легированным отбеленным чугуном. Боковые и внутренние поверхности толкателей цементируют и закаливают. Ролики в роликовых и качающихся рычажных толкателях выполняются из шарикоподшипниковой стали, а втулки роликов – из бронзы.
При замене распределительного вала толкатели желательно поменять на новые. Если предполагается повторно использовать толкатели, бывшие в употреблении, то, вынимая их из двигателя, нужно обязательно помечать, из каких направляющих они вынимаются и после ремонта устанавливать их в те же направляющие. Такие (бывшие в употреблении) толкатели должны быть тщательно очищены и осмотрены; в случае обнаружения выработки на роликах или (в зависимости от конструкции) вогнутости на поверхности днища — толкатель полежит замене.
***
Процесс ремонта ГРМ
Частенько необходимо производить техническое обслуживание газораспределительного механизма. Основной проблемой являются износ шеек, кулачков вала и увеличение зазоров в подшипниках. Для того, чтобы устранить зазор в подшипниках коленчатого вала, производят его ремонт путем шлифовки опорных шеек и углубления канавок для подачи масла. Шейки нужно отшлифовать под ремонтный размер. После завершения ремонтных работ по восстановлению коленвала, нужно произвести проверку высоты кулачков.
На опорных поверхностях под шейки коленвала не должно быть никаких даже самых незначительных повреждений, а корпуса подшипников обязаны быть без трещин. После чистки и промывки распредвала обязательно нужно проверить зазор между его шейками и отверстием опоры головки цилиндра.
Для определения точного зазора требуется знать диаметр шейки распредвала, это позволит произвести установку соответствующего ей подшипника. Установив его на корпус, замерьте внутренний диаметр подшипника, затем отнимите его от диаметра шейки и таким образом найдете величину зазора. Он не может превышать 0,2мм.
Цепь не должна иметь никаких механических повреждений, быть растянутой более чем на 4мм. Цепь газораспределительного механизма можно регулировать: отверните стопорный болт на пол оборота, поверните коленвал на 2 оборота, затем стопорный болт нужно повернуть до упора.
Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них
Ремень ГРМ: определение, функции, схема, работа
Два компонента двигателя соединены между собой ремнем ГРМ, который также известен как цепь ГРМ или камбелт. Деталь синхронизирует вращение коленчатого и распределительного валов двигателя, чтобы открывать и закрывать клапан двигателя в нужное время, чтобы обеспечить беспрепятственное сгорание. Теперь вы можете увидеть суть ремня ГРМ в процессе сгорания двигателя, так как клапан открывается и закрывается для впуска воздушно-топливной смеси и выхода выхлопных газов.
Ремень ГРМ изготовлен из резины с твердыми зубьями, которые входят в зацепление с зубчатыми колесами коленчатого и распределительного валов. Компонент иногда приводит в действие масляный насос, водяной насос и ТНВД в зависимости от конструкции двигателя. Ремни ГРМ относятся к зубчатому ремню или приводному ремню с зубьями на внутренней поверхности. Хотя цепь ГРМ представляет собой роликовую цепь, производитель использует любую из них для достижения одной и той же цели.
Подробнее: 7 Различные типы тисков и их применение
Модель автомобиля определяет, используется ли ремень ГРМ или цепь. цепь можно использовать вместо приводного ремня, они по-прежнему служат той же цели. Причина, по которой ремень ГРМ широко используется, заключается в том, что он легче и тише с момента его появления в 1960-х годах. Однако современные двигатели теперь работают с цепями ГРМ, так как они могут служить в течение длительного периода времени.
Сегодня мы рассмотрим определение, функции, детали, схему, типы и принцип работы ремня ГРМ. Я также объясню конструкцию и конструкцию, а также симптомы неисправности ремня ГРМ.
Подробнее: вещи, которые вам нужно знать о генераторе
Содержание
- 1 Определение ремня ГРМ. 3 Типы ремня ГРМ
- 4 Принцип работы
- 4.1 Подпишитесь на нашу рассылку новостей
- 4.1.1 Посмотрите видео, чтобы лучше понять работу ремня или цепи ГРМ:
- 4.1 Подпишитесь на нашу рассылку новостей
- 5 Признаки неисправного или неисправного ремня ГРМ или цепи
- 5.1 Пожалуйста, поделитесь!
Ремень ГРМ Определение
Ремень ГРМ — это компонент, используемый в двигателе внутреннего сгорания для синхронизации движения коленчатого и распределительного валов. Он разработан с точным твердым зубом, который сцепляется с зубчатым колесом коленчатого вала и двумя распределительными валами. Благодаря точным зубьям приводного ремня впускной и выпускной клапаны открываются и закрываются синхронно с поршнями.
Ремень ГРМ обычно изготовлен из резины с высокопрочными волокнами. Весь ремень изготовлен из прочного материала, такого как формованный полиуретан, неопрен или сварной уретан различного уровня. зуб может быть нестандартного или метрического шага. Шаг – это расстояние между центрами двух соседних на ремне ГРМ.
Резина разрушается при более высоких температурах и при контакте с маслом. Срок службы ремня ГРМ сокращается в горячих и негерметичных двигателях. Хотя более новые и дорогие ремни изготавливаются из термостойких материалов, таких как «высоконасыщенный нитрил». Кроме того, вода или антифриз могут сильно повлиять на срок службы армирующих кордов, что требует особых мер предосторожности при эксплуатации вне дорог. Вот почему большинство двигателей сильно загерметизированы.
Старые ремни ГРМ обычно быстро изнашиваются из-за трапециевидных зубьев. Что ж, большинство производителей используют новые технологии, изгибая зубья, что делает их более тихими и служит дольше.
Функции зубчатых ремней
Ниже приведены функции зубчатых ремней или цепей в автомобильных двигателях:
- Зубчатый ремень позволяет осуществлять процесс сгорания, поскольку от него зависит управление поршнем и клапанами.
- Он соединяет коленчатый вал и распределительный вал вместе для управления работой клапана.
- Ремень ГРМ обеспечивает точную синхронизацию открытия и закрытия клапанов двигателя.
- Некоторые другие компоненты двигателя, такие как водяной насос, ТНВД и масляный насос.
- Ремень ГРМ использует ту же механическую энергию сгорания для управления клапаном. Это означает, что внешний источник не включен.
- Еще одна функция ремня или цепи ГРМ заключается в том, что они предотвращают удары поршня о клапаны на критическом уровне.
Ремень ГРМ представляет собой единое устройство, но соединяет различные детали, такие как звездочка распредвала, промежуточный шкив ремня ГРМ, верхняя звездочка уравновешивающего вала, шкив водяного насоса, натяжной ролик ремня ГРМ, уравновешивающий натяжной ролик, нижняя звездочка уравновешивающего вала, ремень распредвала ведущая шестерня, шестерня привода уравновешивающего ремня и ролик натяжителя уравновешивающего ремня.
Подробнее: Все, что вам нужно знать о распределительном валу
Приведенная ниже схема ремня ГРМ дает более подробную информацию:
Типы ремня ГРМ
При указании типов ремня ГРМ необходимо учитывать многое. они могут быть определены следующим пояснением ниже;
- Выбор шага
- Выбор шкива
- Чертеж шкива
- Выбор ремня
- Выбор вала
- Сборка конструкции
Метрические размеры Ремень ГРМ
- Зуб трапециевидной формы с метрическими размерами.
- Круглая форма зуба с метрическим размером.
Имперские размеры Зубчатые ремни
Все это необходимо учитывать перед перечислением типов зубчатых ремней, но большинство производителей автомобилей имеют стандартную конструкцию для конкретной модели автомобиля. но вы можете посмотреть видео ниже, чтобы узнать больше о ремнях ГРМ или типах цепей.
Подробнее: Что нужно знать о коленчатом валу
Принцип работы
Ремни ГРМ выполняют свою работу точно и своевременно. Именно по этой причине процесс сгорания в двигателе возможен даже при наличии мощности, необходимой для вращения коленчатого вала. затем он синхронизирует распределительные валы, которые позволяют клапану открываться и закрываться, так что всасываемый воздух и топливо могут поступать в камеру сгорания. Выпускной клапан также управляется этим вращением, так что выхлоп может выйти. этот процесс осуществляется в гармонии.
Подпишитесь на нашу рассылку новостей
Поскольку распределительный вал и коленчатый вал работают согласованно, коленчатые валы рассчитаны на работу в два раза медленнее распределительного вала. Например, два оборота коленчатого вала приводят к повороту распределительного вала. Ремень ГРМ требует натяжения для правильной работы, поэтому натяжение ремня ГРМ является конструкцией. В современных автомобилях используются автоматические натяжители ремня ГРМ, не требующие регулировки. Старые автомобили время от времени нуждаются в регулировке, так как ремень ослабевает. Ослабленный ремень ГРМ приведет к выходу за пределы допустимого диапазона, поэтому этой проблемы следует избегать. Время настолько важно, что если одно движение ускользает, это может повлиять на эффективность двигателя, что приведет к потере мощности, пропускам зажигания и т. д.
Посмотрите видео, чтобы лучше понять работу ремня или цепи ГРМ:
Что нужно знать о приводном ремне
Симптомы плохого или неисправного ремня или цепи ГРМ
Ниже приведены признаки неисправности ремень ГРМ или цепь, требующие замены:
- Мощность двигателя снижена
- Перегрев двигателя
- Проблемы с запуском двигателя
- Вибрация или тряска двигателя
- Утечка масла
- Тикающий шум в двигателе
- Индикатор двигателя на
- Пропуски зажигания двигателя
- Визг или трение ремней.
Подробнее: понимание системы зарядки в автомобильном двигателе
В заключение, зубчатый ремень представляет собой резиновый компонент с натяжением, который помогает вращению различных компонентов в двигателе. Работа в точности, как клапан использует его таким образом. Он соединяет коленчатый вал и распределительный вал вместе; коленвал получает мощность от поршня, прикрепленного к шатуну. В этой статье мы увидели функции, работу и типы ремней или цепей ГРМ.
Надеюсь, вам понравилось чтение, если да, пожалуйста, прокомментируйте, поделитесь и порекомендуйте этот сайт другим студентам технических специальностей. Спасибо!
Спецрепортаж: Возможности таймеров | Метаморфоза технического журнала Мураты №19 | Журнал технологий Metamorphosis
Группа поддержки Murata теперь начинает двигаться и танцевать под музыку.
Их коллективное выступление возможно только в том случае, если все участники танцуют в одном темпе. Устройства синхронизации также задают темп в электронном оборудовании.
Чирлидеры Мураты двигаются безупречно, не натыкаясь друг на друга, потому что у каждой из них есть устройство синхронизации для синхронизации всех их сигналов. Устройства синхронизации являются одним из компонентов, играющих ключевую роль в быстром распространении электроники.
Содержание
- Что такое таймеры?
- Потенциал технологии устройств синхронизации в нашей повседневной жизни
Что такое таймеры?
Что такое таймеры?
Каждый элемент различного электронного оборудования включает в себя ряд электронных схем. Тактовый сигнал — стабильный сигнал, который колеблется через равные промежутки времени, т. е. со стабильным циклом, — необходим для правильной работы таких схем. Другими словами, электронные схемы работают со ссылкой на тактовый сигнал. Тактовый сигнал не только дает им временные сигналы, позволяющие им выполнять свои функции; это также позволяет им координировать или синхронизироваться с периферийным контроллером.
Почему они не сталкиваются друг с другом?
В различных формациях отдельные чирлидеры Мураты двигаются по-разному, не натыкаясь друг на друга. Это связано с тем, что у каждой группы поддержки есть пять ультразвуковых микрофонов и четыре инфракрасных датчика в голове, которые принимают ультразвуковые волны и инфракрасный свет, посылаемые двумя передатчиками, размещенными на «сцене», для точного определения текущего местоположения танцора в режиме реального времени. Устройства синхронизации обеспечивают эти электронные устройства сигналами для передачи информации в нужное время и с нужной скоростью, а также непрерывными сигналами синхронизации. Так они помогают чирлидершам не натыкаться друг на друга.
Принципы работы и типы таймеров
Пьезоэлектрический эффект относится к накоплению электрического заряда в некоторых твердых материалах в ответ на приложенное механическое напряжение. Обратный пьезоэлектрический эффект представляет собой внутреннее генерирование механической деформации в результате приложенного электрического поля. Применение этих принципов к кристаллу кварца и керамике позволяет генерировать колебания со стабильными частотами.
Керамические резонаторы CERALOCK
Эти вибрирующие элементы, использующие механический резонанс пьезоэлектрической керамики, облегчают сокращение размеров и массовое производство, таким образом находя применение в ряде приложений, таких как автомобильная электроника, потребительское оборудование и бытовая техника.
Кристаллические устройства
Устройства Crystal сгруппированы по применению, типу и/или функции.
Кристаллы кварца: элементы, в которых используется стабильный кристалл для генерации колебаний с постоянной частотой.
Кварцевые генераторы: модули, содержащие схему для генерации кварцевого кристалла.
- SPXO (простой осциллятор Xtal (Crystal))
Самый простой генератор, сочетающий кварцевый кристалл с колебательным контуром. - TCXO (Кристаллический осциллятор Xtal с температурной компенсацией)
Обеспечивает высокостабильный сигнал, сочетающий температурную характеристику кварцевого кристалла с цепью, имеющей полностью противоположную температурную характеристику. Увеличенное сокращение размеров позволяет TCXO найти широкое применение в мобильных телефонах и смартфонах. - VCXO (генератор Xtal, управляемый напряжением)
Подает внешнее напряжение для управления выходной частотой генератора. Эти генераторы находят применение в промышленном оборудовании, включая реле связи. - OCXO (Кристаллический осциллятор Xtal, управляемый печью)
Самый точный и стабильный осциллятор.Кристалл кварца, который имеет нулевой температурный градиент при высоких температурах, поддерживается при постоянной температуре для генерации стабильного сигнала. OCXO используются на базовых станциях для мобильных телефонов, а также в вещательном оборудовании и измерительных приборах.
Два типа резонирующих материалов
Поликристаллы (керамика)
Большая часть керамики состоит из мелких кристаллов. Каждый кристалл состоит из атомов с положительным или отрицательным электрическим зарядом. При приложении высокого постоянного напряжения полярные оси, возникающие в результате спонтанной поляризации, выравниваются в одном направлении, превращая керамику в пьезоэлектрическую керамику с поликристаллической структурой.
Монокристалл (кристалл кварца)
Кристалл кварца представляет собой пьезоэлектрический монокристалл. Низкий уровень кристаллических дефектов и примесей означает высокие частотно-температурные характеристики. Особое внимание при производстве искусственного хрусталя уделяется качеству. Цель состоит в том, чтобы достичь свойств, близких к свойствам природного кристалла, путем сведения к минимуму уровней кристаллических дефектов и примесей.
Потенциал технологии устройств синхронизации в нашей повседневной жизни
Интегрированные в сети современные электронные устройства могут общаться друг с другом только путем взаимной синхронизации своих сигналов. Устройства времени играют свою незаметную, но незаменимую роль в различных сферах нашей повседневной жизни, выступая в качестве источников тактового сигнала для цифровых схем. Они постоянно совершенствуются с развитием цифровых технологий. Устойчивое развитие теперь позволяет им расширять свои приложения.
Часы в нашей повседневной жизни
Приборы для измерения времени находят все большее применение в нашей повседневной жизни.
Устройства синхронизации и технологии кристаллов
Выращивание искусственного кристалла
Кристалл кварца используется в качестве ядра часового устройства. Мурата производит высококачественный искусственный хрусталь.
Режимы колебаний
Требуемая частота зависит от электронной схемы. Murata обеспечивает наилучшее соответствие, сочетая материал, обработку поляризации, размер и форму.
Упаковка
Компания Murata давно разработала уникальную технологию упаковки. Обладая высокой производительностью и возможностью миниатюризации, эта технология была применена к хрусталю для создания инновационных продуктов.
Надежность
Уникальная технология упаковки, разработанная для керамических резонаторов, была применена для внедрения инновационного процесса просеивания в производстве кварцевых кристаллов.
Моделирование
Широкий спектр приложений делает предварительное моделирование важным этапом разработки. Здесь Murata использует уникальное программное обеспечение для достижения точных результатов.
История часовых устройств Murata
История часовых устройств Murata восходит к 1950-м годам, когда компания применила свою пьезоэлектрическую керамическую технологию для разработки ультразвукового резонатора. В 1961 году Murata воспользовалась своей оригинальной технологией для выпуска керамического фильтра (CERAFIL) для AM-радиостанций, после чего последовала коммерциализация серии керамических резонаторов CERALOCK и регистрация названия в качестве товарного знака. Эти разработки легли в основу технологии часовых устройств Murata. В 2009, Murata сформировала капитальный альянс с производителем кристаллических устройств Tokyo Denpa Co., Ltd. (TEW), прежде чем начать разработку кристаллических устройств. Технология упаковки и система производства, разработанные для серии CERALOCK, позволили Murata совершить прорыв. Компания объединила две основные технологии для часового устройства, чтобы завершить серию HCR из запечатанных смолой кварцевых кристаллов, произведя сенсацию в отрасли. Расширение ассортимента герметичных высокоточных вариантов помогло открыть новый рынок для кварцевых кристаллов Murata.
Щелкните здесь (PDF: 183 КБ)
Краткий обзор, технологии и преимущества
Времяпролетные датчики (ToF) используются для целого ряда приложений, включая навигацию роботов, мониторинг транспортных средств, подсчет людей и обнаружение объектов. Датчики расстояния ToF используют время, необходимое фотонам для перемещения между двумя точками, для расчета расстояния между точками.
ЧТО ТАКОЕ ПРИНЦИП ВРЕМЕНИ ПРОЛЕТА? — ОСНОВЫ
Принцип времени пролета (ToF) представляет собой метод измерения расстояния между датчиком и объектом, основанный на разнице во времени между испусканием сигнала и его возвращением к датчику после отражения. по объекту. Различные типы сигналов (также называемые несущими) могут использоваться с принципом времени прохождения, наиболее распространенными из которых являются звук и свет.
Датчики TeraRanger используют свет в качестве своего носителя, потому что он уникальным образом сочетает в себе более высокую скорость, большую дальность действия, меньший вес и безопасность для глаз. Используя инфракрасный свет, мы можем обеспечить меньшее искажение сигнала и более легкое отличие от естественного окружающего света, в результате чего получаются датчики расстояния с самыми высокими характеристиками для данного размера и веса.
Краткое введение в определение времени пролета: Часть 1Краткое введение в определение времени пролета: Часть 1 ПРЯМЫЕ ПРОМЕЖУТОЧНЫЕ ДАТЧИКИ
Все датчики времени пролета (ToF) измеряют расстояния, используя время, которое требуется фотонам для прохождения между двумя точками, от излучателя датчика до цели, а затем обратно к приемнику датчика.
Косвенный и прямой ToF предлагают определенные преимущества в определенных контекстах. Оба могут одновременно измерять интенсивность и расстояние для каждого пикселя в сцене.
Датчики Direct ToF посылают короткие импульсы света, которые длятся всего несколько наносекунд, а затем измеряют время, необходимое для возвращения части излучаемого света. Косвенные датчики ToF посылают непрерывный модулированный свет и измеряют фазу отраженного света для расчета расстояния до объекта.
Краткое введение в определение времени полета: Часть 2Краткое введение в определение времени полета: Часть 2 ПРИНЦИП БЕЗ ПОЛЕТА В ДЕЙСТВИИ
Датчики времени полета (ToF) используются для целого ряда приложений, включая навигацию роботов, мониторинг транспортных средств, подсчет людей и обнаружение объектов.
Датчики ToF для подсчета людей
Обычные системы обработки изображений отлично подходят для получения базовой информации об объекте или сцене, но не дают точного представления о расстоянии. Человеческое восприятие таково, что мы часто можем интуитивно определить глубину резкости на фотографии и понять, хотя и смутно, насколько далеко датчик расположен от объекта. Автономные системы, такие как счетчики посетителей и датчики движения, не имеют такой роскоши. Они основаны на принципе времени пролета для расчета расстояния между чувствительным элементом и интересующим объектом.
Датчики Time-of-Flight (ToF) доказали свою революционную концепцию в приложениях для подсчета посетителей во всем мире. Благодаря гарантированной максимальной точности и уникальным соображениям, касающимся конфиденциальности и защиты данных, датчики ToF позволяют использовать приложения для подсчета посетителей, которые предлагают превосходную информацию о различных ключевых бизнес-показателях, от периодического подсчета занятости до оптимизации пространства.
УСТРОЙСТВО ВРЕМЕННОГО СЧЕТЧИКА ЛЮДЕЙ УСТРОЙСТВО ВРЕМЕННОГО СЧЕТЧИКА ЛЮДЕЙ
Датчики ToF для обеспечения точного контроля запасов
Непрерывно измеряйте уровни наполнения и запасов твердых, порошкообразных или жидких материалов с помощью оптической технологии Time-of-Flight (ToF) Terabee — будь то в силосах, бункерах, резервуарах, складах и т. д.! Выбирайте готовые продукты для мониторинга на уровне приложений для быстрой установки и обработки данных на периферии.
ДАТЧИКИ КОНТРОЛЯ УРОВНЯ TOF ДАТЧИКИ КОНТРОЛЯ УРОВНЯ
ПРЕИМУЩЕСТВА ВРЕМЕНИ ПРОЛЕТА TERABEE
Time-of-Flight (ToF) — это мощная технология для точного и доступного измерения расстояния и глубины.
Небольшой и легкий
Датчики ToF отличаются небольшими размерами и малым весом, обеспечивая при этом высокий уровень производительности (TeraRanger Evo весит всего 9 г!). Это означает, что датчики можно размещать в местах, которые ранее были невозможны при использовании более крупных и тяжелых датчиков. Для умных зданий и контроля уровня это реальное преимущество!
Большой радиус действия
Несмотря на небольшой размер и малый вес, датчики расстояния tof обладают мощными характеристиками! TeraRanger Evo может измерять расстояния до 60 м. И это делается с помощью светодиодной технологии, а не лазера! (См. раздел о светодиодной подсветке.)
Высокая частота обновления
Датчики ToF оптимизированы для высокоскоростных показаний. Помимо того, что они небольшие и легкие, высокая частота обновления данных занимает центральное место в нашей концепции проектирования, что делает датчики идеальными для быстро меняющихся приложений, от подсчета людей до промышленной автоматизации.
Светодиодное освещение
Вместо лазерных излучателей мы используем инфракрасную светодиодную технологию. Это дает ряд важных преимуществ.
- Безопасность для глаз : Датчики TeraRanger остаются безопасными для глаз в любых условиях, и нет необходимости в мерах предосторожности для лазера класса 1!
- Поле зрения : Вместо того, чтобы измерять очень маленькую точку, мы можем позволить излучаемому свету распространяться и формировать поле зрения.